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Abstract 27 

In this paper, we have developed the Matlab code for a weighted hybrid of particle swarm 28 

optimization (PSO) and gravitational search algorithm (GSA) known as wPSOGSA, GSA, and 29 

PSO algorithms to interpret one-dimensional magnetotelluric (MT) data for some corrupted and 30 

non-corrupted synthetic data, as well as two examples of MT field data over different geological 31 

terrains: (i) geothermal rich area, Island of Milos, Greece, and (ii) Southern Scotland due to the 32 

occurrence of a significantly high electrical conductivity anomaly under crust and upper mantle 33 

extending from the Midland Valley across the Southern Uplands into northern England. Even 34 

though the fact that many models provide a good fit in a large predefined search space, specific 35 

models do not fit well. As a result, we used a Bayesian statistical technique to construct and assess 36 

the posterior probability density function (PDF) rather than picking the global model based on the 37 

lowest misfit error. This is proceeded by 68.27 % confidence interval for selecting a region where 38 

PDF is more prevalent to estimate the mean model which is more accurate and close to the true 39 

model. For illustration, correlation matrices show a significant relationship among layer 40 

parameters. The findings indicate, the wPSOGSA is less sensitive to model parameters and 41 

produces well, more stable and reliable results with the least uncertainty in the model that is 42 

compatible with existing borehole samples. Furthermore, the present methods resolve two 43 

additional geologically significant layers, one highly conductive (less than 1.0 Ωm) and another 44 

resistive (300.0 Ωm) over the Island of Milos, Greece, characterized by alluvium and volcanic 45 

deposits, respectively, as corroborated by borehole stratigraphy. 46 
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1.0 Introduction 52 

The magnetotelluric (MT) method is a natural source electromagnetic method that explores 53 

various natural resources, namely hydrocarbon, minerals, geothermal prospects, groundwater, 54 

metalliferous ores, etc. (Nabighian and Asten, 2002; Simpson and Bahr, 2005). Due to its 55 

instability, non-unique solution, and algorithm sensitivity, the MT data interpretation is thought-56 

provoking. Many researchers have attempted and developed various inversion algorithms to 57 

interpret, improve the model accuracy, convergence speed, stability and reduce the uncertainty of 58 

the solutions (Kirkpatrick, et al., 1983; Constable et al., 1987; Rodi and Mackie, 2001; Li et al., 59 

2018; Zhang et al., 2019; Khishe and Mosavi, 2020). There are mainly two categories of the 60 

inversion algorithm: first, the local optimization methods namely Conjugate gradient, Levenberg-61 

Marquardt/Ridge regression, Newton-Gauss, Steepest descent, and  Occam inversion,  requires 62 

good initial guess (Shaw and Srivastava, 2007; Wen et al., 2019; Roy and Kumar, 2021) and 63 

another is global optimization techniques (i.e., Ant colony optimization, Genetic algorithm, 64 

Particle swarm optimization, Gravitational search algorithm, Simulated annealing, etc.) does not 65 

require initial guess. Many researchers have carried out numerous metaheuristic optimization 66 

algorithms to invert MT data (Dosso and Oldenburg, 1991; Pérez-Flores and Schultz, 2002; 67 

Miecznik et al., 2003; Sen and Stoffa, 2013). These algorithms are inspired by the natural 68 

phenomenon include Particle Swarm Optimization (Kennedy and Eberhart, 1995), Genetic 69 

Algorithm (Whitley, 1994), Bat algorithm (Yang, 2010a), Differential Evolution (Storn and Price, 70 

1997), biogeographically based Optimization (Simon, 2008), Firefly algorithm (Yang, 2010b), 71 

Grey Wolves Optimizer (Mirjalili et al., 2014), Ant Colony (Colorni et al., 1991), Gravitational 72 

Search Algorithm (Rashedi et al., 2009).  73 

However, unique characteristics, namely exploration and exploitation, persist in global 74 

optimization algorithms. For example, the PSO algorithm has a very high potential for 75 

exploitation, which implies that the algorithm performs well in local search but is inferior in 76 

exploration (Şenel et al., 2019). This suggests that the algorithm has a limited capacity to estimate 77 
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the best model in an extensive search range. Because of low exploration characteristics, it gets 78 

trapped at the local minima (Mirjalili and Hashim, 2010). So, integrating the two algorithms with 79 

opposite characteristics is the best way to solve the exploration and exploitation characteristics, 80 

which provide better solutions than the results obtained from an individual algorithm. 81 

Here, we utilized wPSOGSA, a new global optimization method that takes into account the 82 

algorithm based on natural behavior seen in birds, fish, and insects known as Particle swarm 83 

optimization (PSO) and gravity-based Newton's law (with high exploration capability) known as 84 

Gravity search algorithm (GSA). Researchers interested in artificial intelligence and developing 85 

effective optimization algorithms have been drawn to notable characteristics in such social 86 

behavior. The wPSOGSA, PSO, and GSA are used to estimate resistivity distribution of a multi-87 

layered 1D earth model using synthetic (noise free and noisy) data for three and four layers cases 88 

taken from Shaw and Srivastava (2007) and Xiong et al. (2018), respectively and field MT 89 

sounding data for four and six layers cases taken from Jones and Hutton (1979).and Hutton et al. 90 

(1989) respectively. 91 

Furthermore, numerous (here 10000) models that fit well are optimized for getting the 92 

mean model, which is proceeded by calculating posterior PDF based on Bayesian concepts 93 

using all accepted models to find the optimal mean solution with the least uncertainty, as well 94 

as a correlation matrix to determine the relationships among the layer parameters. Thus, our 95 

analysis suggests that the wPSOGSA algorithm offers a more accurate and trustworthy model 96 

with better stability, fast convergent rate and the least uncertainty in the model. 97 

 98 

2.0 Forward Modelling- Magnetotelluric formulation for 1-D earth 99 

The ability to formulate an effective inversion method requires a thorough understanding of the 100 

forward modeling technique for the issue of interest. Factors like frequency range, actual 101 

resistivity, and layer thickness are used to create synthetic MT apparent resistivity, 𝜌𝑎(𝜔) and 102 

apparent phase,  𝜑𝑎(𝜔) data sets. The electromagnetic impedance (Z) for layered structures is 103 
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described in terms of an orthogonal horizontal electric field, magnetic field, wavenumber (k), 104 

reflection coefficient (R), and exponent factor (𝜏𝑓) with angular frequency (𝜔) as (Ward and 105 

Hohmann, 1988): 106 

𝑍 =
𝜇0𝜔

𝑘
=

𝐸𝑥

𝐻𝑦
= −

𝐸𝑦

𝐻𝑥
 ,      (1) 107 

Where, the wavenumber(k) =  √−𝑖𝜇0𝜔/𝜌, component of electric field (Ex and Ey) and magnetic 108 

field component (Hx and Hy). 109 

If displacement currents are not taken into account, Eq. (1) becomes 110 

𝑍 =
𝜇0𝜔

√−𝑖𝜇0𝜔/𝜌
= √𝑖𝜇0𝜔𝜌 = √𝜇0𝜔𝜌𝑒

𝑖𝜋

4 = 𝜔
(1 − R τf)

(1+ R τf)
 ,   (2) 111 

Noisy impedance is calculated by the following equation 112 

Z𝑛𝑜𝑖𝑠𝑦 = Z + 𝑍 × (2 × 𝑟𝑎𝑛𝑑 − 1) × 𝑛𝑜𝑖𝑠𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ,     (3) 113 

If the angle between impedance phase with Ex is 450
, then the resistivity (𝜌) in half-space of 114 

impedance 𝑍(𝜔)  and time period (T) can be written as   115 

𝜌(𝜔) =
1

𝜇0𝜔
 |𝑍(𝜔)|2 =

0.2𝑇

𝜇0
 |

𝐸𝑥

𝐻𝑦
|

2

 ,     (4) 116 

Thus, the apparent resistivity and apparent phase are defined (Cagniard, 1953; Ward and 117 

Hohmann, 1988) as follows: 118 

Apparent resistivity,  𝜌𝑎(𝜔) =
1

𝜇0𝜔
[𝑍(𝜔)𝑍∗(𝜔)] ,        (5) 119 

Apparent phase, 𝜑𝑎(𝜔) = 𝑡𝑎𝑛−1 (
𝑖𝑚𝑔(𝑍(𝜔))

𝑟𝑒𝑎𝑙(𝑍(𝜔))
) ,      (6) 120 

Where the exponent factor, 𝜏𝑓 = exp(−2𝛾ℎ), the induction parameter 𝛾 = √𝑖𝜔𝜇0/𝜌, h is the 121 

layer thickness, µ0 is the magnetic permeability for free space, Z* is the complex conjugate of 122 

impedance, and the rand is used for generating random number between 0 and +1. 123 

 124 

 125 

 126 
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3.0 Methodology 127 

The methodology that we used for joint modeling of metaheuristic global optimization namely 128 

PSO, GSA, and wPSOGSA in Step-1 and posterior Bayesian probability density function  129 

technique in Step-2 to obtain the global model by utilizing the synthetic and field MT apparent 130 

resistivity and phase curves is depicted in the schematic diagram (Fig. 1), and the steps are 131 

described below: 132 

 133 

Figure 1 Schematic diagram demonstrating the essential processes considered for joint modeling 134 

of metaheuristic global optimization (Step-1) and posterior PDF technique (Step-2) for obtaining 135 

the global model by utilizing the synthetic and field MT data 136 

 137 

3.1 Optimization and Error Estimation 138 

In the present study, we have implemented a new innovative global optimization technique known 139 

as wPSOGSA, in which swarm particles and mass particles provide the best particle, i.e., the best 140 

model. The best model is chosen based on the fitness of the particles, and the cost function or 141 

objective function is used to estimate this fitness. Thus magnetotelluric (MT) inverse problem can 142 

be formulated through the forward modelling operator, f, aim at achieving the resistivity model, 143 
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which illuminates the observed data 𝜌 in the foremost. This operator combines the problem of 144 

physics and inverts the observed apparent resistivity data to the resistivity-depth model, x, as 145 

(𝜌, 𝜑) = 𝑓(𝒙) ,       (7) 146 

The cost function (fitness of the particle) is a mathematical relation between observed and 147 

calculated data and it is defined as the root mean square error (RMS):  148 

𝑅𝑀𝑆 =  √{
(𝜌−𝜌𝐶)2

𝑁
+

(𝜑−𝜑𝐶)2

𝑁
} ,      (8) 149 

Where N is the total observed data points, ρ and 𝜑 are the observed apparent resistivity and phase, 150 

𝜌𝐶 and 𝜑𝐶 are the computed apparent resistivity and phase data.  151 

 152 

3.2 Particle swarm optimization 153 

The particle swarm optimization (PSO) technique is a widespread evolutionary optimization 154 

approach for determining the optimal global solution to a nonlinear inverse problem (Kennedy 155 

and Eberhart, 1995). This technique is analogous to the particle’s natural behavior in search of 156 

food with the help of collaborative support from the model population represented by geophysical 157 

resistivity solutions/models (known as particles) in a swarming group. The best model/position 158 

obtained among the particles so far is stored for each iteration, which helps in search for the best 159 

solution, defined by the fitness of each particle estimated using Eq. (8). The particles' velocity and 160 

location in the search space are defined for kth particle at tth iteration is given below: 161 

𝑣𝑘(𝑡 + 1) = 𝑤𝑣𝑘(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑥𝑝 − 𝑥𝑘(𝑡)) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑥𝑔 − 𝑥𝑘(𝑡)) ,             (9) 162 

𝑥𝑘(𝑡 + 1) = 𝑥𝑘(𝑡) + 𝑣𝑘(𝑡 + 1) ,    (10) 163 

where w is the inertia weight set in between 0 and 1, 𝑐1 and 𝑐2 are a personal learning coefficient 164 

and a global learning coefficient, respectively, 𝑣𝑘(𝑡) is the velocity of the kth particle at tth iteration, 165 

and rand is used for a random number between 0 and 1, 𝑥𝑝 is the present best solution. 𝑥𝑔 is the 166 

global best solution, 𝑥𝑘(𝑡) is the position of the kth particle at tth iteration. Particles change their 167 
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position at each iteration to approach an optimum solution. The first, second, and third terms in 168 

Eq. (9) represent exploratory ability, private thought, and particle collaboration, respectively.  169 

 170 

3.3 Gravitational search algorithm  171 

The gravitational search algorithm (GSA) is a meta-heuristic algorithm based on Newton's 172 

gravitational law (Rashedi et al., 2009), which states that mass particles attract each other with a 173 

gravitational force that is directly proportional to the product of their masses and inversely 174 

proportional to the square of the distance between them. It signifies that massive particles (here, 175 

particle represents the resistivity layer model/solution) attract to the neighboring lighter particles. 176 

Similar to PSO, the Gravitational search optimizer works with a population of particles known as 177 

mass particles in the universe. Thus the best model/solution/particle is achieved among the mass 178 

particles. The best model is defined by each particle's capability (i.e., the fitness) calculated using 179 

Eq. (8). The initialization of their position in the search spaces is given by 180 

𝑥 = 𝑟𝑎𝑛𝑑(𝑁, 𝐷) × (𝑢𝑝 − 𝑑𝑜𝑤𝑛) + 𝑑𝑜𝑤𝑛 ,     (11) 181 

Where N, D are the number of particles/models, the dimension of the model; and up, and down 182 

are the upper and lower limit of the search range, respectively.  183 

During execution time, the gravitational acting force on agent kth from agent jth at a specific 184 

time (t) is defined as 185 

𝐹𝑘,𝑗(𝑡) =  𝐺(𝑡)
𝑀𝑝,𝑘(𝑡)∗𝑀𝑎,𝑗(𝑡)

𝑅𝑘,𝑗(𝑡)+𝜖
(𝑥𝑗(𝑡) − 𝑥𝑘(𝑡)) ,   (12) 186 

Where, 𝑀𝑎,𝑗, and 𝑀𝑝,𝑘 are the active and passive gravitational masses for particle j and k, 187 

respectively, 𝑥𝑗(𝑡) is the position of the particle j at a time t for various parameters, 𝑅𝑘,𝑗 (t) is 188 

Euclidian distance between two particles, and ε is a small constant.  189 

Here, gravitational constant 𝐺(𝑡) at a specific time t is defined as (Kunche et al., 2015) 190 

and acceleration of kth agent at tth iteration for models is 𝑎𝑐𝑘(𝑡) is defined as: 191 

𝑎𝑐𝑘(𝑡) =
𝐹𝑘(𝑡)

𝑀𝑘(𝑡)
 ,        (13) 192 
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Where the gravitational acting force on agent k from agent j and Mk(t) is the mass of the object at 193 

a specific time (t). 194 

𝐺(𝑡) = 𝐺0 × exp (−𝛼 ×
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
) ,     (14) 195 

Where 𝛼, 𝐺0, iter, and maxiter are descending coefficients, starting value of gravitational constant, 196 

current iteration, and maximum iterations, respectively. 197 

The following equations are used to update the particle's velocity and location: 198 

𝑣𝑘(𝑡 + 1) = 𝑟𝑎𝑛𝑑 × 𝑣𝑘(𝑡) + 𝑎𝑐𝑘(𝑡) ,    (15) 199 

𝑥𝑘(𝑡 + 1) = 𝑥𝑘(𝑡) + 𝑣𝑘(𝑡 + 1) ,     (16) 200 

All the particles are randomly placed in the search range using Eq. (11) and then initializes the 201 

particle's velocity. Meanwhile, the gravitational constant, total forces and acceleration are 202 

computed, and the locations are updated. The end criteria is the misfit error (i.e. 10-9) is taken in 203 

our study. 204 

 205 

3.4 Weighted hybrid PSOGSA (wPSOGSA) 206 

The weighted hybrid of PSO and GSA algorithm known as the wPSOGSA algorithm integrates 207 

two essential characteristics, exploration (i.e., the ability of an algorithm to search the whole range 208 

of a given parameter) and exploitation (i.e., the ability to converge the solution nearest to the best 209 

solution) of the global optimization algorithm that increases its efficiency and converges the 210 

objective function to achieve global minima. The velocity and location of the particles updated in 211 

the wPSOGSA algorithm are illustrated in the schematic diagram (see Fig. 2).  212 

 213 

 214 

 215 

 216 
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  217 
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 220 

 221 
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 224 

 225 
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 229 
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 231 

 232 

 233 

 234 

Figure 2 Flow chart of the weighted hybrid Particle Swarm Optimization and Gravity Search 235 

Algorithm known as the wPSOGSA algorithm (After (Mirjalili and Hashim, 2010) 236 

The wPSOGSA combines the characteristic of social thinking of PSO and the searching 237 

capability of GSA; thus, the particle’s velocity is defined as   238 

𝑣𝑘(𝑡 + 1) = 𝑤 × 𝑣𝑘(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑘(𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑥𝑔 − 𝑥𝑘(𝑡)) ,  (17) 239 

Where 𝑣𝑘(𝑡) is the velocity of the particle k at iteration t, w is the weight function (i.e., the constant 240 

which helps to control the momentum of the algorithm to perform optimization properly), 𝑎𝑐𝑘(t) 241 
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is the acceleration of agent k, 𝑥𝑔is the best solution, and the rand is a random number lies between 242 

0 and 1. At each iteration, particles updated their location to achieve the best solution defined as 243 

𝑥𝑘(𝑡 + 1) =  𝑥𝑘(𝑡) +  𝑣𝑘(𝑡 + 1) ,       (18) 244 

The algorithm starts by randomly initializing the velocity, mass, and acceleration of the 245 

particles. The cost function is evaluated for all particles for specified iterations to get the most 246 

optimal solution, and inverted results are updated at each iteration. Equation (12), (17), and (18) 247 

are used to update the gravitational force, velocity, and location of particles after initialization. 248 

However, the velocity and position stop updating their values when the algorithm converge and 249 

reaches the least error of the cost function. 250 

 251 

3.5 Bayesian probability density function  252 

In a Bayesian framework, the probability distribution of the model parameters (known as posterior 253 

probability distribution) is computed using given observed data and models obtained from 254 

inversion. The posterior for a model is calculated using Bayes' theorem and previous model space 255 

information. Individual model parameter ranges are incorporated in the prior knowledge. The two 256 

fundamental stages in the Bayesian statistics method are the representation of previous knowledge 257 

as a probability density function and calculating the likelihood functional derived from data misfit 258 

(Tarantola and Valette, 1982). Specific characteristics, such as the best fitting model, mean model, 259 

and correlation matrix may be determined from posterior distribution of models. According to the 260 

Bayes' theorem, 261 

              𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑝𝑟𝑖𝑜𝑟 × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ,           (19) 262 

As a result, our priori distribution function for the parameter, 𝑥𝑢, mean priori information, M, and 263 

t2 is the mean uncertainty (µ) is defined as 264 

𝑓(µ) =
1

√2𝜋𝑡2
𝑒𝑥𝑝 {−

(𝑥𝑢−𝑀)2

2𝑡2 } ,      (20) 265 

and likelihood function is  266 
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𝑓(𝑋|𝜇) = ∏
1

√2𝜋𝜎2
𝑛
𝑢=1  𝑒𝑥𝑝 {−

(𝑥𝑢−𝜇)2

2𝜎2 } ,     (21) 267 

Hence the posterior density function calculated for a parameter (𝑥𝑢) using mean (µ) and variance 268 

(σ2) defined (Lynch, 2007) as 269 

𝑓(𝜇|𝑋) =
1

√𝑡2𝜎2
 𝑒𝑥𝑝 {

−(𝜇−𝑀)2

2𝑡2 +
∑ (𝑥𝑢−𝜇)2𝑛

𝑢=1

2𝜎2 }    (22) 270 

The posterior Bayesian PDF is calculated from accepted models within a set of parameters, as 271 

shown below:  272 

𝑃(𝑋|𝐸) =
𝑃(𝑋)𝐿(𝐸|𝑋)

∑ 𝑃(𝑋)𝐿(𝐸|𝑋)𝑋
 ,       (23) 273 

Where, P(X|E) is the posterior probability distribution of the parameter (X) given the evidence 274 

(E), P(X) is the prior information of (X) and L(E|X) is the likelihood function of X. 275 

After the application of PDF, the study is further proceeded by choosing Confidence 276 

Interval (CI) of 68.27 % that is based on the empirical rule, known as the 68-95-99.7 rule (Ross, 277 

2009). The model parameters below 68.27 % CI are discarded, and the remaining parameters are 278 

used for determining the mean model and uncertainty. Thus, the mean model (𝑃𝑗) is calculated 279 

using the best models having PDF within a 68.27 % CI, defined in the following equation: 280 

𝑃𝑗 = 𝑒𝑥𝑝
1

𝑁𝑑
∑ 𝑙𝑛(𝑃𝑗,𝑘) ,          (24) 281 

Here accepted models are used to calculate the correlation matrix (i.e., correlation among 282 

model parameters lie between -1 and 1) using the following equation (Tarantola, 2005):  283 

𝐶𝑜𝑣𝑃(𝑙, 𝑗)  =  
1

𝑁𝑑
∑(𝑃𝑙,𝑘 − 𝑃𝑙) (𝑃𝑗,𝑘 − 𝑃𝑙) ,     (25) 284 

and             𝐶𝑜𝑟𝑃(𝑙, 𝑗) =  
𝐶𝑜𝑣𝑃(𝑙,𝑗)

√𝐶𝑜𝑣𝑃(𝑙,𝑙)×𝐶𝑜𝑣𝑃(𝑗,𝑗)
 ,                 (26) 285 

Here, N is the total number of models, d is used for the number of the layer parameters, 𝑃𝑗,𝑘 is the 286 

jth model parameter of kth model where l and j both vary from 1 to d (number of layer parameters). 287 

𝐶𝑜𝑣𝑃(𝑙, 𝑗) is the covariance matrix between model parameter l and j,  𝑃𝑙,𝑘 is the model parameter 288 
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lth model parameter of kth model and 𝐶𝑜𝑟𝑃(𝑙, 𝑗) is the correlation matrix between model parameter 289 

l and j.  290 

 291 

4.0 Results and discussions 292 

Different MT datasets are utilized to evaluate the proposed wPSOGSA algorithm's effectiveness, 293 

sensitivity, stability, and robustness in outlining the genuine subsurface structure. These datasets 294 

are noise-free and Gaussian noise synthetic data produced for several geological formations, and 295 

two MT field data have been optimized for analysis. 296 

  297 

4.1 Application to synthetic MT data-Three layers case 298 

To demonstrate and evaluate the robustness of the present algorithms, we have generated apparent 299 

resistivity and apparent phase synthetic MT data without noise and with noise levels (10 % and 300 

20 % noise) considering a three-layer typical continental crustal model with a total thickness of 301 

33000 m (i.e., 33.0 km) having a resistivity of middle crust 5000.0 Ωm with 18000 m (i.e., 18.0 302 

km) thickness (reasonable low resistive layer) and resistivity of upper-crust 30000.0 Ωm with 303 

15000 m (i.e., 15 km) thickness (high resistive layer) underlain by 1000 Ωm (low resistive) half 304 

space taken from Shaw & Srivastava (2007).    305 

This synthetic MT data that was executed for 10000 runs keeping the same lower and upper 306 

bounds as given in Table 1, and iteration to 1000. Figure 3 shows (a) the observed apparent 307 

resistivity with the computed data, (b) the observed apparent phase with the computed data, (c) 308 

1D inverted model by wPSOGSA (red color), GSA (green color) and PSO (blue color) with a true 309 

model (black color), and 2(d) shows the relation between misfit and iterations for the noise-free 310 

synthetic data. 311 
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 312 

Figure 3 The inverted MT response by PSO (blue color), GSA (green color), and hybrid 313 

wPSOGSA (red color) with a true model (black color) over three-layer synthetic data as shown in 314 

(a) observed and calculated apparent resistivity curve, (b) observed and calculated apparent phase 315 

curve, (c) 1D depth inverted model, and (d) misfit error versus iterations 316 

The misfit curve as shown in Fig. 3(d) is gradually decreasing with increasing iterations 317 

and becomes constant, where the algorithm converges. The PSO, GSA, and wPSOGSA converge 318 

at iterations 492, 35, and 316 with associated errors 1.51e–6, 3.97e-6, and 1.035e-8, and the 319 

associated computational time is 27.06 seconds, 1.75 seconds, and 3.35 seconds, respectively. 320 

Thus the curves describes that wPSOGSA converges at the least RMS error. Whereas PSO, GSA, 321 

and wPSOGSA using 10 % noisy synthetic data converge at 102, 88, and 358 iterations with an 322 

associated error are 0.00435, 0.00439, and 0.00426, and associated computational times are 5.61 323 

seconds, 4.40 seconds, and 3.80 seconds, respectively. 324 

Figure 4 presents the 20 % noisy synthetic MT data that was executed for 10000 runs 325 

keeping the same lower and upper bounds, and iteration to 1000. The well fitted inverted MT 326 

response (see Fig. 4) as follows: (a) the corrupted synthetic and calculated apparent resistivity 327 
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data, (b) the corrupted synthetic and calculated apparent phase data, (c) the inverted 1D depth 328 

model, and (d) convergence response in terms of misfit error versus iterations. We analyzed Fig. 329 

4(d) and found that the PSO, GSA, and wPSOGSA using noisy synthetic data converge at 330 

iterations 236, 7, and 73 with associated errors 0.0394, 0.0408, and 0.0393, respectively. 331 

 332 

 333 

Figure 4 The inverted MT response by PSO (blue color), GSA (green color), and hybrid 334 

wPSOGSA (red color) with a true model (black color) over three-layer synthetic data with 20 % 335 

random noise as shown in (a) observed and calculated apparent resistivity curve, (b) observed and 336 

calculated apparent phase curve, (c) 1D depth inverted model, and (d) misfit error versus iterations 337 

 338 

4.1.1 Bayesian analysis and uncertainty in model parameters 339 

Two methods are used to estimate mean solution and uncertainty: one method is the mean solution 340 

for all accepted best-fitted solutions acquired from 10,000 runs for all three global optimization 341 

techniques; another method is the model derived from all approved solutions using posterior 342 
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Bayesian PDF within one standard deviation. To get the global best solutions in our study, we 343 

incorporated posterior PDF based on the Bayesian approach to enhance the efficacy of the inverted 344 

model and minimize the uncertainty in the model. The process for obtaining the mean solution is 345 

proceeded by selecting an initial threshold error which is essential because the smaller the 346 

threshold value, the more significant number of models with lesser uncertainty in the model 347 

parameters (Sharma, 2012). Thus, a more considerable threshold gives a lesser number of models 348 

with enormous uncertainty in the model parameter (Sen and Stoffa, 1996; Sharma, 2012). This is 349 

further proceeded by calculating the PDF for each parameter value using Eq. (22). In order to 350 

select values of each parameter that having higher posterior PDF, a 68.27 % CI is used. The mean 351 

model obtained from selected model parameters is near to the actual model. 352 

Figure 5 shows the output of posterior Bayesian PDF, which select model parameters 353 

with lesser error. The straight lines (dashed lines) present the actual value of the respective layer 354 

parameters. The first layer thickness, second layer thickness, and first layer resistivity have 355 

higher uncertainties, i.e., 61.25 m, 51.47 m, and 210.61 Ωm, respectively, whereas the second 356 

layer resistivity and third layer resistivity have lower uncertainty, i.e., 17.71 Ωm and 0.03 Ωm, 357 

respectively. 358 

 359 

Figure 5 Posterior Bayesian probability density function (PDF) with 68.27 % CI for wPSOGSA 360 

for three-layered synthetic data 361 

https://doi.org/10.5194/npg-2023-8
Preprint. Discussion started: 25 April 2023
c© Author(s) 2023. CC BY 4.0 License.



17 
 

Table 1 True model, search range, and inverted layer parameters by hybrid wPSOGSA, GSA, and 362 

PSO for three-layer with different noise (0 %, 10 %, and 20 %) synthetic MT apparent resistivity 363 

and apparent phase data. 364 

Layer parameters  𝜌1 
(Ωm) 

𝜌2 
(Ωm) 

𝜌3 
(Ωm) 

ℎ1 
(m) 

ℎ2 
(m) 

True model  30000 5000 1000 15000 18000 

Search Range  5000 -

50000 

1000 - 

10000 

50 - 

5000 

5000 - 

25000 

10000- 

25000 

(Shaw & 

Srivastava, 2007) 

2.0 % Gaussian 

random noise 

PSO 26981.80 6230.30 1011.70 13090 19720 

GA 40800 10000 1010 6210 25000 

RR 43424.40 3097.10 980.70 17010.00 16960.00 

0 % noisy data PSO 27463.86 4664.57 999.48 16112.66 17080.01 

GSA 32017.78 4721.69 1004.05 16195.26 17928.07 

wPSOGSA 30243.42 5007.04 1000.02 14969.33 18029.76 

10 % noisy data PSO 19861.54 7659.73 1022.19 15971.66 14774.31 

GSA 27538.91 6534.61 1018.04 14117.82 17408.14 

wPSOGSA 27589.85 6043.87 998.99 14902.89 18221.87 

20 % noisy data PSO 26981.8 6230.3 1011.7 13090.00 19720.00 

GSA 28823.57 5825.19 1089.65 16861.84 20795.48 

wPSOGSA 29208.75 5282.77 1055.09 16573.22 18398.94 

 365 

Table 1 shows the inverted layer parameters using wPSOGSA, GSA, and PSO for noise-366 

free and noisy synthetic MT databased on posterior Bayesian PDF, as well as the actual model and 367 

the search range. In addition, layered properties of synthetic data corrupted with 10 % and 20 % 368 

random noise are compared and statistically analyzed. Our findings, as shown in Table 1, were 369 

compared to those obtained using the Genetic Algorithm (GA), Ridge Regression (RR), and PSO 370 
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by Shaw & Srivastava (2007), which consistently outperforms GA and RR is closer to the genuine 371 

model. 372 

 373 

Figure 6 Histogram of selected models for misfit error below a defined threshold error of 374 

wPSOGSA 375 

Mean value of the accepted model parameters (30243.42±471.26, 5007.04±39.59, 376 

1000.02±0.064, 14969.33±136.82, 18029.76±114.90) with high uncertainty of the parameters (1.5 377 

%, 0.78 %, 0.0064 %, 0.91 %, and 0.63 %). On the basis of low posterior PDF and high 378 

uncertainty, we have taken (ρ1) and (h1) for the exercise to show the models are not biased to the 379 

selected models. 380 

As well as based on the histograms (see Fig. 6), posterior PDF and uncertainty of the 381 

inverted layer parameters resistivity (ρ1) and thickness (h1) for the three-layered synthetic MT data 382 

have been taken to depict the global solution using presented algorithm. Here we prepared the 383 

cross-plots of ρ1 versus h1 using (a) wPSOGSA, (b) PSO, and (c) GSA, showing all accepted 384 

models (red circle), selected models with misfit error less than a threshold error of 10-4 (magenta 385 

circle), models of a PDF greater than 95 % (blue circle), models of a PDF greater than 75 % (green 386 
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circle), models of a PDF greater than 68.27 % (yellow circle), and mean model, i.e., model 387 

parameters which having a PDF greater than 68.27 % (black asterisk) as shown in Fig. 7. It is 388 

noticed that the all inverted results give the global solution which has a good agreement with the 389 

true model, whereas wPSOGSA gives the more accurate results than the other two algorithms PSO 390 

and GSA as shown in Table 2.  391 

 392 

Figure 7 Cross-plots of thickness and resistivity of first layer for the three-layered synthetic 393 

resistivity model using (a) wPSOGSA, (b) PSO, and (c) GSA, displaying all accepted models (red 394 

circle), selected models with misfit error less than a threshold error (magenta circle), models (pdf 395 

> 95 % CI, blue circle), models (pdf > 75 % CI, green circle), models (pdf > 68.27 % CI, yellow 396 

circle), and mean model i.e. model parameters which having a PDF greater than 68.27 %  (black 397 

asterisk) 398 

 399 
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4.1.2 Sensitivity, correlation matrix, and model parameters 400 

The accepted models, which have posterior PDF value within 68.27 % CI, are used to calculate 401 

the correlation matrix. This correlation matrix gives the relationship among model parameters. 402 

Thus, the lesser correlation value gives weak relation among the parameters and vice versa. The 403 

correlation matrix of PSO, GSA, and wPSOGSA was examined on one set of synthetic data, as 404 

shown in Fig. 8, Fig. 9 and Fig. 10, demonstrating the sensitivity among inverted model 405 

parameters. The value of correlation matrix 1.0 indicates that the two parameters are strongly 406 

correlated.  407 

Figure 8 shows that first layer resistivity is correlated highly positively with a first-layer 408 

thickness (0.97) and second layer thickness (0.98), while the second layer resistivity (-0.99) and 409 

third layer resistivity (-0.81) are substantially negative connected. Second layer resistivity is 410 

correlated with the third layer resistivity (0.87) which has a significant positive relationship; while 411 

second layer resistivity has a significant negative correlation with the first layer thickness (-0.99) 412 

and the second layer thickness (-1.00). First layer thickness (-0.92) and second layer thickness (-413 

0.90) are very negatively associated with third layer resistivity, while first layer thickness is 414 

extremely positively correlated with a second layer thickness (0.99). 415 

 416 

https://doi.org/10.5194/npg-2023-8
Preprint. Discussion started: 25 April 2023
c© Author(s) 2023. CC BY 4.0 License.



21 
 

Figure 8 Correlation matrix calculated from PSO inverted model using a three-layer noise-free 417 

synthetic MT apparent resistivity and apparent phase data 418 

 419 

Figure 9 indicates that first layer resistivity is highly associated with a second layer 420 

thickness (1.00) and weakly with second layer resistivity (-1.00), third layer resistivity (-1.00), 421 

and first layer thickness (-1.00). Second layer resistivity (-1) is highly linked with a second layer 422 

thickness (-1.00), while third layer resistivity (1.00) and first layer thickness are strongly 423 

correlated (1.00). Third layer resistivity has a highly positive correlation with a first-layer 424 

thickness (1.00) and a strong negative correlation with a second layer thickness (-1.00), whereas 425 

first layer thickness has a significant negative correlation with a second layer thickness (-1.00). 426 

 427 

Figure 9 Correlation matrix calculated from GSA inverted model using a three-layer noise-free 428 

synthetic MT apparent resistivity and apparent phase data 429 

 430 

Figure 10 shows the correlation matrix of wPSOGSA. The analyses reveal that the first 431 

layer resistivity is strongly negative with the second layer resistivity, substantially negative (-0.92) 432 

with the third layer resistivity, weakly positive (0.30) with the first layer thickness, and 433 
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considerably (0.63) with the second layer thickness. Second layer resistivity is slightly positive 434 

(0.31) when compared to third layer resistivity (0.43) but substantially negative when compared 435 

to first layer thickness. Third layer resistivity has a slightly negative correlation (-0.23) with first 436 

layer thickness, but a moderately negative correlation (-0.71) with second layer thickness and first 437 

layer thickness has a negative correlation (-0.71). Thus the conclusion can be made that the layer 438 

parameters are independent of others, so changing one will have no effect on the other compared 439 

to the result obtained via PSO and GSA algorithms. 440 

 441 

Figure 10 Correlation matrix calculated from wPSOGSA inverted model using a three-layer 442 

noise-free synthetic MT apparent resistivity and apparent phase data 443 

 444 

4.1.3 Stability analysis  445 

We used two different search ranges for stability evaluation of proposed wPSOGSA algorithms 446 

and executed the algorithms over three layers of synthetic MT data. One of which is expanded, 447 

and the other is contracted by 10 % of the initial search range. We infer from three layers of 448 

synthetic data, results fluctuate by approximately 3 % from the true value when the search range 449 
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is changed. This variation is about 10 % on average for synthetic data corrupted with 30 % random 450 

noise, as shown in Table 2. 451 

Table 2 Stability analysis of a hybrid algorithm for three layers of synthetic data. 452 

Layer parameters 𝜌1 
(Ωm) 

𝜌2 
(Ωm) 

𝜌3 
(Ωm) 

ℎ1 
(m) 

ℎ2 
(m) 

Search Range  
5000-

50000 

1000-

10000 
50-5000 

5000-

25000 

10000-

25000 

Search Range - Case 1 4500-

55000 

900-

11000 
45-5500 

4500-

27500 

9000-

27500 

wPSOGSA 

inverted model  

0 % 
31092.47 5085.79 1000.14   14700.83 18251.85 

30 % 30113.82 5016.75 1137.05 15880.95 23970.22 

Search Range - Case 2 5500-

45000     

1100-

9000 

55-4500 5500-

22500     

11000-

22500 

wPSOGSA 

inverted model  

0 % 29078.26 4922.85 999.91   15273.25 17767.45 

30 % 27815.97 5464.88 1156.46 17398.41 18119.61 

 453 

4.2 Application to synthetic MT data-Four layers case 454 

For the second example of the synthetic data, a typical four-layer HK-type of earth model taken 455 

from Xiong et al. (2018) is generated by forward modeling equations for demonstration of the 456 

wPSOGSA, PSO, and GSA algorithms and compared their performance with Improved 457 

Differential Evolution (IDE) results obtained by Xiong et al. (2018). Analysis over noisy synthetic 458 

data is done by corrupting synthetic data with 10 % and 20 % Gaussian random noise to mimic 459 

the real field data because different types of noises influence apparent resistivity data. Following 460 

that, all three optimization methods are run using the noisy synthetic data. As the misfit error 461 

increases with the noise in the data, the Bayesian PDF of 68.27 % CI is calculated with respect to 462 

the threshold misfit error of 0.01 and thus the mean model is calculated.  463 

Enormous uncertainty is shown in the inverted results; hence, we calculated the mean 464 

model for 68.27 % CI using posterior Bayesian PDF to reduce the uncertainty and produce the 465 
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global best solution. The optimized results obtained from the posterior PDF and the true model 466 

are shown in Table 3. Fig. 11 illustrate the inverted responses for PSO, GSA, and wPSOGSA are 467 

well-fitting as follows (a) observed and calculated apparent resistivity data, (b) observed and 468 

calculated apparent phase data, (c) 1-D depth model, and (d) convergence response of present 469 

algorithms. We have estimated the layer parameters for synthetic data corrupted with 20 % random 470 

noise for comparative analysis and found that the PSO, GSA, and wPSOGSA converge at 471 

iterations 96, 556, and 187 with associated errors 3.69, 4.04, and 3.69, respectively. 472 

 473 

Figure 11 The inverted MT response by PSO (blue color), GSA (green color), and hybrid 474 

wPSOGSA (red color) with a true model (black color) over four-layer synthetic data as shown in 475 

(a) observed and calculated apparent resistivity curve, (b) observed and calculated apparent phase 476 

curve, (c) 1D depth inverted model and (d) convergence curve 477 

Additionally, the synthetic data corrupted with 10 % random noise is also used and 478 

executed inversion, keeping the search range, a number of particles, and iterations the same as 479 

before and observed that the PSO, GSA, and wPSOGSA converge at iterations 151, 2 and 250 480 
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with associated error 1.7609, 1.95 and 1.76 respectively. The posterior Bayesian PDF for threshold 481 

data with 68.27 % CI is calculated similarly as a three-layer case to minimize the uncertainty in 482 

inverted results.  483 

 484 

Table 3 Comparison of the result obtained from improved Differential Evolution (IDE) and 485 

inverted results of PSO, GSA, and hybrid wPSOGSA obtained by using posterior PDF for four-486 

layer synthetic apparent resistivity data with different Gauss noise levels (0 %, 10 %, and 20 %) 487 

and True model. 488 

Layer 

parameters 

 𝜌1 
(Ωm) 

𝜌2 
(Ωm) 

𝜌3 
(Ωm) 

𝜌4 
(Ωm) 

ℎ1 
(m) 

ℎ2 
(m) 

ℎ3 
(m) 

True model  30.00 200.00 10.00 100.00 100.00 2000.00 3000.00 

Search Range  25-35 100-250 5-15 50-150 50-200 1000-3000 2000-3500 

0 % noise IDE 30.00 200.00 9.99 100.01 100.00 1991.98 3000.24 

PSO 30.00 200.001 10.00 100.00 100.00 2000.00 3000.00 

GSA 29.95 199.79 9.99 99.99 99.67 2000.70 2995.37 

wPSOGSA 30.00 200.00 10.00 100.00 100.00 2000.00 3000.00 

10 % noise IDE 30.24 210.28 08.92 99.67 109.83 1994.63 2667.13 

PSO 32.86 224.99 11.51 107.65 109.71 1971.78 3499.92 

GSA 29.77 209.78 9.50 106.78 92.38 2073.14 2754.77 

wPSOGSA 30.46 197.18 9.97 102.01 100.50 1974.83 3079.35 

20 % noise IDE 30.30 212.41 11.44 97.92 102.40 1930.17 3347.24 

PSO 34.99 247.04 11.80 114.56 115.16 1986.08 3499.99 

GSA 29.52 225.61 9.74 113.46 87.55 2081.26 2753.29 

wPSOGSA 34.88 246.08 11.75 114.54 114.58 1990.98 3489.10 

 489 

 490 
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4.2.1 Stability analysis  491 

For the stability evaluation of presented algorithms over four layers of synthetic MT data, similar 492 

to the three-layer case, we used two different search ranges and executed the algorithms for 1000 493 

iterations. The method exhibits good results with four layers of synthetic data and reveals minimal 494 

variation for noise-free data. For 30 % contaminated data, the variation is approximately 10 % and 495 

12 % in case 1 and case 2, respectively. The outputs don't change much across runs and provide 496 

consistent results, as shown in Table 4. 497 

 498 

Table 4 Stability analysis of a hybrid algorithm for four layers of MT synthetic data. 499 

Layer  

parameters 
𝜌1 

(Ωm) 
𝜌2 

(Ωm) 
𝜌3 

(Ωm) 
𝜌4 

(Ωm) 
ℎ1 
(m) 

ℎ2 
(m) 

ℎ3 
(m) 

Search Range 25-35 100-

250 

5-15 50-

150 

50-

200 

1000-

3000 

2000-

35000 

Search Range-Case 1 27.50-

31.50 

110-

225 

5.50-

13.50 

55-

135 

55-

180 

1100-

2700 

2200-

3150 

wPSOGSA 

inverted model 

0 % 29.99 199.99 10.00 99.99 99.99 1999.99 3000.00 

30 % 31.5 220.79 11.17 109.18 99.48 2150.07 3150 

Search Range-Case 2 22.50-

38.50 

90-

275 

4.50-

16.50 

45-

165 

45-220 900-

3300 

1800-

3850 

wPSOGSA 

inverted model 

0 % 29.99 199.99 10.00 99.99 99.99 1999.99 3000.00 

30 % 35.47 264.27 11.95 103.13 116.22 2020.37 3040.95 

 500 

4.3 Application to field MT data-Island of Milos, Greece 501 

We utilized the first example of field data from the Island of Milos, Greece. Milos is a part of the 502 

South Aegean Active Volcanic Arc, an example of an emergent volcanic edifice (Stewart and 503 

McPhie, 2006) formed by monogenetic effusive and explosive magmatism pulses. Milos is the 504 

world's biggest exporter of bentonite, and it also has a diverse variety of metalliferous and non-505 

metalliferous mineral reserves. It's a conserved on-land laboratory for studying shallow 506 
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underwater hydrothermal ore-forming processes. The accompanying shallow subsurface 507 

hydrothermal venting fields have developed significantly less attention. ("Dawes, 1986) used 508 

magnetotelluric data to assess the resistivity structure of the geothermal area on Milos west side. 509 

With around 3.0 km spacing, 37 MT probes in the bandwidth of 100-0.01 Hz and 12 investigations 510 

in the bandwidth of 0.01-0.0001 Hz were installed along with various profiles that were 511 

perpendicular to the Zephyria graben in the W-E direction, as well as along the graben in S-N 512 

direction (Hutton et al. 1989). The location of the MT site and the geology of the study area are 513 

shown in Fig. 12. 514 

In one-dimensional MT data for site G5 near borehole M2 (Hutton et al., 1989) the 515 

apparent resistivity and phase values are inverted using the wPSOGSA, PSO, and GSA, keeping 516 

the same set of controlling parameters as for noisy synthetic data, such as the swarm size, inertia 517 

weight (w), personal learning coefficient (c1) and a global learning coefficient (c2), descending 518 

coefficient (α), and the initial value of universal gravitational constant (G0).  519 

Figure 13 shows the calculated data and model parameters as (a) match between observed 520 

and computed apparent resistivity data, (b) match between observed and computed apparent phase 521 

data, and (c) 1D inverted model and (d) convergence response of wPSOGSA (red color), GSA 522 

(green color), and PSO (blue color) along with true model (black color). In subfigure Fig. 13(c) 523 

depicts alluvium deposits with a resistivity of 1.0 Ωm with 15 m thickness as the top layer, and 524 

volcanic deposits with a resistivity of 300 Ωm and 10 m thickness lie beneath the alluvium 525 

deposits. A very high conducting layer of resistivity less than 1.0 Ωm is estimated, equivalent to 526 

the green lahar under the high resistivity volcanic deposits. The next layer below, with higher 527 

resistivity, corresponds to the crystalline foundation. In the geothermal zone's depths, the 528 

resistivity drops again. The resistivity in the depth range of about 1000 m, which is similar to 529 

earlier studies, was explored, and the findings of the proposed algorithm discovered to be in good 530 

agreement with model developed by Dawes in Hutton et al. (1989). 531 

 532 
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 533 

Figure 12 The location of the MT site and geology of the Island of Milos, Greece (modified after 534 

(Stewart and McPhie, 2006) 535 

In subfigure Fig. 13(d) reveals that the algorithms converge at iterations 218, 1, and 425 536 

with corresponding errors of 0.0494, 0.0518, and 0.0493 for PSO, GSA, and wPSOGSA, 537 

respectively. The hybrid algorithm has the least error between observed and computed data. The 538 

algorithms are executed for 1000 iterations and 10000 models, and findings are compared with 539 

available stratigraphy, and the result is derived using the Monte-Carlo technique by Hutton et al. 540 

(1989). After examining our optimized effects from Fig. 13 and Table 5, hybrid wPSOGSA 541 

outperformed PSO and GSA.  542 

M1, M2, M3, MZ1 – Borehole 

 - MT site took for study  

 

M2 

M3 

M1 

MZ1 

MT 
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 543 

Figure 13 The inverted MT response by PSO (blue color), GSA (green color), and hybrid 544 

wPSOGSA (red color) with a true model (black color) over the geothermal area, Island of Milos, 545 

Greece, as shown in (a) observed and calculated apparent resistivity curve, (b) observed and 546 

calculated apparent phase curve, (c) 1D depth inverted model and (d) convergence curve 547 

 548 

4.3.1 Bayesian analysis and uncertainty in model parameters 549 

A posterior Bayesian method determines the global model and related uncertainty. Figure 14 550 

shows another uncertainty study that examined the six-layered resistivity model over the 551 

geothermal field, Island of Milos, Greece, and found that the peak values of the posterior PDF for 552 

all model parameters are very nearer to the actual value of the layer parameters, providing less 553 

uncertainty. We have analyzed the wPSOGSA inverted results from the Fig. 14 and Table 5 and 554 

found that the first, second, third, fourth, fifth, and sixth layers’ resistivity with uncertainty in 555 

associated layer parameters is 1.23±0.49 Ωm, 297.61±53.43 Ωm, 0.55±0.02 Ωm, 2.41±0.16 Ωm, 556 

14.18± 1.76 Ωm, and 99.92±0.37 Ωm. Similarly, the associated thicknesses with uncertainty are 557 
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14.51±1.35 m, 9.85±1.35 m, 127.39±6.01 m, 823.01±7.57 m, and 2750.88±63.07 m. Thus, the 558 

analysis suggests the lesser uncertainties in each layer's parameters except resistivity of the first 559 

and second layers. 560 

 561 

Figure 14 Posterior Bayesian probability density function (PDF) with 68.27 % CI for 562 

wPSOGSA over a geothermal field, Island of Milos, Greece 563 

 564 

Table 5 compares optimized results obtained from all three presented algorithms based 565 

on posterior Bayesian PDF under 68.27 % CI condition. However, the 1D depth model inverted 566 

from wPSOGSA shows good agreement with the available borehole M-2 (Hutton et al., 1989). 567 

As a result, the hybrid algorithm is functioning better, and the findings are encouraging. 568 

 569 

 570 

 571 

 572 

 573 
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Table 5 Search range and inverted results by posterior PDF (68.27 % CI) and PSO, GSA, and 574 

hybrid wPSOGSA for six-layered field data. 575 

Layer parameters 𝜌1 

(Ωm) 

𝜌2 

(Ωm) 

𝜌3 

(Ωm) 

𝜌4 

(Ωm) 

𝜌5 

(Ωm) 

𝜌6 

(Ωm) 

ℎ1 

(m) 

ℎ2 

(m) 

ℎ3 

(m) 

ℎ4 

(m) 

ℎ5 

(m) 

Search Range 0.1- 

5 

50- 

500 

0.1- 

5 

1- 

10 

10- 

30 

50-

100 

10- 

20 

5- 

15 

110-

150 

800-

850 

2500-

3000 

 

Mean 

Posterior 

PSO 1.71 493.81 0.62 2.82 13.22 99.97 10.39 7.44 135.4 843.77 2861.35 

GSA 2.28 299.28 0.54 2.76 18.25 76.03 14.08 8.81 130.75 825.32 2753.07 

wPSOGSA 1.23 297.61 0.55 2.41 14.18 99.92 14.51 9.85 127.39 823.01 2750.88 

 576 

4.3.2 Sensitivity, correlation matrix, and model parameters 577 

Here a similar study of the correlation matrix is carried out for field example from the Island of 578 

Milos, Greece using all accepted models, which have posterior PDF values within 68.27 % CI. 579 

The correlation matrix of PSO, GSA, and wPSOGSA was examined over the field MT data as 580 

shown in Fig. 15, Fig. 16 and Fig. 17 demonstrating the sensitivity among inverted model 581 

parameters and found an almost similar correlation among the layer parameters for three-layer 582 

synthetic study. From correlation analyses, we noticed that the values are showing moderate and 583 

weak correlation among parameters in the wPSOGSA case, indicating that wPSOGSA is linearly 584 

independent of layer parameters, while PSO and GSA are more reliant, so changing one parameter 585 

will show less effect on the other. This indicates that the parameter is less affected by other layer 586 

parameters and resistivity curves. Whereas the correlation among layer parameters for field data 587 

using GSA is either strongly positive or strongly negative, which describes that the parameters are 588 
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dependent on each other. Thus a change in one parameter affects the other, and also apparent 589 

resistivity curve is very much involved.  590 

Figure 15 Correlation matrix of field data taken from the geothermal rich area, Island of Milos, 591 

Greece for PSO 592 
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Figure 16 Correlation matrix of field data taken from island geothermal rich area of Milos, Greece 593 

for GSA 594 

 595 

 596 
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Figure 17 Correlation matrix of field data taken from island geothermal rich area of Milos, Greece 597 

for hybrid wPSOGSA 598 

 599 

4.4 Application to field MT data-Newcastleton, Southern upland, Scotland  600 

Another field example of MT data was picked to illustrate our technique from Newcastleton 601 

(2.796° W, 55.196° N in Geographic coordinates), Southern Uplands of Scotland. By the Southern 602 
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Uplands fault, the Southern Uplands are isolated from the Midland Valley. The bulk of the 603 

Southern Uplands comprises Silurian/Lower Paleozoic sedimentary deposits such as greywackes 604 

and shales that originated in the Iapetus Ocean during the late Neoproterozoic and early Paleozoic 605 

geologic eras. These rocks emerged from the seafloor as an accretionary wedge during the 606 

Caledonian orogeny. The majority of the rocks are coarse greywacke, a kind of sandstone that has 607 

been poorly metamorphosed and contains angular quartz, feldspar, and small rock fragments. The 608 

Midland Valley and Northern England, on the other hand, are known for their thick Carboniferous 609 

layers, which are used to measure coal. The geomagnetic studies by Jones and Hutton (1979) have 610 

shown that the Southern Uplands are characteristic of a typical continent, with a zone of very high 611 

electrical conductivity. The location of the MT site and the geology of the study area are shown 612 

in Fig. 18. 613 

During nine days in the frequency range of 0.1 Hz to 0.0001 Hz, the variations of the 614 

magnetic and telluric fields concerning the time at four sites along a line perpendicular to the 615 

anomaly's strike were recorded, keeping a high signal to noise ratio where the anisotropy ratios 616 

are so near to one and the skew factor is less than 0.1 for the majority of periods. Due to low 617 

anisotropy ratios and skew factor, the resistivity distribution under this location is one-dimensional  618 

(Jones and Hutton, 1979). Here one set of MT data is inverted using PSO, GSA, and wPSOGSA 619 

to obtain the best fitting apparent resistivity curve, apparent phase curve, and 1D depth model as 620 

shown in subfigures Fig. 19(a), Fig. 19(b), and Fig. 19(c), respectively. Figure 19 shows a realistic 621 

one-dimensional resistivity variation, with a phase response ranging from 60° at 100 seconds to 622 

35° at 1000 seconds, which can only be obtained by establishing a conducting zone at lower 623 

crustal/upper mantle levels (Jones and Hutton, 1979).   624 

The execution time for wPSOGSA (33 seconds) is the least as compared to GSA (34 625 

seconds) and PSO (53 seconds). The convergence iterations are 79, 101, and 65, and associated 626 

misfit errors are 3.79, 4.72, and 3.70 for PSO, GSA, and wPSOGSA, respectively.  627 
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 628 

Figure 18 The location of MT site and geology of the Southern upland, Scotland (after BGS, 629 

2016) 630 
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The inverted MT model is illustrated in subfigure Fig. 19(c), which depicts two low 631 

conductive zones at a depth of 21 km and 400 km. The first conductive layer (70 Ωm) with a 632 

thickness of 28 km is underlain by a high resistive top layer of thickness of 21 km, and the second 633 

very high conductive layer (less than 1.0 Ωm) at a depth of 400 km is underlain by high resistive 634 

layer (550 Ωm) of thickness 351 km. Thus the last layer of a very high conductive zone (i.e., 635 

resistivity less than 1.0 Ωm) as a lower crust/upper mantle conductor at a depth of 400 km is 636 

estimated. At 400 m depths, a conducting zone meets both the amplitude and phase long period 637 

responses. This explanation is directly equivalent to accepted models derived from Monte-Carlo 638 

models for the structure underlying the Southern Uplands. 639 

 640 

Figure 19 The inverted MT response by PSO (blue color), GSA (green color), and hybrid 641 

wPSOGSA (red color) with a true model (black color) over Newcastleton, Southern Scotland, as 642 

shown in (a) observed and calculated apparent resistivity curve, (b) observed and calculated 643 

apparent phase curve, (c) 1D depth inverted model and (d) convergence curve 644 

 645 
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Table 6 Search range, inverted results by posterior PDF (68.27 % CI) using PSO, GSA, and 646 

wPSOGSA for field data. 647 

Layer 

parameters 

 𝜌1 

(Ωm) 

𝜌2 

(Ωm) 

𝜌3 

(Ωm) 

𝜌4 

(Ωm) 

ℎ1 

       (m) 

ℎ2 

      (m) 

ℎ3 

       (m) 

Search 

Range 

 300-

1000 

10-

150 

250-

1500 

0.1-5 10000-

30000 

15000-

35000 

100000-

450000 

 

Mean 

Posterior 

PSO 304.47 92.66 591.52 4.93 20894.01 34776.15 379563.48 

GSA 507.65 69.38 548.46 2.66 20493.18 24182.99 382090.23 

wPSOGSA 444.27 78.94 554.53 1.91 20591.39 28177.40 382181.50 

 648 

5 Conclusions 649 

The study presented the wPSOGSA algorithm along with PSO and GSA to evaluate their efficacy 650 

and applicability to the MT data, which narrates the appraisal of 1D resistivity models from 651 

apparent resistivity, apparent phase, and the frequency data sets. So, synthetic and field MT data 652 

from various geological terrains were used to demonstrate the relevance of these methods, which 653 

are further carried out by applying multiple runs, generating a large number of models that fit the 654 

apparent resistivity and apparent phase curves. Then these best-fitting models within a specified 655 

range are then chosen for statistical analysis. The statistical analysis includes posterior PDF based 656 

on the Bayesian approach with 68.27 % CI, correlation matrix, and stability analysis to enhance 657 

the accuracy of the mean model with the least uncertainty. However, a solution from the posterior 658 

PDF based on the Bayesian of wPSOGSA is better than GSA, and PSO yields the reliability of the 659 

inversion algorithm. In general, conventional techniques can effectively resolve the model in 660 

random noise, but they can miscarry in methodical error or inappropriate models. The performance 661 

of the proposed algorithms has been analyzed based on the mean model, uncertainty, and stability 662 

of layered earth models, and found that the results obtained from wPSOGSA are reliable, stable, 663 

and more accurate than the available results, which are fitted well with borehole lithology. 664 

 665 
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