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Abstract 27 

In this paper, we have developed the Matlab code for a weighted hybrid of particle swarm 28 

optimization (PSO) and gravitational search algorithm (GSA) known as wPSOGSA, GSA, and 29 

PSO algorithms to interpret one-dimensional magnetotelluric (MT) data for some corrupted and 30 

non-corrupted synthetic data, as well as two examples of MT field data over different geological 31 

terrains: (i) geothermal rich area, Island of Milos, Greece, and (ii) Southern Scotland due to the 32 

occurrence of a significantly high electrical conductivity anomaly under crust and upper mantle 33 

extending from the Midland Valley across the Southern Uplands into northern England. Even 34 

though the fact that many models provide a good fit in a large predefined search space, specific 35 

models do not fit well. As a result, we used a Bayesian statistical technique to construct and assess 36 

the posterior probability density function (PDF) rather than picking the global model based on the 37 

lowest misfit error. This is proceeded by 68.27 % confidence interval for selecting a region where 38 

PDF is more prevalent to estimate the mean model which is more accurate and close to the true 39 

model. For illustration, correlation matrices show a significant relationship among layer 40 

parameters. The findings indicate, the wPSOGSA is less sensitive to model parameters and 41 

produces well, more stable and reliable results with the least uncertainty in the model that is 42 

compatible with existing borehole samples. Furthermore, the present methods resolve two 43 

additional geologically significant layers, one highly conductive (less than 1.0 Ωm) and another 44 

resistive (300.0 Ωm) over the Island of Milos, Greece, characterized by alluvium and volcanic 45 

deposits, respectively, as corroborated by borehole stratigraphy. 46 

Keywords: Magnetotelluric; Inversion; Uncertainty; wPSOGSA; Posterior; Bayesian. 47 
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1.0 Introduction 53 

The magnetotelluric (MT) method is a natural source electromagnetic method that explores 54 

various natural resources, namely hydrocarbon, minerals, geothermal prospects, groundwater, 55 

metalliferous ores, etc. (Nabighian and Asten, 2002; Simpson and Bahr, 2005). Due to its 56 

instability, non-unique solution, and algorithm sensitivity, the MT data interpretation is thought-57 

provoking. Many researchers have attempted and developed various inversion algorithms to 58 

interpret, improve the model accuracy, convergence speed, stability and reduce the uncertainty of 59 

the solutions (Kirkpatrick, et al., 1983; Constable et al., 1987; Rodi and Mackie, 2001; Li et al., 60 

2018; Zhang et al., 2019; Khishe and Mosavi, 2020). There are mainly two categories of the 61 

inversion algorithm: first, the local optimization methods namely Conjugate gradient, Levenberg-62 

Marquardt/Ridge regression, Newton-Gauss, Steepest descent, and Occam inversion, requires 63 

good initial guess (Shaw and Srivastava, 2007; Wen et al., 2019; Roy and Kumar, 2021) and 64 

another is global optimization techniques (i.e., Ant colony optimization, Genetic algorithm, 65 

Particle swarm optimization, Gravitational search algorithm, Simulated annealing, etc.) does not 66 

require initial guess. Many researchers have carried out numerous metaheuristic optimization 67 

algorithms to invert MT data (Dosso and Oldenburg, 1991; Pérez-Flores and Schultz, 2002; 68 

Miecznik et al., 2003; Sen and Stoffa, 2013). These algorithms are inspired by the natural 69 

phenomenon and have various geophysical application include Particle Swarm Optimization 70 

(Kennedy and Eberhart, 1995; Essa et al., 2023), Genetic Algorithm (Whitley, 1994), Bat 71 

algorithm (Yang, 2010a; Essa and Diab, 2023), Differential Evolution (Storn and Price, 1997), 72 

biogeographically based Optimization (Simon, 2008), Firefly algorithm (Yang, 2010b), Grey 73 

Wolves Optimizer (Mirjalili et al., 2014), Ant Colony (Colorni et al., 1991), Gravitational Search 74 

Algorithm (Rashedi et al., 2009) and novel barnacles mating optimization algorithm (Ai et al., 75 

2022).  76 

However, unique characteristics, namely exploration and exploitation, persist in any global 77 

optimization algorithms. For example, the PSO algorithm has a very high potential for 78 
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exploitation, which implies that the algorithm performs well in local search but is inferior in 79 

exploration (Şenel et al., 2019). This suggests that the algorithm has a limited capacity to estimate 80 

the best model in an extensive search range. Because of low exploration characteristics, it gets 81 

trapped at the local minima (Mirjalili and Hashim, 2010). So, integrating the two algorithms with 82 

opposite characteristics is the best way to balance exploration and exploitation characteristics to 83 

achieve better solutions than the results obtained from an individual algorithm. 84 

Here, we utilized wPSOGSA, a new global optimization method that takes into account the 85 

algorithm based on natural behavior seen in birds, fish, and insects known as Particle swarm 86 

optimization (PSO) and gravity-based Newton's law (with high exploration capability) known as 87 

Gravity search algorithm (GSA). Researchers interested in artificial intelligence and developing 88 

effective optimization algorithms for comparative analysis of different metaheuristic algorithms 89 

(Pace et al., 2022) have been drawn to notable characteristics in such social behavior. The 90 

wPSOGSA, PSO, and GSA are used to estimate resistivity distribution of 1D multi-layered earth 91 

model using synthetic (noise free and noisy) data for three and four layers cases taken from (Shaw 92 

and Srivastava, 2007)) and Xiong et al. (2018), respectively and field MT sounding data for six 93 

and four layers cases taken from (Hutton et al., 1989) and (Jones and Hutton, 1979) respectively.F 94 

Furthermore, numerous (here 10000) models that fit well are optimized for getting the 95 

mean model, which is proceeded by calculating posterior PDF based on Bayesian concepts 96 

using all accepted models to find the optimal mean solution with the least uncertainty, as well 97 

as a correlation matrix to determine the relationships among the layer parameters. Thus, the 98 

research reveals that the wPSOGSA method may be utilized to provide a more accurate and 99 

reliable model with superior stability, a quick rate of convergence, and the least amount of 100 

model uncertainty. 101 

 102 

 103 

 104 



5 
 

2.0 Data and Methodology 105 

2.1 Synthetic and field data  106 

Different MT datasets are utilized to evaluate the proposed wPSOGSA algorithm's effectiveness, 107 

sensitivity, stability, and robustness in outlining the genuine subsurface structure. These datasets 108 

are noise-free and Gaussian noise synthetic data produced for several geological formations, and 109 

two MT field data have been optimized for analysis. 110 

To demonstrate and evaluate the robustness of the present algorithms, we have generated 111 

a synthetic MT apparent resistivity and apparent phase data without noise and with noise levels 112 

(10 % and 20 % noise) considering a three-layer typical continental crustal model with a total 113 

thickness of 33000 m (i.e., 33.0 km) having a resistivity of upper-crust 30000.0 Ωm with 15000 114 

m (i.e., 15 km) thickness (high resistive layer) and resistivity of middle crust 5000.0 Ωm with 115 

18000 m (i.e., 18.0 km) thickness (reasonable low resistive layer) underlain by 1000 Ωm (low 116 

resistive) half space taken from (Shaw and Srivastava, 2007). 117 

For the second example of the synthetic data, a typical four-layer HK-type of earth model 118 

taken from Xiong et al. (2018) is generated by forward modeling equations for the demonstration 119 

of the wPSOGSA, PSO, and GSA algorithms and compared their performance with Improved 120 

Differential Evolution (IDE) results obtained by Xiong et al. (2018). 121 

We utilized the first example of field data taken from (Hutton et al., 1989), the Island of 122 

Milos, Greece. Milos is a part of the South Aegean Active Volcanic Arc, an example of an 123 

emergent volcanic edifice (Stewart and McPhie, 2006) formed by monogenetic effusive and 124 

explosive magmatism pulses. Milos is the world's biggest exporter of bentonite, and it also has a 125 

diverse variety of metalliferous and non-metalliferous mineral reserves. It's a conserved on-land 126 

laboratory for studying shallow underwater hydrothermal ore-forming processes. The 127 

accompanying shallow subsurface hydrothermal venting fields have developed significantly less 128 

attention. In ("Dawes, 1986), used magnetotelluric data to assess the resistivity structure of the 129 

geothermal area on Milos west side. With around 3.0 km spacing, 37 MT probes in the bandwidth 130 
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of 100-0.01 Hz and 12 investigations in the bandwidth of 0.01-0.0001 Hz were installed along 131 

with various profiles that were perpendicular to the Zephyria graben in the W-E direction, as well 132 

as along the graben in S-N direction (Hutton et al., 1989). 133 

Another field example of MT data from (Jones and Hutton, 1979) was picked to illustrate 134 

our technique from Newcastleton (2.796° W, 55.196° N in Geographic coordinates), Southern 135 

Uplands of Scotland. By the Southern Uplands fault, the Southern Uplands are isolated from the 136 

Midland Valley. The bulk of the Southern Uplands comprises Silurian/Lower Paleozoic 137 

sedimentary deposits such as greywackes and shales that originated in the Iapetus Ocean during 138 

the late Neoproterozoic and early Paleozoic geologic eras. These rocks emerged from the seafloor 139 

as an accretionary wedge during the Caledonian orogeny. The majority of the rocks are coarse 140 

greywacke, a kind of sandstone that has been poorly metamorphosed and contains angular quartz, 141 

feldspar, and small rock fragments. The Midland Valley and Northern England, on the other hand, 142 

are known for their thick Carboniferous layers, which are used to measure coal.  143 

 144 

2.2 Forward Modelling- Magnetotelluric formulation for 1-D earth 145 

The ability to formulate an effective inversion method requires a thorough understanding of the 146 

forward modeling technique for the issue of interest. Factors like frequency range, actual 147 

resistivity, and layer thickness are used to create synthetic MT apparent resistivity, 𝜌𝑎(𝜔) and 148 

apparent phase,  𝜑𝑎(𝜔) data sets. The electromagnetic impedance (𝑍) for layered structures is 149 

described in terms of an orthogonal electric field, magnetic field, wavenumber (𝑘), reflection 150 

coefficient (R), and exponent factor (𝜏𝑓) with angular frequency (𝜔) as (Ward and Hohmann, 151 

1988): 152 

𝑍 =
𝜇0𝜔

𝑘
=

𝐸𝑥

𝐻𝑦
= −

𝐸𝑦

𝐻𝑥
        (1) 153 

where, the wavenumber(𝑘) =  √−𝑖𝜇0𝜔/𝜌, component of electric field (𝐸𝑥  and 𝐸𝑦) and magnetic 154 

field component (𝐻𝑥  and 𝐻𝑦). 155 
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If displacement currents are not taken into account, Eq. (1) becomes 156 

𝑍 =
𝜇0𝜔

√−𝑖𝜇0𝜔/𝜌
= √𝑖𝜇0𝜔𝜌 = √𝜇0𝜔𝜌𝑒

𝑖𝜋

4 = 𝜔
(1 − R τf)

(1+ R τf)
    (2) 157 

Noisy impedance is calculated by the following equation 158 

𝑍𝑛𝑜𝑖𝑠𝑦 = 𝑍 + 𝑍 × (2 × 𝑟𝑎𝑛𝑑 − 1) × 𝑛𝑜𝑖𝑠𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡      (3) 159 

If the angle between impedance phase with 𝐸𝑥 is 450
, then the resistivity (𝜌) in half-space of 160 

impedance 𝑍(𝜔)  and time period (𝑇) can be written as   161 

𝜌(𝜔) =
1

𝜇0𝜔
 |𝑍(𝜔)|2 =

0.2𝑇

𝜇0
 |

𝐸𝑥

𝐻𝑦
|

2

      (4) 162 

Thus, the apparent resistivity and apparent phase are defined (Cagniard, 1953; Ward and 163 

Hohmann, 1988) as follows: 164 

Apparent resistivity,  𝜌𝑎(𝜔) =
1

𝜇0𝜔
[𝑍(𝜔)𝑍∗(𝜔)]         (5) 165 

Apparent phase, 𝜑𝑎(𝜔) = 𝑡𝑎𝑛−1 (
𝑖𝑚𝑔(𝑍(𝜔))

𝑟𝑒𝑎𝑙(𝑍(𝜔))
)       (6) 166 

where, the exponent factor, 𝜏𝑓 = exp(−2𝛾ℎ), the induction parameter 𝛾 = √𝑖𝜔𝜇0/𝜌,  ℎ is the 167 

layer thickness, µ0 is the magnetic permeability for free space, Z* is the complex conjugate of 168 

impedance, and the rand is used for generating random number between 0 and +1. 169 

 170 

2.3 Global optimization technique 171 

The techniques that we have used for joint modeling of metaheuristic global optimization namely 172 

PSO, GSA, and wPSOGSA in Step-1 and posterior Bayesian probability density function 173 

technique in Step-2 to obtain the global model by utilizing the synthetic data generated by using 174 

forward modelling and field MT apparent resistivity and phase curves is depicted in the schematic 175 

diagram (Fig. 1). 176 
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 177 

Figure 1 Schematic diagram demonstrating the essential processes considered for joint modeling 178 

of metaheuristic global optimization (Step-1) and posterior PDF technique (Step-2) for obtaining 179 

the global model by utilizing the synthetic and field MT data. 180 

 181 

2.4 Optimization and Error Estimation 182 

In the present study, we have implemented a new innovative global optimization technique known 183 

as wPSOGSA, in which swarm particles and mass particles provide the best particle, i.e., the best 184 

model. The best model is chosen based on the fitness of the particles, and the cost function or 185 

objective function is used to estimate this fitness. Thus magnetotelluric (MT) inverse problem can 186 

be formulated through the forward modelling operator, 𝑓(𝒙), aim at achieving the resistivity 187 

model, which illuminates the observed data 𝜌 and 𝜑 in the foremost. This operator combines the 188 

problem of physics and inverts the observed apparent resistivity and phase data to the resistivity-189 

depth model, 𝒙, as: 190 

(𝜌, 𝜑) = 𝑓(𝒙)         (7) 191 

The cost function (fitness of the particle) is a mathematical relation between observed and 192 

calculated data and it is defined as the root mean square error (RMS):  193 
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𝑅𝑀𝑆 =  √{
(𝜌−𝜌𝐶)2

𝑁
+

(𝜑−𝜑𝐶)2

𝑁
}      (8) 194 

Where N is the total observed data points, ρ and 𝜑 are the observed apparent resistivity and phase, 195 

𝜌𝐶 and 𝜑𝐶 are the computed apparent resistivity and phase data.  196 

 197 

2.5 Particle swarm optimization 198 

The particle swarm optimization (PSO) technique is a widespread evolutionary optimization 199 

approach for determining the optimal global solution to a nonlinear inverse problem (Kennedy 200 

and Eberhart, 1995). This technique is analogous to the particle’s natural behavior in search of 201 

food with the help of collaborative support from the population represented by geophysical 202 

resistivity solutions/models (known as particles) in a swarming group. The best model/position 203 

obtained among the particles so far is stored for each iteration, which helps in search for the global 204 

best solution, defined by the fitness of each particle estimated using Eq. (8). The particles' velocity 205 

and location in the search space are defined for 𝑘th particle at 𝑡th iteration is given below: 206 

𝑣𝑘(𝑡 + 1) = 𝑤𝑣𝑘(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑥𝑝 − 𝑥𝑘(𝑡)) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑥𝑔 − 𝑥𝑘(𝑡))              (9) 207 

𝑥𝑘(𝑡 + 1) = 𝑥𝑘(𝑡) + 𝑣𝑘(𝑡 + 1)     (10) 208 

where w is the inertia weight set in between 0 and 1, 𝑐1 and 𝑐2 are a personal learning coefficient 209 

and a global learning coefficient, respectively, 𝑣𝑘(𝑡) is the velocity of the kth particle at tth iteration, 210 

and rand is used for a random number between 0 and 1, 𝑥𝑝 is the present best solution. 𝑥𝑔 is the 211 

global best solution, 𝑥𝑘(𝑡) is the position of the kth particle at tth iteration. Particles change their 212 

position at each iteration to approach an optimum solution. The first, second, and third terms in 213 

Eq. (9) represent exploratory ability, private thought, and particle collaboration, respectively.  214 

 215 

2.6 Gravitational search algorithm  216 

The gravitational search algorithm (GSA) is a meta-heuristic algorithm based on Newton's 217 

gravitational law (Rashedi et al., 2009), which states that mass particles attract each other with a 218 
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gravitational force that is directly proportional to the product of their masses and inversely 219 

proportional to the square of the distance between them. It signifies that massive particles (here, 220 

particle represents the resistivity layer model/solution) attract to the neighboring lighter particles. 221 

Similar to PSO, the Gravitational search optimizer works with a population of particles known as 222 

mass particles in the universe. Thus the best model/solution/particle is achieved among the mass 223 

particles. The best model is defined by each particle's capability (i.e., the fitness) calculated using 224 

Eq. (8). The initialization of their position in the search spaces is given by: 225 

𝑥 = 𝑟𝑎𝑛𝑑(𝑁, 𝐷) × (𝑢𝑝 − 𝑑𝑜𝑤𝑛) + 𝑑𝑜𝑤𝑛       (11) 226 

where 𝑁, 𝐷 are the number of particles/models, the dimension of the model; and 𝑢𝑝, and 𝑑𝑜𝑤𝑛 227 

are the upper and lower limit of the search range, respectively.  228 

During execution time, the gravitational acting force on agent kth from agent jth at a specific 229 

time (t) is defined as: 230 

𝐹𝑘,𝑗(𝑡) =  𝐺(𝑡)
𝑀𝑝,𝑘(𝑡)∗𝑀𝑎,𝑗(𝑡)

𝑅𝑘,𝑗(𝑡)+𝜖
(𝑥𝑗(𝑡) − 𝑥𝑘(𝑡))    (12) 231 

where, 𝑀𝑎,𝑗, and 𝑀𝑝,𝑘 are the active and passive gravitational masses for particle j and k, 232 

respectively, 𝑥𝑗(𝑡) is the position of the particle j at a time t for various parameters, 𝑅𝑘,𝑗 (t) is 233 

Euclidian distance between two particles, and ε is a small constant.  234 

Here, gravitational constant 𝐺(𝑡) at a specific time t is defined as (Kunche et al., 2015) 235 

and acceleration of kth agent at tth iteration for models is 𝑎𝑐𝑘(𝑡) is defined as: 236 

𝑎𝑐𝑘(𝑡) =
𝐹𝑘(𝑡)

𝑀𝑘(𝑡)
         (13) 237 

Where, 𝐹𝑘,𝑗(𝑡) the gravitational acting force on agent k from agent j and 𝑀𝑘(𝑡) is the mass of the 238 

object at a specific time (t). 239 

𝐺(𝑡) = 𝐺0 × exp (−𝛼 ×
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
)      (14) 240 

where 𝛼, 𝐺0, iter, and maxiter are descending coefficients, starting value of gravitational constant, 241 

current iteration, and maximum iterations, respectively. 242 
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The following equations are used to update the particle's velocity and location: 243 

𝑣𝑘(𝑡 + 1) = 𝑟𝑎𝑛𝑑 × 𝑣𝑘(𝑡) + 𝑎𝑐𝑘(𝑡)     (15) 244 

𝑥𝑘(𝑡 + 1) = 𝑥𝑘(𝑡) + 𝑣𝑘(𝑡 + 1)      (16) 245 

All the particles are randomly placed in the search range using Eq. (11) and then initializes the 246 

particle's velocity. Meanwhile, the gravitational constant, total forces and acceleration are 247 

computed, and the locations are updated. The end criteria is the misfit error (i.e. 10-9) is taken in 248 

our study. 249 

 250 

2.7 Weighted hybrid PSOGSA (wPSOGSA) 251 

The weighted hybrid of PSO and GSA algorithm known as the wPSOGSA algorithm integrates 252 

two essential characteristics, exploration (i.e., the ability of an algorithm to search the whole range 253 

of a given parameter) and exploitation (i.e., the ability to converge the solution nearest to the best 254 

solution) of the global optimization algorithm that increases its efficiency and converges the 255 

objective function to achieve global minima. The velocity and location of the particles updated in 256 

the wPSOGSA algorithm are illustrated in the schematic diagram (see Fig. 2).  257 

The wPSOGSA combines the characteristic of social thinking of PSO and the searching 258 

capability of GSA; thus, the particle’s velocity is defined as   259 

𝑣𝑘(𝑡 + 1) = 𝑤 × 𝑣𝑘(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑘(𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑥𝑔 − 𝑥𝑘(𝑡))  (17) 260 

Where 𝑣𝑘(𝑡) is the velocity of the particle k at iteration t, w is the weight function (i.e., the constant 261 

which helps to control the momentum of the algorithm to perform optimization properly), 𝑎𝑐𝑘(t) 262 

is the acceleration of agent k, 𝑥𝑔is the best solution, and the rand is a random number lies between 263 

0 and 1. At each iteration, particles updated their location to achieve the best solution defined as 264 

𝑥𝑘(𝑡 + 1) =  𝑥𝑘(𝑡) +  𝑣𝑘(𝑡 + 1)        (18) 265 

The algorithm starts by randomly initializing the velocity, mass, and acceleration of the 266 

particles. The cost function is evaluated for all particles for specified iterations to get the most 267 
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optimal solution, and inverted results are updated at each iteration. Equation (12), (17), and (18) 268 

are used to update the gravitational force, velocity, and location of particles after initialization. 269 

However, the velocity and position stop updating their values when the algorithm converge and 270 

reaches the least error of the cost function. 271 

 272 

 273 

 274 

 275 

 276 

 277 

       278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

Figure 2 Flow chart of the weighted hybrid Particle Swarm Optimization and Gravity Search 290 

Algorithm known as the wPSOGSA algorithm (after (Mirjalili and Hashim, 2010)). 291 
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2.8 Bayesian probability density function  293 

In a Bayesian framework, the probability distribution of the model parameters (known as posterior 294 

probability distribution) is computed using given observed data and models obtained from 295 

inversion. The posterior for a model is calculated using Bayes' theorem and previous model space 296 

information. Individual model parameter ranges are incorporated in the prior knowledge. The two 297 

fundamental stages in the Bayesian statistics method are the representation of previous knowledge 298 

as a probability density function and calculating the likelihood functional derived from data misfit 299 

(Tarantola and Valette, 1982). Specific characteristics, such as the best fitting model, mean model, 300 

and correlation matrix may be determined from posterior distribution of models. According to the 301 

Bayes' theorem, 302 

              𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑝𝑟𝑖𝑜𝑟 × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑           (19) 303 

As a result, our priori distribution function (f (µ)) for the parameter, 𝑥𝑢, mean priori information, 304 

M, and t2 is the mean uncertainty is defined as 305 

𝑓(µ) =
1

√2𝜋𝑡2
𝑒𝑥𝑝 {−

(𝑥𝑢−𝑀)2

2𝑡2 }       (20) 306 

and likelihood function is  307 

𝑓(𝑋|𝜇) = ∏
1

√2𝜋𝜎2
𝑛
𝑢=1  𝑒𝑥𝑝 {−

(𝑥𝑢−𝜇)2

2𝜎2 }      (21) 308 

Hence the posterior density function calculated for a parameter (𝑥𝑢) using mean (𝜇) and variance 309 

(σ2) defined (Lynch, 2007) as 310 

𝑓(𝜇|𝑋) =
1

√𝑡2𝜎2
 𝑒𝑥𝑝 {

−(𝜇−𝑀)2

2𝑡2
+

∑ (𝑥𝑢−𝜇)2𝑛
𝑢=1

2𝜎2
}    (22) 311 

The posterior Bayesian PDF is calculated from accepted models within a set of parameters, as 312 

shown below:  313 

𝑃(𝑋|𝐸) =
𝑃(𝑋)𝐿(𝐸|𝑋)

∑ 𝑃(𝑋)𝐿(𝐸|𝑋)𝑋
        (23) 314 

where, 𝑃(𝑋|𝐸) is the posterior probability distribution of the parameter (𝑋) given the evidence 315 

(𝐸), 𝑃(𝑋) is the prior information of (𝑋) and 𝐿(𝐸|𝑋) is the likelihood function of 𝑋. 316 
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After the application of PDF, the study is further proceeded by choosing Confidence 317 

Interval (CI) of 68.27 % that is based on the empirical rule, known as the 68-95-99.7 rule (Ross, 318 

2009). The model parameters below 68.27 % CI are discarded, and the remaining parameters are 319 

used for determining the mean model and uncertainty. Thus, the mean model (𝑃𝑗) is calculated 320 

using the best models having PDF within a 68.27 % CI, defined in the following equation: 321 

𝑃𝑗 = 𝑒𝑥𝑝
1

𝑁𝑑
∑ 𝑙𝑛(𝑃𝑗,𝑘)           (24) 322 

Here accepted models are used to calculate the correlation matrix (i.e., correlation among 323 

model parameters lie between -1 and 1) using the following equation (Tarantola, 2005):  324 

𝐶𝑜𝑣𝑃(𝑙, 𝑗)  =  
1

𝑁𝑑
∑(𝑃𝑙,𝑘 − 𝑃𝑙) (𝑃𝑗,𝑘 − 𝑃𝑙)     (25) 325 

and             𝐶𝑜𝑟𝑃(𝑙, 𝑗) =  
𝐶𝑜𝑣𝑃(𝑙,𝑗)

√𝐶𝑜𝑣𝑃(𝑙,𝑙)×𝐶𝑜𝑣𝑃(𝑗,𝑗)
                  (26) 326 

Here, N is the total number of models, 𝑑 is used for the number of the layer parameters, 𝑃𝑗,𝑘 is the 327 

𝑗th model parameter of 𝑘th model where 𝑙 and 𝑗 both vary from 1 to 𝑑 (number of layer parameters). 328 

𝐶𝑜𝑣𝑃(𝑙, 𝑗) is the covariance matrix between model parameter 𝑙 and 𝑗,  𝑃𝑙,𝑘 is the model parameter 329 

𝑙th model parameter of 𝑘th model and 𝐶𝑜𝑟𝑃(𝑙, 𝑗) is the correlation matrix between model parameter 330 

𝑙 and 𝑗.  331 

 332 

3.0 Results and analysis 333 

The effectiveness, sensitivity, stability, and robustness of the proposed wPSOGSA algorithm in 334 

identifying the authentic subsurface structure are evaluated using various MT datasets. These 335 

datasets consist of synthetic data with no noise and Gaussian noise, which simulate different 336 

geological formations. Additionally, two MT field datasets have been optimized for analysis. 337 

 338 

 339 

 340 
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3.1 Application to synthetic MT data-Three layers case  341 

This synthetic MT data that was executed for 10000 runs keeping the same lower and upper bounds 342 

as given in Table 1, and iteration to 1000. Figure 3 shows (a) the observed apparent resistivity 343 

with the computed data, (b) the observed apparent phase with the computed data, (c) 1D inverted 344 

model by wPSOGSA (red color), GSA (green color) and PSO (blue color) with a true model (black 345 

color), and 2(d) shows the relation between misfit and iterations for the noise-free synthetic data. 346 

 347 

Figure 3 The inverted MT response by PSO (blue color), GSA (green color), and hybrid 348 

wPSOGSA (red color) with a true model (black color) over three-layer synthetic data as shown in 349 

(a) observed and calculated apparent resistivity curve, (b) observed and calculated apparent phase 350 

curve, (c) 1D depth inverted model, and (d) misfit error versus iterations. 351 

The misfit curve as shown in Fig. 3(d) is gradually decreasing with increasing iterations 352 

and becomes constant, where the algorithm converges. The PSO, GSA, and wPSOGSA converge 353 

at iterations 492, 35, and 316 with associated errors 1.51e-6, 3.97e-6, and 1.035e-8, and the 354 

associated computational time is 27.06 seconds, 1.75 seconds, and 3.35 seconds, respectively. 355 

Thus, the curves describes that wPSOGSA converges at the least RMS error. Whereas PSO, GSA, 356 
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and wPSOGSA using 10 % noisy synthetic data converge at 102, 88, and 358 iterations with an 357 

associated error are 0.00435, 0.00439, and 0.00426, and associated computational times are 5.61 358 

seconds, 4.40 seconds, and 3.80 seconds, respectively. 359 

The 20 % noisy synthetic MT data that was executed for 10000 runs keeping the same 360 

lower bound, upper bound, and iteration. The well fitted inverted MT response (see Fig. 4) as 361 

follows: (a) the corrupted synthetic and calculated apparent resistivity data, (b) the corrupted 362 

synthetic and calculated apparent phase data, (c) the inverted 1D depth model, and (d) convergence 363 

response in terms of misfit error versus iterations. We analyzed Fig. 4(d) and found that the PSO, 364 

GSA, and wPSOGSA using noisy synthetic data converge at iterations 236, 7, and 73 with 365 

associated errors 0.0394, 0.0408, and 0.0393, respectively. 366 

 367 

Figure 4 The inverted MT response by PSO (blue color), GSA (green color), and hybrid 368 

wPSOGSA (red color) with a true model (black color) over three-layer synthetic data with 20 % 369 

random noise as shown in (a) observed and calculated apparent resistivity curve, (b) observed and 370 

calculated apparent phase curve, (c) 1D depth inverted model, and (d) misfit error versus iterations. 371 
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3.1.1 Bayesian analysis and uncertainty in model parameters 372 

Two methods are used to estimate mean solution and uncertainty: one method is the mean solution 373 

for all accepted best-fitted solutions acquired from 10,000 runs for all three global optimization 374 

techniques; another method is the model derived from all approved solutions using posterior 375 

Bayesian PDF within one standard deviation. To get the global best solutions in our study, we 376 

incorporated posterior PDF based on the Bayesian approach to enhance the efficacy of the inverted 377 

model and minimize the uncertainty in the model. The process for obtaining the mean solution is 378 

proceeded by selecting an initial threshold error which is essential because smaller the threshold 379 

value, more significant number of models with lesser uncertainty in the model parameters 380 

(Sharma, 2012). Thus, a more considerable threshold gives a lesser number of models with 381 

enormous uncertainty in the model parameter (Sen and Stoffa, 1996; Sharma, 2012). This is further 382 

proceeded by calculating the PDF for each parameter value using Eq. (22). In order to select values 383 

of each parameter that having higher posterior PDF, a 68.27 % CI is used. The mean model 384 

obtained from selected model parameters is near to the actual model. 385 

 386 

Figure 5 Posterior Bayesian probability density function (PDF) with 68.27 % CI for wPSOGSA 387 

for three-layered synthetic data. 388 

Figure 5 shows the output of posterior Bayesian PDF, which select model parameters 389 

with lesser error. The straight lines (dashed lines) present the actual value of the respective layer 390 
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parameters. The first layer thickness, second layer thickness, and first layer resistivity have 391 

higher uncertainties, i.e., 61.25 m, 51.47 m, and 210.61 Ωm, respectively, whereas the second 392 

layer resistivity and third layer resistivity have lower uncertainty, i.e., 17.71 Ωm and 0.03 Ωm, 393 

respectively. 394 

Table 1 True model, search range, and inverted layer parameters by hybrid wPSOGSA, GSA, and 395 

PSO for three-layer with different noise (0 %, 10 %, and 20 %) synthetic MT apparent resistivity 396 

and apparent phase data. 397 

Layer parameters  𝜌1 (Ωm) 𝜌2 (Ωm) 𝜌3 (Ωm) ℎ1 (m) ℎ2 (m) 

True model  30000 5000 1000 15000 18000 

Search Range  5000 -

50000 

1000 - 

10000 

50 - 

5000 

5000 - 

25000 

10000- 

25000 

(Shaw & 

Srivastava, 

2007) 

2.0 % Gaussian 

random noise 

PSO 26981.80 6230.30 1011.70 13090 19720 

GA 40800 10000 1010 6210 25000 

RR 43424.40 3097.10 980.70 17010.00 16960.00 

0 % noisy data PSO 27463.86 4664.57 999.48 16112.66 17080.01 

GSA 32017.78 4721.69 1004.05 16195.26 17928.07 

wPSOGSA 30243.42 5007.04 1000.02 14969.33 18029.76 

10 % noisy data PSO 19861.54 7659.73 1022.19 15971.66 14774.31 

GSA 27538.91 6534.61 1018.04 14117.82 17408.14 

wPSOGSA 27589.85 6043.87 998.99 14902.89 18221.87 

20 % noisy data PSO 26981.8 6230.3 1011.7 13090.00 19720.00 

GSA 28823.57 5825.19 1089.65 16861.84 20795.48 

wPSOGSA 29208.75 5282.77 1055.09 16573.22 18398.94 

 398 

Table 1 shows the inverted layer parameters using wPSOGSA, GSA, and PSO for noise-399 

free and noisy synthetic MT data based on posterior Bayesian PDF, as well as the actual model 400 
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and the search range. In addition, layered properties of synthetic data corrupted with 10 % and 20 401 

% random noise are compared and statistically analyzed. Our findings, as shown in Table 1, were 402 

compared to those obtained using the Genetic Algorithm (GA), Ridge Regression (RR), and PSO 403 

by (Shaw and Srivastava, 2007)), which consistently outperforms GA and RR is closer to the 404 

genuine model. 405 

 406 

Figure 6 Histogram of selected models for misfit error below a defined threshold error of 407 

wPSOGSA. 408 

Mean value of the accepted model parameters (30243.42±471.26, 5007.04±39.59, 409 

1000.02±0.064, 14969.33±136.82, 18029.76±114.90) with high uncertainty of the parameters (1.5 410 

%, 0.78 %, 0.0064 %, 0.91 % and 0.63 %). On the basis of low posterior PDF and high uncertainty, 411 

we have taken (𝜌1) and (ℎ1) for the exercise to show the models are not biased to the selected 412 

models. 413 

As well as based on the histograms (see Fig. 6), posterior PDF and uncertainty of the 414 

inverted layer parameters resistivity (𝜌1) and thickness (ℎ1) for the three-layered synthetic MT 415 

data have been taken to depict the global solution using presented algorithm. Here we prepared 416 
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the cross-plots of 𝜌1 versus ℎ1 using (a) wPSOGSA, (b) PSO, and (c) GSA, showing all accepted 417 

models (red circle), selected models with misfit error less than a threshold error of 10-4 (magenta 418 

circle), models of a PDF greater than 95 % (blue circle), models of a PDF greater than 75 % (green 419 

circle), models of a PDF greater than 68.27 % (yellow circle), and mean model, i.e., model 420 

parameters which having a PDF greater than 68.27 % (black asterisk) as shown in Fig. 7. It is 421 

noticed that all inverted results give the global solution which has a good agreement with the true 422 

model, whereas wPSOGSA gives the more accurate results than the other two algorithms PSO and 423 

GSA as shown in Table 2.  424 

 425 

Figure 7 Cross-plots of thickness and resistivity of first layer for the three-layered synthetic 426 

resistivity model using (a) wPSOGSA, (b) PSO, and (c) GSA, displaying all accepted models (red 427 

circle), selected models with misfit error less than a threshold error (magenta circle), models (pdf 428 

> 95 % CI, blue circle), models (pdf > 75 % CI, green circle), models (pdf > 68.27 % CI, yellow 429 
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circle), and mean model i.e. model parameters which having a PDF greater than 68.27 %  (black 430 

asterisk). 431 

 432 

3.1.2 Sensitivity, correlation matrix, and model parameters 433 

The accepted models, which have posterior PDF value within 68.27 % CI, are used to calculate 434 

the correlation matrix. This correlation matrix gives the relationship among model parameters. 435 

Thus, the lesser correlation value gives weak relation among the parameters and vice versa. The 436 

correlation matrix of PSO, GSA, and wPSOGSA was examined on one set of synthetic data, as 437 

shown in Fig. 8, Fig. 9 and Fig. 10, demonstrating the sensitivity among inverted model 438 

parameters. The value of correlation matrix, 1.0 indicates that the two parameters are strongly 439 

correlated.  440 

Figure 8 shows that first layer resistivity is correlated highly positively with a first-layer 441 

thickness (0.97) and second layer thickness (0.98), while the second layer resistivity (-0.99) and 442 

third layer resistivity (-0.81) are substantially negative connected. Second layer resistivity is 443 

correlated with the third layer resistivity (0.87) which has a significant positive relationship; while 444 

second layer resistivity has a significant negative correlation with the first layer thickness (-0.99) 445 

and the second layer thickness (-1.00). First layer thickness (-0.92) and second layer thickness (-446 

0.90) are very negatively associated with third layer resistivity, while first layer thickness is 447 

extremely positively correlated with a second layer thickness (0.99).  448 

Figure 9 indicates that first layer resistivity is highly associated with a second layer 449 

thickness (1.00) and weakly with second layer resistivity (-1.00), third layer resistivity (-1.00), 450 

and first layer thickness (-1.00). Second layer resistivity (-1) is highly linked with a second layer 451 

thickness (-1.00), while third layer resistivity (1.00) and first layer thickness are strongly 452 

correlated (1.00). Third layer resistivity has a highly positive correlation with a first-layer 453 

thickness (1.00) and a strong negative correlation with a second layer thickness (-1.00), whereas 454 

first layer thickness has a significant negative correlation with a second layer thickness (-1.00). 455 
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 456 

Figure 8 Correlation matrix calculated from PSO inverted model using a three-layer noise-free 457 

synthetic MT apparent resistivity and apparent phase data. 458 

 459 

Figure 9 Correlation matrix calculated from GSA inverted model using a three-layer noise-free 460 

synthetic MT apparent resistivity and apparent phase data. 461 

Figure 10 shows the correlation matrix of wPSOGSA. The analyses reveal that the first 462 

layer resistivity is strongly negative with the second layer resistivity, substantially negative (-0.92) 463 

with the third layer resistivity, weakly positive (0.30) with the first layer thickness, and 464 
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considerably (0.63) with the second layer thickness. Second layer resistivity is slightly positive 465 

(0.31) when compared to third layer resistivity (0.43) but substantially negative when compared 466 

to first layer thickness. Third layer resistivity has a slightly negative correlation (-0.23) with first 467 

layer thickness, but a moderately negative correlation (-0.71) with second layer thickness and first 468 

layer thickness has a negative correlation (-0.71). Thus, the conclusion can be made that the layer 469 

parameters are independent of others, so changing one will have no effect on the other compared 470 

to the result obtained via PSO and GSA algorithms. 471 

 472 

Figure 10 Correlation matrix calculated from wPSOGSA inverted model using a three-layer 473 

noise-free synthetic MT apparent resistivity and apparent phase data. 474 

 475 

3.1.3 Stability analysis  476 

We used two different search ranges for stability evaluation of proposed wPSOGSA algorithms 477 

and executed the algorithms over three layers of synthetic MT data. One of which is expanded, 478 

and the other is contracted by 10 % of the initial search range. We infer from three layers of 479 

synthetic data, results fluctuate by approximately 3 % from the true value when the search range 480 
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is changed. This variation is about 10 % on average for synthetic data corrupted with 30 % random 481 

noise, as shown in Table 2. 482 

Table 2 Stability analysis of a hybrid algorithm for three layers of synthetic data. 483 

Layer parameters 𝜌1 
(Ωm) 

𝜌2 
(Ωm) 

𝜌3 
(Ωm) 

ℎ1 
(m) 

ℎ2 
(m) 

Search Range  5000-

50000 

1000-

10000 
50-5000 

5000-

25000 

10000-

25000 

Search Range - Case 1 4500-

55000 

900-

11000 
45-5500 

4500-

27500 

9000-

27500 

wPSOGSA 

inverted model  

0 % 
31092.47 5085.79 1000.14   14700.83 18251.85 

30 % 30113.82 5016.75 1137.05 15880.95 23970.22 

Search Range - Case 2 5500-

45000     

1100-

9000 

55-4500 5500-

22500     

11000-

22500 

wPSOGSA 

inverted model  

0 % 29078.26 4922.85 999.91   15273.25 17767.45 

30 % 27815.97 5464.88 1156.46 17398.41 18119.61 

 484 

3.2 Application to synthetic MT data-Four layers case 485 

For the second example of the synthetic data, a typical four-layer HK-type of earth model to 486 

analyse the performance of the present algorithm with Improved Differential Evolution (IDE) 487 

results obtained by Xiong et al. (2018). Analysis over noisy synthetic data is done by corrupting 488 

synthetic data with 10 % and 20 % Gaussian random noise to mimic the real field data because 489 

different types of noises influence apparent resistivity data. Following that, all three optimization 490 

methods are run using the noisy synthetic data. As the misfit error increases with the noise in the 491 

data, the Bayesian PDF of 68.27 % CI is calculated with respect to the threshold misfit error of 492 

0.01 and thus the mean model is calculated.  493 

Enormous uncertainty is shown in the inverted results; hence, we calculated the mean 494 

model for 68.27 % CI using posterior Bayesian PDF to reduce the uncertainty and produce the 495 

global best solution. The optimized results obtained from the posterior PDF and the true model 496 
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are shown in Table 3. Figure 11 illustrate the inverted responses for PSO, GSA, and wPSOGSA 497 

are well-fitting as follows (a) observed and calculated apparent resistivity data, (b) observed and 498 

calculated apparent phase data, (c) 1-D depth model, and (d) convergence response of present 499 

algorithms. We have estimated the layer parameters for synthetic data corrupted with 20 % random 500 

noise for comparative analysis and found that the PSO, GSA, and wPSOGSA converge at 501 

iterations 96, 556, and 187 with associated errors 3.69, 4.04, and 3.69, respectively. 502 

 503 

Figure 11 The inverted MT response by PSO (blue color), GSA (green color), and hybrid 504 

wPSOGSA (red color) with a true model (black color) over four-layer synthetic data as shown in 505 

(a) observed and calculated apparent resistivity curve, (b) observed and calculated apparent phase 506 

curve, (c) 1D depth inverted model and (d) convergence curve. 507 

Additionally, the synthetic data corrupted with 10 % random noise is also used for the 508 

execution of inversion keeping the search range, a number of particles, and iterations same as 509 

before, and observed that the PSO, GSA, and wPSOGSA converge at iterations 151, 2 and 250 510 

with associated error 1.7609, 1.95 and 1.76 respectively. The posterior Bayesian PDF for threshold 511 
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data with 68.27 % CI is calculated similarly as a three-layer case to minimize the uncertainty in 512 

inverted results.  513 

Table 3 Comparison of the result obtained from improved Differential Evolution (IDE) and 514 

inverted results of PSO, GSA, and hybrid wPSOGSA obtained by using posterior PDF for four-515 

layer synthetic apparent resistivity data with different Gauss noise levels (0 %, 10 %, and 20 %) 516 

and True model. 517 

Layer 

parameters 

 𝜌1 
(Ωm) 

𝜌2 
(Ωm) 

𝜌3 
(Ωm) 

𝜌4 
(Ωm) 

ℎ1 
(m) 

ℎ2 
(m) 

ℎ3 
(m) 

True model  30.00 200.00 10.00 100.00 100.00 2000.00 3000.00 

Search Range  25-35 100-250 5-15 50-150 50-200 1000-3000 2000-3500 

0 % noise IDE 30.00 200.00 9.99 100.01 100.00 1991.98 3000.24 

PSO 30.00 200.001 10.00 100.00 100.00 2000.00 3000.00 

GSA 29.95 199.79 9.99 99.99 99.67 2000.70 2995.37 

wPSOGSA 30.00 200.00 10.00 100.00 100.00 2000.00 3000.00 

10 % noise IDE 30.24 210.28 08.92 99.67 109.83 1994.63 2667.13 

PSO 32.86 224.99 11.51 107.65 109.71 1971.78 3499.92 

GSA 29.77 209.78 9.50 106.78 92.38 2073.14 2754.77 

wPSOGSA 30.46 197.18 9.97 102.01 100.50 1974.83 3079.35 

20 % noise IDE 30.30 212.41 11.44 97.92 102.40 1930.17 3347.24 

PSO 34.99 247.04 11.80 114.56 115.16 1986.08 3499.99 

GSA 29.52 225.61 9.74 113.46 87.55 2081.26 2753.29 

wPSOGSA 34.88 246.08 11.75 114.54 114.58 1990.98 3489.10 

 518 

3.2.1 Stability analysis  519 

For the stability evaluation of presented algorithms over four layers of synthetic MT data, similar 520 

to the three-layer case, we used two different search ranges and executed the algorithms for 1000 521 
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iterations. The method exhibits good results with four layers of synthetic data and reveals minimal 522 

variation for noise-free data. For 30 % contaminated data, the variation is approximately 10 % and 523 

12 % in case 1 and case 2, respectively. The outputs don't change much across runs and provide 524 

consistent results, as shown in Table 4. 525 

Table 4 Stability analysis of a hybrid algorithm for four layers of MT synthetic data. 526 

Layer  

parameters 
𝜌1 

(Ωm) 
𝜌2 

(Ωm) 
𝜌3 

(Ωm) 
𝜌4 

(Ωm) 
ℎ1 
(m) 

ℎ2 
(m) 

ℎ3 
(m) 

Search Range 25-35 100-

250 

5-15 50-

150 

50-

200 

1000-

3000 

2000-

35000 

Search Range-Case 1 27.50-

31.50 

110-

225 

5.50-

13.50 

55-

135 

55-

180 

1100-

2700 

2200-

3150 

wPSOGSA 

inverted model 

0 % 29.99 199.99 10.00 99.99 99.99 1999.99 3000.00 

30 % 31.5 220.79 11.17 109.18 99.48 2150.07 3150 

Search Range-Case 2 22.50-

38.50 

90-

275 

4.50-

16.50 

45-

165 

45-220 900-

3300 

1800-

3850 

wPSOGSA 

inverted model 

0 % 29.99 199.99 10.00 99.99 99.99 1999.99 3000.00 

30 % 35.47 264.27 11.95 103.13 116.22 2020.37 3040.95 

 527 

3.3 Application to field MT data-Island of Milos, Greece 528 

In one-dimensional MT data for site G5 near borehole M2 (Hutton et al., 1989), as shown in Fig. 529 

12, the apparent resistivity and phase values are inverted using the wPSOGSA, PSO, and GSA, 530 

keeping the same set of controlling parameters as for noisy synthetic data, such as the swarm size, 531 

inertia weight (w), personal learning coefficient (𝑐1) and a global learning coefficient (𝑐2), 532 

descending coefficient (α), and the initial value of universal gravitational constant (𝐺0).  533 
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 534 

Figure 12 The location of the MT site and geology of the Island of Milos, Greece (after (Stewart 535 

and McPhie, 2006)). 536 

Figure 13 shows the calculated data and model parameters as (a) match between observed 537 

and computed apparent resistivity data, (b) match between observed and computed apparent phase 538 

data, and (c) 1D inverted model and (d) convergence response of wPSOGSA (red color), GSA 539 

(green color), and PSO (blue color) along with true model (black color). In subfigure Fig. 13(c) 540 

depicts alluvium deposits with a resistivity of 1.0 Ωm with 15 m thickness as the top layer, and 541 

volcanic deposits with a resistivity of 300 Ωm and 10 m thickness lie beneath the alluvium 542 

deposits. A very high conducting layer of resistivity less than 1.0 Ωm is estimated, equivalent to 543 

the green lahar under the high resistivity volcanic deposits. The next layer below, with higher 544 

M1, M2, M3, MZ1 – Borehole 

 - MT site took for study  

 

M2 

M3 

M1 

MZ1 

MT 
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resistivity, corresponds to the crystalline foundation. In the geothermal zone's depths, the 545 

resistivity drops again. The resistivity in the depth range of about 1000 m, which is similar to 546 

earlier studies, was explored, and the findings of the proposed algorithm discovered to be in good 547 

agreement with model developed by Dawes in Hutton et al. (1989). 548 

In subfigure Fig. 13(d) reveals that the algorithms converge at iterations 218, 1, and 425 549 

with corresponding errors of 0.0494, 0.0518, and 0.0493 for PSO, GSA, and wPSOGSA, 550 

respectively. The hybrid algorithm has the least error between observed and computed data. The 551 

algorithms are executed for 1000 iterations and 10000 models, and findings are compared with 552 

available stratigraphy, and the result is derived using the Monte-Carlo technique by Hutton et al. 553 

(1989). After examining our optimized effects from Fig. 13 and Table 5, hybrid wPSOGSA 554 

outperformed PSO and GSA.  555 

 556 

Figure 13 The inverted MT response by PSO (blue color), GSA (green color), and hybrid 557 

wPSOGSA (red color) with a true model (black color) over the geothermal area, Island of Milos, 558 

Greece, as shown in (a) observed and calculated apparent resistivity curve, (b) observed and 559 

calculated apparent phase curve, (c) 1D depth inverted model and (d) convergence curve. 560 
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3.3.1 Bayesian analysis and uncertainty in model parameters 561 

A posterior Bayesian method determines the global model and related uncertainty. Figure 14 562 

shows another uncertainty study that examined the six-layered resistivity model over the 563 

geothermal field, Island of Milos, Greece, and found that the peak values of the posterior PDF for 564 

all model parameters are very nearer to the actual value of the layer parameters, providing less 565 

uncertainty. We have analyzed the wPSOGSA inverted results from the Fig. 14 and Table 5, and 566 

found that the first, second, third, fourth, fifth, and sixth layers’ resistivity with uncertainty in 567 

associated layer parameters is 1.23±0.49 Ωm, 297.61±53.43 Ωm, 0.55±0.02 Ωm, 2.41±0.16 Ωm, 568 

14.18± 1.76 Ωm and 99.92±0.37 Ωm. Similarly, the associated thicknesses with uncertainty are 569 

14.51±1.35 m, 9.85±1.35 m, 127.39±6.01 m, 823.01±7.57 m and 2750.88±63.07 m. Thus, the 570 

analysis suggests the lesser uncertainties in each layer's parameters except resistivity of the first 571 

and second layers. 572 

 573 

Figure 14 Posterior Bayesian probability density function (PDF) with 68.27 % CI for 574 

wPSOGSA over a geothermal field, Island of Milos, Greece. 575 



31 
 

Table 5 compares optimized results obtained from all three presented algorithms based 576 

on posterior Bayesian PDF under 68.27 % CI condition. However, the 1D depth model inverted 577 

from wPSOGSA shows good agreement with the available borehole M-2 (Hutton et al., 1989). 578 

As a result, the hybrid algorithm is functioning better and the findings are encouraging. 579 

 580 

Table 5 Search range and inverted results by posterior PDF (68.27 % CI) and PSO, GSA, and 581 

hybrid wPSOGSA for six-layered field data. 582 

Layer parameters 𝜌1 
(Ωm) 

𝜌2 
(Ωm) 

𝜌3 
(Ωm) 

𝜌4 
(Ωm) 

𝜌5 
(Ωm) 

𝜌6 
(Ωm) 

ℎ1 
(m) 

ℎ2 
(m) 

ℎ3 
(m) 

ℎ4 
(m) 

ℎ5 
(m) 

Search Range 0.1- 

5 

50- 

500 

0.1- 

5 

1- 

10 

10- 

30 

50-

100 

10- 

20 

5- 

15 

110-

150 

800-

850 

2500-

3000 

 

Mean 

Posterior 

PSO 1.71 493.81 0.62 2.82 13.22 99.97 10.39 7.44 135.4 843.77 2861.35 

GSA 2.28 299.28 0.54 2.76 18.25 76.03 14.08 8.81 130.75 825.32 2753.07 

wPSOGSA 1.23 297.61 0.55 2.41 14.18 99.92 14.51 9.85 127.39 823.01 2750.88 

 583 

3.3.2 Sensitivity, correlation matrix, and model parameters 584 

Here, a similar study of the correlation matrix is carried out for field example from the Island of 585 

Milos, Greece using all accepted models, which have posterior PDF values within 68.27 % CI. 586 

The correlation matrix of PSO, GSA, and wPSOGSA was examined over the field MT data as 587 

shown in Fig. 15, Fig. 16 and Fig. 17 demonstrating the sensitivity among inverted model 588 

parameters and found an almost similar correlation among the layer parameters for three-layer 589 

synthetic study. From correlation analyses, we noticed that the values are showing moderate and 590 

weak correlation among parameters in the wPSOGSA case, indicating that wPSOGSA is linearly 591 

independent of layer parameters. This indicates that the parameter is less affected by other layer 592 

parameters and resistivity curves. Whereas the correlation among layer parameters for field data 593 

using GSA and PSO is either strongly positive or strongly negative, which describes that the 594 
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parameters are dependent on each other. Thus a change in one parameter affects the other, and 595 

also apparent resistivity curve is very much involved.  596 

Figure 15 Correlation matrix of field data taken from the geothermal rich area, Island of Milos, 597 

Greece for PSO. 598 

 599 



33 
 

Figure 16 Correlation matrix of field data taken from island geothermal rich area of Milos, Greece 600 

for GSA. 601 

 602 
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Figure 17 Correlation matrix of field data taken from island geothermal rich area of Milos, Greece 603 

for hybrid wPSOGSA. 604 

 605 

 606 

 607 

 608 
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3.4 Application to field MT data-Newcastleton, Southern upland, Scotland  609 

Another field example of MT data was picked to illustrate our technique from Newcastleton 610 

(2.796° W, 55.196° N in Geographic coordinates), Southern Uplands of Scotland. The Southern 611 

Uplands are isolated from the Midland Valley by the Southern Uplands fault. The location of the 612 

MT site and the geology of the study area are shown in Fig. 18. 613 

During nine days, in the frequency range of 0.1 Hz to 0.0001 Hz, the variations of the 614 

magnetic and telluric fields concerning the time at four sites along a line perpendicular to the 615 

anomaly's strike were recorded, keeping a high signal to noise ratio where the anisotropy ratios 616 

are so near to one and the skew factor is less than 0.1 for the majority of periods. Due to low 617 

anisotropy ratios and skew factor, the resistivity distribution under this location is one-dimensional  618 

(Jones and Hutton, 1979). Here one set of MT data is inverted using PSO, GSA, and wPSOGSA 619 

to obtain the best fitting apparent resistivity curve, apparent phase curve, and 1D depth model as 620 

shown in subfigures Fig. 19(a), Fig. 19(b), and Fig. 19(c), respectively. Figure 19 shows a realistic 621 

one-dimensional resistivity variation with a phase response ranging from 60° at 100 seconds to 622 

35° at 1000 seconds, which can only be obtained by establishing a conducting zone at lower 623 

crustal/upper mantle levels (Jones and Hutton, 1979).   624 

The execution time for wPSOGSA (33 seconds) is the least as compared to GSA (34 625 

seconds) and PSO (53 seconds). The convergence iterations of PSO, GSA, and wPSOGSA are 79, 626 

101, and 65, and its associated misfit errors are 3.79, 4.72, and 3.70, respectively.  627 

The inverted MT model is illustrated in subfigure Fig. 19(c), which depicts two low 628 

conductive zones at a depth of 21 km and 400 km. The first conductive layer (70 Ωm) with a 629 

thickness of 28 km is underlain by a high resistive top layer of thickness of 21 km, and the second 630 

very high conductive layer (less than 1.0 Ωm) at a depth of 400 km is underlain by high resistive 631 

layer (550 Ωm) of thickness 351 km. Thus, the last layer of a very high conductive zone (i.e., 632 

resistivity less than 1.0 Ωm) as a lower crust/upper mantle conductor at a depth of 400 km is 633 

estimated. At 400 m depths, a conducting zone meets both the amplitude and phase long period 634 
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responses. This explanation is directly equivalent to accepted models derived from Monte-Carlo 635 

models for the structure underlying the Southern Uplands. 636 

            637 

Figure 18 The location of MT site and geology of the Southern upland, Scotland (after BGS, 638 

2016). 639 
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 640 

Figure 19 The inverted MT response by PSO (blue color), GSA (green color), and hybrid 641 

wPSOGSA (red color) with a true model (black color) over Newcastleton, Southern Scotland, as 642 

shown in (a) observed and calculated apparent resistivity curve, (b) observed and calculated 643 

apparent phase curve, (c) 1D depth inverted model and (d) convergence curve. 644 

 645 

Table 6 Search range, inverted results by posterior PDF (68.27 % CI) using PSO, GSA, and 646 

wPSOGSA for field data. 647 

Layer 

parameters 

 𝜌1 
(Ωm) 

𝜌2 
(Ωm) 

𝜌3 
(Ωm) 

𝜌4 
(Ωm) 

ℎ1 
(m) 

ℎ2 
(m) 

ℎ3 
(m) 

Search 

Range 

 300-

1000 

10-

150 

250-

1500 

0.1-5 10000-

30000 

15000-

35000 

100000-

450000 

 

Mean 

Posterior 

PSO 304.47 92.66 591.52 4.93 20894.01 34776.15 379563.48 

GSA 507.65 69.38 548.46 2.66 20493.18 24182.99 382090.23 

wPSOGSA 444.27 78.94 554.53 1.91 20591.39 28177.40 382181.50 

Jones and 

Hutton 

(1979a) 

Monte- 

Carlo 

Inversion 

500.00 70.00 750.00 1.00 22000.00 28000.00 350000.00 

 648 



38 
 

4.0 Discussions 649 

The analysis on the two synthetic MT datasets shows that the proposed algorithm work very well 650 

and provide encouraging well fitted calculated apparent resistivity and phase data with the 651 

observed data. Also from the study, it is noted that the proposed algorithm is less sensitive to the 652 

search range and the constraints used in this algorithm. And the comparison of the model 653 

parameters show that the output from the proposed algorithm is very precise to the true model and 654 

faster than the individual algorithms and the other algorithms used in the previous papers. 655 

 656 

Table 7 Inverted results by Dawes method, Jupp and Vozoff method, the Fischer inversion method 657 

(resistivity in Ωm) and Parker D+ Inversion. 658 

 659 

A research conducted by Hutton et al. (1989), compare various techniques, including 660 

Parker H+, Dawes (a combined Monte Carlo/Hedgehog approach developed by Dawes), Jupp-661 

Vozoff, Fischer, and Parker D+ inversions, to interpret the subsurface geology of the Island of 662 

Milos, Greece. Among these techniques, the Dawes algorithm proved to be the most effective in 663 

Layer 

Paramete

rs 

The 

Dawes 

method 

- a 

hybrid 

Monte 

Carlo 

The Jupp 

and 

Vozoff 

method 

The 

Fischer 

inversio

n 

Parker 

D+ 

Conduc-

tance 

(Siemen

s) 

Layer 

Param

eters 

The 

Dawes 

method 

- a 

hybrid 

Monte 

Carlo 

The Jupp 

and 

Vozoff 

method 

The 

Fischer 

inversio

n 

Parker 

D+ 

𝜌1 (Ωm) 20.258

75 

14.60088

9 

10.2178

01 

46.00 ℎ1 (m) 12.981

36 

13.17125

86 

12.5805

75 

34.00 

𝜌2 (Ωm) 0.5101

94 

0.512765

62 

0.51350

27 

65.00 ℎ2 (m) 136.28

89 

136.3130

07 

21.9621

87 

64.20 

𝜌3 (Ωm) 3.6638

92 

4.463949

5 

0.62833

45 

70.00 ℎ3 (m) 1298.2

06 

1670.172

67 

103.199

52 

198.77 

𝜌4 (Ωm) 35.832

18 

202.7330

3 

3.72224

32 

172.00 ℎ4 (m) 12846.

85 

1705.783

3 

31.2491

7 

737.04 

𝜌5 (Ωm) 69.230

81 

28.90750

5 

6.66450

56 

177.00 ℎ5 (m) --- 9777.828

6 

68.6035

2 

1062.3

5 

𝜌6 (Ωm) --- 93.94277

4 

3.67707

24 

 ℎ6 (m) --- --- 1485.82

84 

 

𝜌7 (Ωm) --- --- 19.8269

15 

 ℎ7 (m) --- --- 5607.57

19 

 

𝜌8 (Ωm) --- --- 33.3728

76 

  --- --- ---  
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identifying a reservoir interface at the borehole's depth. Consequently, these methods were utilized 664 

to compile 1-D models along several traverses. All three models, Parker H+, Parker D+, and 665 

Dawes, indicate the presence of a resistivity boundary at a depth of approximately 1000 m (Hutton 666 

et al., 1989), where the geothermal reservoir has been detected. The research findings through 667 

proposed algorithm reveal that the resistivity of the crystalline basement beneath the geothermal 668 

site is abnormally low (< 20 Ωm) in the uppermost portion and remains below 50 Ωm at depths of 669 

at least 10 km. 670 

The subfigure in Fig. 19(c) presents the inverted MT model of the Southern upland, 671 

Scotland, displaying two zones of low conductivity at depths of 21 km and 400 km. Contrary to 672 

the findings of Jain and Wilson (1967), there is a strong evidence suggesting that the conducting 673 

zone (70 Ωm) beneath the Southern Uplands exists at a depth exceeding 20 km. Furthermore, there 674 

is a second layer of extremely high conductivity (representing lower crust/upper mantle of less 675 

than 1.0 Ωm) at a depth of 400 km, which is underlain by a highly resistive layer (550 Ωm) 676 

spanning a thickness of 351 km. At a depth of 400 m, this conducting zone shows a direct 677 

alignment with both the amplitude and phase responses of long period measurements, which can 678 

be notice in the model derived from Monte-Carlo simulations of the structure underlying the 679 

Southern Uplands (see Fig. 19). The results from proposed algorithm as well as from PSO and 680 

GSA (see Fig. 19), demonstrate the presence of a highly conductive layer at depths exceeding 20 681 

km and 400 km, corroborating with the findings of (Jones and Hutton, 1979). 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 
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5.0 Conclusions 690 

The study presented the wPSOGSA algorithm along with PSO and GSA to evaluate their efficacy 691 

and applicability to the MT data, which narrates the appraisal of 1D resistivity models from 692 

apparent resistivity, apparent phase, and the frequency data sets. So, synthetic and field MT data 693 

from various geological terrains were used to demonstrate the relevance of these methods, which 694 

are further carried out by applying multiple runs, generating a large number of models that fit the 695 

apparent resistivity and apparent phase curves. Furthermore, these best-fitting models within a 696 

specified range are then chosen for statistical analysis. The statistical analysis includes posterior 697 

PDF based on the Bayesian approach with 68.27 % CI, correlation matrix, and stability analysis 698 

are used to understand the accuracy of the mean model and its uncertainty. However, the solution 699 

from the posterior PDF based on the Bayesian of wPSOGSA is better than GSA and PSO, 700 

explaining the reliability of the proposed inversion algorithm. In general, conventional techniques 701 

can effectively resolve the model in random noise, but they can miscarry in methodical error or 702 

inappropriate models, also, the performance of the proposed algorithms on field datasets has been 703 

analyzed based on the mean model, uncertainty, correlation and stability of layered earth models, 704 

and found that the results obtained from wPSOGSA are reliable, stable, and more accurate than 705 

the available results, that are well adapted to borehole lithology. 706 
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