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Abstract. The pseudopotential method is used to derive electron hole structures in a suprathermal plasma having a regularized

κ probability distribution function background. The regularized character allows the exploration of small κ values beyond

the standard suprathermal case, for which κ > 3/2 is a necessary condition. We have found the nonlinear dispersion relation

yielding the amplitude of the electrostatic potential in terms of the remaining parameters, in particular the drift velocity, the

wavenumber and the spectral index. Periodic, solitary wave, drifting and non-drifting solutions have been identified. In the5

linear limit, the dispersion relation yields generalized Langmuir and electron acoustic plasma modes. Standard electron hole

structures are regained in the κ≫ 1 limit.

1 Introduction

The phenomenon of so-called electron holes in a plasma has received growing attention in the recent past specially due to

recent spacecraft observation of such structures, see, e.g., (Steinvall , 2019a, b) In particular a recent study resolved the phase10

space density deficit of trapped electrons and proved that the solitary waves with bipolar profiles observed in space plasma are

electron holes (Mozer , 2018). For the application to space plasmas a quantitative treatment of electron holes should take into

account the presence of a suprathermal, i.e. non-Maxwellian background plasma. This was already pointed out in (Schamel ,

2015, 2023) and carried out in (Haas , 2021; Aravindakshan , 2018, 2020; Jenab , 2021). In (Haas , 2021) the Maxwellian

description of the trapped (hole) and untrapped (background) electron populations was substituted by one with a so-called15

standard kappa distribution (SKD).

The SKD is a simple generalization of a Maxwellian that was originally introduced by (Olbert , 1968) to describe non-

Maxwellian power-law distributions of suprathermal plasma species, which are frequently observed in space. Since then the

SKD has been applied successfully to numerous space plasma and laboratory scenarios. Along with these successes also

various limitations of the SKD were identified: it exhibits diverging velocity moments, a positive lower limit of allowed kappa20

parameter values (κ > 3/2), and a non-extensive entropy (for a recent overview see (Lazar , 2021)). In addition, two types

of SKDs were identified, namely the original one introduced by Olbert (Olbert , 1968) with a prescribed reference speed

and a modified one that can be traced to Matsumoto (Matsumoto , 1972) with a temperature equal to that of the associated
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Maxwellian, and it was demonstrated (Lazar , 2016) that care has to be taken in selecting one of those for a given physical

system. The kappa distribution was proposed in (Vasyliunas , 1968); extensive discussion on the different kappa distributions25

can be found in (Pierrard , 2010; Hau , 2007).

All of these complications in employing the SKD can be avoided when one uses the regularized kappa distribution (RKD)

introduced non-relativistically in (Scherer , 2017) and for the relativistic case in (HanThanh , 2022). The RKD exhibits an

exponential cut-off of the power at high velocities. Such cut-off is a result of the fact that any acceleration process can only

occur on a finite spatial scale and a finite time scale. Consequently, such power law cannot extend to infinity (as in the case30

of the standard kappa distribution) but must cut-off. The main purpose of the present work is to adopt a regularized version of

the SKD and to analyze the consequences. The RKD particularly removes all divergences in the theory and moves the lower

limit for the kappa parameter to zero (Scherer , 2019). Both features have consequences for correspondingly described physical

systems: in (Yoon , 2014) it was demonstrated that an ‘infrared catastrophe’ is avoided when using the RKD instead of the SKD

and in (Liu , 2020) it was shown that extending the range of kappa values to zero broadens the possible properties of solitary35

ion acoustic waves in a plasma with RKD electrons. Here the reference value of κ is adopted according to Eq. (2) for the SKD.

Since also the first generalization of the analytical treatment of electron holes in an equilibrium plasma to a suprathermal

plasma was achieved by employing the SKD (Haas , 2021), the same constraints remain: not all moments of the velocity

distribution functions exist and kappa has to be greater than 3/2, thereby potentially preventing the study of a physically

interesting regime because harder velocity distributions are observed, see, e.g. (Gloeckler , 2012; Pierrard , 2022) and were40

associated with observations of various solitary waves (Vasko , 2017). Therefore, the present work revisits the quantitative

treatment of electron holes in a suprathermal plasma, where the electron velocity distribution is described with the RKD.

The structure of the paper is as follows: in section II the one-dimensional RKD is defined, in section III various dimensionless

variables are introduced, in section IV the method of the pseudopotential is applied and in section V special solutions of the

resulting Poisson equation are derived. After an analysis of the corresponding dispersion relation in section VI for homogeneous45

trapped electrons distributions, the final section VII contains the conclusions of the study.

2 One-dimensional regularized κ distribution

The starting point (Scherer , 2019; Liu , 2020) is the three-dimensional isotropic regularized kappa distribution (RKD),

f3(u) =
n0

(πκθ2)3/2 U
(

3
2 , 3

2 −κ,α2κ
)
(

1+
u2

κθ2

)−κ−1

exp
(
− α2u2

θ2

)
, (1)

where n0 is the equilibrium electrons number density, κ > 0 is the spectral index, θ is a reference speed, U is a Kummer50

function of the second kind (or Tricomi function) described in (Scherer , 2019; Liu , 2020), u is the velocity vector with

u = |u| and α≥ 0 is the cutoff parameter.

In the non-regularized limit α→ 0 one regains the SKD

f3(u) =
n0 Γ(κ +1)

(πκθ2)3/2 Γ
(
κ− 1

2

)
(

1+
u2

κθ2

)−κ−1

, α→ 0 , (2)
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where Γ is the gamma function, which is positive defined provided κ > 1/2. For the RKD this constraint is not imposed on55

κ > 0.

For the treatment of electrostatic structures it is convenient to define the one-dimensional RKD. For this purpose we use

cylindrical coordinates in velocity space and write u2 = v2+w2, where v is the component of the velocity parallel to the electric

field and w contains only the perpendicular velocity components, with w = |w|. In the isotropic case the one-dimensional RKD

is60

f(v) = 2π

∞∫

0

dwwf3(u)

=
n0 (α2κ)κ eα2κ

(πκθ2)1/2 U
(

3
2 , 3

2 −κ,α2κ
) Γ
[
−κ,α2κ

(
1+

v2

κθ2

)]
, (3)

where here Γ is the incomplete gamma function of the indicated arguments. In other words, f(v) comes from the three-

dimensional version after integration over the two perpendicular velocity components.

In the non-regularized limit α→ 0 one regains the standard one-dimensional κ distribution (Summers , 1991; Podesta ,65

2005)

f(v) =
n0 Γ(κ)

(πκθ2)1/2 Γ
(
κ− 1

2

)
(

1+
v2

κθ2

)−κ

, α→ 0 , (4)

which is positive definite provided κ > 3/2.

In the treatment of electrostatic structures, to satisfy Vlasov’s equation the distribution function is a function of the constants

of motion. In the one-dimensional, time-independent case, the available constants of motion are given by70

ϵ =
mv2

2
− eϕ, σ = sgn(v) , (5)

where ϕ = ϕ(x) is the scalar potential, where m is the electron mass and −e is the electron charge. The sign of the velocity

σ = v/|v| is an additional constant of motion just in the case of untrapped particles. The energy variable ϵ can be used to

distinguish untrapped (ϵ > 0) and trapped (ϵ < 0) electrons.

In analogy with (Schamel , 1972, 2015, 2023) (where the background is not in the RKD form), presently one starts from Eq.75

(3) making for the untrapped part the replacement v→ σ
√

2ϵ/m + v0, where v0 is a drift velocity, defining the distributions

of untrapped and trapped electrons according to

f = f(ϵ,σ) =
An0

θ

(
1+

k2
0Ψ
2

) [
H(ϵ)Γ

(
−κ,α2κ

(
1+

1
κθ2

(σ
√

2ϵ/m + v0)2
))

+ H(−ϵ)Γ
(
−κ,α2κ

(
1+

v2
0

κθ2

))
(1− β ϵ

mθ2
)
]
, (6)

A =
(α2κ)κ eα2κ

(πκ)1/2 U
(

3
2 , 3

2 −κ,α2κ
) , (7)80

where H(ϵ) is the Heaviside function. The quantities k0 and Ψ are dimensionless variables proportional respectively to the

wavenumber of periodic oscillations and to the electrostatic field amplitude, as will be qualified in the following. In addition,

3
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β is a dimensionless quantity associated to the inverse temperature of the trapped electrons distribution. Unlike singular dis-

tributions as in (Schamel , 2015, 2023; Haas , 2021; Schamel , 2018) here the velocity shifted hole distribution is assumed

continuous at the separatrix (ϵ = 0) and an analytic function of the energy for both trapped and untrapped electrons. These85

choices have been made in order to focus on the role of the cutoff parameter α instead of further aspects.

In the non-regularized case, using

(α2κ)κΓ(−κ,α2κs)→ s−κ

κ
, α→ 0 , κ > 0 , (8)

for a generic argument s, and

U

(
3
2
,
3
2
−κ,α2κ

)
→ Γ(κ− 1/2)

Γ(κ +1)
, α→ 0 , κ > 1/2 , (9)90

from Eq. (6) one obtains

f =
n0 (1+ k2

0Ψ/2)
(πκθ2)1/2

Γ(κ)
Γ(κ− 1/2)

[
H(ϵ)

(
1+

1
κθ2

(σ

√
2ϵ

m
+ v0)2

)−κ

+ (10)

+ H(−ϵ)
(

1+
v2
0

κθ2

)−κ(
1− β ϵ

mθ2

)]
,

which is the κ version of Schamel’s distribution that is given in its original form, e.g., in Eq. (4) in (Schamel , 1986) and

illustrated in Fig. 1. A slight difference in comparison to the original formulation (Schamel , 1986, 2012) is that here the95

trapped electrons are described by a linear function of the energy instead of a Maxwellian function.

Finally, the Poisson equation

∂2ϕ

∂x2
=

e

ε0
(n−n0) , n = n(ϕ) =

∞∫

−∞

dvf(ϵ,σ) (11)

is needed, where ε0 is the vacuum permittivity. An uniform ionic background n0 has been assumed.

3 Dimensionless variables100

To avoid the use of a large number of parameters, it is convenient to adopt dimensionless variables. For the RKD, it comes

the question on which will be the reference speed defining the velocity rescaling. It would be tempting to consider the use of

a thermal speed vT defined in terms of the averaged squared velocity, but it is a cumbersome expression containing Kummer

functions,

v2
T =

< u2 >

3
=

1
3

∫
d3uu2 f3(u)∫
d3uf3(u)

=
κθ2

2
U
(

5
2 , 5

2 −κ,α2κ
)

U
(

3
2 , 3

2 −κ,α2κ
) , (12)105

the factor 1/3 introduced to comply with the one-dimensional geometry. Therefore, for the sake of simplicity, instead of the

thermal speed it is indicated to consider θ as the reference speed. In this way, the rescaled variables are

x̃ =
x

λ
, ṽ =

v

θ
, ṽ0 =

v0

θ
, ϕ̃ =

eϕ

mθ2
, ñ =

n

n0
, f̃ =

f

n0/θ
, ϵ̃ =

ϵ

mθ2
, (13)

4
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Figure 1. An illustration of the Schamel distribution (in arbitrary units and for the sech-potential in Eq.(13) in (Schamel , 1986)) for the

values β =−0.9,k0 = 1.0,ψ = 1.0,κ= 0.5,γ = 0.1 of the parameters used for the notation in (Haas , 2021).

where λ = [ϵ0mθ2/(n0e
2)]1/2 is a modified Debye length.

As discussed in (Lazar , 2016) in the non-regularized context, our standard choice of θ as a κ−independent parameter better110

fits a scenario with enhanced tail in velocity space. Alternatively one could choose vT from Eq. (12) to be κ−independent,

which would be adequate for an enhanced core.

In dimensionless variables omitting for simplicity the tildes, the one-dimensional hole RKD from Eq. (6) is

f(ϵ,σ) = A

(
1+

k2
0Ψ
2

) [
H(ϵ)Γ

(
−κ,α2κ

(
1+

1
κ

(σ
√

2ϵ + v0)2
))

+ H(−ϵ)Γ
(
−κ,α2κ

(
1+

v2
0

κ

))
(1−βϵ)

]
, (14)115

while Poisson’s equation (11) is

∂2ϕ

∂x2
= n− 1 , n = n(ϕ) =

∞∫

−∞

dvf(ϵ,σ) , (15)

where ϵ = v2/2−ϕ and σ = sgn(v). In the remaining, the purpose is to evaluate the number density in Eq. (15) in terms

of ϕ and to characterize the possible solutions of the Poisson’s equation, specially regarding the behavior according to the

parameters κ,α.120
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4 Pseudopotential method

From Eqs. (14) and (15) one has

n

A
=

(
1+

k2
0Ψ
2

) [ −
√

2ϕ∫

−∞

dvΓ
(
−κ,α2κ

(
1+

1
κ

(
√

2ϵ− v0)2
))

+

+

∞∫

√
2ϕ

dvΓ
(
−κ,α2κ

(
1+

1
κ

(
√

2ϵ + v0)2
))

+ (16)

+ Γ
(
−κ,α2κ

(
1+

v2
0

κ

)) √
2ϕ∫

−√2ϕ

dv (1−βϵ)
]
,125

assuming 0≤ ϕ≤Ψ, where Ψ denotes the peak-to-peak amplitude of the electrostatic potential, so that at ϕ = Ψ one has

dϕ/dx = 0.

The integrals in Eq. (16) for the contribution of untrapped particles can be evaluated only in the weakly nonlinear limit.

Expanding the integrands in a formal power series on
√

ϕ the result is

n = 1+
k2
0 Ψ
2

+ aϕ + bϕ
√

ϕ +O(ϕ2) , (17)130

keeping the term proportional to Ψ as it has the same order of magnitude of ϕ where

a =
2

κU
(

3
2 , 3

2 −κ,α2κ
)
[
U

(
1
2
,
1
2
−κ,α2κ

)
+

+
v0√
πκ

P

∞∫

−∞

ds

s− v0
e−α2 s2

(
1+

s2

κ

)−κ−1]
(18)

where P stands for the principal value, and

b =
4
√

2
3

βAΓ
(
−κ,α2κ

(
1+

v2
0

κ

))
+135

+
8
√

2e−α2v2
0
[
v2
0 +2α2v4

0 + κ
(
−1+ 2(1+ α2)v2

0

)]

3κ2
√

πκ(1+ v2
0/κ)κ+2

U
(

3
2 , 3

2 −κ,α2κ
) . (19)

It is possible to proceed in the same way to determine the average velocity < v > from

n⟨v⟩=

∞∫

−∞

dvvf(ϵ,σ) (20)

yielding

⟨v⟩=−v0 (1− aϕ)+O(ϕ3/2) (21)140

giving a more precise meaning of −v0 which is the global drift velocity only in the limit of zero field amplitude. In addition

notice the trapped electrons do not contribute to the average velocity, which comes from the untrapped part only, as found from

the detail of the procedure similar to Eq. (16).

6
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Poisson’s equation (15) can be rewritten in terms of the pseudopotential V = V (ϕ),

d2ϕ

dx2
= n− 1 =− ∂V

∂ϕ
, (22)145

where

−V =
k2
0Ψϕ

2
+

aϕ2

2
+

2bϕ2
√

ϕ

5
+O(ϕ3) , (23)

The case where the solutions are either periodic or solitary waves requires

1. V (ϕ) < 0 in the interval 0 < ϕ < Ψ;

2. V (Ψ) = 0 ,150

the latter implying

k2
0 + a +

4b
√

Ψ
5

= 0 , (24)

which allows rewriting Eq. (23) as

−V =
k2
0ϕ

2
(Ψ−ϕ)+

2bϕ2

5
(
√

ϕ−
√

Ψ) , (25)

up to O(ϕ3).155

Equation (24) is the nonlinear dispersion relation (NDR) of the problem, providing a relation between phase velocity v0,

wavenumber k0 and amplitude proportional to Ψ, taking into account the expressions (18) and (19) for a,b. On the other hand,

Eq. (22) can be integrated yielding

1
2

(
dϕ

dx

)2

+ V (ϕ) = 0 , (26)

where the integration constant was set to zero due to property (I) and since at the potential maximum ϕ = Ψ the electric field is160

zero. Following the usage from (Schamel , 2015, 2023; Haas , 2021; Schamel , 1972, 2018, 1986, 2012), the proposed Ansatz

has tailored Ψ so that it is the root of V (ϕ) in Eq. (25). Otherwise, an irrelevant additive constant would be incorporated in the

pseudopotential. The same applies to Eqs. (27) and (31) below.

5 Special solutions

5.1 Periodic solutions165

As discussed in (Schamel , 2015, 2023; Haas , 2021; Schamel , 1972, 2018, 1986, 2012), the expansion of the number density

in powers of
√

ϕ starting from an Ansatz such as in Eq. (14) can give periodic or localized solutions, according to specific

conditions to be identified. For the sake of reference, we collect some of the known analytic solutions, remembering that of

7
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course now the coefficients are adapted to the RKD equilibrium. For localized solutions as a by-product one has decaying

boundary conditions.170

The quadrature of Eq. (26) yields closed form solutions in special cases. In the linear limit, for a small amplitude so that
√

Ψ << k2
0/b, neglecting the nonlinearity term ∼ b, one has

V =
k2
0ϕ

2
(ϕ−Ψ) . (27)

Then from Eq. (26) immediately one has

ϕ =
Ψ
2

[1+ cos(k0 (x−x0))] . (28)175

Hence it is verified that k0 indeed corresponds to the wavenumber of linear oscillations with 0≤ ϕ≤Ψ in this case.

Assuming k0 ̸= 0, more insight is provided by the further rescaling

ϕ̄ =
ϕ

Ψ
, x̄ = k0 x, V̄ = V̄ (ϕ̄) =

V

k2
0Ψ2

, b̄ =
2b
√

Ψ
5k2

0

(29)

reduces Eq. (26) to

1
2

(
dϕ̄

dx̄

)2

+ V̄ (ϕ̄) = 0 , (30)180

where

−V̄ (ϕ̄) =
ϕ̄

2
(1− ϕ̄)+ b̄ ϕ̄

2
(√

ϕ̄− 1
)

=
ϕ̄

2

(
1−

√
ϕ̄

) (
1+

√
ϕ̄− 2 b̄ ϕ̄

)
, (31)

containing only one free parameter b̄. The condition (II) for periodic or localized solutions amounts to V̄ (ϕ̄) < 0 within the

interval 0 < ϕ̄ < 1. In view of the factorization in Eq. (31) it is easy to demonstrate the condition is always satisfied for185

b̄ < 1. The existence of periodic solutions such that 0≤ ϕ̄≤ 1 for b̄ < 1 comes from the shape of the rescaled pseudopotential

shown in Figs. 2 and 3. The case b̄ > 1 also has periodic solutions, but with a smaller amplitude as apparent from Fig. 4. The

physically meaningful solutions always occur for V̄ < 0 within the interval 0 < ϕ̄ < 1. Notice that with the further rescaling

(29) the amplitude of oscillation is set to unity, as shown in the referred figures. The required weakly nonlinear analysis always

supposes ϕ̃∼Ψ≪ 1 or, according to Eq. (13), eϕ/(mθ2)≪ 1, where ϕ is the physical scalar potential.190

The exact quadrature of Eq. (30) with all terms has been fully discussed in (Schamel , 2012, 2000), where the pseudopotential

is formally the same as in Eq. (31) after rescaling. It is given in terms of Jacobi elliptic functions showing a periodic behavior

and higher order Fourier harmonics. The present work extends these results for the case of a background RKD, with the adapted

coefficients.

It is apparent that the control parameter b̄ depending on several variables such as the effective trapped particles inverse195

temperature β determines the qualitative aspects of the oscillatory solutions. Figures 5 and 6 and 7 show in a different style

how a smaller (and possibly negative) b̄ < 1 corresponds to a larger wavenumber, which is exactly k0 only in the linear case.
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0 < 
-

< 1

1
ϕ

V

Figure 2. Rescaled pseudopotential from Eq. (31) for 0< b̄ < 1.

b

-

≤ 0

1
ϕ

V

Figure 3. Rescaled pseudopotential from Eq. (31) for b̄≤ 0.
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b

-

> 1

1
ϕ

V

Figure 4. Rescaled pseudopotential from Eq. (31) for b̄ > 1. Periodic solutions exist in a smaller interval 0≤ ϕ̄ < 1.
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k0 x
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0.6

0.8

1.0

ϕ ψ

Figure 5. Numerical solution of Eq. (30) with b̄=−2, ϕ̄(0) = 10−3.
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Figure 6. Numerical solution of Eq. (30) with b̄= 0.5, ϕ̄(0) = 10−3.
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ϕ ψ

Figure 7. Numerical solution of Eq. (30) with b̄= 0.9, ϕ̄(0) = 10−3.
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1
ϕ

V

Figure 8. Rescaled pseudopotential from Eq. (31) for b̄= 1.

5.2 Localized solution with b̄ = 1,k0 ̸= 0

The limit case b̄ = 1 with k0 ̸= 0 is special since then dV̄ /dϕ̄ = 0 at ϕ̄ = 1, as shown in Fig. 8, yielding a localized, non-periodic

solution. Moreover this case is amenable to the simple quadrature200

ϕ̄ =
1
4

[
1− 3 tanh2

(√
3

4
(x̄− x̄0)

)]2

, (32)

see Fig. 9. The corresponding rescaled electric field is shown in Fig. 10. The total electrostatic energy is finite since the integral

(1/2)
∫∞
−∞ dx̄(dϕ̄/dx̄)2 = 6

√
3/35 converges.

5.3 Solitary waves with k0 = 0.

On the other hand if k0 = 0 one has205

V =
2bϕ2

5
(
√

Ψ−
√

ϕ) , (33)

yielding the solitary pulse

ϕ = Ψsech4



(
−b
√

Ψ
20

)1/2

(x−x0)


 , (34)

which is well defined everywhere provided b < 0, which can be attainable e.g. for sufficiently small β,v2
0 .

12

https://doi.org/10.5194/npg-2023-6
Preprint. Discussion started: 17 March 2023
c© Author(s) 2023. CC BY 4.0 License.



-10 -5 5 10
x

1

4

1

ϕ

Figure 9. Rescaled electrostatic potential from Eq. (32) for x̄0 = 0.

-10 -5 5 10
x

-0.5

0.5

-d /dx

Figure 10. Rescaled electric field −dϕ̄/dx̄ where ϕ̄ is given in Eq. (32) for x̄0 = 0.
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6 Dispersion relation210

The NDR (24) provides several behaviors according to the values in parameter space. For the sake of simplicity it will be

considered the case where the trapped particle distribution is homogeneous in phase space, which amounts to the dimensionless

quantity β = 0 in Eq. (10). This is an increasingly better approximation for small enough amplitude so that eΨ << mθ2,

yielding a relatively smaller trapped area in phase space. Clearly this limit situation does not correspond to “holes", since in

this case the trapped particles are not in a depression in phase space as shown e.g. in Fig. 1. However, the analytic simplicity215

motivates the approach. Furthermore subcases can be identified: drifting, non-drifting; oscillating, non-oscillating, as follows.

Our main purpose is to provide an investigation showing a regular behavior for small κ values, as long as α > 0.

6.1 Non-drifting, non-oscillating

If the trapped distribution is homogeneous and non-drifting with respect to the fixed ionic background (v0 = 0), one has from

Eq. (24)220

k2
0 +

2U
(

1
2 , 1

2 −κ,α2κ
)

κU
(

3
2 , 3

2 −κ,α2κ
) − 32

√
2Ψ

15κ
√

πκU
(

3
2 , 3

2 −κ,α2κ
) = 0 . (35)

Furthermore in the non-oscillating case k0 = 0 one can solve Eq. (35) as

Ψ =
π

2
κ

[
15
16

U

(
1
2
,
1
2
−κ,α2κ

)]2
, (36)

which is the amplitude of the solitary wave in terms of the remaining parameters κ,α only. Figure 11 shows the resulting

amplitude. The regular behavior as κ→ 0 is apparent. A larger α implies a smaller solitary wave amplitude. In the non-225

regularized limit α→ 0 it is possible to show that from Eq. (36) one has Ψ→ 1.38 as κ→∞, which is beyond the weakly

nonlinear assumption. From Fig. 11 one also has that the α = 0 case only admits small amplitude holes for κ≪ 1, which is in

contradiction with the constraint κ > 3/2 for the non-regularized equilibrium. It is interesting to note that the weakly nonlinear

condition Ψ≪ 1 is much better fulfilled for sufficiently high α. Hence, such hole structures (with β = 0, non-drifting and

non-oscillating) are more reliable in a RKD background. Note, however, that high α values limit the extent of the power laws.230

6.2 Non-drifting, oscillating

Allowing with k0 ̸= 0 for oscillating solutions one also has a regular behavior of the amplitude as κ≪ 1. In this limit, assuming

α > 0, it can be shown that Eq. (35) reduces to

k2
0 +

√
πα√
κ
− 32α

√
Ψ

15
√

2πκ
= 0 , κ≪ 1 , α > 0 (37)

yielding a vanishingly small amplitude as κ→ 0. Figure 12 shows Ψ from Eq. (35) as a function of κ, for α = 1.5 and different235

k0 values. It is found that a larger k0 yields a larger amplitude.
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1 2 3
κ

0.5

1

Ψ

Figure 11. Solitary wave amplitude in the homogeneous trapped distribution, non-drifting and non-oscillating case as a function of κ and

different α’s, from Eq. (36). Upper, dotted line: α= 0.0; mid, dashed: α= 0.5; Lower, solid: α= 1.5.

0.5 1 1.5 2
κ

0.3

0.6

1

Ψ

Figure 12. Wave amplitude in the homogeneous trapped distribution, non-drifting and oscillating case as a function of κ and different

wavenumbers, for α= 1.5, from Eq. (35). Lower, solid: k0 = 1.0; mid, dashed: k0 = 1.5; upper, dotted line: k0 = 2.0.
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6.3 Dispersion relation with v0 ̸= 0

Allowing for drifting structures so that v0 ̸= 0, for simplicity disregarding the nonlinear term ∼ b
√

Ψ and still with homoge-

neous trapped electrons distribution (β = 0), one has from Eq. (24),

k2
0 +

2
κU

(
3
2 , 3

2 −κ,α2κ
)
[
U

(
1
2
,
1
2
−κ,α2κ

)
+240

+
v0√
πκ

P

∞∫

−∞

ds

s− v0
e−α2 s2

(
1+

s2

κ

)−κ−1]
= 0 . (38)

Setting v0 = ω0/k0, Eq. (38) produces similar thumb curves as for holes in a Maxwellian background (Schamel , 1986), now

adapted for the RKD. Figure 13 show results for different small κ values, in all cases with α = 0.1. As usual, one has a high

frequency (Langmuir) mode together with a slow electron-acoustic mode (Fried , 1961) now adapted to the RKD background,

where both modes coalesce in a certain point according to the parameters. As seen, the behavior is regular even for small κ245

values. At the extremal k value where both modes coalesce, apparently the group velocity is infinite. As discussed in (Schamel ,

2013; Valentini , 2012), at this point taking into account the nonlinear trapping the phase velocity of the hole should replace

the diverging linear group velocity.

7 Conclusions

For the first time, electron holes have been discussed in a RKD background. Unlike (Haas , 2021), for simplicity this time the250

background distribution function has no singular features. It was verified that the regularization of the SKD avoids all divergent

properties of the solutions for a vanishingly small spectral index κ. In terms of the hole distribution function for both trapped

and untrapped electrons, the number density has been evaluated yielding the pseudopotential in the weakly nonlinear limit.

As a consequence, the most prominent solutions of the resulting Poisson equation have been found. Drifting, non-drifting,

oscillating and non-oscillating solutions have been discussed. The linear dispersion relation has been also analyzed, yielding a255

κ−dependent plasma modes diagram showing a high frequency Langmuir mode and a low frequency electron acoustic mode

(Fig. 13). Unlike for a SKD background, all findings remain regular even for very small κ values. The results are relevant

especially for plasmas having a suprathermal equilibrium with small spectral κ index, for which the SKD is not appropriate, as

frequently happens in space plasmas (Gloeckler , 2012; Pierrard , 2022).

Data availability. The data that support the findings of this study are available from the corresponding author upon reasonable request.260

Author contributions. The authors contributed equally to this work, regarding original idea, basic theory and applications.

16

https://doi.org/10.5194/npg-2023-6
Preprint. Discussion started: 17 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 13. Dispersion relation (38) with v0 = ω0/k0 for α= 0.1 and κ= 0.1,0.3,1.0,2.0, as indicated.
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