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Abstract. Until the 1980’s, scaling notions were restricted to self-similar homogeneous special cases.  I review developments 

over the last decades, especially in multifractals and Generalized Scale Invariance (GSI).   The former is necessary for 

characterizing and modelling strongly intermittent scaling processes while the GSI  formalism extends scaling to strongly 

anisotropic (especially stratified) systems. Both of these generalizations are necessary for atmospheric applications.  The theory 10 

and (some) of the now burgeoning empirical evidence in its favour is reviewed.   

Scaling can now be understood as a very general symmetry principle.  It is needed to clarify and quantify the notion of 

dynamical regimes.  In addition to the weather and climate, there is an intermediate “macroweather regime” and at time scales 

beyond the climate regime, (up to Milankovitch scales) there is a macroclimate and megaclimate regime.  By objectively 

distinguishing weather from macroweather it answers the question “how long does weather last?”.   Dealing with anisotropic 15 

scaling systems -  notably atmospheric stratification – requires new (non-Euclidean) definitions of the notion of scale itself.   

These are needed to answer the question “how big is a cloud?”.  In anisotropic scaling systems morphologies of structures 

change systematically with scale even though there is no characteristic size.  GSI shows that it is unwarranted to infer 

dynamical processes or mechanisms from morphology. 

Two “sticking points” preventing the more widespread acceptance of the scaling paradigm are also discussed. The first is an 20 

often implicit phenomenological “scalebounded” thinking that postulates a priori the existence of new mechanisms, processes 

every factor of two or so in scale.  The second obstacle is the reluctance to abandon isotropic theories of turbulence and accept 

that the atmosphere’s scaling is  anisotropic.   Indeed there currently appears to be no empirical evidence that the turbulence 

in any atmospheric field is isotropic.  

Most atmospheric scientists rely on General Circulation Models, and these are scaling – they inherited  the symmetry from the 25 

(scaling) primitive equations upon which they are built.  Therefore, the real consequence of ignoring wide range scaling is that 

it blinds us to alternative scaling approaches to macroweather and climate -  especially to new models for long range forecasts 

and to new scaling approaches to climate projections.  Such stochastic alternatives are increasingly needed notably to reduce 

uncertainties in climate projections to the year 2100. 

 30 
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1. Introduction 

1.1 Dynamical ranges, fluctuations and scale 

Perhaps the most obvious difficulty in understanding the atmosphere is in dealing with its the enormous range of scales.  The 

single picture, fig.  1 shows clouds with horizontal spatial variability ranging from millimeters to the size of the planet, a factor 35 

of ten billion in scale.  In the vertical direction the range is more modest but still huge: about ten million.  The range of temporal 

variability is extreme, spanning a range of one hundred billion billion: from milliseconds to the planet’s age,  fig.  2.    

The earliest approach to atmospheric variability was phenomenological: weather as a juxtaposition of various processes with 

characteristic morphologies, airmasses, fronts and the like.  Circumscribed by the poor quality and quantity of the then available 

data, these were naturally associated with narrow scale range, mechanistic processes.   40 

At first, ice ages, “medieval warming” and other evidence of low frequency processes were only vaguely discerned.  Weather 

processes were thought to occur with respect to a relatively constant (and unimportant) background: climate was conceived as 

simply long term “average” weather.  It wasn’t until the 1930’s, that the International Meteorological Organisation defined 

“climate normals” in an attempt to quantify the background “climate state”.   The duration of the normals - 30 years - was 

imposed essentially by fiat: it conveniently corresponded to the length of high quality data then available: 1900-1930.  This 30 45 

year duration is still with us today with the implicit consequence that - purely by convention -  “climate change” occurs at 

scales longer than 30 years.   

Interestingly, there has developed yet another official time scale, for defining “anomalies”.  Again, for reasons of convenience 

(and partly – for  temperatures - due to the difficulty in making absolute measurements), anomalies are defined with respect to 

monthly averages.  Ironically, a month wavers between 28 and 31 days, it is not even a well -defined unit of time!   50 

The overall consequence of adopting by convenience, monthly and thirty year time scales, is a poorly theorized, inadequately 

justified division of atmospheric processes into three regimes: scales less than a month, a month up to 30 years and a lumping 

together of all slower processes with time scales longer than 30 years.  While the high frequency regime is clearly “weather” 

and the slow processes – at least up to ice age scales - is “climate”, until [Lovejoy, 2013] the intermediate regime lacked even 

a name.  Using  scaling - and with somewhat different transition scales - the three regimes were finally put on an objective 55 

quantitative basis with the middle regime baptized “macroweather”.  By using scaling to quantitatively define weather, 

macroweather and climate we can finally objectively answer  the question: how long does weather last?   A bonus, detailed in 

section 2, is that scaling analyses showed that what had hitherto been considered simply “climate” is itself composed of three 

distinct dynamical regimes.  Rather than lumping all low frequencies together simply as “climate”, we must also distinguish 

macroclimate and megaclimate.   60 

To review how scaling defines dynamical regimes, let’s define scaling using fluctuations - for example of the temperature or 

of a component of the wind.   For the moment, consider only one dimension, i.e. time series or spatial transects.  Temporal 

scaling means that the amplitudes of fluctuations are proportional to their time scale raised to a scale invariant exponent.  For 

appropriately nondimensionalized quantities:   
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Fluctuation	=	(scale)z	 (1)	

Every term in this equation needs appropriate definition, but for now, consider the classical ones.  First, the usual turbulence 

definition of a fluctuation is a difference (of temperature, wind components etc.) taken over an interval in space or in time.  

This interval defines the time (Dt) or space (Dx) scale of the corresponding fluctuation.  Also, classically, one considers the 75 

statistically averaged fluctuation (indicated by  “<  >”).  If we decompose z into a random singularity g  and a nonrandom 

“fluctuation exponent” H, then the appropriately averaged fluctuation will also be scaling with:  

<Fluctuation>	=	(scale)H;	 		<	(scale)g	>	=	1;	 z	=	H	+	g (2) 

Where the symbol “< >” indicates statistical (ensemble) averaging. 

Later in section 2.5, fluctuations as differences (sometimes called “poor man’s wavelets”) - are replaced by (nearly as simple) 80 

Haar fluctuations based on Haar wavelets (see also appendix B) and in section 3, eq. 1 is interpreted stochastically.  Finally, 

in section 4, we generalize the notion of scale itself by introducing a scale function that replaces the usual (Euclidean) distance 

function (metric).  These anisotropic scale functions are needed to handle scale in two or higher dimensional spaces, especially 

with regard to stratification.  

In atmospheric regimes where equation 1 holds, average fluctuations over durations lDt are lH times those at duration Dt i.e. 85 

they differ only in their amplitudes, they are qualitatively of the same nature, they are therefore part of the same dynamical 

regime.  More generally (eq. 1),  appropriately rescaled probabilities of random fluctuations also have scale invariant exponents 

(“codimensions”, section 3) so that the entire statistical behaviour is scaling.  Scaling therefore allows us to objectively identify 

the different atmospheric regimes.   

Over the Phanerozoic eon (the last 540Myrs), the five scaling regimes are weather, macroweather, climate, macroclimate and 90 

megaclimate [Lovejoy, 2015].  Starting at around a millisecond (the dissipation time), this covers a total range of ≈ 1019 in 

scale (section 2.5; [Tuck, 2022] argues that the true dissipation scale is much smaller, molecular scales).  Scaling therefore 

gives an unequivocal answer to the question posed in the title: “how long does weather last”, the answer is the lifetime of 

planetary structures, typically around 10 days (section 2.6). 

If the key statistical characteristics of the atmosphere at any given scale are determined by processes acting over wide ranges 95 

of scale – and not by a plethora of narrow range ones - then we must conclude that the fundamental dynamical processes are 

in fact dynamical “regimes” – not uninteresting “backgrounds”.  While there may also be narrow range processes, they can 

only be properly understood in the context of the dynamical regime in which they operate, and in any event, spectral or other 

analysis shows that they generally contribute only marginally to the overall variability.  The first task is therefore to define and 

understand the dynamical regimes and then - when necessary – the narrow range processes occurring within them.   100 
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Fig.  1: Cigarette smoke (left) showing wisps and filaments smaller than a millimeter up to about a meter in overall size.  The upper 105 
right shows two clouds each several kilometers across with resolutions of a meter or so.  The lower right, shows the global scale 
arrangement of clouds taken from a infra-red satellite image of the earth with a resolution of several kilometers.  Taken together, 
the three images span a range of several  billion in spatial scale.  Reproduced from [Lovejoy, 2019]. 
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 110 
Fig.  2 Left: 1000 points of various time series collectively spanning the range of scales of 470Myrs to 0.067s = 2.4x1017, each series 
was normalized so as to have the same overall range, and offset in the vertical for clarity.  The right hand column shows the absolute 
first differences normalized by the mean.  The solid horizontal line shows the maximum value expected for Gaussian variables (p = 
10-3), the dashed show the corresponding p = 10-6, 10-9 probability levels. 

Representative series from each of the five scaling regimes taken with the addition of the hourly surface temperatures from Lander 115 
Wyoming, (bottom, detrended daily and annually).  The Berkeley series was taken from a fairly well estimated period before 
significant anthropogenic effects and was annually detrended.   The top was taken over a particularly data - rich epoch, but there 
are still traces of the interpolation needed to produce a series at a uniform resolution.  The resolutions (indicated) were adjusted so 
that as much as possible, the smallest scale was at the inner scale of the regime indicated.  In the macroclimate regime, the inner 
scale was a bit too small and the series length a bit too long.  The resulting megaclimate regime influence on the low frequencies was 120 
therefore removed using a linear trend of 0.25 d18O/Myr.   The resolutions and time periods are indicated next to the curves.  The 
black curves have H>0, the red, H<0, see the parameter estimates in Section A. The figure is from [Lovejoy, 2018] updated only in 
the top megaclimate series that is at higher resolution than the previous, (from [Grossman and Joachimski, 2022].  
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 125 
Fig.  3; The first 8196 points of the temperature series measured by a GulfStream 4 flight over the Pacific Ocean at 196mb and 1 
second resolution (corresponding to 280m).  Because the aircraft speed is much greater than the wind, this can be considered as a 
spatial transect.  The bottom shows the absolute change in temperature from one measurement to the next normalized by dividing 
by the typical change (the standard deviation).  This differs from the spike plot in the right hand side of fig.  2 only in the 
normalization: here by the standard deviation, not the absolute difference.  Reproduce from [Lovejoy and Schertzer, 2013].  130 

1.2  A multiscaling/multifractal complication 

Before answering the quite different scaling question “How big is a cloud?”, it is first necessary to discuss a complication: that 

the scaling is different for every level of activity.  It turns out that the wide range over which the variability occurs is only one 

of its aspects: even at fixed scales, the variability is much more extreme than is commonly believed.  Interestingly, the 

extremeness of the variability at a fixed scale is a consequence of the wide range of scaling itself, it allows the variability to 135 

build up scale by scale in a multiplicative cascade manner.  As a result, mathematically, the scaling of the average fluctuation 

(eq. 2) gives only a partial view of the variability, we need to consider eq. 1 in its full stochastic sense.  In particular, if the 

exponent z is random, then it is easy to imagine that the variability may be huge. 
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To graphically see this, it is sufficient to produce a “spike plot” (the right hand columns of fig.  2, time, and the corresponding 

spatial plot, fig.  3).  These spike plots are simply the absolute first differences in the values normalized by their overall means 

(in fig.  3, the normalization is slightly different, by the standard deviation).  In the right  hand column of fig.  2 and the bottom 

of fig.  3, we see - with a single but significant exception -  macroweather in time (fig.  2) – that they all have strong spikes 

signalling sharp transitions.  In turbulence jargon, the series are highly “intermittent”.  145 

 How strong are the spikes?  Using classical (Gaussian) statistics we may use probability levels to quantify it.  For example, 

the fig.  2 (right) shows solid horizontal lines that indicate the maximum spike that would be expected from a Gaussian process 

with the given number of spikes.  For the 1000 points in each series in fig.  2, this line thus corresponds to a Gaussian probability 

p = 10-3.  In addition, horizontal dashed lines show spikes at levels p = 10-6 , p = 10-9.  Again with the exception of 

macroweather, we see that the p = 10-6 level is exceeded in every series and that the megaclimate, climate and weather regimes 150 

are particularly intermittent with spikes exceeding the p = 10-9 levels.   In section 3 we show how the spikes can be tamed by 

multifractal theory and the maxima predicted reasonably accurately (appendix A) by simply characterizing the statistics of the 

process near the mean (i.e. using their non extreme) behaviour. 

The spikes visually underline the fact that variability is not simply a question of the range of scales that are involved: at any 

given scale, variability can be strong or weak.  In addition, events can be highly clustered with strong ones embedded inside 155 

weak ones and even stronger ones inside strong ones in a fractal pattern repeating to smaller and smaller scales.  And this 

fractal sparseness itself can itself become more and more accentuated for the more and more extreme events/ regions: the series 

will generally be multifractal.  

1.3 How big is a cloud? 

Scaling is also needed to answer the question “how big is a cloud?” (here “cloud” is taken as a catchall meaning an atmospheric 160 

structure or eddy).   Now the problem is what do we mean by “scale”?  The series and transects in figs  2,  3, are one dimensional 

so that it is sufficient to define the scale of a fluctuation by the duration (time) or length (space) over which it occurs (actually, 

time involves causality so that the sign of Dt is important, see [Marsan et al., 1996], we ignore this issue here).  However the 

state of the atmosphere is mathematically represented by fields in three dimensional space evolving in time.   

Consider fig.  4 that displays a cloud vertical cross-section from the CloudSat radar.   In the figure, the gravitationally induced 165 

stratification is striking, and since each pixel in the figure has a horizontal resolution of 1km but vertical resolution of 250m, 

the actual stratification is actually four times stronger than it appears.  What is this cloud’s scale?   If we use the usual Euclidean 

distance to determine the scale, should we measure it in the horizontal – or in the vertical direction?  In this case, is the cloud 

scale its width (200 km) or its height (only ≈10 km)?  

If the horizontal/ vertical aspect ratio was the same for all clouds, the two choices would be identical to within a constant 170 

factor, the anisotropy would be “trivial”.  The trouble is that the aspect ratio itself turns out to be a strong power law function 

of (either) horizontal or vertical scale so that for any cloud: 
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Vertical	scale	=	(Horizontal	scale)Hz	 (3)	175 

 

In section 4, we will see that theoretically, the stratification exponent  Hz  = 5/9, a value that we confirm empirically on various 

atmospheric fields.   

To further appreciate the issue, consider the simulation in fig.  5 that shows a vertical cross section of a multifractal cloud 

liquid water density field.  The left hand column (top to bottom) shows a series of blow-ups in an isotropic (self-similar) cloud.  180 

Moving from top to bottom, blow-ups of the central regions by successive factors of 2.9 are displayed.  In order for the cross-

sections to maintain a constant 50% “cloud cover”, the density threshold distinguishing the cloud (white/grey) from the non-

cloud (black) must be systematically adjusted to account for this change in resolution.  This systematic readjustment of the 

threshold is required due to the multifractality and with this adjustment, we see that the cross-sections are “self-similar” i.e. 

they look the same at all scales.    185 

The effect of differential (scale dependent) stratification is revealed in the right hand column that shows the analogous zoom 

through a anisotropic multifractal simulation with a stratification exponent Hz = 5/9.   The low resolution (top) view of the 

simulation is highly stratified in the horizontal. Now, the blow ups reveal progressively more and more roundish structures. 

Eventually – the bottom cross-section (a blow up of a total factor of ≈ 5000), we can start to see vertically oriented structures 

“dangling” below more roundish ones.    190 

In the isotropic simulations (left hand), the only difficulty in defining the size of the cloud is the multifractal problem of 

deciding, for each resolution, which  threshold should be used to distinguish cloud from no cloud.  However, in the more 

realistic anisotropic simulation on the right, there is an additional difficulty in answering the question of “how big is a cloud?” 

Should we use the horizontal or the vertical cloud extent?  It turns out (in section 4) that to ensure that the answer is well 

defined, we need a new notion of scale itself: ”Generalized Scale Invariance” (GSI). 195 
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Fig.  4:  A vertical cloud cross section of radar backscatter taken by the radar on the  CloudSat satellite with resolution of 250m in 
the vertical, 1 km in the horizontal.  The black areas are those whose radar reflectivities are below the radar’s minimum detectable 
signal.  The arrows show rough estimates of the horizontal and vertical extent of the cloud.  The two differ by a factor of more than 
10.  How doe characterize the size of this cloud?  Adapted from [Lovejoy et al., 2009b]. 200 
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Fig.  5:  Left column: a sequence “zooming” into vertical cross section of an isotropic multifractal cloud (the density of liquid water 
was simulated and then displayed using false colours with grey sky below a low threshold).   From top to bottom, we progressively 
zoom in by factors of 2.9 (total factor ≈ 1000).  We can see that typical cloud structures are self-similar.  205 

Right column:  A multifractal cloud with the same statistical parameters as at left, but anisotropic, the zoom is still by factors of 2.9 
in the horizontal, but the structures are progressively “squashed” in the horizontal. Notice that while at large scales, the clouds are 
strongly horizontally stratified, when viewed close up they show structures in the opposite direction.  The sphero-scale is equal to 
the vertical scale in the right-most simulation on the bottom row. The film version of this (and other anisotropic space-time 
multifractal simulations can be found at:  http://www.physics.mcgill.ca/~gang/multifrac/index.htm). Reproduced from [Blöschl et 210 
al., 2015]. 

	

1.4 Wide range scaling and the scalebound and isotropic turbulence alternatives 

1.4.1 Comparison with narrow scale range, “scalebound” approaches 

The presentation and emphasis of this review reflects experience over the last years that has shown how difficult it is to shake 215 

traditional ways of thinking.  In particular, traditional mechanistic meteorological approaches are based on a widely 

internalized but largely unexamined “scalebound” view that prevents scaling from being taken as seriously as it must be.  As 

we’ll see (section 2), the scalebound view persists in spite of its increasing divorce from the real world.  Such a persistent 

divorce is only possible because practising atmospheric scientists rely almost exclusively on Numerical Weather Prediction 

(NWP) or Global Circulation Models (GCM) and these inherit the scaling symmetry from the atmosphere’s primitive equations 220 

upon which they are built.   
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The problem with scaleboundedness is not so much that it doesn’t fit the facts, but rather that it blinds us to promising 

alternative scaling approaches.  And new approaches are urgently needed.  As argued in [Lovejoy, 2022a], climate projections 

based on GCMs are reaching diminishing returns with the latest IPCC AR6 (2021) uncertainty ranges larger than ever before: 

c.f. the latest climate sensitivity range of 2 – 5.5K rise of global temperature following a CO2 doubling.  This is currently more 225 

than double the range of expert judgement: (2.5 – 4K).  New low uncertainty approaches are thus needed and scaling 

approaches based on direct stochastic scaling macroweather models are promising [Hébert et al., 2021b], [Procyk et al., 2022]. 

1.4.2 “Scaling primary” versus “isotropy primary” turbulence approaches 

There are also sticking points whose origin is in the other, statistical, turbulence strand of atmospheric science. Historically, 

turbulence theories have been built around  two statistical symmetries: a scale symmetry (scaling) and a direction symmetry 230 

(isotropy).  While these two are conceptually quite distinct, even today, they are almost invariably considered together in the 

special case called “self-similarity” which is a basic assumption of theories and models of isotropic two dimensional and 

isotropic three dimensional turbulence.  Formalizing scaling as a (nonclassical) symmetry principle clarifies the distinct nature 

of scale and direction symmetries.   In the atmosphere, due to gravity (not to mention sources of differential rotation)  there is 

no reason to assume that the scale symmetry is an isotropic one:  indeed, atmospheric scaling is fundamentally anisotropic.  235 

The main unfortunate consequence of assuming isotropy is that it implies an otherwise unmotivated (and unobserved) scale 

break somewhere near the scale height (≈ 7.4km). 

As we show (section 4), scaling accounts for both the stratification that systematically increases with scale as well as its 

intermittency.  Taking into account gravity in the governing equations provides an anisotropic scaling alternative to quasi-

geostrophic turbulence (“fractional vorticity equations”, see [Schertzer et al., 2012]).  The argument in this review is thus that 240 

scaling is the primary scale symmetry, it takes precedence over other scale symmetries such as isotropy, indeed, it seems that 

isotropic turbulence is simply not relevant in the atmosphere [Lovejoy et al., 2007]. 

1.5 The scope and structure of this review 

This review primarily covers scaling research over the last four decades, especially multifractals, generalized scale invariance 

and their now extensive empirical validations.  This work involved theoretical and technical advances, revolutions in 245 

computing power, the development of new data analysis techniques and the systematic exploitation of mushrooming quantities 

of geodata.  The basic work has already been the subject of several reviews ([Lovejoy and Schertzer, 2010c], [Lovejoy 

and Schertzer, 2012b], but especially the monograph [Lovejoy and Schertzer, 2013].  Although  a book covering some of the 

subsequent developments was published more recently [Lovejoy, 2019], it was nontechnical, so that this new review brings its 

first four chapters up to date and includes some of the theory and mathematics that was deliberately omitted so as to render the 250 

material more accessible.  The last three chapters of [Lovejoy, 2019] focused on developments in the climate (and lower 
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frequency) scale regimes that will be reviewed elsewhere.   The present review is thus limited to the (turbulent) weather regime 

and its transition to macroweather at scales of ≈ 10 days. 255 

In order to maintain focus on the fundamental physical scaling issues and implications, the mathematical formalism is 

introduced progressively - as needed - so that it will not be an obstacle to accessing the core scientific ideas.    

This review also brings to the fore several advances that have occurred in the last ten years, especially Haar fluctuation analysis 

(developed in detail in appendix B), and a more comprehensive criticism of scalebound approaches made possible by 

combining Haar analysis with new high resolution instrumental and paleodata sources [Lovejoy, 2015].  On the other hand, it 260 

leaves out an emerging body of work on macroweather modelling based on the Fractional Energy Balance Equation for both 

prediction and climate projections [Del Rio Amador and Lovejoy, 2019; Del Rio Amador and Lovejoy, 2021a], [Del Rio 

Amador and Lovejoy, 2021b], [Procyk et al., 2022], as well as their implications for the future of climate modelling [Lovejoy, 

2022a]. 

The presentation is divided into three main sections.  Keeping the technical, mathematical aspects to a minimum, section 2 265 

focuses on a foundational atmospheric science issue: what is the appropriate conceptual, theoretical framework for handling 

the atmosphere’s variability over huge ranges of scales?  It discusses how the classical scalebound approach is increasingly 

divorced from real world data and numerical models.  Scaling is discussed but with emphasis on its role as a symmetry 

principle. It introduces fluctuation analysis based on Haar fluctuations that allow for a clear quantitative empirical overview 

of the variability over seventeen orders of magnitude in time.   Scaling is essential to defining the basic dynamical regimes, 270 

underlining the fact that between the weather and the climate sits a new “macroweather” regime. 

Section 3 discusses the general scaling process: multifractals. Multifractals naturally explain and quantify the ubiquitous 

intermittency of atmospheric processes.  The section also discusses an under-appreciated consequence: the divergence of high 

order statistical moments - equivalently power law probability tails – and relate this to “tipping points” and “black swans”.  

The now large body of evidence for the divergence of moments is discussed and special attention paid to the velocity field 275 

where the divergence of moments was first empirically shown 40 years ago in the atmosphere, then in wind tunnels and most 

recently in large Direct Numerical Simulations of hydrodynamic turbulence.  

In section 4 a totally different aspect of scaling is covered: anisotropic scaling, notably scaling stratification.  The section 

outlines the formalism of Generalized Scale Invariance (GSI) needed to define the notion of scale in anisotropic scaling 

systems.  By considering buoyancy driven turbulence, the 23/9D model is derived, it is a consequence of Kolmogorov scaling 280 

in the horizontal and Bolgiano-Obukhov scaling in the vertical.  This model is “in between” flat 2D isotropic turbulence and 

“voluminous” isotropic 3D turbulence – it is strongly supported by now burgeoning quantities of atmospheric data.  It not only 

allows us to answer the question “how big is a cloud”? but also to understand and model differentially rotating structures 

needed to quantify cloud morphologies. 
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2 Scaling or scalebound? From van Leuwenhoek to Mandelbrot   

2.1 The scalebound view  examined 

In the introduction, the conventional paradigm based on (typically deterministic) narrow range explanations and mechanisms, 290 

was contrasted with the alternative scaling paradigm that builds statistical models expressing the collective behaviour of high 

numbers of degrees of freedom and that provides explanations over huge ranges of scales.    

Let’s consider the narrow range paradigm in more detail.  It follows in the steps of van Leuwenhoek who - peering through an 

early microscope - was famously said to have discovered a “new world in a drop of water” – micro-organisms (circa 1675).  

Over time, it evolved into a “powers of ten” view ([Boeke, 1957]) in which every factor of ten or so of zooming revealed 295 

qualitatively different processes, morphologies.  [Mandelbrot, 1981] termed this view “scalebound” (written as one word), 

which is a useful short-hand for the idea that every factor of ten or so involves something qualitatively new: a new world, new 

mechanisms, new morphologies etc.   

The first weather maps were at extremely low spatial resolution so that only a rather narrow range of phenomena could be 

discerned. Unsurprisingly, the corresponding atmospheric explanations and theories were scalebound.  Later, in the 1960’s 300 

and 70’s under the impact of new data, especially in the mesoscale, the ambient scalebound paradigm was quantitatively made 

explicit in space-time “Stommel” diagrams (discussed at length in section 2.6) in which various conventional mechanisms, 

morphologies, phenomena are representing by the space-time scales over which they operate.  For a recent inventory of 

scalebound mechanisms from seconds to decades, see [Williams et al., 2017]. 

While Stommel diagrams reflected scalebound thinking, the goal was the modest one of organizing and classifying existing 305 

empirical phenomenology and it did this in the light of prevailing mechanistic analytic dynamical meteorology. It was 

[Mitchell, 1976], writing at the dawn of the paleo-climate revolution who more than anyone, ambitiously elevated the 

scalebound paradigm into a general framework spanning a range of scales from (at least) an hour to the age of the planet, (a 

factor of tens of billion, upper left, fig. 6).  Mitchell’s data was limited, and he admittedly that his spectrum was only an 

“educated guess”.  He imagined that when the data would become available, that their spectra would consist of an essentially 310 

uninteresting white noise “background” interspersed with interesting quasi-periodic signals representing the important physical 

processes. Ironically, Mitchell’s scalebound paradigm was proposed at the same time as the first general circulation models 

(GCMs, [Manabe and Wetherald, 1975]).  Fortunately, the GCMs are scaling, inheriting the symmetry from the governing 

equations ([Schertzer et al., 2012], see ch. 2 of [Lovejoy and Schertzer, 2013]. 

Mitchell’s schematic was so successful, that more than four decades later, his original figure is still faithfully reproduced (e.g. 315 

[Dijkstra, 2013]) or updated by very similar scalebound schematics with only minor updates. Even though the relevant geodata 

has since mushroomed, the updates notably have less quantification and weaker empirical support than the original.  The forty 

- five year evolution of the scalebound paradigm is shown in the other panels of fig. 6.  Moving to the right in the figure, there 

is a twenty - five year update, modestly termed an “artist’s rendering” [Ghil, 2002].  This figure differs from the original in the 

excision of the lowest frequencies and by the inclusion of several new multimillennial scale “bumps”.  In addition, whereas 320 
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Mitchell’s spectrum was quantitative, the artist’s rendering retreated to using “arbitrary units” making it more difficult to 

empirically verify.  Nearly twenty years later, the same authors approvingly reprinted it in a review [Ghil and Lucarini, 2020].     
As time passed, the retreat from quantitative empirical assessments continued so that the scalebound paradigm has become 330 

more and more abstract.  The bottom left in fig. 6, shows an update downloaded from the NOAA paleoclimate data site  in 

2015, claiming to be a “mental model”.   Harkening back to [Boeke, 1957], the site went on to state that the figure is “intended 

… to provide a general ‘powers of ten’ overview of climate variability”.   Here, the vertical axis is simply “variability” and 

the uninteresting background - presumably a white noise – is shown as a perfectly flat line.   

At about the same time [Lovejoy, 2015], pointed out that Mitchell’s original figure was in error by an astronomical factor 335 

(section 2.4) so that - in an effort to partially address the criticism – an update in the form of a “conceptual landscape” was 

proposed (fig. 6 bottom right, [von der Heydt et al., 2021]). Rather than plotting the log of the spectrum E(w) as a function of 

the log frequency w, the “landscape’s” main innovation was the use of the unitless “relative variance” w E(w) plotted linearly.  

indicated as a function of log w (bottom right of the figure).  Such plots have the property that areas under the curves are equal 

to the total variance contributed over the corresponding frequency range.  Before returning to these schematics let’s discuss 340 

the scaling alternative.  
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Fig.  6:   The evolution of the scalebound paradigms of atmospheric dynamics, 1976-2021.  The upper left “educated guess” is from 
[Mitchell, 1976], the upper right “artist’s rendering” from [Ghil, 2002], [Ghil and Lucarini, 2020].  Lower left shows NOAA’s “mental 345 
model” (downloaded from the site in 2015), the lower right is the “conceptual model” from [von der Heydt et al., 2021].  

2.2 The scaling alternative 

2.2.1 Scaling as a symmetry 

Although scaling in atmospheric science goes back to Richardson in the 1920’s,  it was the “Fractal Geometry of Nature” 

[Mandelbrot, 1977],  [Mandelbrot, 1982] that first proposed scaling as a broad alternative to the scalebound paradigm.  350 

Alongside deterministic chaos and nonlinear waves, fractals rapidly became part of the nascent nonlinear revolution.  Contrary 

to scaleboundedness, scaling supposes that zooming results in something that is the qualitatively unchanged.   

Although Mandelbrot emphasized fractal geometry i.e. the scaling of geometry sets of points, it soon became clear [Schertzer 

and Lovejoy, 1985c] that the physical basis of scaling (more generally scaling fields, scaling processes) is in fact a scale 

symmetry principle – effectively a scale conservation law that is respected by many nonlinear dynamical systems, including 355 

those governing fluids [Schertzer and Lovejoy, 1985a], [Schertzer and Lovejoy, 1987; Schertzer et al., 2012].   
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Scaling	is	seductive	because	it	is	a	symmetry.		Ever	since	Noether	published	her	eponymous	theorem	[Noether,	1918]	

demonstrating	 the	 equivalence	 between	 symmetries	 and	 conservation	 laws,	 physics	 has	 been	based	 on	 symmetry	

principles.	Thanks	 to	Noether’s	 theorem,	by	 formulating	scaling	as	a	general	symmetry	principle,	 the	scaling	 is	 the	

physics.		Symmetry	principles	represent	a	kind	of	maximal	simplicity,	and	since	"entities must not be multiplied beyond 360 

necessity"	 (Occam’s razor)	 physicists	 always	 assume	 that	 symmetries	 hold	 unless	 there	 is	 evidence	 for	 symmetry	

breaking.	 

In the case of fluids, we can verify this symmetry on the equations as implemented for example in GCMs (e.g. [Stolle et al., 

2009], [Stolle et al., 2012] and discussion in section 2.2.3)- but only for scales larger than the (millimetric) dissipation scales, 

where the symmetry is broken and mechanical energy is converted into heat (this is true for Navier-Stokes turbulence, however 365 

the atomic scale details not fully clear [Kadau et al., 2010] and [Tuck, 2008], [Tuck, 2022] argue that scaling can continue to 

much smaller scales).  The scaling is also broken at the large scales by the finite size of the planet.  In between, boundary 

conditions such as the ocean surface or topography might potentially have broken the scaling but in fact, they turn out to 

themselves be scaling and so do not introduce a characteristic scale (e.g. [Gagnon et al., 2006]).    

In	 the	atmosphere	one	 therefore	expects	 scaling.	 	 It	 is	 expected	 to	hold	unless	processes	 can	be	 identified	 that	act	370 

preferentially	and	strongly	enough	at	a	specific	scales	that	could	break	it.			This	turns	the	table	on	scalebound	thinking:	

if	we	can	explain	the	atmosphere’s	structure	in	a	scaling	manner,	then	this	is	the	simplest	explanation	and	should	a	

priori,	be	adopted.		The	onus	must	be	on	the	scalebound	approach	to	demonstrate	the	inadequacy	of	scaling	and	the	

need	to	replace	the	hypothesis	of	a	unique	wide	scaling	range	regime	by	(potentially	numerous)	distinct	scalebound	

mechanisms.	375 

Once	a	 scaling	 regime	 is	 identified	–	either	 theoretically	or	empirically	 (preferably	by	a	 combination	of	both),	 it	 is	

associated	with	a	single	basic	dynamical	mechanism	that	repeats	scale	after	scale	over	a	wide	range,	hence	it	provides	

an	objective	classification	principle.			

 

2.2.2  Wide range scaling in atmospheric science 380 

The	 atmospheric	 scaling	 paradigm	 is	 almost	 as	 old	 as	 numerical	 weather	 prediction,	 both	 being	 proposed	 by	

Richardson	in	the	1920’s.		Indeed,	ever since Richardson’s scaling 4/3 law of turbulent diffusion ([Richardson,	1926] - the	

precursor	of	the	better	known	Kolmogorov	law	[Kolmogorov,	1941])	-	scaling has been the central turbulence paradigm.			

From	the	beginning,		Richardson	argued	for	a	wide	range	scaling,	holding	from	millimeters	to	thousands	of	kilometers	

(fig.	7).			Richardson	himself	attempted	an	empirical	verification	notably	using	data	from	pilot	balloons	and	volcanic	385 

ash	(and	later	-		in	the	turbulent	ocean	-	with		bags of parsnips that he watched diffusing from a pier on Loch Lomond 

[Richardson and Stommel, 1948]).  However, there	remained	a	dearth	of	data	spanning	the	key	“meso-scale”	range	≈	1	–	

100km	corresponding	to	the	atmosphere’s	scale	height,	so	that	for	several	decades	following	Richardson,	progress	in	
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atmospheric	 turbulence	 was	 largely	 theoretical.	 	 In	 particular, in the 1930’s the turbulence community made rapid 390 

advances in understanding the simplified isotropic turbulence problem, notably the Karman-Howarth equations [Karman and 

Howarth, 1938]) and the discovery of numerous isotropic scaling laws for passive scalar advection and for mechanically driven 

and buoyancy driven turbulence.  At first, Kolmogorov and the other the pioneers recognized that atmospheric stratification 

strongly limited the range of applicability of isotropic laws.  Kolmogorov for example, estimated that his famous law of three 

dimensional isotropic turbulence would only hold at scales below 100m.  As discussed in section 4,  modern data shows that 395 

this was a vast over-estimate, that if his isotropic law ever holds anywhere in the atmosphere, that it is below 5m!  Yet, at the 

same time, in the horizontal, the anisotropic generalization of the Kolmogorov law apparently holds up to planetary scales!  	

In	 the	 1970’s	motivated	 by	 Charney’s	 isotropic	 2D	 geostrophic	 turbulence	 [Charney,	 1971],	 the	 ambitious	 “EOLE”	

experiment	was	undertaken	specifically	to	study	large	scale	atmospheric	turbulence.		EOLE	(for	the	Greek	wind	God)	

ambitiously	used	a	satellite	to	track	the	diffusion	of	hundreds	of		constant	density	balloons	([Morel	and	Larchevêque,	400 

1974]),	but	the	results	turned	out	to	be	difficult	to	interpret.		Worse,	the	initial	conclusions	–	that	the	mesoscale	wind	

did	not	follow	the	Kolmogorov	law	–	turned	out	to	be	wrong	and	it	was	later	re-interpreted	([Lacorta	et	al.,	2004],	and	

then	further	re-re-interpreted	[Lovejoy	and	Schertzer,	2013])	finally	vindicating	Richardson	nearly	ninety	years	later.			

Therefore,	when	[Lovejoy,	1982],	benefitting	from	modern	radar	and	satellite	data,	discovered	scaling	right	through	the	

mesoscale,	(fig.	7,	right),	it	was	the	most	convincing	support	to	date	for	Richardson’s	daring	1926		wide	range	scaling	405 

hypothesis.		Although	at	first,	it	was	mostly	cited	for	its	empirical	verification	that	clouds	were	indeed	fractals,		today,	

40	years	later,	we	increasingly	appreciate	its	vindication	of	Richardson’s	scaling	from	1	–	1000	km,	right	through	the	

mesoscale.		It	marks	the	beginning	of	modern	scaling	theories	of	the	atmosphere.		This	has	since	been	confirmed	by	

massive	quantities	of	remotely	sensed	and	in	situ	data	both	on	earth	fig.	8,	and	more	recently	on	Mars	(fig.	9,	discussed	

in	detail	in	section	3.4).	410 
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Fig. 7: Richardson’ pioneering scaling model [Richardson, 1926] of turbulent diffusion (left) with an early update [Lovejoy, 1982] 
(right) using radar rain data (black) and satellite cloud data (open circles). 

 415 
 

Fig. 8: Planetary scale power law spectra ( ) from satellite radiance (top), aircraft bottom left and reanalyses (bottom 

right).   

Upper left: Spectra from over 1000 orbits the Tropical Rainfall Measurement Mission (TRMM); of five channels visible through 
thermal IR wavelengths displaying the very accurate scaling down to scales of the order of the sensor resolution (≈ 10 km).  Adapted 420 
from [Lovejoy et al., 2008b]. 

Upper left: Spectra from five other (microwave) channels from the same satellite.  The data are at lower resolution and the latter 
depends on the wavelength, again the scaling is accurate up to the resolution.  Adapted from [Lovejoy et al., 2008b]. 

Lower left:  The spectrum of temperature (T), humidity (h) and log potential temperature (logq) averaged over 24 legs of aircraft 
flight over the Pacific Ocean at 200 mb.  Each leg had a resolution of 280m and had 4000 points (1120 km).  A reference line 425 
corresponding to k-2 spectrum is shown in red.  The meso-scale (1 – 100 km) is shown between the dashed blue lines.  Adapted from 
[Lovejoy et al., 2010] 

Lower right: Zonal Spectra of reanalyses from the European Centre for Medium Range Weather Forecasting (ECMWF), once daily 
for the year 2008 over the band ±45o latitude.  Adapted from [Lovejoy and Schertzer, 2011].  
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.	430 

 
Fig. 9:  Earth (left), Mars (right).  The zonal spectra (left) and (right) Mars as functions of the nondimensional wavenumbers for 
pressure (p, purple), meridional wind (v (green), the zonal wind (u, blue), temperature (T, red).  The data for Earth were taken at 
69% atmospheric pressure for 2006 between latitudes ±45o latitude.  The data for Mars were taken at 83% atmospheric pressure 
for Martian year 24 to 26 between latitudes ±45o.   The reference lines have absolute slopes from top to bottom b = 3.00, 2.05, 2.35 435 
and 2.35 (for p, v, u, T respectively).  The spectra have been rescaled and an offset added for clarity.  Wavenumber k =1 corresponds 
to the half circumference of the respective planets.  Reproduced from [Chen et al., 2016]. 

 

2.2.3 Which is more fundamental: scaling or isotropy?    

In section 2.1, we discussed the debate between scaling and mechanistic, generally deterministic, “scalebound” approaches.  440 

But even in the statistical (turbulence) strand of atmospheric science there evolved an alternative to Richardson’s wide range 

scaling: the paradigm of isotropic turbulence.  

In the absence of gravity (or other strong source of anisotropy), the basic isotropic scaling property of the fluid equations has 

been known for a long time [Taylor, 1935], [Karman and Howarth, 1938]. The scaling symmetry justifies the numerous 

classical fluid dynamics similarity laws (e.g. [Sedov, 1959]) and it underpins models of statistically isotropic turbulence, 445 
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notably the classical turbulence laws of Kolmogorov [Kolmogorov, 1941], Bolgiano-Obukov (buoyancy driven, section 4.1) 

[Bolgiano, 1959], [Obukhov, 1959] and Corrsin-Obukov (passive scalar) [Corrsin, 1951], [Obukhov, 1949].   

These classical turbulence laws can be expressed in the form: 

 

Fluctuation	≈	(turbulent	flux)a	(scale)H	 	(4)	450 

 

where scale was interpreted in an isotropic sense, H is the fluctuation exponent and physically, the turbulent fluxes are the 

drivers (compare with eq. 2).  The first and most famous example is the Kolmogorov law for fluctuations in the wind where 

the turbulent flux is the energy rate density (e, a = 1/3) and H = 1/3.  Eq. 4 is the same as eq. 2 except that the randomness is 

hidden in the turbulent flux that classically was considered to be quasi-Gaussian, the non-intermittent special case (section 455 

3.2).  

Theories and models of isotropic turbulence were developed to understand the fundamental properties of high Reynolds 

number turbulence, and this, independently of whether or not it could be applied to the atmosphere. Since the atmosphere is a 

convenient very high Reynolds number laboratory (Re ≈ 1012), the question is therefore “Is isotropic turbulence relevant in the 

atmosphere”?  (the title of [Lovejoy et al., 2007]).  460 

Fig. 10 graphically shows the problem: although the laws of isotropic turbulence are themselves scaling, they imply a break in 

the middle of the “mesoscale” at around 10km.  To model the larger scales [Fjortoft, 1953], [Kraichnan, 1967], soon found 

another isotropic scaling paradigm: 2D isotropic turbulence.  Charney in particular adapted Kraichnan’s 2-D isotropic 

turbulence to geostrophic turbulence [Charney, 1971], the result is sometimes called “layerwise” 2D isotropic turbulence.  

Whereas Kraichnan’s 2D model was rigidly flat with strictly no vortex stretching - Charney’s extension allowed for some 465 

limited vortex stretching. Fig. 10 shows the implied difference between the 2D isotropic and 3D isotropic regimes.   

Even though isotropy had originally been proposed purely for theoretical convenience, armed with two different isotropic 

scaling laws, it was now being proposed as the fundamental atmospheric paradigm.  If scaling in atmospheric turbulence is 

always isotropic, then we are forced to accept a scale break.  The assumption that isotropy is the primary symmetry, implies 

(at least) two scaling regimes with a break (presumably) near the 10km scale height i.e in the mesoscale.   The 2D-3D model 470 

with its implied “dimensional transition” ([Schertzer and Lovejoy, 1985c]) already contradicted the wide range scaling 

proposed by Richardson.   

An important point is that the implied scale break is neither physically nor empirically motivated, it is purely a theoretical 

consequence of assuming the predominance of isotropy over scaling.  One is forced to choose: which of the fundamental 

symmetries is primary; isotropy or scaling? 475 

By the time a decade later that the alternative (wide range) anisotropic scaling paradigm (see fig. 11 for a schematic) was 

proposed [Schertzer and Lovejoy, 1985c], [Schertzer and Lovejoy, 1985a], Charney’s beautiful theory along with its 2D/3D 

scale break had already been widely accepted, and even today it is still taught.  More recently, [Schertzer et al., 2012] 
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Generalized Scale Invariance was linked directly to the governing equations so that a clear anisotropic theoretical alternative 

to Charney’s isotropic theory is available. 480 

 

 

 
Fig. 10: A schematic showing the geometry of isotropic 2-D models (top, for the large scales), the volumes of average structures 
(disks) increase as the square of the disk diameter.  The isotropic is a schematic of 3D turbulence models for the small scales, with 485 
the volumes of the spheres increasing as the cube of the diameter.  These geometries  are superposed on the earth’s curved surface 
(the blue spherical segments on the right).  We see (the bottom right, earth surface) that - unless they are strongly restricted in range 
- the 3D isotropic models quickly imply structures that extend into outer space. 
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 490 
Fig. 11: A schematic diagram showing the change in shape of average structures which are isotropic in the horizontal (slightly curved 
to indicate the earth’s surface) but with scaling stratification in the vertical; Hz increases from 0 (upper left) to 1 (lower right); Del = 
2+Hz.  In order to illustrate the change in structures with scale, the ratio of tropospheric thickness to earth radius has been increased 
by nearly a factor of 1000.  Note that in the Del =3 case, the cross-sections are exactly circles; the small distortion is an effect of 
perspective due to the mapping of the structures on to the curved surface of the earth. Reproduced from [Lovejoy and Schertzer, 495 
2010c].  

	

2.3 Aspects of scaling in one dimension 

The basic signature of scaling is a power law relation of a statistical characteristic of a system as a function of space and / or 

time scale.  In the  empirical test of the Richardson	4/3	law	(fig. 7, left),	 it	 is	 the	turbulent	viscosity	as	a	 function	of	500 

horizontal	scale	that	is	a	power	law.		In	the	right	hand	side,	it	is	rather	the	complicated	(fractal)	perimeters	of	clouds	

and	rain	zones	that	are	power	law	functions	of	the	corresponding	areas.		These	analysis		methods	lack	generality,	let’s	

instead	consider	spectra	(Fourier	space)	and	then,	fluctuations	(real	space,	section	2.5,	appendix	B).				
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Following Mitchell we may consider variability in the spectral domain, for example, the power spectrum of the temperature 

T(t) is: 505 

	 	 (5)	

where  is its Fourier Transform, w is the frequency.  A scaling process E(w) has the same form if we consider it at a 

time scale l times smaller or equivalently, at a frequency l times larger:  

	 (6)	

Where	b	is	the	“spectral	exponent”.		The	solution	of	this	functional	equation	is	a	power	law:	510 

	 (7)	

Therefore, a log-log plot of the spectrum as a function of frequency will be a straightline, see fig. 12 for early quantitative 

applications to climate series.   

Alternatively, we can consider scaling in real space.  Due to“Tauberian theorems” (e.g. [Feller, 1971]) power laws in real 

space are transformed into power laws in Fourier space (and visa versa).  This result holds whenever the scaling range is wide 515 

enough - i.e. even if there are high and or low frequency cut-offs (needed if only for the convergence of the transforms).  If we 

consider fluctuations DT over time interval Dt, then if the system is scaling, we can introduce the (“generalized”, qth order) 

structure function as: 

	 (8)	

Where the “< >” sign indicates statistical (ensemble) averaging (assuming statistical stationarity there is no t dependence.  520 

Once again, classically fluctuations are defined simply as differences i.e. DT(Dt)  = T(t) - T(t - Dt), although more general 

fluctuations are needed as discussed in section 2.5.  For stationary scaling processes, the Wiener-Khintchin theorem implies a 

simple relation between real space and Fourier scaling exponents: 

	 (9)	

(the “2” is because the variance is a second order moment).  If in addition, the system is “quasi-Gaussian” then S2 gives a full 525 

statistical characterization of the process, therefore often only the second order structure function S2(Dt) is considered (e.g. fig. 

8, top). However as discussed above, geoprocesses are typically strongly intermittent, rarely quasi-Gaussian and the full 
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exponent function x(q) is needed, (section 3.1).  In the next section, we discuss this figure in more detail, including its physical 

implications, for the moment simply note the various linear (scaling) regimes on the log-log plots.   
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	530 
Fig. 12: The evolution of the scaling picture, 1986 - 1999. 

Top:  The RMS difference structure functions estimated from local (Central England) temperatures since 1659 (open circles, upper 
left), northern hemisphere temperature (black circles), and from paleo temperatures from Vostok (Antarctic, solid triangles), Camp 
Century (Greenland, open triangles) and from an ocean core (asterixes).   For the northern hemisphere temperatures, the (power 
law, linear on this plot) climate regime starts at about 10 years.   The reference line has a slope H = 0.4.  The rectangle (upper right) 535 
is the “glacial-interglacial window” through which the structure function must pass in order to account for typical variations of ±2 
to ±3K for cycles with half periods ≈ 50 kyrs.  Reproduced from [Lovejoy and Schertzer, 1986b]. 

Notice, the two essentially flat sets of points, one from the local central England temperate up to roughly three hundred years, and 
the other from an ocean core that is flat from scales 100,000 years and longer.  These correspond to the macroweather and 
macroclimate regimes where H<0 so that the flatness is an artefact of the use of differences in the definition of fluctuations (appendix 540 
B2): 

Bottom left: Composite spectrum of d18O paleo temperatures from [Shackleton and Imbrie, 1990]. 

Bottom right: Composite using instrumental temperatures (right) and paleotemperatures left) with piecewise linear (power law) 
reference lines.  The composite is not very different from the more recent one shown in fig. 13, reproduced from [Pelletier, 1998]. 

2.4 The impact of data on the scalebound view 545 

In	 spite	 of	 its	 growing	 disconnect	 with	modern	 data,	 Mitchell’s	 figure	 and	 its	 scalebound	 updates	 continue	 to	 be	

influential.  Yet, within fifteen years of Mitchell’s famous paper, two scaling composites, over the ranges 1 hr to 105 yrs, and 

103 to 108 yrs, already showed huge discrepancies [Lovejoy and Schertzer, 1986b], figure 12 (top) [Shackleton and Imbrie, 

1990] (bottom left) see also [Pelletier, 1998] (bottom right) and [Huybers and Curry, 2006].  Returning to Mitchell’s original 

figure, [Lovejoy, 2015] superposed the spectra of several modern instrumental and paleo series; the differences are literally 550 

astronomical (fig. 13).  Whereas over the range 1 hr to 109 yrs, Mitchell’s background varies by a factor ≈ 150, the spectra 

from real data imply that the true range is a factor greater than a quadrillion (1015).  

 

1990 1999
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Figure 13:  A comparison of Mitchell’s relative scale, “educated guess” of a log-log spectral plot (grey, bottom [Mitchell, 1976]) with 555 
modern evidence from spectra of a selection of the series described in table 1 and [Lovejoy, 2015] from which this figure is 
reproduced.  On the far right, the spectra from the 1871-2008 20CR (at daily resolution) quantifies the difference between the 
globally averaged temperature (bottom right red line) and local averages (2ox2o, top right red line).    

The spectra were averaged over frequency intervals (10 per factor of ten in frequency), thus “smearing out” the daily and annual 
spectral “spikes”.   These spikes have been re-introduced without this averaging, and are indicated by green spikes above the red 560 
daily resolution curves.  Using the daily resolution data, the annual cycle is a factor ≈ 1000 above the continuum, whereas using 
hourly resolution data, the daily spike is a factor ≈3000 above the background.  Also shown is the other striking narrow spectral 
spike at (41 kyrs)-1 (obliquity; ≈ a factor 10 above the continuum), this is shown in dashed green since it is only apparent over the 
period 0.8 - 2.56 Myr BP (before present). 

The blue lines have slopes indicating the scaling behaviours.   The thin dashed green lines show the transition periods that separate 565 
out the scaling regimes; these are (roughly) at 20 days, 50 yrs, 80,000 yrs, and 500,000 yrs.  Reproduced from [Lovejoy, 2015]. 
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Fig. 14 Artist’s rendering with data superposed.  Adapted from [Ghil, 2002], reprinted in [Ghil and Lucarini, 2020]. 

	
Returning to the “Artist’s Rendering”, fig. 14 shows that when compared to the data, it fares no better than Mitchell’s educated 570 

guess.  The next update - NOAA’s “mental model” - only specified that its vertical axis was proportional to “variability”.  If 

we interpret “variability” as the root mean square fluctuation at a given scale, and the flat “background” between the bumps 

as white noise, then then we obtain the comparison fig. 15.  Although the exact definition of these fluctuations is discussed in 

section 2.5, they give a directly physically meaningful quantification of the variability at a given time scale.  In fig. 15, we see 

that the mental model predicts that successive million year average earth temperatures would differ by only tens of micro 575 

Kelvins!  A closely similar conclusion would hold if we converted Mitchell’s spectrum into RMS real space fluctuations. 

The most recent scalebound update – the “conceptual landscape” - is compared with modern data in fig. 16.  Although the 

various scaling regimes proposed in [Lovejoy, 2013] (updated in fig. 18 and discussed below) are discretely indicated in the 

background, in many instances, there is no obvious relation between the regimes and the landscape.  In particular, the word 

“macroweather” appears without any obvious connection to the figure, but even the landscape’s highlighted scalebound 580 

features are not very close to the empirical curve (red).  Although the vertical axis is only “relative”, this quantitative empirical 

comparison was made by exploiting the equal area property mentioned above.  The overlaid solid red curve was estimated by 

converting the disjoint spectral power laws shown in the updated Mitchell graph (fig. 8).  In addition, there is also an attempt 

to indicate the amplitudes of the narrow spectral spikes (the Green spikes in fig. 13) at diurnal, annual and – for the period 2.5 

Ma
cro

clim
ate

  
b =

-0.
6

megaclimate macroweather weather

b = 1.8

b = 1.8

b = 1.8

b = 0.2

climate

1011



29 
 

– 0.8 Myrs – the obliquity spectral peak at (41kyrs)-1).  In conclusion, the conceptual landscape bears little relation to the real 585 

world.   

 
 

Fig. 15:  Mental model with data.  The data spectrum in fig. 13 is replotted in terms of fluctuations (grey, top, see fig. 17).  The 
diagonal axis corresponds to the flat base line of fig. 6 (lower left) that now has a slope of -1/2 corresponding to an uncorrelated 590 
Gaussian “white noise” background.    Since the amplitudes in fig. 6 (lower left) were not specified, the amplitudes of the transformed 
“bumps” are only notional.  At the top is superposed the typical Haar fluctuations at time scale Dt as estimated from various 
instrumental and paleo series, from fig. 17 (bottom, using the data displayed in fig.  2).    We see (lower right) that consecutive 1 Myr 
averages would only differ by several µK.  Reproduced from [Lovejoy 2019]. 
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	595 

 
Fig. 16:  Conceptual landscape with data.  The superposed red curves use the data spectra in fig. 11 and adjusted the (linear) vertical 
scale for a rough match with the landscape.  The vertical lines indicate huge periodic signals (the diurnal and annual cycles at the 
right and at the left, the obliquity signal seen in spectra between 0.8 and 2.5 Myrs ago.  Adapted  from [von der Heydt et al., 2021].   

2.5 Revisiting the atmosphere with the help of fluctuation analysis  600 

The scalebound framework for atmospheric dynamics emphasized the importance of numerous processes occurring at well-

defined time scales, the quasi periodic “foreground” processes illustrated as bumps – the signals - on Mitchell’s nearly flat 

background.  The point here is not that these processes, mechanisms are wrong or nonexistent, it is rather that they only explain 

a small fraction of the overall variability and this implies that they cannot be understood without putting them in the context 

of their dynamical (scaling) regime.  This was also demonstrated quantitatively and explicitly over at least a significant part of 605 

the climate range by [Wunsch, 2003].    

One of the lessons to be drawn from the educated guesses, artists’ renderings, and conceptual landscapes is that although 

spectra can be calculated for any signal, the interpretations are often not obvious.  The problem is that we have no intuition 

about the physical meaning of the units - K2s, K2yr, or even K2Myr - so that often (as here) the units used in spectral plots are 
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not even given.  It then becomes impossible to take data from disparate sources and at different time scales to make the spectral 610 

composites needed to make a meaningful check of the scalebound paradigm.   

The advantage of fluctuations such as in fig. 12 (top) is that the numbers – for example the RMS temperature fluctuations at 

some scale -  have a straightforward physical interpretations.  However the differences used to define fluctuations (see fig 17, 

top) have a non-obvious problem: on average, differences cannot decrease with increasing time intervals (in appendix B, this 

problem is discussed more precisely in the Fourier domain).  This is true for any series that has correlations that decrease with 615 

Dt (as physically relevant series always do).   A consequence is whenever the value of x(2) is negative - implying that the mean 

fluctuations decrease with scale - that the differences fluctuations will at best give a constant result, the flat parts of Figure 12 

(top).    

But do regions of negative x(2)  exist?  One way to investigate this is to try to infer the exponent x(2)  from the spectrum that 

does not suffer from an analogous restriction: its exponent b can take any value.   In this case we can use the formula b =1+x(2) 620 

(Eq. 9).  The latter implies that negative x(2)  corresponds to b <1, and a check on the spectrum fig. 7 indicates that several 

regions (notably the macroweather regime) are indeed flat enough (b<1) to imply negative x(2).  How do we fix the problem 

and estimate the correct x(2)  when it is negative? 

It took a surprisingly long time to clarify this issue.  To start with, in classical turbulence, x(2)>0 (e.g. the Kolmogorov law), 

there was no motivation to look further than differences.  Mathematically, the main advance came in the 1980’s from wavelets.  625 

It turns out that technically, fluctuations defined as differences are indeed wavelets, but mathematicians mock them calling 

them the “poor man’s wavelet” and they generally promote more sophisticated wavelets (see section Appendix B2): the 

simplicity of the physical interpretation is not their concern.   This was the situation in the 1990’s when scaling started to be 

systematically applied to geophysical time series involving negative x(2)  (i.e. to any macroweather series, although at the time 

this was not clear).  A practical solution adopted by many was to use the Detrended Fluctuation Analysis (DFA) method [Peng 630 

et al., 1994]. One reason the	DFA	method	is	popular,	is	that	the	raw	DFA	fluctuations	are	not	too	noisy.		However,	

this	is	is	in	fact	an	artefact		since		they	are	fluctuations	of	the	running	sum	of	the	process,	not	of	the	process	itself.		

When	DFA	fluctuations	of	the	process	are	used,	they	are	just	as	variable	as	the	Haar	fluctuations	[Lovejoy	and	

Schertzer,	2012a],	[Hébert	et	al.,	2021a].		Unfortunately, DFA fluctuations are difficult to interpret, so that typically 

only exponents are extracted: the important information contained in the fluctuation amplitudes not exploited (see appendix 635 

B).  	
New clarity was achieved with the help of the (first) “Haar” wavelet [Haar, 1910].  There were two reasons for this: the 

simplicity of its definition and calculation and the simplicity of its interpretation [Lovejoy and Schertzer, 2012a].  To 

determine the Haar fluctuation over a time interval Dt, one simply takes the average of the first half of the interval and from 

this, subtracts the average of the second half (Figure 17 bottom, see appendix B2 for more details).  As for the interpretation, 640 

when H is positive, then it is (nearly) the same as a difference, whereas whenever H is negative, the fluctuation can be 
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interpreted as an “anomaly” (in	this	context	an	anomaly	is	simply	the	average	over	a	segment	length	Dt	of	the	series	with	

its	long	term	average	removed,	Appendix	B2).   In both cases we also recover the correct value of the exponent H.    Although 645 

the Haar fluctuation is only useful for H in the range -1 to 1, this turns out to cover most of the series that are encountered in 

geoscience. 

 
Figure 17.  Schematic illustration of difference (top) and anomaly (middle) fluctuations for a multifractal simulation of the 
atmosphere in the weather regime (0≤H≤1), top, and in the lower frequency macroweather regime (middle).  Notice the wandering 650 
or drifting of the signal in the top figure and the cancelling behaviour in the middle.  The bottom figure is a schematic illustration 
of Haar fluctuations (useful for processes with -1≤H≤1).  The Haar fluctuation over the interval Dt is the mean of the first half 
subtracted from the mean of the second half of the interval Dt.  Reproduced from [Lovejoy 2019]. 
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Figure 18 shows a modern composite using the root mean square Haar fluctuation, spanning a range of scales of ≈ 1017 655 

(compare this with fig. 12 (top)  for the earlier version using fluctuations as differences).  The same five regimes as in fig. 13 

are shown but now the typical variations in temperature over various time scales are very clear.    

Also shown in fig. 16 are reference lines indicating the typical scale dependencies. These correspond to typical temperature 

fluctuations  where x(1) = H is the “fluctuation exponent” (the exponent of the mean absolute 

fluctuation, the relationship x(2) = 2H is valid if we ignore intermittency, it is the quasi-Gaussian relationship still often 660 

invoked, see eq. 15).  In the figure, we see that the character of the regimes alternates between regimes that grow (H>0) and 

ones that decrease (H<0) with time scale.  The sign of H has a fundamental significance; to see this, we can return to typical 

series over the various regimes, fig.  2, (left hand column,  3).  In terms of their visual appearances, the H>0 regimes have 

signals that seem to “wander” or“drift” whereas for H<0 regimes fluctuations tend to cancel.  In the former, waiting longer 

and longer typically leads to larger changes in temperature, whereas in the latter, longer and longer temporal scales leads to 665 

convergence to well defined values.   

With the help of the figure, we can now understand the problem with the usual definition of climate as “long term” weather.  

As we average from ten days to longer durations, temperature fluctuations do indeed tend to diminish – as expected if they 

converged to the climate.  Consider for example the thick solid line in fig. 18 (corresponding to data at 75oN), that shows that 

at about 10 days, the temperature fluctuations are ≈ ±3K (S2(Dt)1/2  ≈ 6K) diminishing at 20 yrs to ≈ ±0.3K.  Since H<0, the 670 

Haar fluctuations are nearly equivalent to the anomalies i.e. to averages of the series with the long time mean removed.   Over 

this range, increasing the scale leads to smaller and smaller fluctuations about the point of apparent point of convergence: the 

average “climate” temperature.  Fig. 18 also shows the longer scales deduced purely from paleodata (isotope ratios from either 

ice or cores). 

The interpretation of the apparent point of convergence as the climate state is supported by the analysis of global data compared 675 

with GCMs in“control runs”( i.e. with fixed external conditions, fig. 19).  When averaged over long enough times, the control 

runs do indeed converge although the convergence is“ultra slow” (at a rate characterized by the exponent H ≈ -0.15 for the 

GCMs).  Extrapolating from the figure, shows that even after averaging over a million simulated years the GCMs would still 

typically be only within ±0.01K of their respective climates.    

ΔT ∝ Δtξ (2)/2 ≈ Δtξ (1)
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 680 
Fig. 18:  The broad sweep of atmospheric variability with root mean square (RMS) Haar fluctuations showing the various (roughly 
power law) atmospheric regimes, adapted and updated from the original [Lovejoy, 2013] and the update in Lovejoy (2015) where 
the full details of the data sources is given (with the exception of the paleo analysis marked “Grossman” which is from [Grossman 
and Joachimski, 2022]). The dashed vertical lines show the rough divisions between regimes; the macroweather-climate transition is 
different in the pre-industrial epoch.  The high frequency analysis (lower left) from thermistor data taken at McGill at 15Hz was 685 
added.  The thin curve starting at 2 hours is from a weather station, the next (thick) curve is from the 20th Century reanalysis, the 
next, “S” shaped curve is from the EPICA core.  Finally, the three far right curves are benthic paleo temperatures (from “stacks”).  
The quadrillion estimate is for the spectrum, it depends somewhat on the calibration of the stacks.  With the calibration in the figure, 
the typical variation of consecutive 50 million year averages is ±4.5K (Dt = 108 years, RMS DT = 9K). If the calibration is lowered by 
a factor of ≈3 (to variations of ±1.5K), then the spectrum would be reduced by a factor of 32.  On the other hand, the addition of the 690 
0.017s resolution thermistor data increases the overall spectral range by another factor of 108 for a total spectral range of a factor 
≈1017 for scales from 0.017s to 5x108 years.  
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Fig. 19: Top (brown): The globally averaged, RMS Haar temperature fluctuations averaged over three data sets (adapted from 695 
where there are the full details, the curve for the corresponding time scale in fig. 19 is at 75oN, it is a bit different).  At small time 
scales, one can see reasonable power law behaviour with H ≈ -0.1.  However for scales longer than about 15 years, the externally 
forced variability becomes dominant.  Although in reality, the internal variability continues to larger scales, and the externally 
forced to variability to smaller ones. The two can roughly be separated at decadal scales as indicated by the vertical dashed line. 

The curve is reproduced from [Lovejoy, 2017a].  Bottom: (red), the RMS Haar fluctuations for 11 control runs from the Climate 700 
Model Intercomparison Project  5 (CMIP5).  The reference slope  H = -0.15, adapted from [Lovejoy, 2019]. 

 

Returning to fig. 18 however, we see that beyond a critical time scale tc, the convergence is reversed and fluctuations tend 

rather to increase with time scale.   In the anthropocene (roughly since 1900), the ≈ 15 year time scale where fluctuations stop 

decreasing and begin increasing with scale, is roughly the time that it has taken for anthropogenic warming (over the last 705 

decades) to become comparable to the natural internal variability (about ±0.2K for these globally averaged temperatures).  

However, for the preindustrial epoch (see the “S” shaped paleo-temperature curve from the EPICA ice core, fig. 18), the 

transition time is closer to 300 years.  The origin of this larger tc value is not clear, it is a focus of the PAGES - CVAS working 

group [Lovejoy, 2017b]. 

As concerns the last 800kyrs, the key point about Fig. 18 is that we have three regimes – not two.  Since the intermediate 710 

regime is well reproduced by control runs, (fig. 19), it is termed “macroweather”: it is essentially averaged weather.  
If the macroweather regime is characterized by slow convergence of averages with scale, it is logical to define a climate state 

as an average over durations that are long enough so that the maximum convergence has occurred – i.e. over periods Dt>tc.  In 

the anthropocene, this gives an objective justification for the official World Meteorological Organization’s otherwise arbitrary 

climate averaging period of 30 years.  Similarly, the roughly ten days to a month weather-macroweather transition at tw - gives 715 
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an objective justification for the common practice of using monthly average anomalies: these define analogous macroweather 

states.  The climate regime is therefore the regime beyond tc where the climate state itself starts to vary.  In addition to the 

analyses presented here, there are numerous papers claiming evidence for power law climate regimes: [Lovejoy and Schertzer, 

1986b], [Shackleton and Imbrie, 1990], [Schmitt et al., 1995], [Ditlevsen et al., 1996], [Pelletier, 1998], [Ashkenazy et al., 720 

2003], [Wunsch, 2003], [Huybers and Curry, 2006], for a more comprehensive review, see discussion and table 11.4 in 

[Lovejoy and Schertzer, 2013]. 

Again from fig. 18, we see that the climate state itself starts to vary in a roughly scaling way up until Milankovitch time scales 

(at about 50kyrs; half the period of the main 100kyr eccentricity frequency) over which fluctuations are typically of the order 

±2 to ±4K: the glacial-interglacial “window” over typical variability that is quite clear in the figure (c.f. the most recent estimate 725 

is a total range of 6 K or ±3, [Tierney et al., 2020]).  At even larger scales there is evidence (from ice core and benthic paleodata, 

notably updated with a much improved mega-climate series by [Grossman and Joachimski, 2022], bold curve at the right), 

that there is a narrow macroclimate regime and then a wide range megaclimate regime, but these are outside our present scope 

(see [Lovejoy, 2015] for more discussion). 

	730 

2.6: Lagrangian space-time relations, Stommel diagrams and the weather-macroweather transition time 

2.6.1 Space-time scaling from the anisotropic Kolmogorov law  

Space-time diagrams, are log time - log space plots for the ocean  ([Stommel, 1963], fig. 20 left) and atmosphere ([Orlanski, 

1975], fig. 20 right).  They highlight the conventional morphologies, structures and processes typically indicated by boxes or 

ellipses in the space-time regions in which they have been observed.   Since the diagrams refer to the lifetimes of structure co-735 

moving with the fluid, these are Lagrangian space-time relations.  The Eulerian (fixed frame) relations are discussed in the 

next section. 

A striking feature of these diagrams  - especially in Orlanski’s atmospheric version (fig. 20 right) but also in the updates (fig. 

21), is the near linear - i.e. power law - arrangement of the features.  As pointed out in [Schertzer et al., 1997a] in the case of 

Orlanski’s diagram, the slope of the line is very close to the theoretically predicted value 3/2. This is the value that holds if the 740 

atmosphere respects (anisotropic) Kolmogorov scaling in the horizontal: where e is the power per mass, l is 

the horizontal length scale and Dv(l) is the typical velocity difference across a structure of size l.		In the scaling “inertial” range 

where this relationship holds - if only on dimensional grounds -  the lifetime t of a structure  is given by t = l / Dv(l).  This 

implies the lifetime -  size relation:	

	t	=	e-1/3	l2/3	 (10)	745 

Δv l( ) ≈ ε1/3l1/3
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In isotropic turbulence, this is a classical result, yet it was first applied to the anisotropic Kolmogorov law (and hence up to 

planetary scales) in [Schertzer et al., 1997a].  Eq. 10 predicts both the exponent (the log-log slope), and – if we know e - the 

prefactor (figs. 20 -  22, see [Lovejoy et al., 2001]).   	

	

	750 

	

 
Fig. 20: The original space-time diagrams ([Stommel, 1963] ocean, left), [Orlanski, 1975], the atmosphere, right).  The solid red lines 
are theoretical lines assuming the horizontal Kolmogorov scaling with the measured mean energy rate densities indicated.  The 
dashed red lines indicate the size of the planet (the half circumference, 20000km).  Where the time scale at which they meet is the 755 
lifetime of planetary structures (≈ 10 days in the atmosphere, about 6 months in the ocean).  It is equal to the weather-macroweather 
and “ocean -weather” to “ocean macroweather”  transition scales  and it is also close to the corresponding deterministic 
predictability limits.  
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 760 
Fig. 21: The basic figures are space-time diagrams for the ocean (left) and atmosphere (right), from [Ghil and Lucarini, 2020], note 
that space and time have been swapped as compared to fig. 20.  As in fig. 20, solid red line has been added showing the purely 
theoretical predictions.  At the right, a solid blue line was added showing the planetary scale.  The dashed red line (also added) shows 
the corresponding lifetimes of planetary structures (the same as in fig. 20).   We see once again that wide range horizontal 
Kolmogorov scaling is compatible with the phenomenology, especially when take into account the statistical variability of the space-765 
time relationship itself, as indicated in fig. 22. 
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Fig. 22 A space-time diagram showing the effects of intermittency and for the oceans, the deep currents associated with very low e.  
The original was published in [Steele, 1995] with solid reference lines  added in [Lovejoy et al., 2001] and the dashed lines were added 770 
in a further update in [Lovejoy and Schertzer, 2013].  The central black lines indicate the mean theory (i.e. t ≈ e-1/3l2/3 with e = 10-3 
W/kg left, e = 10-12 (right, appropriate for deep water).  The central dashed lines represent e = 10-8 W/kg.  The lines to the left and 
right of the central lines represent the effects of intermittency with exponent C1 = 0.25 ( slopes 3/(2±C1)≈ 0.75, 0.59), see  section 3, 
this corresponds to roughly one standard deviation variation of the singularities in the velocity field) reproduced from [Lovejoy and 
Schertzer, 2013]. 775 

2.6.2 The atmosphere as a heat engine: Space-time scaling and the weather-macroweather transition scale 

Thinking of the atmosphere as a heat engine that converts solar energy into mechanical energy (wind), allows us to estimate e 

directly from first principles.  Taking into account the average albedo and averaging over day, night and over the surface of 

the globe, we find that solar heating is ≈ 238 W/m2.  The mass of the atmosphere is ≈104 kg/m2 so that the heat engine operates 

with a total power of 23.8 mW/kg.  However, heat engines are never 100% efficient and various thermodynamic models (e.g. 780 

[Laliberté et al., 2015]) predict efficiencies of a few percent.  For example, an engine at about 300K that operates over a range 

of 12K, has a Carnot efficiency of 4%.   
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On earth, direct estimates of e from wind gradients (using ) find large scale average values of ≈ 1 mW/kg 

implying an efficiency of (1 mW/kg) /(23.8 mW/kg) ≈ 4%, confirming the theory [Lovejoy and Schertzer, 2010c] (the 

values 1 mW/kg, 23.8 mW/kg are for global averages, there are systematic latitudinal variations, fig. 23 confirms that the 785 

theory works well at each latitude).   

Using the value e ≈ 1mW/kg and the global length scale Le gives the maximum lifetime t ≈ 10 days (this is where the lines in 

the Stommel diagrams intersect the earth scales in the atmospheric Stommel diagrams).   For the surface ocean currents, as 

reviewed in ch. 8 of [Lovejoy and Schertzer, 2013], ocean drifter estimates yield e ≈ 10-8W/kg, implying a maximum ocean 

gyre lifetime of about a 1 year.   Deep ocean currents have much smaller values e ≈ 10-12 - 10-15W/kg (or less) that explain the 790 

right hand side of the Stommel diagram fig. 22.   This diagram indicates these values with the theoretical slope 3/2 well fit the 

phenomenology.  The figure also shows the effect of intermittency (section 3.3) that implies a statistical distribution about the 

exponent 3/2 (this is simply the exponent of the mean), the width of which is also theoretically estimated and shown in the 

plot, thus potentially explaining the statistical variations around the mean behaviour. 

 In space, up to planetary scales, the basic wind statistics are controlled by e, hence, up to tw, it also determines the 795 

corresponding temporal statistics.  Beyond this time scale, we are considering the statistics of many planetary scale structures.   

That the problem becomes a statistical one is clear since the lifetime in this anisotropic 23/9D turbulence is essentially the 

same as its predictability limit, the error doubling time for the l  - sized eddies (e.g. ch. 2 of [Lovejoy and Schertzer, 2013]).   

If the atmosphere had been perfectly flat (or “layerwise flat” as in quasi-geostrophic 2-D turbulence) –then its predictability 

limit would have been much longer (e.g. ch. 2 of [Lovejoy and Schertzer, 2013]).  Therefore at this transition scale, even 800 

otherwise deterministic GCMs become effectively stochastic.  Since the longer time scales are essentially large scale weather, 

it has been dubbed “macroweather”.   

Fig. 24 shows atmospheric and oceanic spectra clearly showing the weather macroweather transition and ocean weather - 

ocean macroweather transitions at the theoretically calculated time scales.  It also shows the only other known weather-

macroweather transition, this time on Mars using Viking lander data. The Martian transition time may be theoretically 805 

determined by using the Martian value e ≈ 40mW/Kg, and a 4% Carnot efficiency.  Using the Martian solar insolation and 

atmospheric mass, the theory predicts a Martian weather/ macroweather transition at about 1.8 sols (1 sol ≈ 25 hours), a 

prediction confirmed in fig. 24 [Lovejoy et al., 2014]. 

ε = Δv3 /Δx
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	810 

	
Fig. 23:  The weather-macroweather transition time tw as a function of latitude.  Blue shows the theoretical curve (±45o latitude only) 

estimated from the horizontal wind field at 700 mb (blue, using , , data from the ECMWF 

reanalysis), and (red) direct estimates from breaks in the spectra of 700 mb temperature series at 2o resolution from the 20th century 
reanalysis (the solid line is the mean, the dashed lines are the one standard deviation spread along each latitude line).  Adapted from 815 
[Lovejoy and Schertzer, 2013]. 
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Fig. 24: The three known weather - macroweather transitions: air over the Earth (black and upper left grey), the Sea Surface 820 
Temperature (SST, ocean) at 5o resolution (lower thin black) and air over Mars (thick, solid, black).  The air over earth curve is 
from 30 years of daily data from a French station (Macon, black) and from air temps for last 100 years (5ox5o resolution NOAA 
NCDC), the spectrum of monthly averaged SST is from the same data base.   The Mars spectra are from Viking lander data.  The 
strong “spikes” at the right are the Martian diurnal cycle and its harmonics.  At the far left, the spectral rise (Earth) is low frequency 
response to anthropogenic forcing.  Reproduced from [Lovejoy, 2019]. 825 

2.7  Eulerian space-time relations 

In the previous section, we discussed the space-time relations of structures of size l that maintained their identities over a 

lifetime t  - these space time diagrams are  Lagrangian (albeit deduced from Eulerian data and reanalyses).   Unsurprisingly, 

it turns out to be much simpler to empirically check the corresponding fixed-frame Eulerian relations, we consider this in this 

sub-section.   830 

The key difference between the Eulerian and Lagrangian statistics is that the former  involves an overall mean advection 

velocity V.  When studying laboratory turbulence, [Taylor, 1938] proposed that the turbulence is “frozen” such that the pattern 

of turbulence blows past the measuring point sufficiently fast so that it does not have time to evolve.  Frozen turbulence 

requires the existence of a scale separation between small and large scales so that the large (nearly “frozen”) structures really 

do blow the small ones structures without much evolution.  When this approximation is valid, the spatial statistics may be 835 

obtained from time series by the deterministic transformation VDt→ Dx where V is a constant.   

In Taylor’s laboratory turbulence, V is determined by the fan and by the wind-tunnel geometry and within limits, the 

approximation is valid.  However, although the transformation has been frequently used to interpret meteorological data, due 

to the horizontal scaling, there is no scale separation between large and small scales so that atmospheric tubulence is not frozen. 

However, we are only interested in the statistical relations between time and space, and if the system is scaling, then advection 840 

can be taken into account using the Galilean transformation r→ r-Vt, t→t.   Since V is now a random (turbulent) velocity, its 
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effects must then be averaged, this is discussed in section 4.1.5. The full theory of space-time scaling requires the consideration 

of anisotropic space-time and was developed in [Schertzer et al., 1997a], [Lovejoy et al., 2008b], [Pinel et al., 2014] and  

reviewed in [Lovejoy and Schertzer, 2013].   845 

In order to test the space-time scaling on real world data, the best sources are remotely sensed data such as the space-time lidar 

data  discussed in [Radkevitch et al., 2008] or the global scale data from geostationary satellites in the IR whose spectra are 

shown in fig. 25 [Pinel et al., 2014].  The figure uses 1440 consecutive hourly images at 5km resolution over the region 30N 

to 30S and 80E to 200E.   A full analysis based on the 3D (x,y,t) space data is given in [Pinel et al., 2014] the figure shows 

only 1-D subspaces (EW, NS and time).   850 

There are two remarkable aspects of the figure.  The first is that in spite of an apparently slight curvature (normally a symptom 

of deviations from perfect scaling) it is in reality largely a “finite size effect” on otherwise excellent scaling. This can be seen 

by comparison with the black curve that shows the consequences of the averaging over the (roughly rectangular) geometry of 

the observing region combined with the “trivial” anisotropy of the spectrum (implied by the matrix C in eq. 11).  (This is 

clearly visible in the various subspaces (x, y), (x, t), (y,t), analyzed in [Pinel et al., 2014] where the full theory and analysis is 855 

given).  Comparing the spectra to the theoretical black curve, we see that there are only small deviations from scaling, and this 

holds over the range in space from 60 km to ≈ 5000km (space) and from ≈ 2 hours to ≈ 7 days.  

 The second remarkable aspect is the near perfect superposition of the 1-D spectra over the same range 

(obtained by successively integrating out the conjugate variables (e.g. ).  Writing 

, the overall result is that the full 3D, horizontal space-time spectrum  respects the symmetry:860 

, (see section 4.1.5 For the theory).  The full relationship between the Lagrangian and Eulerian 

statistics is derived in full in [Pinel et al., 2014] and ch. 8 of [Lovejoy and Schertzer, 2013].  By averaging over the turbulent 

advection the final theoretical  result is: 

	 (11)	

Where the nondimensional µx, µy are related to the average zonal, meridional advection velocities and their variances, and a 865 

is the average “trivial” zonal to meridional aspect ratio. Empirically s = 3.4, a ≈1.6. 		Eq.	11	implies	that	the	1-D	spectra	in	

fig.	25	respect  as shown. 	

E ω( ),E kx( ),E ky( )
E ω( ) = P kx ,ky ,ω( )dkx dky∫

K = kx ,ky ,ω( ) P K( )
P λ −1K( ) = λ sP K( )

P K( )∝ C−1K
−s

; C =

1 0 −µx
0 1 −µ y

0 0 1− µx
2 + a2µ y

2( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

E ω( )∝ E kx( )∝ E ky( )

Deleted: is 

Deleted: advection is 



44 
 

Given the space-time scaling, one can use the real space statistics to define Eulerian space-time diagrams.  Using the same 870 

data, this is shown in fig. 26. where we see that the relationship is nearly linear on a linear-linear plot (i.e. with a constant 

velocity) up to about 10 days, corresponding to near planetary scales as indicated in the figure.  Note some minor differences 

between EW and NS directions. 

 

  875 
Fig. 25:  The zonal, meridional and temporal spectra of 1386 images (~ two months of data, September and October 2007) of 
radiances fields measured by a thermal infrared channel (10.3-11.3 μm) on the geostationary satellite MTSAT over south-west 
Pacific at resolutions 30 km and 1 hr over latitudes 40°S – 30°N and longitudes 80°E – 200°E.   With the exception of the (small) 
diurnal peak (and harmonics), the rescaled spectra are nearly identical and are also nearly perfectly scaling (the black line shows 
exact power law scaling after taking into account the finite image geometry.  Adapted from [Pinel et al., 2014]. 880 
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Fig.26: The Eulerian (fixed frame) space-time diagram obtained from the satellite pictures analyzed in fig. 25, lower left, reproduced 
from [Pinel et al., 2014].  The slopes of the reference lines correspond to averages winds of 900 km/day, i.e. about 11 m/s.  The dashed 
reference lines show the spatial scales corresponding to 1 and 10 days respectively. 885 

3. Scaling and multifractals 

3.1 Scaling in one dimension: Time series and spatial transects 

Up until now, we have discussed scaling at a fairly general level as an invariance under scale changes, contrasting it with 

scaleboundedness and emphasizing its indispensable role in understanding the atmosphere, the ocean and more generally, the 

geosphere.  There are two basic elements that must be considered: a) the definition of the notion of scale and scale change, 890 

and b) the aspect of the system or process that is invariant under the corresponding change.   

We have seen that in general terms, a system is scaling if there exists a power law relationship (possibly deterministic, but 

usually statistical) between fast and slow (time) or small and large (space, space-time).   If the system is a geometric set of 

points – such as the set of meteorological measuring stations [Lovejoy et al., 1986], then the set is a fractal set and the density 

of its points is scaling – it is a power law – whose exponent is its fractal codimension.  Geophysically interesting systems are 895 
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typically not sets of points but rather scaling fields such as the temperature T(r, t) at the space-time point (r, t).  Although we 

will generally use the term scaling“fields”, for multifractals, the more precise notion is of singular densities of multifractal 

measures.    

In such a system, some aspect – most often a suitably defined fluctuation – DT -  has statistics whose small and large scales 

are related by a scale changing operation that involves only the scale ratios: the system has no characteristic size.  In one 900 

dimension the scaling of temporal series or spatial transects can be expressed as:  

	

	 (12)	

where Dt is the time interval (scale) over which the fluctuations are defined (for transects, replace Dt by the spatial interval 

Dx), H is the fluctuation exponent and  is a random variable.  Dimensionally, the units of j determine H, physically j is a 905 

turbulent flux that drives the process (or a power of flux, see eq. 2).  In turbulence theory, the  fluxes in Fourier space, from 

small to large wavenumbers.  The subscript Dt indicates that j generally depends on the scale (resolution).   The equality sign 

 is in the sense of random variables; this means that the random fluctuation  has the same probability distribution 

as the random variable .  We suppressed the t dependence since we consider the case where the statistics are 

independent of time or space - statistical stationarity or statistical homogeneity (see appendix B4).  Physically, this is the 910 

assumption that the underlying physical processes are the same at all times and everywhere in space.  Eq. 12 is the more formal 

expression of eq. 1 or  of the classical turbulence laws eq. 4.   For example, if we consider space rather than time, the 

Kolmogorov law has H = 1/3 with j = e1/3. 

The simplest case is where the fluctuations in a temporal series T(t) follow eq. 12, but with j a random variable independent 

of resolution: .  This is the classical special case of nonintermittent, quasi-Gaussian turbulence.  Examples are 915 

fractional Gaussian noise (fGn, -1<H<0), and fractional Brownian motion (fBm, 0<H<1) with special cases Gaussian white 

noise (H = -1/2), and standard Brownian motion (H = ½).    

Eq. 12 relates the probabilities of small and large fluctuations, it is usually easier  to deal with the deterministic equalities that 

follow by taking qth order statistical moments of Eq. 12 and then averaging over a statistical ensemble: 

	 (13)	920 

where “< >” indicates statistical (ensemble) averaging.     
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Eq. 13 is the general case where the resolution Dt is important for the statistics of j; indeed, quite generally,  is a random 

function (1-D) or field averaged at resolution Dt.  If  is scaling, its statistics will follow: 

	 (14)	

where t is the largest, “outer” scale of the scaling regime satisfied by the equation, the Dt resolution is l times smaller.   K(q) 925 

is a convex (K’’ (q)≥0) exponent function; since the mean fluctuation is independent of scale ( ), we 

have K(1) = 0 (see eq. 2).   This is the generic statistical behaviour of cascade processes, it displays general “multiscaling” 

behaviour -  a different scaling exponent K(q) for each statistical moment q.  Since large q moments are dominated by large,  

extreme values, and small q moments by common, typical values, K(q) ≠ 0 implies that fluctuations of various amplitudes 

change scale with different exponents - multiscaling - and each realization of such a process is a multifractal.  In general, K(q) 930 

≠ 0 is associated with intermittency, a topic we treat in more detail in sections 3.2, 3.3.   

Combining Equations 13, 14, we obtain: 

	 (15)	

where Sq is the qth order (“generalized”) structure function and x(q) is its exponent defined in eq. 15.  Since K(q) is convex, eq. 

15 shows that in general, x(q) will be concave (x’’<0).  The structure functions are scaling since the small and large scales are 935 

related by a power law: 

	 (16)	

As discussed in section 2.3 the spectra are  power laws  with the exponents related as 

, eq. 9. 

In the case of “simple scaling” where j has no scale dependence (e.g.  fGn, fBm), we find  where Bq is a constant 940 

independent of scale Dt, hence we have K(q) = 0 and  so that: 

	 (17)	
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i.e. x(q) is a linear function of q.  Simple scaling is therefore sometimes called “linear scaling” and it respects the simpler 

relation b = 1+2H.  Linear scaling arises from scaling linear transformations of noises; the general linear scaling transformation 

is a power law filter (multiplication of the Fourier Transform by w-H) - or equivalently - fractional integrals (H>0) or fractional 945 

derivatives (H<0).   Appropriate fractional integrals of Gaussian white noises (of order H + 1/2) yield fBm (1>H>0) and 

fractional derivatives yield fGn (-1<H<0).  The analogous Lévy motions and noises are obtained by the filtering of independent 

Lévy noises (in this case, x(q) is only linear for q<a<2; for q>a, the moments diverge so that both x(q) and ).   

The more general “nonlinear scaling” case where K(q) is nonzero and convex, is associated with fractional integrals or 

derivatives of  scaling multiplicative (not additive) random processes (cascades, multifractals), these pure multiplicative 950 

processes (j in eq. 12) have H = 0, they are sometimes called “conservative multifractals” since their exponent of the mean 

x(1) = H = 0 (i.e. the mean is independent of scale).  The exponent H in eq. 15 still refers to the order of fractional integration 

(H>0) or differentiation (H<0) of j that adds the extra term qH in the structure function exponent: x(q) = qH - K(q).   Note 

that while the symbol H is in honour of Edwin Hurst; the interpretation of H as the “Hurst exponent" is only valid for Gaussian 

processes, more generally it is a fluctuation exponent describing the behaviour of the mean (q = 1) fluctuations. 955 

Note that in the literature, the notation “H” is not used consistently.  It was introduced in honour of Edwin Hurst a pioneer of 

long memory processes sometimes called “Hurst phenomena“ [Hurst, 1951]. Hurst introduced the rescaled range exponent 

notably in the study of Nile river stream flow records.  To explain Hurst’s findings, [Mandelbrot and Van Ness, 1968], 

developed Gaussian scaling models (fGn, fBm) and introduced the symbol “H”.  At first this represented a “Hurst exponent” 

and they showed that for fGn processes, it was equal to Hurst’s exponent.  However, by the time of the landmark “Fractal 960 

Geometry of Nature” ([Mandelbrot, 1982]), the usage was shifting from a scaling exponent to a model specification: the “Hurst 

parameter”.  In this new usage, the symbol H was used for both fGn and its integral fBm, even though the fBm scaling exponent 

is larger by one. To avoid confusion, we’ll call it HM.    Subsequently, a mathematical literature has developed using HM with 

0< HM <1 to parametrize both the process (fGn) and its increments (fGn).  However also in the early 1980’s ([Grassberger 

and Procaccia, 1983; Hentschel and Procaccia, 1983; Schertzer and Lovejoy, 1983b]), much more general scaling processes 965 

with an infinite hierarchy of exponents - multifractals - were discovered clearly showing that a single exponent was not enough.  

[Schertzer and Lovejoy, 1987] showed that it was nevertheless possible to keep H in the role of a mean fluctuation exponent 

(originally termed a cascade “conservation exponent”).  This is the sense of the H exponent discussed here.  As described 

above, using appropriate definitions of fluctuations (i.e. by the use of an appropriate wavelet), H can take on any real value.  

When the definition is applied to fBm, it yields the standard fBm value H = HM, yet when applied to fGn it yields H = HM-1.    970 

We could mention that here and in section 3.3 where we discuss the corresponding multiscaling probability distributions, we 

use the c(g), K(q) codimension multifractal formalism that is appropriate for stochastic multifractals [Schertzer and Lovejoy, 

1987].  Another commonly used multifractal formalism is the a, f(a), t(q) dimension formalism of [Halsey et al., 1986] that 

was developed for deterministic chaos applications.  The relationship between the two formalisms is  

Sq →∞

f α( ) = d − c γ( )
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where d is the dimension of the space in which the multifractal process is defined. and  is the singularity of the 

measure of the multifractal -  not its density whose singularity is g.   For the moment exponent functions, we have 

.   

The a, f(a), t(q) “dimension” formalism was developed to characterize deterministic chaos in low (d) dimensional spaces,  980 

Here we are interested in stochastic multifractal processes that are defined on probability spaces with .  Therefore, the 

codimension formalism -  independent of d – is required.  Another difference between the formalisms is that the singularity of 

the multifractal measure a is assumed to be defined at a mathematical point (it is a “Holder” exponent) whereas in the 

codimension formalism, g is the singularity of the density of the multifractal measure, and only a looser convergence in the 

neighbourhood of a point is assumed.  This lack of pointwise convergence of the singularities is a general feature of (stochastic) 985 

cascade processes and is hence more relevant in the atmosphere. 

3.2 Spikiness, Intermittency and multifractals 

3.2.1 Spikes, singularities, co-dimensions 

Atmospheric modeling is classically done using the deterministic equations of thermodynamics and continuum mechanics.  

However, in principle, one could have used a more fundamental (lower level) approach  - statistical mechanics - but this would 990 

have been impossibly difficult.   Yet, in strongly nonlinear fluid flow, the same hierarchy of theories continues to higher level 

turbulent laws.  These laws are scaling and may – depending on the application – be simpler and more useful.    A concrete 

example is in the macroweather regime where (strongly nonlinear, deterministic) GCMs are taken past their deterministic 

predictability limit of about 10 days. Due to their sensitivity to initial conditions, there is an inverse cascade of errors [Lorenz, 

1969], [Schertzer and Lovejoy, 2004] so that beyond the predictability limit,  small scale errors begin to dominate the global 995 

scales so that the GCMs  effectively become stochastic.  To some degree of approximation, since the intermittency is low (the 

spikiness in the right hand side of fig.  2, bottom of fig.  3), this stochastic behaviour is amenable to modelling by linear 

stochastic processes, in this case, the Half-Order and Fractional Energy Balance Equations (HEBE, FEBE, [Lovejoy, 2021a; 

b; Lovejoy et al., 2021], [Lovejoy, 2022c]).   The key issue – of whether linear or nonlinear stochastic processes can be used 

thus depends on their “spikiness” or intermittency (multifractality).  1000 

Classically, intermittency was first identified in laboratory flows as “spottiness” [Batchelor and Townsend, 1949]; in the 

atmosphere by the concentration of atmospheric fluxes in tiny, sparse regions.  In time series, it is associated with turbulent 

flows undergoing transitions from “quiescence” to “chaos”.  Quantitative intermittency definitions developed originally for 

fields (space) are of the “on-off” type, the idea being that when the energy or other flux exceeds a threshold then it is “on” i.e. 

in a special state - perhaps of strong/violent activity.  At a specific measurement resolution, the on-off intermittency can be 1005 

defined as the fraction of space that the field is “on” (where it exceeds the threshold).  In a scaling system, for any threshold, 

the “on” region will be a fractal set and both the fraction and threshold will be characterized by exponents  (by c and g, 

α = d − γ

τ q( ) = d q −1( )− K q( )

d = ∞
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introduced shortly) that describe the intermittency over all scales and all intensities (thresholds).  In scaling time series, the 

same intermittency definition applies; note however that other definitions are sometimes used in series in deterministic chaos.  

With the help of multifractals we can now quantitatively interpret the spike plots.  Recall that  (eq. 12), 

where   is the flux driving the process at resolution Dt and normalized so that .  If we estimate the ensemble 

mean flux by the (temporal)  average flux over the entire time series, and then averaged over all the available series (indicated 1015 

by an overbar), then and the normalized spikes  are estimates of the nondimensional, 

normalized driving fluxes: 

	 (18)	

where  is the raw, unnormalized flux, the outer scale of the scaling regime is t so that the normalized flux is over 

scale ratio l.  In the weather regime in respectively time and space, the squares and cubes of the wind spikes are estimates of 1020 

the turbulent energy fluxes.  This spikiness is because most of the dynamically important events are sparse, hierarchically 

clustered, occurring mostly in storms and the centre of storms.   

As long as H<1 (true for nearly all geo-processes), the differencing that yields the spikes acts as a high pass filter, the spikes 

are dominated by the high frequencies.  Smoothed Gaussian white noises such as the scaling fractional Gaussian noise (fGn) 

and fractional Brownian motion (fBm) processes, or nonscaling processes such as autoregressive and moving average 1025 

processes will have spikes that look like the weak macroweather spikes in fig.  2, roughly bounded by the solid horizontal line 

in the figure.  
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Fig. 27: The top row is a reproduction of the intermittent spikes taken from the gradients in the aircraft data at the bottom of fig.  1030 
3. The original series is  2294 km long with resolution 280m hence it covers a scale range of a factor of l = 213.  Here we use 
nondimensional units so that the length is 1 with resolution l-1 = 2-13.  Moving from top to bottom, each row degrades (by averaging) 
the resolution of the previous is by a factor of 4.  Note the scale on the left is constantly changing.  At the bottom, the dashed line 
indicates the mean which is unity since j is a  normalized process.  Reproduced from [Lovejoy 2019]. 
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Fig. 28: The same as fig. 27 but in terms of the corresponding singularities obtained through the transformation of variables  g = 
logj/logl.  Notice that while the range of variation of the j in the previous figure  rapidly diminishes as the resolution is lowered, on 
the contrary the amplitude of the fluctuations of the g’s (above) is roughly the same at all scales.  Note that the dashed horizontal 1040 
line on the bottom plot shows the mean singularity, here =-0.06.  It is <0 since  it is the mean of the log of the normalized flux and 
the logarithm function is concave.  Adapted from [Lovejoy and Schertzer, 2013]. 

 

What happens if we change the resolution of by averaging it over larger and larger scales Dt (smaller l)?  Fig. 27 

shows this using the example of the spatial (aircraft) transect in fig.  3.  The top plot is identical to the bottom of fig.  3 except 1045 

that nondimensional units are used so that the top spike transect  has length 1 with l = L / Dx =213  = where L = 2294 km 

is the actual length and  Dx = 280 m is the transect resolution.  As we move from top to bottom, the resolution is successively 

degraded by factors of 4 (l decreases by factors of 4).  Since the flux is normalized by its mean (l = 1), the fluctuations are 

about unity (the dashed line at the bottom where l = 2).   
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Examine now the vertical axes.  We see that -  as expected – the amplitude of the spikes systematically decreases with 1050 

resolution, the plots are clearly not scale invariant.  We would like to have a scale invariant description of the spikes, a scale 

invariant probability distribution of the spikes.   For this, each spike is considered to be a singularity of order g:	

	 (19)	

This is simply a transformation of variables from the spikes  to singularities .  

Figure 27 shows the same spikes but now in terms of the orders of singularity.  Now we see that the vertical range is pretty 1055 

much independent of the resolution.  It is therefore plausible that the characterization of the spikes by g is scale invariant.  To 

obtain a scale invariant characterization of the probabilities, introduce the codimension function c(g), the spike probability 

distribution may be written: 

 

	 (20)	1060 

 

 is the probability that a randomly chosen normalized spike  exceeds a fixed threshold s (it is equal 

to one minus the more usual cumulative distribution function), P(s) is a nonscaling prefactor that depends on s and weakly on 

g.  For data analysis purposes, the prefactor is inconvenient.  Although it can be handled – and c(g) estimated directly by using 

the Probability Distribution Multiple Scaling technique  [Lavallée et al., 1991]-  it is often easier to analyse the statistical 1065 

moments using trace moment analysis. 

To leading order (i.e. putting the prefactor ≈1), we obtain: 

	 (21)	

We see while g gives a scale invariant characterization of the spikes, c(g) does the same for the probability distributions.  c(g) 

characterizes sparseness because it quantifies how the probabilities of spikes of different amplitudes change with resolution l.   1070 

c(g) corresponds to the sparse set of spikes that exceed the threshold s = lg.  Increasing the spike amplitude (g) defines a sparse 

exceedance set with large c. A series is intermittent whenever it has spikes with c>0.    
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In the general scaling case, the set of spikes that exceed a given threshold form a fractal set whose sparseness is quantified by 

the fractal codimension c(g) = d - D(g) where d is dimension of the space (d = 1 for series and transects) and D(g) is the 

corresponding fractal dimension.  The codimension is fundamental since it is the exponent of the probability distribution: 1075 

Gaussian series are not intermittent since c(g) = 0 for all the spikes.  To see this, note that for Gaussian processes the cumulative 

probability of a spike exceeding a fixed threshold s is independent of the resolution l, , where 

here, P(s) is related to the error function.  Comparing this with Eq. 20, we see that c = 0.   

Returning to Figure  2, we have l = 1000.   The extreme spikes ( ) in this 1000 point long series have a probability 

l-1 ≈1/1000.   For Gaussian processes, the spikes with this probability are = 4.12, this is shown by the solid lines 1080 

in figure  2, the line therefore corresponds to .   If the 

series in fig.  2 were generated by multifractal processes, what is the maximum g (and hence spike) that we would expect?  The 

extreme value would still correspond to l-1 hence from eq. 20, we have .   More generally, in a space of dimension 

d, there would be ld spikes, the probability of the maximum would be l-d so that .  Since the fractal dimension 

of the spikes is D(g) = d-c(g), this is simply the result that .  Since c(g) is a monotonically increasing function, 1085 

this is just the simple geometric result that the fractal dimension of the exceedance sets cannot be negative. Appendix A, table 

2 gives the both the observed maximum g for each series in Figure  2 as well as the generally comparable theoretically expected 

maxima for the multifractal processes with the parameters estimated for the series in question.    

Whereas c(g) quantifies the way the probability distributions of spikes change with scale, the moment scaling exponent 

K(q) (eq. 14) quantifies the way the statistical moments change with scale. Since the process can be equivalently characterized 1090 

by either probabilities or moments, c and K must be related.  Indeed, the relationship is beautiful and simple: via a Legendre 

transformation: 

	 (22)	

[Parisi and Frisch, 1985]. 

These equations imply one to one relationships between the spike singularities g (and amplitudes ) and the exponent of the 1095 

order of moments q , they imply: K’(q) = g and c’(g) = q.   K’(q=1) = g1 is therefore the singularity that gives the dominant 

contribution to the mean (q = 1) of the process.  At the same time, K(1) = 0 so that (eq. 21)  (where g1 

is the value that give the maximum of ) so that we obtain  and since K’(1) = g1, we have K’(1) = c(g1).  

Pr ΔT / ΔT > s( ) ≈ P s( )

ΔT / ΔT

ΔT / ΔT

γ = γ max = log ΔT / ΔT( ) / logλ ≈ log4.12 / log1000 ≈ 0.20
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Defining C1 = c(g1) =  the codimensions of the singularity g1 that gives the dominant contribution to the mean, we have K’(1) 

= C1. Thus C1 plays the dual role of being the order of singularity that gives the dominant contribution to the mean while also 1100 

being equal to the codimension of the set of the corresponding singularities.   Since we see that g1 = C1 = c(C1), this justifies 

the interpretation of C1 = g1 = the codimension of the mean.  

3.2.2 Universal Multifractals 

At first sight, general (multifractal) scaling involves an entire exponent function – either K(q) or c(g) - for its statistical 

characterisation, the equivalent of an infinite number of parameters (e.g. one for each statistical moment). This would be 1105 

unmanageable – either from the point of view of empirical parameter estimation or from the point of view of model 

construction.  Fortunately, one can avail oneself of a multiplicative version of the central limit theorem, that leads to “universal 

multifractals” with: 

	 (23)	

and (via Legendre transform): 
1110 

	 (24)
	

[Schertzer and Lovejoy, 1987].   C1 is the codimension of the mean introduced earlier and 0≤a≤2 is the Lévy index, a’ is an 

auxiliary variable introduced for convenience.    

Fig. 28 and 29 show the universal K(q), c(g) functions for various values of a in the relevant range 0≤a≤2.  The lower limit a 

= 0 corresponds to the on/off,  “monofractal” “b model” [Novikov and Stewart, 1964], [Frisch et al., 1978] where all the fluxes 1115 

are concentrated on a fractal set with codimension C1 and the upper limit a = 2 to the “log normal” multifractal [Kolmogorov, 

1962], [Yaglom, 1966].  Note that due to the divergence of moments discussed in section 3.5, the multifractals with the above 

K(q), c(g) are only approximately “log-Lévy” (or when a =2, “log-normal”).   

Table 1 shows various empirical estimates relevant to atmospheric dynamics.  We see that generally 1.5 ≈≤ a <2  and C1 ≈ 

0.1, the main exception being precipitation.   As	quantified	 in	 table	1,	precipitation	 is	 the	most	strongly	 intermittent	1120 

atmospheric	field	(C1	≈	0.4)	quantitatively confirming the subjective impression of extreme precipitation intermittency.		The	

multifractal	 properties	 of	 precipitation	 have	 been	 the	 subject	 of	 numerous	 studies.	 	 Early	 analyses	 include	 spatial	

analyses	by	[Tessier	et	al.,	1993],	Olsson	and	Niemczynowicz,	1996,	[de	Montera	et	al.,	2009]	and	[Verrier	et	al.,	2010]),	

[Veneziano	et	al.,	2006]	and		temporal	analyses	by	[Tessier	et	al.,	1993],	[Hubert		et	al.,	1993],	[Ladoy	et	al.,	1993],	[Harris	

et	al.,	1996];	[De	Lima,	1998],	[De	Lima	and	Grasman,	1999],	[Hubert	et	al.,	2002;	Kiely	and	Ivanova,	1999],	[Hubert	et	1125 
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al.,	2002];	[Pathirana	et	al.,	2003],	[Venugopal	et	al.,	2006],	[Garcia-Marin	et	al.,	2008;	Pathirana	et	al.,	2003],		[Serinaldi,	

2010];	[Sun	and	Barros,	2010];	[Schertzer	et	al.,	2011];	[Verrier	et	al.,	2011].	 	There	is	more	discussion	of	table	1	in	
section	3.4.	1130 

 
Fig. 29: Universal K(q) as a function of q for different a values from 0 to 2 in increments of 0.2.  Adapted from [Schertzer and Lovejoy, 
1989]. 
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	1135 
Fig. 30: Universal c(g) for a in the range 0 to 2 in increments of 0.2.  Adapted from [Schertzer and Lovejoy, 1989]. 
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	 	 C1	 a H	 b Leff	(km)	

State	
variables	

u,	v	 0.09	 1.9	 1/3,	
(0.77)	

1.6,	(2.4)	 (14000)	

w	 (0.12)	 (1.9)	 (-0.14)	 (0.4)	 (15000)	

T	 0.11,	
(0.08)	

1.8	 0.50,	
(0.77)	

1.9,	(2.4)	 5000	
(19000)	

h	 0.09	 1.8	 0.51	 1.9	 10000	

z	 (0.09)	 (1.9)	 (1.26)	 (3.3)	 (60000)	

Precipitation		 R	 0.4	 1.5	 0.00	 0.2	 32000	

Passive	
Scalars	

Aerosol	
concentration	

0.08	 1.8	 0.33	 1.6	 25000	

Radiances	 Infra	Red	 0.08	 1.5	 0.3	 1.5	 15000	

	 visible	 0.08	 1.5	 0.2	 1.5	 10000	

	 Passive	
microwave	

0.1-0.26	 1.5	 0.25-0.5	 1.3-1.6	 5000-
15000	

Topography	 Altitude	 0.12	 1.8	 0.7	 2.1	 20000	

Sea	 Surface	
Temperature	

SST	 0.12	 1.9	 0.50	 1.8	 16000	

Table 1: We compare various horizontal parameter estimates, attempting to give summarize categories of values (radiances) or 
approximate values (u, v, w are the zonal, meridional and vertical wind, T the temperature, h the humidity, z the pressure height).  
C1 is the codimension of the mean, a convenient intermittency parameter, a, the multifractal index, H the fluctuation exponent, b 1140 
the spectral exponent.  Leff is the effective outer cascade scale (determined from the crossing scales of the different moments, it is 
given in km).  When available (and when reliable), the aircraft data were used in precedence over the reanalysis values with the 
latter given in parentheses in those cases where there was no comparable in situ value or when it was significantly different from the 
in situ value.  For Leff where the anisotropy is significant, the geometric mean of the north-south and east-west estimates are given 
the average ratio is 1.6 : 1 EW/NS (although for the precipitation rate, the along-track TRMM estimate was used).  Finally, the 1145 
topography estimate of Leff is based on a single realization (one earth!) so that we only verified that there was no obvious break below 
planetary scales.  The aerosol concentration was estimated from the lidar backscatter ratio from the data in fig. 45. 

	

3.3 Quantifying Intermittency with structure functions 

Using spike plots, we can simply demonstrate the unique character of the macroweather regime: low intermittency in time, but 1150 

high intermittency in space. We introduced the c(g) function that for each spike level lg, characterizes the probability (fraction) 
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of a transect or series (or more generally, space) whose spikes exceed the threshold.  In this section we discuss a particularly 

simple way to analyze the intermittency. 1155 

Consider the data shown in fig. 31 (macroweather time series and spatial transects, top and bottom respectively).  Fig. 32 

compares the root mean square (RMS) fluctuations with exponent x(2)/2 and the mean fluctuations with exponent H = x(1) 

from macroweather temperature time series (bottom) and for the spatial transects (top).  When the system is Gaussian (so that 

K(q) = 0), we obtain x(2)/2 = x(1); so that moments of the mean and RMS fluctuations are in a constant ratio, in this case, log 

<DT(Dt)>  is parallel to log <DT(Dt)2>1/2.  Figure 32 (bottom) shows that to a good approximation this is indeed true of the 1160 

nonspiky temporal series (fig. 32, top).  However, the corresponding statistics of the spatial transect (the top lines in fig. 32) 

tend to converge at large Dx corresponding to the highly spikey transect (fig. 32, bottom).  To a first approximation, it turns 

out that x(2)/2 - x(1)  ≈ K’(1) = C1 which characterizes the intermittency near the mean.  However, there is a slightly better 

way to estimate C1, using the intermittency function (see fig. 33 and caption) whose theoretical slope (for ensemble averaged 

statistics) is exactly K’(1) = C1.  As a point of comparison, we could note that fully developed turbulence in the weather regime 1165 

typically has C1 ≈ 0.09.  The temporal macroweather intermittency (C1 ≈ 0.01) is indeed small whereas the spatial intermittency 

is large (C1 ≈ 0.12).   

For many applications, the exceptional smallness of macroweather intermittency makes the “monoscaling” approximation (i.e. 

x(q) ≈ Hq) acceptably accurate so that macroweather processes are relatively easy to statistically characterize.  In this case, the 

fluctuation exponent H, the spectral exponent b and the Detrended Fluctuation Analysis exponent a (appendix A5) are 1170 

equivalent and sufficient (the general relations are:  and here, with no 

intermittency, K(2) = 0, and these simplify to ).  For examples of macroweather scaling, see [Tessier 

et al., 1996], [Pandey et al., 1998], [Koscielny-Bunde et al., 1998], [Bunde et al., 2004; Eichner et al., 2003], [Blender et al., 

2006], [Huybers and Curry, 2006], [Rybski et al., 2006], [Lennartz and Bunde, 2009], [Lanfredi et al., 2009], , [Fraedrich et 

al., 2009], [Franzke, 2010], [Franzke, 2012], [Varotsos et al., 2013], [Varotsos et al., 2009], [de Lima and Lovejoy, 2015]. 1175 

H = β−1+K 2( )( ) / 2 = a−1+K 2( ) / 2

H = β−1( ) / 2 = a−1
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Fig. 31:  A comparison of temporal and spatial macroweather series at 2
o
 resolution.  The top are the absolute first differences of a 

temperature time series at monthly resolution (from 80
o 

E, 10
o 

N, 1880 -1996, displaced by 4K for clarity), and the bottom is the 
series of absolute first differences of a spatial latitudinal transect (annually averaged, 1990 from 60

o
 N), as a function of longitude.  

Both use data from the 20CR.  One can see that while the top is noisy, it is not very “spikey”.  Quantitatively, the intermittency 1180 
parameter near the mean is C1 ≈0.01 (time), C1≈0.12 (space).  Reproduced from [Lovejoy, 2022b].  
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Fig. 32.  The first order and RMS Haar fluctuations of the series and transect in fig. 29.  One can see that in the spikey transect, the 
fluctuation statistics converge at large lags (Dx), the rate of the converge is quantified by the intermittency parameter C1.  The time 
series (bottom) is less spikey, converges very little and has low C1 (see fig. 30 top).  The break in the scaling at ≈ 20 years is due to 1185 
the dominance of anthropogenic effects at longer time scales.  Reproduced from [Lovejoy, 2022b]. 
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Fig. 33:  A comparison of the intermittency function  for the series and transect in 

the fig. 27, quantifying the difference in intermittencies: in time C1 ≈ 0.01, in space, C1 ≈ 0.12.  Since K’(1) = C1, when Dq is small 
enough (here, Dq = 0.1 was used), we have .  The break in the temporal scaling at about 20 – 30 years (log10Dt ≈ 1.5) is 1190 
due to anthropogenic forcings.  Reproduced from [Lovejoy, 2022b]. 

	

3.4 Multifractal analyses of geofields: Direct (trace moment) estimates of outer scales and K(q) for Earth and Mars 

In the preceding, we gave evidence that diverse atmospheric fields are scaling up to planetary scales.  In addition, we argued 

that they generally were multifractal, with each statistical moment q having a different exponent (K(q), eq. 14).  In section 3.2, 1195 

we saw that this nonlinear, convex part of the structure function exponent x(q) arises due to variability building up scale by 

scale from a large external scale L to smaller scales Dx, (ratio l = L/ Dx or in time, l = t/Dt).  By analyzing the statistics of the 

fluxes , this gives us the possibility of directly determining the effective outer scale of the process i.e. the scale at which 

the variability starts to grow.  As a bonus, our method is based on isolating the flux, in the exponent, it yields K(q) rather than 

x(q) (fluctuations).  By effectively removing the  qH term (i.e. x(q)-K(q)), it is only sensitive to K(q) which for small q is often 1200 

a small correction to x(q).  

Before proceeding to empirical analyses of the fluxes, a few comments are required.  The flux in Eq. 14 is assumed to be 

normalized i.e. .  For empirical estimates one starts with unnormalized fluxes and one doesn’t know a priori the 

effective outer scale of the variability L that is needed to estimate the ratio l.   The normalization problem is easy to solve, see 

eq. 18.  For empirical estimates, one therefore starts with these normalized fluxes at the smallest available resolution (i.e. Dx 1205 

= 1 pixel); using this, lower resolution estimates (i.e. larger Dx) are obtained simply by averaging.  However, to verify Eq. 14, 

we need the scale ratio l which is the ratio of the (a priori unknown) outer scale L to the resolution Dx.   The simplest procedure 

is to use the largest planetary scale Lref (half the Earth circumference) as an initial reference scale; a guess hopefully not far 

from the true outer scale L, a kind of “bootstrap”.  When this is done, the statistics  of  the various moments as functions of the 

reference scale ratio (i.e. with lref = Lref/Dx in place of l: ) are plotted on a log-log plot.   For each moment order of 1210 

q, the regressions (with slopes K(q)) all converge to the true outer scale; this is because at that scale l = 1 and (Eq. 14) shows 

that  for all q.   

Fig. 34 shows the first trace moment estimate [Schertzer and Lovejoy, 1987].  It was applied to data from a land based radar 

whose 3 km altitude reflectivity maps were 128 km wide with a 1 km resolution.  The vertical axis is  where 

 and  with Lref =128 km.   Although this gives a tantalizing hint that atmospheric cascades start at 1215 

F = ΔT ΔT 1+Δq( ) / ΔT 1−Δq( )
1/Δq

F Δt( ) = ΔtC1

ϕλ
q

ϕλ =1

ϕLref /Δx
q
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planetary scales, it wasn’t until ten years of satellite radar data were released over the internet that this was confirmed directly 

(fig. 35, [Lovejoy et al., 2009e]).  The poor scaling (curvature) for the low q values (bottom) were quantitatively explained as 

artefacts of the fairly high minimum detectable signal.  Fig. 36 shows similar results, but this time using the same geostationary 

satellite data whose spectra was analysed in fig. 25.   An interesting comparison of horizontal and vertical cascade structures 

from vertical sections of lidar aerosol backscatter is shown in fig. 37.  Although this is discussed in section 4.1, we can already 1220 

note that the outer scales are roughly the largest available (≈ 20000 km in the horizontal and ≈ 10 km in the vertical), but also 

analysis shows that the slopes (K(q)) are the theoretically predicted ratio Khor/Kvert = Hz = 5/9 (for all q, section 4). 

The trace moments characterize a fundamental aspect of the atmosphere’s nonlinear dynamics -  its the intermittency (they 

would all have zero slopes for quasi-Gaussian fields), in fully developed turbulence, it is expected to be a “universal” feature 

i.e. found in all high Reynolds’ number flows.  In our case, the closest to universality is to compare Earth to Mars (using the 1225 

same reanalyses as in fig. 9).  Fig. 38 shows the result when this technique is applied to both terrestrial and Martian reanalyses 

for pressure, wind and temperature (for both planets, the analyses were at altitudes corresponding to about 70% of surface 

pressure).  One can note a) as predicted, the turbulence is universal, i.e. not sensitive to the forcing mechanisms and boundaries 

so that the behaviour is nearly identical on the two planets, b) there is clear multiscaling (the logarithmic slopes K(q)≠0), c) 

the effective outer scales (where the lines converge) is indeed nearly the size of the planet.  For more detailed discussion and 1230 

analyses (including spectra and horizontal anisotropy), see [Chen et al., 2016]. 

Table 1 shows typical values of multifractal parameters estimated from trace moments (section 3.4) of various atmospheric 

fields.  Over the decades, many multifractal analyses of geofields have been performed, including of atmospheric boundary 

conditions (notably the topography on Earth [Lavallée et al., 1993], [Gagnon et al., 2006], and Mars [Landais et al., 2015], 

and the sea surface temperature, [Lovejoy and Schertzer, 2013]).  We can remark that the universal multifractal index (a) is 1235 

typically fairly close to the log normal value (a = 2 ), although due to divergence of moments even when a = 2, the statistics 

of the extremes are power laws, (not log-normal, see the next section on divergence of moments).  In the table we also see that 

with the notable exception of the highly intermittent precipitation field, that the parameter for the intermittency near the mean 

(C1) might seem small.  However, it should be remarked that since the cascades operate over huge ranges of scale, that the 

resulting fields are nevertheless highly intermittent.  In addition, it should be recalled that since a ≈2 the intermittency increases 1240 

very rapidly for the higher order moments so for example the kurtosis (q = 4) has an “effective” intermittency 12 times larger 

(K(4) = C1 (42-4) = 12C1). 

 

 

 1245 
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Fig. 34: The moments  of the normalized radar reflectivity factor for 70 constant altitude radar maps at 3km altitude 
from the McGill weather radar (10cm wavelength). As can be seen, the outer scale (where the lines cross) is at roughly 32000 km.  
This scale is a bit larger than the Earth half- circumference because even at the largest scale there is some precipitation variability 1250 
due to the interaction of precipitation with the other atmospheric fields.  From  [Schertzer and Lovejoy, 1987], adapted in [Lovejoy 
et al., 2008a]. 
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 1255 
Fig. 35: The same as fig. 32 except for TRMM reflectivities (4.3 km resolution).  The moments are for q = 0., 0.1, 0.2, …2, taken 
along the satellite track.  The poor scaling (curvature) for the low q values (bottom) can be explained as artefacts of the fairly high 
minimum detectable signal.  The reference scale used as a first estimate of the outer cascade scale was  Lref = 20000 km, the outer 
scale (where the lines cross) was 32000km (as in fig. 31), [Lovejoy et al., 2009e]. 
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	1260 

 

Fig. 36: Trace moments from  (for q = 0, 0.1, 0.2, …2.) for the 1440 hourly geostationary MTSAT data at a 30km 

resolution, over the region 40oN to 30oS covering 130o of longitude over the Pacific ocean. Lref = 20000km, the lines cross at an outer 
scale of 32000km.  For the space-time spectra, see fig. 25.  Reproduced from [Pinel et al., 2014]. 
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	1265 
	

	
Fig. 37: The cascade structure of lidar aerosol backscatter, see the example in fig. 45.  Moments of normalized fluxes (indicated as 
M).  We show the moments of order q =  0., 0.2,   .   0.4, …2.   Notice how the lines converge at effective outer scales that are close to 
the half circumference (left) and tropopause height (right).  Also, the ratio of the intermittency parameters C1 is ≈ 0.70±0.15  are 1270 
compatible with the theoretical ratio Hz.  Reproduced from [Lovejoy et al., 2009a]. 
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Fig. 38: A comparison of the scaling of the normalized fluxes (Mq(l)) as functions of the scale ratio l = Lref/Dx for both Earth (left) 
and Mars (right) and for surface pressure anomalies (p, top), north-south wind (v), east-west wind (u) and temperature (T, bottom).  1275 
These were estimated from the fluctuations by using eq. 18: .  Lref is the half circumference of each planet so that the scale ratio l 
(denoted lref in the text) is the inverse of a nondimensional distance.   For each individual plot (called “trace moments”), the moments 
of order q = 2, 1.9, 1.8… 0.1 are shown as indicated (upper right).  For the Earth the data was at 1o resolution from daily data from 
the ECMWF interim reanalysis for the year 2006, whereas for Mars, it was from the MACDA (Mars Analysis Correction Data 
Assimilation) reanalysis at 3.75o resolution over 3 Martian years (roughly 8 terrestrial years).  The regression lines are fits to Eq. 4; 1280 
the slopes are the exponents K(q) and the point of convergence is at the outer scale ratio, it indicates the scale at which the variability 
starts to build up.  In all cases, it is nearly the size of the planet (l = 1).   Adapted from [Chen et al., 2016]. 

	

3.5 Bare and dressed multifractals and Multifractal extremes:  

3.5.1 Power law tails, divergence of high order moments, multifractal phase transitions 1285 

The multifractal process  in fig. 27  is shown at various resolutions generated from data at 280m resolution that was then 

systemically degraded.  How could we model such a process?  Let’s first consider a multiplicative cascade process by starting 

at the bottom and (multiplicatively) adding details as we move to the top.  To go from one level (resolution) to the next (i.e. 

l→4l in this example), we would use the same rule: pick 4 random multipliers from a unique probability distribution.  In 

order to prevent the mean tending to either zero or infinity, these multipliers should be normalized so that their mean is constant.   1290 

At each step, the spikes would become generally sharper depending only on the lower resolution spikes.   At each level (l), 
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the statistics would be characterized by the same K(q) (moments) or c(g) (probability), this is a multifractal cascade, the generic 

multifractal process.   

However, we can already see a problem with this naïve construct.  When we reach the top (corresponding to data at 280m 

resolution), we are still far from the turbulent dissipation scale that is roughly a million times smaller: the top line is better 1295 

modelled by continuing the cascade down to very small (dissipation) scales and then – imitating the aircraft sensor - averaging 

the result over 280m.  A multifractal process at scale l can thus be produced in two ways: either by a cascade that proceeds 

over a finite range l and then stops, or alternatively, one that proceeds to very small scales and then is averaged to the same 

scale.   Using renormalization jargon, the former is a “bare” multifractal process whereas the latter – the typical empirical 

multifractal -  is a “dressed” process.  What is the difference between the statistics of the bare and dressed resolution  1300 

l multifractal processes? 

Mathematically, we can represent the dressed process as: 

	

	 (25)	

	1305 

The	“flux”	  and “volume”	  are D dimensional measures over  a	l	 resolution	“ball”	Bl	 .	 	 In	 the	D	=1	

dimensional	process	considered	here	it	is	an	interval	(length	l-1)	for	isotropic	processes	in	D	=	2	or	D	=	3,	it	is	a	square	

or	cube	(areas	l-2,	volumes		l-3	respectively,	for	anisotropic	scaling	and	balls,	see	section	4).		The	“l	resolution	dressed”	

process	 is	thus	the	small	scale	cascade	limit	( 	)	of	the	l	scale	average.			

A basic result going back to [Mandelbrot, 1974] and generalized in [Schertzer and Lovejoy, 1985c], [Schertzer and Lovejoy, 1310 

1987], [Schertzer and Lovejoy, 1992], [Schertzer and Lovejoy, 1994] shows that the statistical moments are related as: 

	 (26)	

i.e. the dressed moments greater than a critical order qD diverge, but below this, the bare and dressed moments are nearly the 

same.  In terms of the moment scaling exponents:	

	1315 

ϕ d( ),λ = limΛ→∞

ΠΛ Bλ( )
vol Bλ( ) ; ΠΛ Bλ( ) = ϕΛd

D x
Bλ

∫ ; vol Bλ( ) = d D x
Bλ

∫

ΠΛ Bλ( ) vol Bλ( )

ϕ d( ),λ Λ→∞

ϕ d( ),λ
q ≈ ϕλ

q ; q < qD
→∞; q ≥ qD
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	 (27)	

(“d”	for	“dressed”).	

The	critical	moment	for	divergence	qD	is	the	solution	of	the	implicit	equation:	

	

	 (28)	1320 

i.e.	the	qth	moment	converges	if	K(q)<D(q-1).			

	We	can	now	briefly	consider	the	conditions	under	which	there	are	nontrivial	solutions	to	eq.	28	with	finite	qD.		First,	
note	that	qD>	1	since	otherwise	the	process	cannot	be	normalized.		Then	recall	that	K(q)	is	convex	(K’’>0)	and	K(1)	

=0	(the	mean	is	independent	of	scale,	it	is	“conserved”).		There	is	therefore	a	trivial	solution	at	q	=	1,	the	solution	we	
require	–	if	it	exists	–	is	for	q	>1.		Such	solutions	qD	to	eq.	28	are	found	at	the	intersection	of	K(q)	with	the	line	slope	D	1325 

passing	through	axis	at	q	=	1	for	q>1.		

	It	is	now	convenient	to	define	the	strictly	increasing	“dual”	codimension	function	C(q):	

	 (29)	

(see fig. 39 for a graphical representation of this relationship).  The equation for divergence is now  and the 

condition K’(1)<D is C(1) = K’(1) = C1<D.  Since C(1) <D and C(q) is increasing, whenever  there will be a 1330 

nontrivial qD.  For universal multifractals, this is always the case when the Lévy index a≥1. 

To	find	the	corresponding	dressed	probability	exponent	cd(g),	we	can	now	take	the	Legendre	transform	(eq.	22)	of	

Kd(q):	

	 (30)	

Kd q( ) = K q( ); q < qD
= ∞; q ≥ qD

K qD( )  = D qD −1( )

C q( ) = K q( )
q −1

C qD( ) = D
C ∞( ) > D

cd γ( ) = c γ( ); γ < γ D
c γ D( )+ qD γ − γ D( ); γ ≥ γ D
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Where	gD	is	the	singularity	corresponding	to	the	critical	moment	qD:	 .		Finally,	with	this	dressed	cd(g),	we	

easily	find	that	the	tails	of	the	probability	distributions	are	power	laws:	

	 (31)	

Such	tails	are	sometimes	called	“fat”	or	“Pareto”.		Note	that	unlike	additive	processes	(e.g.	sums	of	random	variables)	

that	 generally	 give	 rise	 to	 stable	 Lévy	 distributions	with	 divergence	 order	 restricted	 to	 exponents	qD	 <2,	 in	 these	1340 

multiplicative	 cascade	 processes,	 qD	 can	 have	 any	 value	 >1.	 	 Finally,	 since	 the	 exponent	 functions	K(q),	 c(g)	 have	

thermodynamic	 analogues,	 the	 discontinuities	 in	 the	 dressed	 quantities	 can	 be	 theorized	 as“multifractal	 phase	

transitions”,	of	various	orders	[Schertzer	and	Lovejoy,	1992]).	 	Finally,	since	no	empirical	value	 is	 infinite	–	 infinite	

moments	occur	only	in	the	limit	of	averages	over	an	infinite	number	of	realizations	-			the	moments	q>qD	will	be	finite	

but	spurious,	see	the	full	theory	in	[Schertzer	and	Lovejoy,	1992],	summarized	in	ch.	5	of	[Lovejoy	and	Schertzer,	2013].	1345 

	
Fig. 39: A schematic illustration of the relation between K(q) and C(q).  Reproduced from [Lovejoy and Schertzer, 2013]. 
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3.5.2 Power law tails, outliers, black swans and tipping points 

To get an idea of how extreme the extremes can be, consider the temperature fluctuations with qD = 5, fig. 40 and Table 2.  For 1350 

a Gaussian, temperature fluctuations 10 times larger than typical fluctuations would be ≈1023 times less likely; if observed, 

they would be classified as outliers.  However, with a power law tail and qD = 5, such extremes occur only 105 times less 

frequently; so that although rare, they are no longer outliers.  In the context of temperatures, understanding the nature of the 

extremes is fundamental since it determines our interpretation of large events as either extreme - but nevertheless within the 

expected range, and hence “normal” - or outside this range, hence an “outlier” or perhaps – notably in climate applications -  1355 

even a “tipping point”.   

 
Fig. 40: The probability distribution of daily temperature differences in daily mean temperatures from Macon France for the period 
1949-1979 (10,957 days).  Positive and negative differences are shown as separate curves.   A best fit Gaussian is shown for reference 
indicating that the extreme fluctuations correspond to more than 7 standard deviations, for a Gaussian this has a probability of 10-1360 
20.   The straight reference line (added) has an absolute slope of qD with qD = 5.  Adapted from [Ladoy et al., 1991]. 

 

A relevant example of the importance of the power law extremes, is global warming.   Over about a century, there has been 

1oC warming of the globally averaged temperature - a roughly a 5 standard deviation event (with Gaussian probability ≈ 3x10-

6).  In spite of this, climate skeptics claim that it is no more than a Giant Natural Fluctuation (GNF) i.e. a change that might 1365 

nevertheless be normal - albeit extreme.  The relevant extreme centennial changes are indeed non-Gaussian, and bounding the 

probability tail between power laws with 4<qD<6, [Lovejoy, 2014] showed that the probability of extremes were enhanced by 

a factor of as much a factor of 1000.  Yet the GNF hypothesis could nevertheless be statistically rejected with more than 99.9% 

confidence.  

There are now numerous atmospheric fields whose extremes have been studied and power tail exponents (qD) estimated. Some 1370 

of these are shown in table 2 (reproduced from [Lovejoy and Schertzer, 2013]) and the wind field is discussed in the next 

section.  
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Field	 Data	source	 type	 qD	 reference	

Horizontal	wind	 Sonic	 10Hz,	time	 7.5	 [Schmitt	 et	 al.,	

1994b]	

Hot	wire	probe	 Inertial	range	 7.7	 [Radulescu	 et	 al.,	

2002]	

Hot	wire	probe	 Dissipation	

range	

5.4	 [Radulescu	 et	 al.,	

2002]	

anemometer	 15	minutes	 7	 [Tchiguirinskaia	 et	 al.,	

2006]	

anemometer	 daily	 7	 [Tchiguirinskaia	 et	 al.,	

2006]	

Aircraft,	

stratosphere	

Horizontal,	40m	 5.7	 [Lovejoy	 and	

Schertzer,	2007c]	

Aircraft,	

troposphere	

Horizontal,	

280m-	36	km	

≈5	 [Lovejoy	 and	 Schertzer,	

2013]	

Aircraft,	

troposphere	

Horizontal,	40m-	

20	km	

≈7±1	 [Chigirinskaya	 et	 al.,	

1994]	

Aircraft,	

troposphere	

Horizontal,	

100m	

≈5	 [Schertzer	 and	

Lovejoy,	1985b]	

radiosonde	 Vertical,	50m	 5	 [Schertzer	 and	

Lovejoy,	 1985b],	
[Lazarev	et	al.,	1994]	
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Potential	

temperature	

radiosonde	 Vertical,	50m	 3.3	 [Schertzer	 and	

Lovejoy,	1985b]	

Humidity	 Aircraft,	

troposphere	

Horizontal,	

280m-	36	km	

≈5	 [Lovejoy	 and	 Schertzer,	

2013]	

Temperature	 Aircraft,	

troposphere	

Horizontal,	

280m-	36	km	

≈5	 [Lovejoy	 and	 Schertzer,	

2013]	

Paleotemperatures	 Ice	cores	 200	years,	time	 4	 [Lovejoy	 and	

Schertzer,	1986a]	

Geopotential	

anomalies	

Reanalyses	 500	mb,	daily	 2.7	 [Sardeshmukh	 and	

Sura,	2009]	

Vorticity	

anomalies	

Reanalyses	 300	mb,	daily	 1.7	 [Sardeshmukh	 and	

Sura,	2009]	

Seveso	pollution	 Ground	

Concentrations	

In	 situ	

measurements	

2.2	 Salvadori	et	al.,	1993	

Chernobyl	fallout	 Ground	

Concentrations	

In	 situ	

measurements	

1.7	 [Chigirinskaya	 et	 al.,	

1998;	 Salvadori	 et	 al.,	

1993]	

Table 2:  A summary of various estimates of the critical order of divergence of moments (qD) for various meteorological fields 
(reproduced from [Lovejoy and Schertzer, 2013]).  The numerous estimates of qD in precipitation are not included, they are more 1375 
fully reviewed in [Lovejoy and Schertzer, 2013], typical estimates are qD ≈ 3. 

3.5.3 The divergence of high order velocity moments 

While the temperature is of fundamental significance for the climate, the wind is the dynamical field, so that it is analogously 

important at weather scales (as well as in mechanically forced turbulence).  For example,  numerous statistical models of fully 

developed turbulence are based on “closure” assumptions that relate high order statistical moments to lower order ones thus 1380 

allowing the evolution of the statistics in high Reynolds’ number turbulence to be modelled.  Closures thus postulate the 

finiteness of some (usually all) high order statistical moments of the velocity field.   
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In fully developed turbulence, in the inertial (scaling) range, e is conserved by the nonlinear terms in the Navier-Stokes 

equations, this is the basis of the Kolmogorov law and of cascade theories.  In this range, the Kolmogorov law gives 1385 

. However at small enough (dissipation) scales, where the dynamics are dominated by viscosity, dimensional analysis shows 

that .  For the probability exponents, these relations imply:  (inertial range), and 

 (dissipation range).  Since e is expected to be constant throughout the inertial range – and in the 

dissipation range to be equal to the dissipation - we expect  hence the ratio of velocity exponents is 

. 1390 

Before discussing this further, let us consider the evidence for the divergence of high order moments in the velocity/wind field.  

The earliest evidence is shown in fig. 41, ( left), it comes from radiosondes (balloons) measuring the changes in horizontal 

wind velocity in the vertical direction, [Schertzer and Lovejoy, 1985c] found qD,v ≈ 5 as shown in the plot that extends over 

layers of thicknesses varying from 50m – 3200m.  In the right (from the same paper) in fig. 3.16, probability distributions of 

e are shown from aircraft data, with qD,e ≈1.67 ≈ 5/3, we see that these exponents approximately satisfy the above inertial range 1395 

theory: .   

These early results had only of the order 102 - 103 measurements which only allows the determination of probabilities down to 

levels of 10-2 - 10-3 , this is barely enough to robustly characterize the exponents.  More recent aircraft results with nearly the 

same horizontal exponent (qD,v ≈ 5.7) were obtained from another aircraft data set, this time with ≈ 106 data points (fig. 42, 

right, [Lovejoy and Schertzer, 2007b]).  A probability distribution in the time domain also with ≈ 106 points is shown in Fig. 1400 

42 (left), it was obtained using a sonic anemometer at 10Hz [Schmitt et al., 1994b]).  Here, the exponent is qD,v ≈ 7.5 i.e. a bit 

larger than in space.    

Results from a much larger sample and from a more controlled laboratory setting (a wind tunnel) also in the temporal domain, 

are shown in Fig. 43 (data taken by [Mydlarski and Warhaft, 1998] analysed in [Radulescu et al., 2002] and [Lovejoy and 

Schertzer, 2013]).  In this case, by placing sensors at varying separations, one can estimate the exponents in both the inertial 1405 

and dissipation ranges.  In the inertial range, the result (qD,vIR ≈ 7.7) is very close to the earlier temporal result (fig. 43 left, the 

truncation at large Dv is explained by experimental limitations, [Lovejoy and Schertzer, 2013]) whereas in the dissipation 

range, it has the lower value qD,vdiss ≈ 5.4.  The ratio qD,vdiss  / qD,vIR ≈  1.43 is very close to the theoretical ratio 3/2 noted above 

with the value qD,e ≈ 2.7.  This good verification of the theoretical result lends credence to the theory and to the reality of the 

divergence itself. 1410 

The previous results from the wind and laboratory turbulence allowed estimates of the probability tails down to levels of only 

about 10-6.   A more recent result (fig. 44) is about a billion times larger.  This is from the largest Direct Numerical Simulation 

(DNS) to date, using (213)3 discrete volume elements.  This high Reynolds number incompressible Navier-Stokes turbulence 

ε ∝ Δv3

ε ∝ Δv2 qD ,ε ,IR = qD ,v ,IR / 3

qD ,ε ,diss = qD ,v ,diss / 2

qD ,ε ,IR = qD ,ε ,diss

qD ,v ,diss / qD ,v ,IR = 3/ 2

qD ,ε ,IR = qD ,v ,IR / 3

Deleted: was 

Deleted: Also with ≈ 106 points is 1415 
Deleted: (

Deleted: z



76 
 

[Yeung et al., 2015]) allows us to reach much lower probability levels (p ≈ 10-15).  Fig. 43 shows that over ≈ 6 orders of 

magnitude, the probability tails of e (and of enstrophy) have qD,e ≈ 5/3.  Surprisingly, although the plot was made explicitly to 

reveal the nature of extreme fluctuations - and the theory predicting the divergence of moments in turbulence ( [Mandelbrot, 1420 

1974] , [Schertzer and Lovejoy, 1987], eq. 26, 30), this striking power law behaviour of the extremes was not even mentioned 

by [Yeung et al., 2015]; it was apparently only first noted in [Lovejoy, 2019]!   

We could note that values qD,e <2 imply the divergence of the second moment (i.e. the variance) of e.  This divergence is 

theoretically significant since - following [Kolmogorov, 1962] who proposed a log-normal distribution of e (i.e. with all 

moments finite) - the variance of e is regularly used to characterize turbulent intermittency but we now see that due to the 1425 

divergence, this characterization is problematic.  In practice no empirical result is ever infinite.  What diverging moments 

imply is rather that when one attempts to empirically estimate them, that the estimates get larger and larger as the sample size 

increases.  Different experiments can thus readily get quite different results, the parameters are not at all robust.  

 
Fig. 41:  The left hand plot shows the probability distribution of the squares of horizontal wind differences in the vertical direction, 1430 
estimated from radiosondes.  The curves from left to right are for layers thickness 50m, 100m, …3200m.  The curves straight 
reference lines have slopes corresponding to qD = 5 .  The separation of each curve is 2Hv with Hv = 3/5, the Bolgiano-Obukhov value, 
see section 4.    
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The plot on the right is for the probability distribution of e estimated in the horizontal from aircraft spectra.  The straight line has 

slope -5/3, since this corresponds to qD =5 for the wind.  Both figures are adapted from [Schertzer and Lovejoy, 1985c]. 1435 

 
Fig. 42:  The left hand figure shows the probability distribution of changes Dv in the horizontal wind as measured by a sonic 
anemometer at 10Hz.  The reference slope corresponds to qD =7.5 (adapted from [Schmitt et al., 1994a]).   

The figure on the right shows the differences in horizontal wind from 24 aircraft trajectories flying near 12km altitude results are 
shown for separations of 40 and 80 m, reference slopes corresponding to qD = 5.7 are shown.  Adapted from [Lovejoy and Schertzer, 1440 
2007b].  
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Fig. 43:  Probability distributions from laboratory turbulence from pairs of anemometers separated by small (dissipation range) 
distances (DR) and larger, inertial range distances (IR).  Slopes corresponding to qD =  5.4, 7.7 respectively are shown.  Their 1445 
theoretical ratio is 3/2 close to the empirical ratio 1.43.  Reproduced from [Lovejoy and Schertzer, 2013]. 
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Fig. 44:  Probability distributions of enstrophy (W) and energy (e) fluxes from a large Direct Numerical Simulation of incompressible 
hydrodynamic turbulence ((213)3), adapted from [Yeung et al., 2015] by adding the dashed reference line corresponding to qD = 5 for 
the velocity.  1450 

3.5.4 Power law probabilities may be more common than we think  

In these log-log plots of probability densities, we see that most of the distributions show evidence of log-log linearity near the 

extremes.  When judging possible deviations, it could be recalled due to inadequate instrumental response times, post-

processing noise reduction procedures (e.g. smoothing) or via “outlier” elimination algorithms, that extremes can easily be 

underestimated.  Since physically, the extremes are consequences of variability building up over a wide range of spatial scales, 1455 

we expect that numerical model outputs (including reanalyses) will underestimate the extremes.   For example, [Lovejoy, 2018] 

argued that the models’ small hyperviscous scale range (truncated at ≈105m rather than at the viscous scale of ≈10-3m), 

effectively truncates the extreme tails.  Any of these effects may explain deviations from perfect power law tails or might 

explain some of the larger (i.e. less extreme) qD values in table 2.   Finally, while power law probabilities arise naturally in 

scaling systems, the distributions are not necessarily power laws; non-power law (curved tails) may simply correspond to the 1460 

special cases where  (as are the nonintermittent Gaussian special cases).   
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3.5.5 The Noah effect, Black Swans and Tipping points 

The power law fluctuations in Figures 41-44 are so large that according to classical assumptions, they would be outliers.  In 

atmospheric science thanks to the scaling, very few processes are Gaussian, extremes occur much more frequently than 1465 

expected, a fact that colleagues and I regularly underscored starting in the 1980’s (see table 2 and for a review, ch. 5 of [Lovejoy 

and Schertzer, 2013]).    

At best, Gaussians can be justified for additive processes, with the added restriction that the variance is finite.  However, once 

this restriction is dropped, we obtain “Lévy distributions” with power law extremes, but with exponents qD<2 (see however 

[Ditlevsen, 1999]).  [Mandelbrot and Wallis, 1968] called the Lévy case the “Noah effect” after the Biblical Flood.  The 1470 

Gaussian assumption also fails for the additive but scaling H model [Lovejoy, 2015], [Lovejoy and Mandelbrot, 1985].  Most 

importantly, Gaussians are irrelevant for multiplicative processes: these generally lead to power law extremes but without any 

restriction on the value of qD  [Mandelbrot, 1974; Schertzer and Lovejoy, 1987].  Related	models	include	Self-Organized	

Criticality	[Bak et al., 1987]	and	Correlated	Additive	and	Multiplicative	noise	[Sardeshmukh and Sura, 2009].		We could 

also mention that power law distributions also appear as the special (Frechet) case of Generalized Extreme Value Distributions 1475 

although due to long range statistical dependencies, standard Extreme Value theory does not generally apply to scaling 

processes.   

To underscore the importance of nonclassical extremes, Taleb introduced the terms “grey and black swans” [Taleb, 2010].  

Originally, the former designated Lévy extremes, and the latter was reserved for extremes that were so strong that they were 

outliers with respect to any existing theory.  However, the term “grey swan” never stuck, and the better-known expression 1480 

“black swan” is increasingly used for any power law extremes.    

All of this is important in climate science where extreme events are often associated with tipping points.  The existence of 

black swan extremes leads to a conundrum: since black swans already lead to exceptionally big extremes, how can we 

distinguish “mere” black swans from true tipping points?  
	1485 
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4. How Big is a Cloud?  Scaling in two or higher dimensional spaces 

4.1 Generalized Scale Invariance 

4.1.1 Discussion 

So far, we have only discussed scaling in 1-D (series and transects), so that the notion of scale itself can be taken simply as an 

interval (space) or lag (time), and large scales are simply obtained from small ones by multiplying by their scale ratio l.  But 1495 

series and transects are only 1-D subspaces of the full (r,t) space-time where atmospheric processes are defined.   In order to 

answer the question “how big is a cloud?” - i.e. for more general atmospheric applications - we need to define scale in three 

dimensional space, and for its evolution, in four dimensional space-time.     

The most obvious problem is stratification in the horizontal (see figs.  4,  5).  This is graphically shown in fig. 45 of airborne 

lidar backscatter from aerosols. At low resolution (bottom), one can see highly stratified layers.  Yet zooming in (top) shows 1500 

that the layers have small structures that are in fact quite “roundish” and hinting that at even higher resolutions, there might be 

stratification instead in the vertical. If we determine the spectra in the horizontal and compare with that in the vertical, we 

obtain fig. 46, the spectra show power laws in both directions but with markedly different exponent.  As shown below, it turns 

out that the key ratio is: 

	 (32)	1505 

Where “h” indicated horizontal, “v”, “vertical”, see eq. 9, with the value Hz = 5/9  predicted by the 23/9D model (discussed 

below).  In the figure we see that this prediction is well satisfied by the data.  If the atmosphere is scaling but stratified, then 

the transects and series must more generally have different exponents (x(q), H, K(q)), but for any q, the ratio of horizontal to 

vertical exponents = Hz.   

The difference in horizontal and vertical exponents is a consequence of scaling stratification: the squashing of structures with 1510 

scale.  In the simplest case called “self-affinity”, the squashing is along orthogonal directions that are the same everywhere in 

space – for example along the y axis in an x-y space (e.g.  [Varotsos, 2004]). More generally, there is also rotation of structures 

with scale and the anisotropy depends not only on scale but also on position.  We need more general nonclasssical (non 

Euclidean) notions of scale and scale change: this is Generalized Scale Invariance (GSI; [Schertzer and Lovejoy, 1985a], for a 

review, see ch. 7 of [Lovejoy and Schertzer, 2013], or for a nontechnical overview, ch. 3 of [Lovejoy, 2019]).   Note that the 1515 

following presentation is based on scale functions, and these can be used to define anisotropic Hausdorff measures, hence 

providing a (mathematical) measure based definition of size ([Schertzer and Lovejoy, 1985a]).  

Hz =
ξh 2( )
ξv 2( ) =

βh −1
βv −1
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Fig. 45 Bottom: A vertical section of laser backscatter from aerosols (smog particles) taken by an airborne lidar (laser) flying at 4.5 
km altitude (purple line) over British Columbia near Vancouver (the topography shown in black; the lidar shoots two beams, one 1520 
up and one down), [Lilley et al., 2004].   The resolution is 3 m in the vertical, 96 meters in the horizontal.  The above is at a fairly 
coarse resolution and we mostly see a layered structure.   

Top: The black box at the lower left is shown blown up in top of the figure.  We are now starting to discern vertically aligned and 
roundish structures.  The aspect ratio is about 40:1, reproduced from [Lilley et al., 2004]. 
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 1525 
Fig. 46: The lower curve is the power spectrum for the fluctuations in the lidar backscatter ratio, a surrogate for the aerosol density 
(B) as a function of horizontal wave number k (in m

−1
) with a line of best fit with slope b

h
 =1.61. The upper trace is the power 

spectrum for the fluctuations in B as a function of vertical number k with a line of best fit with slope b
v
 = 2.15. Adapted from (Lilley 

et al., 2004). 
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  1530 
Fig. 47:  The average mean absolute difference in the horizontal wind from 238 drop sondes over the Pacific Ocean taken in 2004.  
The data were analyzed over regions from the surface to higher and higher altitudes (the different lines from bottom to top, separated 
by a factor of 10 for clarity).   Layers of thickness Dz increasing from 5m to the thicknesses spanning the region were estimated, and 
lines fit corresponding to power laws with the exponents as indicated.  At the bottom reference lines with slopes 1/3 (Kolmogorov, 
K), 3/5 (Bolgiano-Obhukov, BO), and 1 (Gravity waves, GW and quasi-geostrophic turbulence) are shown for reference.  1535 
Reproduced from [Lovejoy et al., 2007] and see [Hovde et al., 2011].  

4.1.2 Scale functions and scale changing operators: From self-similarity to self-affinity 

To deal with anisotropic scaling, we need an anisotropic definition of the notion of scale itself.   

The simplest scaling stratification is called “self-affinity”: the squashing is along orthogonal directions whose directions are 

the same everywhere in space – for example along the x and z axes in an x-z space, e.g. a vertical section of the atmosphere or 1540 

solid earth.  More generally, even horizontal sections will not be self-similar: as the scale changes, structures will be both 

squashed and rotated with scale.  A final complication is that the anisotropy can depend not only on scale but also on position.   

Both cases can be dealt with by using the GSI formalism corresponding respectively to  linear (scale only) and nonlinear GSI 

(scale and position); ([Lovejoy and Schertzer, 2013], ch. 7; [Lovejoy, 2019], ch. 3).  

The problem is to define the notion of scale in a system where there is no characteristic size.  Often, the simplest (but usually 1545 

unrealistic) “self-similar” system is simply assumed without question: the notion of scale is taken to be isotropic.  In this case, 
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it is sufficient to define the scale of a vector r by the usual vector norm (in a vertical section r = (x,y), the length of the vector 

r  denoted by ).  satisfies the following elementary scaling rule: 

	 (33)	

Where again, l is a scale ratio.  When  l >1, this equation says that the scale (here, length) of the reduced, shrunken vector l-1550 
1r is simply reduced by the factor l-1, a statement that holds for any orientation of r.   

To generalize this, we introduce a scale function  as well as a more general scale changing operator Tl; together they 

satisfy the analogous equation: 

	 (34)	

For the system to be scaling, a reduction by scale ratio  l1 followed by a reduction l2 should be equal to first reduction by l2 1555 

and then by l1 and both should be equivalent to a single reduction by factor l = l1 l2.  The scale changing operator therefore 

satisfies multiplicative group properties so Tl is a one parameter Lie group with generator G: 

	 (35)	

When G is the identity operator (I), then  so that the scale reduction is the same in all directions 

(an isotropic reduction): .  However a scale function that is symmetric with respect to such isotropic changes 1560 

isn’t necessarily equal to the usual norm  since the vectors with unit  scale (i.e. those that satisfy ) may be any 

(nonconstant, hence anisotropic) function of the polar angle – they are not necessarily circles (2D) or spheres (3D).  Indeed, in 

order to complete the scale function definition, we must specify all the vectors whose scale is unity – the “unit ball”.   If in 

addition to G = I, the unit scale is a circle (sphere), then the two conditions imply  and we recover eq. 33.  In the 

more general – but still linear case where G is a linear operator (a matrix) - Tl depends on scale, but is independent of location.  1565 

In this case, the qualitative behaviour of the scale functions depends on whether the eigenvalues of G are real or complex.  In 

the former case there is only a finite rotation of structures with scale, the latter, structures rotate and infinite number of times 

as the scale l goes from 1 to infinity.  More generally - nonlinear GSI - G also depends on location and scale, figs. 48 and 52-

55 gives some examples of scale functions and figs. 56-66, 69 show some of the corresponding multifractal cloud, simulations.  

For simulations of the earth’s magnetization, rock density, gravity and topography  see [Lavallée et al., 1993],[Pecknold et al., 1570 

2001] [Lovejoy and Schertzer, 2007a; Lovejoy et al., 2005]. 

r = x2 + z2( )1/2 r

λ −1r = λ −1 r

r

Tλ r = λ −1 r

Tλ = λ −G

Tλ r = λ − I r = λ −1I r = λ −1r

λ −1r = λ −1 r

r r = 1

r = r
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4.1.3 Scaling stratification 

GSI is exploited in modelling and analyzing many atmospheric fields (wind, temperature, humidity, precipitation, cloud 

density, aerosol concentrations, see [Lovejoy and Schertzer, 2013]).  To give the idea, we can define the “canonical” scale 

function for the simplest stratified system representing a vertical (x,z) section in the atmosphere or solid earth: 1575 

	 (36)	

Hz characterizes the degree of stratification (see below) and ls is the “sphero-scale”, so-called because it defines the scale at 

which horizontal and vertical extents of structures are equal (although they are generally not exactly circular):  

	 (37)	

It can be seen by inspection that satisfies: 1580 

	 (38)	

(note that matrix exponentiation is simple only for diagonal matrices -  here  - but when G is not 

diagonal it can be calculated by expanding the series: , or alternatively 

by transforming to a diagonal frame).   Notice that in this case, the ratios of the horizontal/vertical statistical exponents (i.e. 

x(q), H, K(q), c(g)) are equal to Hz.  We could also note that linear transects taken any direction other than horizontal or vertical 1585 

will have two scaling regimes (with a break near the sphero-scale).  However the break is spurious; it is a consequence of using 

the wrong notion of scale.   

Fig. 48 shows some examples of lines of constant scale function defined by eq. 36 with varying Hz values.  Successive ellipses 

are related by the operator Tl with l =100.1 = 1.26 in the illustration.  It can be seen that while horizontal scales are changed 

by a factor l, vertical scales are changed by lHz, hence cross-sectional areas are changed by: 1590 

	 (39)	
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The exponent Del  is called the “elliptical dimension” (although the curves of constant scale are generally only roughly 

elliptical).   Similarly, in three dimensional space, if there are two horizontal directions that scale as l-1, and the vertical scales 

as l-Hz, then the elliptical dimension is Del =2 + Hz.  Fig. 11 shows a schematic of various models of the atmosphere, with the 

both the classical 2D isotropic (totally stratified, flat) large scale model at one extreme and the 3D isotropic model at the other 1595 

and the more realistic Del =23/9D model discussed below.  Interestingly, in the atmosphere – although highly variable - ls is 

typically small (meters to hundreds of meters) but Hz <1 (close to the middle top set of curves in fig. 48).  In contrast, in the 

solid earth, ls is very large (probably larger than the planet scale) but Hz>1 (probably ≈2, close to the bottom right curves, see 

[Lovejoy and Schertzer, 2007a] for a review).  In the former case, the stratification becomes stronger at larger and larger scales 

whereas in the latter, it is stronger at smaller scales. 1600 

Equipped with a scale function, the general anisotropic generalization of the 1-D scaling law (eq. 12) may now be expressed 

by using the scale :  

	 (40)		

This shows that the full scaling model or full characterization of scaling requires the specification of the notion of scale via the 

scale invariant generator G and unit ball, (hence the scale function), the fluctuation exponent H,  as well the statistics of  1605 

specified via K(q), c(g) or – for universal multifractals, C1, a.  In many practical cases – e.g. vertical stratification – the direction 

of the anisotropy is fairly obvious, but in horizontal sections, where there can easily be significant rotation of structures with 

scale, the empirical determination of G and the scale function is a difficult, generally unsolved problem. 

Δr

ΔT Δr( )=
d
φ Δr Δr H

φ Δr
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Figure 48:  A series of ellipses each separated by a factor of 1.26 in scale, red indicating the unit scale (here, a circle, thick lines).   1610 
Upper left to lower right, Hz increasing from 2/5, 3/5, 4/5 (top), 1, 6/5, 7/5 (bottom, left to right).  Note that when Hz>1, the 
stratification at large scales is in the vertical rather than the horizontal direction (this is required for modelling the earth’s geological 
strata).  Reproduced from [Lovejoy, 2019]. 

 

4.1.4 The 23/9D model 1615 

Kolmogorov theory was mostly used to understand laboratory hydrodynamic turbulence which is mechanically driven and can 

be made approximately isotropic (unstratified) by the use of either passive or active grids.  In this case, fluctuations in Dv for 

points separated by Dr can be determined essentially via dimensional analysis using e; the latter choice being justified since it 

is a scale by scale conserved turbulent flux.  The atmosphere however is fundamentally driven by solar energy fluxes which 

create buoyancy inhomogeneities; in addition to energy fluxes, buoyancy is also fundamental.  In order to understand 1620 

atmospheric dynamics we must therefore determine which additional dimensional quantities are introduced by gravity/ 

buoyancy.  As discussed in [Monin and Yaglom, 1975], this is necessary for a more complete dimensional analysis. 

In addition to the dynamical equations  with quadratic invariant e – the only dimensional quantity pertinent in the inertial range 

in isotropic turbulence – we must consider the thermodynamic energy equation for the potential temperature q (e.g. [Lesieur, 

1987]).   Analysis shows that the v and q fields are only coupled by the Df buoyancy forcing term: 1625 
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 (41) 

Where g is the acceleration of gravity.  f is therefore the fundamental physical and dimensional quantity rather than q.   

The classical way of dealing with buoyancy is to use the Boussinesq approximation, i.e. to assume the existence of a scale 

separation and then define density (and hence buoyancy) perturbations about an otherwise perfectly stratified “background” 

flow.  This leads to the classical isotropic buoyancy subrange turbulence discovered independently by [Bolgiano, 1959] and 1630 

[Obukhov, 1959].  Unfortunately, it was postulated to be an isotropic range, yet it was never observed in the horizontal.  

Therefore, by the time it was later observed in the vertical, it had either been forgotten [Endlich et al., 1969], or its significance 

was not appreciated ([Adelfang, 1971]) and it was subsequently largely ignored.  

Yet if there is wide range atmospheric scaling, then there is no scale separation and so that (as outlined in ch. 6 in [Lovejoy 

and Schertzer, 2013]), we can make a more physically based argument which is analogous to that used for deriving passive 1635 

scalar variance cascades in passive scalar advection - the Corrsin-Obhukhov law,  [Corrsin, 1951], [Obukhov, 1949], (itself 

analogous to the energy flux cascades that lead to the Kolmogorov law).    

If we neglect dissipation and forcing, then  where D/Dt is the advective derivative) so that f obeys a passive 

scalar advection equation and therefore the corresponding buoyancy force variance flux: 

	 (42)	1640 

is conserved by the nonlinear terms.  In this case, the only quantities available for dimensional analysis are e (units m2/s3) and 

j (units m2/s5). In this approach, there is no separation between a stratified “background” state and a possibly isotropic 

fluctuation field so that there is no rationale for assuming that the either the j  or e cascades are associated with any isotropic 

regimes.  Indeed, following [Schertzer and Lovejoy, 1983a] and [Schertzer and Lovejoy, 1985b] it is more logical to assume 

that the two basic turbulent fluxes e, j can co-exist and cascade over a single scale wide range regime with the former 1645 

dominating in the horizontal, the latter in the vertical:  

	 (43)	

where Dx is a horizontal and Dz a vertical lag (for the moment we ignore the other horizontal coordinate y).  Dimensionally, 

the fluxes e, j define a unique length scale ls: 

	 (44)	1650 

f = g logθ

Df / Dt = 0
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∂t
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Fig. 47 shows that in the vertical the Bolgiano-Obhukov law holds quite well -  especially near the surface, but at all altitudes, 

it is much better respected than the isotropic Kolmogorov law (Hv = 1/3 or the alternative laws from quasi-linear gravity wave 

or quasi-geostrophic turbulence that give Hv = 1, [Lovejoy et al., 2007], [Hovde et al., 2011]. 

We can see that the two laws in eq. 43 are special cases of the more general anisotropic scaling law eq. 40 since for pure 1655 

horizontal displacements (Dz = 0) and pure vertical displacements, (Dx = 0), eq. 40 yields: 

	 	 (45)	

i.e.	if	we	identify	H	=	Hh	=1/3	and	Hz	=	Hh/Hv	=5/9,	 ,	we	see	that	eq.	40	and	45	are	equivalent.		If	in	addition,	

we	assume	that	the	two	horizontal	directions	are	equivalent,	we	obtain	Del	=1+1+Hz	=	23/9	=	2.555…	hence	the	name	
the	“23/9D	model”,	see	fig.	11	for	a	schematic.	1660 

4.1.5 Scaling Space-time, Fourier space GSI 

In section 2.6, 2.7 we mentioned that for Lagrangian frame temporal velocity fluctuations we should use the size-lifetime 

relation that is implicit in the horizontal Kolmogorov law.  If we assume horizontal isotropy then for velocity fluctuations, we 

have: 

 1665 

	 (46)	

Following the developments in the previous subsection (eqs. 40, 43), we can express the full space-time scaling (eqs. 46) in a 

single expression valid for any space-time vector displacement  by introducing a scalar 

function of space-time vectors called the “(space-time) scale function”, denoted , which satisfies the fundamental 

(functional) scale equation: 1670 

Δf Δx,0( )=
d
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	 (47)	

where Gs is the 3X3 matrix spatial generator: 

	 (48)		

(with rows corresponding to (x,y,z); and the 4x4 matrix Gst is the extension to space-time.   We have introduced the notation “

” for the space-time scale function in order to distinguish it from the purely spatial scale function denoted “ ”. 1675 

Using the space-time scale function, we may now write the space-time generalization of the Kolmogorov law as: 

	 (49)	

where the subscripts on the flux indicate the space-time scale over which e is averaged.  This anisotropic intermittent 

(multifractal) generalization of the Kolmogorov law is thus one of the key emergent laws of atmospheric dynamics and serves 

as a prototype for the emergent laws governing the other fields. 1680 

The result analogous to that of the previous subsection, the corresponding simple (“canonical”) space-time scale function is: 

	 (50)	

Where  is the “sphero-time” analogous to the sphero-scale  (see also [Marsan 
et al., 1996]).  With scale function (eq. 50), the fluctuations (eq. 49) respect eqs. 46. 
 1685 

 

We now seek to express the generalized Kolmogorov law in a Eulerian frame.  The first step is to consider the effects on the 

scale function of an overall advection.  We then consider statistical averaging over turbulent advection velocities.   

Advection can be taken into account using the Galilean transformation  ,   which corresponds to the 

following matrix A: 1690 
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	 (51)	

where the mean wind vector has components: v = (u,v,w), [Schertzer et al., 1997b] and the columns and row correspond to 

x,y,z,t.  The new “advected” generator is  and the scale function  which is symmetric with 

respect to   is: .  The canonical advected scale function is therefore: 1695 

(52)	

Note that since , such constant advection does not affect the elliptical 

dimension (“Tr” indicates “trace”; see however below for the “effective” Geff, Deff).   

It will be useful to study the statistics in Fourier space; for this purpose we can use the result (e.g. ch. 6 of [Lovejoy and 

Schertzer, 2013]) that the Fourier generator  so that: 1700 

	 (53)	

The corresponding canonical dimensional Fourier space scale function is therefore: 

	 (54)	

In other words the real space Galilean transformation  corresponds to the Fourier space 

transformation  (this is a well-known result, notably used in atmospheric waves). 1705 

The above results are for a deterministic advection velocity whereas in reality, the advection is turbulent.  Even if we consider 

a flow with zero imposed mean horizontal velocity (as argued by [Tennekes, 1975]) in a scaling turbulent regime with Dvl ≈ 

e1/3l1/3, the typical largest eddy; the “weather scale” Lw will be the scale of the earth (≈Le ) and it will have a mean velocity Vw 

≈ Dvw ≈ ew1/3Lw1/3 and will survive for the corresponding eddy turn over time teddy = tw = Lw/Vw= ew-1/3Lw2/3 estimated as ≈ 10 
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days above.  In other words, if there is no break in the scaling then we expect that smaller structures will be advected by the 

largest structures in the scaling regime. 

The statistics of the intensity gradients of real fields are influenced by random turbulent velocity fields and involve powers of 

such scale functions but with appropriate “average” velocities.  In this case, considering only the horizontal and time,  we 

introduce the nondimensional variables (denoted by a circumflex “ ”): 1715 

	
	 (55)	

the symbols µx, µy are used for the components of the nondimensional velocity; they are less cumbersome than ,  where: 

	 (56)	

Note that here Vw is a large-scale turbulent velocity whereas ,  are given by the overall mean advection in the region of 1720 

interest and µx<1, µy<1 (since ). The use of the averages (indicated by the overbars) is only totally justified if the 

second power of the scale function is averaged; presumably, it is some other power that is physically more relevant and there 

will thus be (presumably small) intermittency corrections (which we ignore).  It is now convenient to define: 

	 (57)	

which satisfies . In terms of the nondimensional quantities this yields an “effective” nondimensional scale function: 1725 

	 (58)	

Where the matrix C is given in eq. 11, its rows and columns correspond to x, y, t (left to right, top to bottom, and the vertical 

bars indicate the usual isotropic vector norm).  The effective scale function in eq. 58 is only “trivially anisotropic” since it is 

scaling with respect to an “effective” G matrix Geff = 1= the identity, the matrix  simply determines the trivial space-time 

anisotropy. 1730 
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As discussed in [Lovejoy and Schertzer, 2013], the above real space scale function is needed to interpret “satellite winds” 

(deduced from times series of satellite cloud images), and in section 2.7 the Fourier equivalent of equation 58 (based on the 

inverse matrix and Fourier scale function , see fig. 25 and eq. 11).  It was extensively empirically 

tested in [Pinel et al., 2014] where the full parameters of the C matrix were estimated.  

 1735 

4.2 Empirical testing of the 23/9D model 

4.2.1 Testing the 23/9D model with aircraft wind data 

The first experimental measurement of the joint (Dx, Dz) structure function of the horizontal velocity was made possible by 

the development of aircraft navigation systems with highly accurate “TAMDAR” GPS based vertical positioning system, 

([Pinel et al., 2012], fig. 49).   High vertical accuracy is needed to distinguish aircraft flying on isobars and from those flying 1740 

on isoheights. The problem with earlier aircraft velocity spectra - going back to the famous and still cited [Nastrom and Gage, 

1983] analysis -  is that the aircraft fly on isobars, and these were gently sloping.  As pointed out in [Lovejoy et al., 2009c], 

at some critical horizontal distance (that depended on the various fluxes e, j and the slope of the isobar), the vertical (Bolgiano-

Obukhov) statistics (Dz3/5) begin to dominate over the horizontal Kolmogorov statistics (Dx1/3).  In the spectral domain this 

implies a transition from E(k) ≈ k-5/3 to k-11/5 (using b =1+2H, i.e. ignoring intermittency).   The history of aircraft wind spectra 1745 

– in particular the multidecadal (and continuing) attempts to shoe-horn the spurious horizontal Bolgiano-Obhkov spectra into 

a k-3 regime (in accord with quasi-geostrophic turbulence theory) is thoroughly  reviewed in ch. 2 of [Lovejoy and Schertzer, 

2013], appendix B of [Lovejoy, 2022a]. 

C−1 K!" #$eff = C
−1K
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Fig. 49: A contour plot of the mean squared transverse (top) and longitudinal (bottom) components of the wind as estimated from a 1750 
year’s (≈14500) TAMDAR flights, 484000 wind difference measurements (i.e. the second order structure function from difference 
fluctuations) data from flight legs between 5 and 5.5km.  Hz was estimated as 0.57±0.02.  Black shows the empirical contours, purple 
the theoretical contours with Hz = 5/9.  Reproduced from [Pinel et al., 2012]. 

	
To illustrate what the 23/9D model implies for the atmosphere, we can make multifractal simulations of passive scalar clouds, 1755 

these were already discussed in fig.  5 that showed that in general, scaling leads to morphologies, structures that change with 

scale even though there is no characteristic scale involved.  Figure  5 compares a zoom into an isotropic (self-similar) 

multifractal cloud (left) and into a vertical section of a stratified cloud with 23/9D.  Whereas zooming into the self-similar 

cloud yields similar looking cross sections at all scales, zooming into the 23/9D cloud at the right of fig.  5 displays continuously 

varying morphologies.   We see that at the largest scale (top), the cloud is in fairly flat strata, however as we zoom in, we 1760 

eventually obtain roundish structures (at the sphero-scale), and then at the very bottom, we see vertically oriented filaments 

forming indicating stratification in the vertical direction (compare this with the lidar data, fig. 45). 
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4.2.2 Testing the 23/9D model with cloud data 

The anisotropic stratification and elliptical dimension of rain areas (as determined by radar) goes back to [Lovejoy et al., 1987], 

and with much more vertical resolution, from CloudSat, a satellite borne radar, fig. 50 (see the sample CloudSat image, fig.  1765 

4).   From the figure, we see the mean relation between horizontal and vertical extent of clouds is very close to the predictions 

of the 23/9D theory, with sphero-scale (averaged over 16 orbits) of about 100m.  The figure also shows that there is fair amount 

of variability (as expected since the sphero-scale is a ratio of powers of highly variable turbulent fluxes, eq. 44).  Fig. 51 shows 

the implications for typical cross-sections.  The stratification varies considerably as a function of the sphero-scale (and hence 

buoyancy and energy fluxes). 1770 

Finally we can compare the CloudSat estimates with those of other atmospheric fields (table 3).  The estimates for T 

(temperature), logq (log potential temperature), h (humidity) are from comparing aircraft and drop sonde exponents.  These 

are inherently less accurate than using vertical sections see the right hand three columns.  Overall, we find excellent agreement 

with 23/9 theory.  Recall that the leading alternative theory - quasi-geostrophic turbulence - has Hz = 1 (for small scales, the 

isotropic 3D turbulence value) or Hz = 1/3 for (large scales, the isotropic 2D turbulence value), it is clear that these can be 1775 

eliminated with high degrees of confidence – both are at least 10 standard deviations from the more accurate estimates in table 

3. 
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Fig. 50:  A space (horizontal) – space (vertical) diagram estimated from the absolute reflectivity fluctuations (first order structure 
functions) from 16 CloudSat orbits.  Reproduced from [Lovejoy et al., 2009b]. 1780 
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Fig. 51: The theoretical shapes of average vertical cross-sections using the empirical parameters estimated from CloudSat - derived 
mean parameters: Hz = 5/9, with sphero-scales 1km (top), 100m (middle), 10m (bottom), roughly corresponding to the geometric 1785 
mean and one-standard-deviation fluctuations. In each of the three, the distance from left to right horizontally is 100km, from top 
to bottom vertically  is 20km. It uses the canonical scale function.  The top figure in particular shows that structures 100km wide 
will be about 10km thick whenever the sphero-scale is somewhat larger than average [Lovejoy et al., 2009c]. 

	
	1790 

 T Logq h v B L 

Hz=Hh/Hv	 0.47±0.09	0.47±0.09	 0.65±0.06	 0.57±0.02	0.53±0.02	0.53±0.02	
	

Table 3: The above uses the estimate of the vertical Hv, the (horizontal) values for Hh for T, logq, h (humidity), these are from 
[Lovejoy and Schertzer, 2013].  For the horizontal velocity v, the aircraft data in fig. 48 were used.   B  is the lidar reflectivity (spectral 
estimate in fig. 46).   For clouds, the far right column (L) is an estimate using CloudSat cloud length and depth probability data from 
[Guillaume et al., 2018] we find Hz = 0.53±0.02. 1795 

	

4.2.3 The 23/9D model and Numerical Weather Models 

What about numerical weather models?  We mentioned that in the horizontal they show excellent scaling (and see fig. 8 for 

reanalysis spectra, and fig. 9, for the comparison of Mars and Earth spectra, fig. 38 for the cascade structures).  According to 

the 23/9D model, the dynamics are dominated by Kolmogorov scaling in the horizontal (Hh = 1/3) and Bolgiano-Obhukhov 1800 

scaling in the vertical (Hv = 3/5) so that Hz = Hh/Hv = 5/9 = 0.555...  Assuming that the horizontal directions have the same 

scaling, then typical structures of size LxL in the horizontal have vertical extents of LHz hence their volumes are LDel with 

“elliptical dimension” Del = 2+Hz = 2.555…; the “23/9D model” [Schertzer and Lovejoy, 1985c].  Unfortunately, it is nontrivial 
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to test the vertical scaling in models (they are typically based on pressure levels, and their statistics are different than those 

from true vertical  displacements).  Nevertheless, an indirect test is to consider the number of vertical levels compared to 1805 

horizontal levels.  In the historical development of NWP’s, the number of spatial degrees of freedom - product of horizontal 

degrees of freedom multiplied by the vertical number was limited by computer power.  In any given model, the number of 

vertical levels compared to the number of horizontal pixels is a somewhat an ad hoc model choice.  Yet if we consider 

([Lovejoy, 2019]) the historical development of the models since 1956 (fig. 52), we see that the number of levels (the vertical 

range) as a function of the number of zonal degrees of freedom (horizontal range) has indeed followed the 5/9 power law so 1810 

that: 

 

	(vertical	range)	≈	(horizontal	range)Hz		

	 (59)	

Fig.	52	shows	that	the	choices	of	horizontal	and	vertical	scale	ranges	in	historical	development	of	numerical	models	is	1815 

close	 to	 the	5/9	 law	(and	hence	with	 the	empirical	data)	and	 it	 contradicts	 the	 “standard	model”	 that	 is	based	on	

isotropic	symmetries	and	that	attempts	to	combine	a	small	scale	isotropic	3D	regime	and	a	large	scale	isotropic	(flat)	

2D	regime	with	a	transition	supposedly	near	the	atmospheric	scale	height	of	10km.	
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 1820 
Fig. 52: The choices of horizontal and vertical numbers of degrees of freedom that were made during the historical development of 
general circulation  models.   According to the 23/9D mode, the dynamics are dominated by Kolmogorov scaling in the horizontal 
(Hh = 1/3) and Bolgiano-Obhukhov scaling in the vertical (Hv = 3/5) so that Hz = Hh/Hv = 5/9 = 0.555...  Assuming that the horizontal 
directions have the same scaling, then typical structures of size LxL in the horizontal have vertical extents of LHz hence their volumes 
are LDel with “elliptical dimension” Del = 2+Hz = 2.555…; the “23/9D model” [Schertzer and Lovejoy, 1985c].  The number of model 1825 
degrees of freedom thus roughly follows the 23/9 power of the number of horizontal (e.g. zonal) resolution elements.   Reproduced 
from [Lovejoy, 2019]. 

4.3 GSI in the horizontal: cloud morphologies, differential rotation, nonlinear GSI 

4.3.1 Differential rotation  

Due to  the larger north-south temperature gradients large atmospheric structures 10000km in the east-west direction are 1830 

typically “squashed” to a size about a ≈1.6 times smaller in the north-south direction (section 4.1.5).  However, there is no 

systematic change in this aspect ratio as we move to smaller scales, nor is there a plausible theory that might explain one.   

Although this statement is true of the data, it turns out that one of the limitations of GCM’s is that they do have horizontal 

stratifications that are apparently spurious.  If the east-west direction is taken as the reference, then GCM structures in the 
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north - south direction follow: (North-South) = (East-West)Hy with Hy = 0.80 for this, and a possible explanation, see: [Lovejoy 

and Schertzer, 2011]. 1845 

With this possible exception, we conclude that unlike the vertical, there is little evidence for any overall stratification in the 

horizontal analogous to the vertical, but there is still plenty of evidence for the existence of different shapes at different sizes, 

and the fact that shapes commonly rotate by various amounts at different scales.   We thus need to go beyond self-affinity and 

(at least) add some rotation.  Mathematically, to add rotation to the blowup and squashing that we discussed earlier we only 

need to add off-diagonal elements to the generator G. 1850 

Fig.	 53-56	 shows	 a	 few	 examples	 of	 contours	 at	 different	 scales,	 each	 representing	 the	 shapes	 of	 the	 balls	 at	

systematically	 varying	 scales.	 	We	 can	 see	 that	we	 have	 freedom	 to	 vary	 the	 unit	 balls	 (here	 circles	 and	 rounded	

triangles)	as	well	as	the	amounts	of	squashing	and	rotation.				In	fig.	53,	with	unit	balls	taken	to	be	circles,	we	show	the	

self-similar	case	the	upper	left,	a	stratified	case	upper	right,	a	stratified	case	with	a	small	amount	of	rotation	(lower	

left),	 and	another	 case	with	 lots	of	 rotation	 (lower	 right).	 	 Fig.	 56	 shows	 the	 same	but	with	unit	balls	 as	 rounded	1855 

triangles,	and	fig.	55	takes	the	lower	right	example	and	displays	them	over	a	factor	of	a	billion	in	scale,	and	in	fig.	56	we	

show	an	example	with	only	a	 little	rotation	but	over	 the	same	 factor	of	a	billion	 in	scale.	 	We	can	see	 that	 if	 these	

represent	 average	 morphologies	 of	 clouds	 at	 different	 scales,	 that	 even	 though	 there	 is	 a	 single	 unique	 rule	 or	

mechanism	to	go	from	one	scale	to	another,	that	the	average	shapes	change	quite	a	bit	with	scale.		

	1860 
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Fig. 53: Blow-ups and reductions by factors of 1.26 starting at circles (red).  The upper left shows the isotropic case, the upper right 
shows the self-affine (pure stratification case), the lower left example is stratified but along oblique directions, and the lower right 

example has structures that rotate continuously with scale while becoming increasingly stratified.  The matrices used are: G = 

, , ,  (upper  left to lower right).  Reproduced from [Lovejoy, 2019]. 

	1865 
Fig. 54:  The same as above except that now the unit ball is the rounded triangle.  Reproduced from [Lovejoy, 2019]. 
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	1870 

Fig. 55: The same blow-up rule as in the lower right of fig. 53, but showing an overall blow-up by a factor of a billion.  Starting with 
the inner thick grey ball in the upper left corner, we see a series of 10 blow-ups, each by a factor of 1.26 spanning a total of a factor 
of ten (the outer red ball).  Then, that ball is shrunk (as indicated by the dashed lines) so as to conveniently show the next factor of 
ten blow-up (top middle).   The overall range of scales in the sequence is thus 109 = a billion.  The scale-changing rule (matrix) used 

here is the same as the lower right in figs. 53, 54 .  Reproduced from [Lovejoy, 2019]. 1875 
G = 1.35 −0.45

0.85 0.65
⎛
⎝⎜

⎞
⎠⎟

Formatted: Superscript



104 
 

 
Fig. 56: A different example of balls with squashing but with only a little rotation: the maximum rotation of structures in this 

example from very small to very large scales is 55o.  The matrix used here was G = .  Reproduced from [Lovejoy, 2019]. 

 

4.3.2 Anisotropic multifractal clouds 1880 

We have explored ways in which quite disparate shapes can be generated using blowups, squashings and rotations.  With the 

help of a unit ball, we generated families of balls any member of which would have been an equally good starting point.   The 

unit ball has no particular importance, it does not have any special physical role to play.  If we have a scaling model based on 

isotropic balls, then replacing them with these anisotropic balls will also be scaling when we use the anisotropic rule to change 

scales: any morphologies made using such a system of balls will be scale invariant.  Mathematically anisotropic space-time 1885 

models (see [Schertzer and Lovejoy, 1987], [Wilson et al., 1991], [Lovejoy and Schertzer, 2010b], [Lovejoy and 

Schertzer, 2010a]) are produced the same way as isotropic ones except that the usual vector norm is replaced by a space-

time scale function and the usual dimension of space-time D (=4) is replaced by Del: 

	 (60)	
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where . 1890 

We already showed a self-similar and stratified example where the balls were used to make a multifractal cloud simulation of 

a vertical section (fig.  5). Let’s now take a quick look at a few examples of horizontal and three-dimensional multifractal 

cloud simulations. 

The simulation of a cross-section of a stratified multifractal cloud in fig. 	5	already shows that the effect of changing the balls 

can be quite subtle.  Let’s take a look at this by making multifractal cloud simulations with realistic (observed) multifractal 1895 

parameters (these determine the fluctuation statistics, not the anisotropy), and systematically varying the families of balls (fig.	

57).   In the figure, all the simulations have the same random “seed”  so that the only differences are due to the changing 

definition of scale.  First we can explore the effects of	different	degrees	of	stratification	combined	with	different	degrees	

of	rotation.		We	consider	two	cases,	in	the	first	(fig.	57),	there	is	roughly	a	circular	unit	ball	within	the	simulated	range,	

the	second,	fig.	58,	all	the	balls	are	highly	anisotropic.			Each	figure	shows	a	pair:	the	cloud	simulation	(left)	and	the	1900 

family	of	balls	that	were	used	to	produce	it	on	the	right.			

From	the	third	column	in	fig.	57	with	no	stratification,	we	can	note	that	changing	the	amount	of	rotation	(moving	up	

and	 down	 the	 column)	 changes	 nothing;	 this	 is	 simply	 because	 the	 circles	 are	 rotated	 to	 circles,	 rotation	 is	 only	

interesting	when	combined	with	stratification.			The	simulations	in	fig.	58	might	mimic	small	clouds	(for	example	1	km	

across)	 produced	 by	 complex	 cascade	 type	 dynamics	 that	 started	 rotating	 and	 stratifying	 at	 scales	 perhaps	 ten	1905 

thousand	times	larger.		In	both	sets	of	simulations,	the	effect	of	stratification	becomes	more	important	up	and	down	

away	from	the	centre	line	and	the	effects	of	rotation	vary	from	the	left	to	the	right	becoming	more	important	as	we	

move	away	from	the	third	column.				

Fig. 59 shows examples where rotation is strong and the scale changing rule is the same everywhere; only the unit ball is 

changed.  By making the latter have some long narrow parts, we can obtain quite “wispy” looking clouds.   1910 

Fig. 60 shows another aspect of multifractal clouds.   In section 3.5.5 we discussed the fact that in general, the cascades 

occasionally produce extreme events.  If we make a sufficiently large number of realizations of the process, from time to time 

we will generate rare cloud structures that are almost surely absent on typical realizations.  For example, a typical satellite 

picture of the tropical Atlantic Ocean would not have a hurricane, but from time to time hurricanes do appear there.  The 

multifractality implies that this could happen quite naturally, without the need to invoke any special scalebound “hurricane 1915 

process”.  In the examples in fig. 60, we use a rotating set of balls (fig. 61).  However, in order to simulate occasional, rare 

realizations, we have “helped” the process by artificially boosting the values in the vicinity of the central pixel.  The two 

different rows are identical except for the sequence of random numbers used in their generation.  For each row, moving from 

left to right, we boosted only the central region to simulate stronger and stronger vortices that are more and more improbable.  

As we do this, we see that the shapes of the basic set of balls begins to appear out of the chaos. 1920 

R = x, y, z,t( )
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4.3.3 Radiative transfer in multifractal clouds 

 

The cloud simulations above are for the density of cloud liquid water; they used false colours to display the more and less 

dense cloud regions.  Real clouds are of course in three-dimensional space, and the eye sees the light that has been scattered 

by the drops.  Therefore, if we make three-dimensional cloud simulations, instead of simply using false colours, we can obtain 1925 

more realistic renditions by simulating the way light interacts with the clouds (see fig. 8, 25, 26 for various scaling analyses of 

cloud radiances at various wavelengths). The study of radiative transfer in multifractal clouds is in its infancy; see however: 

[Naud et al., 1997], [Schertzer et al., 1998], [Lovejoy et al., 2009d], [Watson et al., 2009]. 

  Fig. 61, 62 shows top and side views of a multifractal cloud with the usual false colours; fig. 64, 65 shows the same cloud 

rendered by simulating light travelling through the cloud, both top (64) and bottom (65) views.  Finally in fig. 66, we show a 1930 

simulation of thermal infrared radiation emitted by the cloud similar to what can observed from infrared weather satellites.   

We see that quite realistic morphologies are possible.  

Up until now, we have only discussed space, but of course clouds and other atmospheric structures evolve in time.  Since we 

have argued that the wind field is scaling – and the wind moves clouds around, it effectively couples space and time.  We 

therefore have to consider scaling in space and in time: in space-time.  The time domain opens up a whole new realm of 1935 

possibilities for simulations and morphologies.  Whereas the balls in space must be localized – since they represent typical 

spatial structures, “eddies” - in space-time they can be delocalized and form waves.  In this case it turns out that it is easier to 

describe the system using the Fourier methods.  Fig. 67 shows examples of what can be achieved with various parameters. 
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 Fig. 57:  Left: Multifractal simulations with nearly isotropic unit scales with stratification becoming more important up and down 1940 
away from the centre line and the rotation parameter (left to right) becoming more important as we move away from the third 
column.  

Right:  The balls used in the simulations to the left. 

This is an extract from the multifractal explorer website: http://www.physics.mcgill.ca/~gang/multifrac/index.htm.  Reproduced 
from [Lovejoy and Schertzer, 2007b].  1945 
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Fig. 58: The same as the above except that the initial ball is highly anisotropic in an attempt to simulate the effect of stretching due 
to a wide range of larger scales.  Reproduced from [Lovejoy and Schertzer, 2007b].  



109 
 

	1950 
Fig. 59: Simulations of cloud liquid water density with the scale changing rule the same throughout, only the unit balls are 
systematically modified so as to yield more and more “wispy” clouds.  Reproduced from [Lovejoy et al 2009]. 
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Fig. 60: Each row has a different random seed, but is otherwise identical.  Moving from left to right, shows a different realization of 
a random multifractal process with the central part boosted by factors increasing from left to right in order to simulate very rare 1955 
events.  The balls are shown in fig. 61.  Reproduced from [Lovejoy and Schertzer 2013]. 

	
	
Fig. 61: The balls used in the simulations above.  Contours of the (rotation dominant) scale function used in the simulations 62.  
Reproduced from Lovejoy and Schertzer 2013. 1960 
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Fig. 62: The top layer of cloud liquid water using a grey shade rendition. Reproduced from [Lovejoy and Schertzer 2013]. 
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Fig. 63: A side view of the previous.  Reproduced from [Lovejoy and Schertzer 2013]. 1965 

	

	
Fig. 64: The top view with light scattering for the sun (incident at 45o to the right).  Reproduced from [Lovejoy and Schertzer 2013]. 
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Fig. 65: The same as fig. 64 except viewed from the bottom.  Reproduced from [Lovejoy and Schertzer 2013]. 1970 

	
Fig. 66:  The same as the previous except for a grey shade rendition of a thermal infra red field as might be viewed by an infra red 
satellite.  Reproduced from [Lovejoy and Schertzer 2013]. 
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	1975 
Fig. 67:  Examples of simulations in space-time, showing wave-like morphologies.  The same basic shapes are shown but with 
wavelike character increasing clockwise from the upper left.    Reproduced from reference [Lovejoy et al., 2008b].  

	
Fig. 68: An infra red satellite image from a satellite at 1.1 km resolution, 512x512 pixels.  Reproduced from [Lovejoy and Schertzer 
2013]. 1980 
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Fig. 69: Estimates of the shapes  of the balls in each 64x64 pixel box from the image in fig. 68. Reproduced from [Lovejoy and 
Schertzer 2013]. 

 
Fig. 70: A multifractal simulation of a cloud with texture, morphology varying in both location and scale, simulated using nonlinear 1985 
GSI; the anisotropy depends on both scale and position according to the balls shown in fig. 71.  Reproduced from Lovejoy and 
Schertzer 2013. 
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Fig. 71: The set of balls displayed according to their relative positions used in the simulation shown in fig.  70.  Reproduced from 1990 
[Lovejoy and Schertzer 2013]. 

 

4.3.3 Nonlinear GSI: Anisotropy that changes from place to place as well as scale to scale  

Generalized Scale Invariance, is necessary since zooming into clouds displays systematic changes of morphology with the 

magnification, so that in order to be realistic, we needed to generalize the idea of self-similar scaling.   The first step was to 1995 

account for  the stratification.  When the direction of the stratification is fixed ( pure stratification), there is no rotation with 

scale.  We saw that to model the horizontal plane, we needed to add rotation and to a first approximation, we could think of 

the different cloud morphologies as corresponding to different cloud types – cumulus, stratus, cirrus etc.   

But there is still a problem.  Up until now, we have discussed linear GSI where the generator is a matrix so that the scale 

changing operator l-G is also a linear transformation.  Now we need to generalize this to account for the fact that because cloud 2000 

types and morphologies not only change with scale, they also change with spatial location (and in time).   Fig. 66, shows the 

problem with a real satellite infrared cloud picture; it seems clear that the textures and morphologies vary from one part of the 

image to another.   Using a type of two-dimensional fluctuation analysis, we can try to estimate the corresponding “balls”.   

When the image is broken up into an 8 X 8 array of sub images, (fig. 69, with a fair bit of statistical scatter) we can confirm 

that the balls are quite different from one place to another. 2005 

In the more general nonlinear GSI, the notion of scale depends not only on the scale, but also on the location.  In nonlinear 

GSI we introduce the generator of the infinitesimal scale change  (consider just space and use the notation,  r = (x1, x2, 

x3)).  Using g(r) we can obtain the following equation for the scale function: 

g r( )
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	 (61)	2015 

(summation over repeated indices).   

Locally (in a small enough neighbourhood of a point), linear GSI is defined by the tangent space, i.e. the elements of the linear 

generator are: 

	 (62)	

In the special case of linear GSI this yields:  2020 

	 (63)	

Full details and more examples are given in ch. 7 of [Lovejoy and Schertzer, 2013]. 

Figs. 70, 71 show an example.   The physics behind this is analogous to those in Einstein’s theory of general relativity.  In the 

latter, it is the distribution of mass and energy in the universe that determine the appropriate notion of distance, i.e.  the metric.  

With GSI, it is the nonlinear turbulent dynamics that determine the appropriate notions of scale and size. The GSI notion of 2025 

scale is generally not a metric, it is not a distance in the mathematical sense. 

With nonlinear GSI a bewildering variety of phenomena can be described in a scaling framework.   The framework turns out 

to be so general that it is hard to make further progress.  It’s like saying “the energy of the atmosphere is conserved”.  While 

this is undoubtedly true – and this enables us to reject models that fail to conserve it - this single energy symmetry is hardly 

adequate for modelling and forecasting the weather.   One can imagine that if one must specify the anisotropy both as a function 2030 

of scale and as a function of location, that many parameters are required.   At a purely empirical level, these are difficult to 

estimate since the process has such strong variability and intermittency.  In order to progress much further, we’ll undoubtedly 

need new ideas. However, the generality of GSI does make the introduction of scalebound mechanisms unnecessary. 

4.3.4 The scale bound approach and the phenomenological fallacy  

We have given the reader a taste of the enormous diversity of cloud morphologies that are possible within the scaling 2035 

framework.  We discussed morphologies that were increasingly stratified at larger scales, that rotated with scale but only a bit 

or that rotated many times. There were filamentary structures, there were structures with waves and there were structures 

whose character changed with position.  Although all of these morphologies changed with scale, they were all consequences 

of mechanisms that were scale invariant.   The scalebound approach is therefore logically wrong and scientifically unjustified.  

When scalebound mechanisms and models based solely on phenomenological appearances are invoked; they commit a 2040 
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corollary of the scalebound approach: the “phenomenological fallacy” [Lovejoy and Schertzer, 2007c].  More concisely: the 

phenomenological fallacy is the inference of mechanism from phenomenology (appearances). 

5. Conclusions 

 

Starting in the 1970’s, deterministic chaos, scaling and fractals have transformed our understanding of many nonlinear 2045 

dynamical systems including the atmosphere: they were the main components of the “nonlinear revolution”.  While 

deterministic chaos is largely a deterministic, small number of degrees of freedom paradigm, the scaling, fractal – and later 

multifractal – paradigm is a stochastic, high number of degrees of freedom framework that is particularly appropriate to the 

atmosphere.  Ever since Richardson proposed his 4/3 law of turbulent diffusion in the 1920’s, scaling has been explicit and 

central in turbulence theories.  2050 

For the last century, these deterministic and stochastic strands of atmospheric science have developed largely in parallel.  The 

first, “dynamical meteorology”, is an essentially mechanistic, phenomenologically based approach: it is largely scalebound 

because the relevant processes were believed to occur over narrow ranges of scale.  Since atmospheric variability occurs over 

a wide range of scales, a large number of such processes are required.  The second, a statistical turbulence approach is on the 

contrary, based on the scaling idea -  that there exists a simple statistical relation between structures, processes at potentially 2055 

widely different scales.  Yet, the classical turbulence notion of scaling is highly restrictive.  For one, it assumes that processes 

are not far from Gaussian, whereas real world turbulence is on the contrary highly intermittent.  For another, it reduces scaling 

to its isotropic special case: “self-similarity” - effectively confounding the quite different scale and direction symmetries. 

Without further developments, neither classical approach is a satisfactory theoretical framework for atmospheric science.  

Fortunately, by the turn of the millennium, numerical models – based on the scaling governing equations - had matured to 2060 

point that they were increasingly – and today, often exclusively - being used to answer atmospheric questions.  As a 

consequence, the deficiencies of the classical approaches  are thus increasingly irrelevant for applied atmospheric science.  Yet 

there are consequences: elsewhere [Lovejoy, 2022a], I have argued that the primary casualty of the disconnect between high 

level atmospheric theory and empirical science, is that it blinds us to potentially promising new approaches.  And if only to 

reduce the current large (and increasing) uncertainties in projection projections, new approaches are indeed urgently needed.  2065 

This review therefore focuses on the new developments in scaling that overcame these restrictions: multifractals to deal with 

scaling intermittency (section 3) and Generalized Scale Invariance (section 4) to deal with scaling stratification and more 

generally scaling anisotropy. GSI, clarifies the significance of scaling in geoscience since it shows that scaling is a rather 

general symmetry principle: it is thus the simplest relation between scales.  Just as the classical symmetries (temporal, spatial 

invariance, directional invariance) are equivalent (Noether’s theorem) to conservation laws (energy, momentum, angular 2070 

momentum), the (nonclassical) scaling symmetry conserves the scaling exponents G, K, c. Symmetries are fundamental since 

they embody the simplest possible assumption, or model: under a change in the system, there is an invariant.  In physics, initial 
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assumptions about a system are that it respects symmetries.  Symmetry breaking is only introduced on the basis of strong 

evidence or theoretical justification: in the case of scale symmetries, one only introduces characteristic space or time scales 

when it is absolutely required.    

There are now massive data analyses of all kinds - including ones based on new techniques, notably trace moments and Haar 2100 

fluctuations - that confirm and quantify atmospheric scaling over wide ranges in the horizontal and vertical.  Since this includes 

the wind field, whose spatial scaling implies that the dynamics (i.e. in time) are also scaling.  Sections 1, 2 discuss how over 

the range of milliseconds to at least hundreds of millions of years – temporal scaling objectively defines five dynamical ranges: 

weather, macroweather, climate, macroclimate and megaclimate.   The evolution of the scalebound framework from the 1970’s 

(Mitchell) to the 2020’s (Von der Leyden et al), shows that it is further and further divorced from empirical science.  This is 2105 

also true of the usual interpretation of space-time (Stommel) diagrams that are re-interpreted in a scaling framework (section 

2.6). These scalebound frameworks have survived because practising atmospheric scientists increasingly rely instead on 

General Circulation Models that are based on the primitive dynamical equations.  Fortunately, the outputs of these models 

inherit the scaling of the underlying equations, and are hence themselves scaling, they can therefore be quite realistic.  For 

decades, this has allowed the contradiction between the scaling reality and the dominant “mental model” to remain unresolved, 2110 

Similar comments apply to the still dominant isotropic theories of turbulence that - although based on scaling - illogically place 

priority on the directional symmetry (isotropy), ahead of the scaling one – and this in spite of the obvious and strong 

atmospheric stratification.   In order for these theories to be compatible with the stratification – notably the ≈10km scale height 

-  they attempt to marry models of small scale three dimensional isotropic turbulence with (“layerwise”) two dimensional 

(quasi-geostrophic”) turbulence at large scales.  It turns out that the only empirical evidence supporting such an implicit 2115 

“dimensional transition” is spurious: it comes from aircraft data following isobars rather than isoheights.  Although this has 

been known for over a decade, thanks to the wide range scaling of the GCMs, like scalebound views, it does not impact 

mainstream atmospheric science.    

The review also emphasizes the impact of the analysis of massive and new sources of atmospheric data.  This involves the 

development of new data analysis techniques, for example trace moments (section 3) that not only directly confirm the cascade 2120 

nature of the fields, but also give direct estimates of the outer scales (that turn out to be close to planetary scales (horizontal) 

and the scale height (vertical).  However, for scales beyond weather scales (macroweather), fluctuations tend to decrease rather 

than increase with scale and this requires new data analysis techniques.  Haar fluctuations are arguably optimal - being both 

simple to implement and simple to interpret (section 2, appendix B).   

There is still much work to be done.  While, this review was deliberately restricted to the shorter (weather regime) time scales 2125 

corresponding to highly intermittent atmospheric turbulence, scaling opens up new vistas at longer time scales too.  It has 

important implications for macroweather - both monthly and seasonal forecasts that exploit long range (scaling) memories 

([Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019; Del Rio Amador and Lovejoy, 2021a; Del Rio Amador and 

Lovejoy, 2021b]) as well as for multidecadal climate projections ([Hébert et al., 2021b] and [Procyk et al., 2022]).  In addition, 

the growing paleodata archives from the Quaternary and Pleisotcene are  clarifying the pre-industrial weather- macroweather 2130 
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transition scale ([Lovejoy et al., 2013a] , [Reschke et al., 2019], [Lovejoy and Lambert, 2019]), and confirming the scaling 

of paleotemperatures over scale ranges of millenia through to Milankovitch scales (≈100kyrs).  Similarly, over the “deep time” 

megaclimate regime where biogeological processes are dominant, and with the help of scaling analyses and models, 2150 

quantitative paleobiology data can be increasingly combined with increasingly high resolution paleo indicators to help resolve 

outstanding questions including whether life or the climate dominates macroevolution ([Spiridonov and Lovejoy, 2022], 

[Lovejoy and Spiridonov, 2023]).   

Scaling also needs theoretical development.  For example, a recent paper by [Schertzer and Tchiguirinskaia, 2015] provides 

important new results on vector multifractal processes that are needed for stochastic modelling of the highly intermittent 2155 

weather regime processes.    For the lower frequency regimes that generally have weak intermittency, the natural framework 

for scaling models is fractional differential equations (e.g. [Lovejoy, 2022c], [Lovejoy and Spiridonov, 2023]). For example, 

these arise naturally (and classically!) as consequences of the Earth’s radiative-conductive boundary conditions [Lovejoy, 

2021a; b] and can potentially help explain the scaling of the climate regime via the long (multimillennial, power law) relaxation 

times of deep ocean currents. 2160 

Appendix A 

This appendix summarizes the technical  characteristics of the data presently in fig.  2 and the corresponding multifractal 

parameters that characterizes their scaling.  The only update in fig.  2 is the (top) megaclimate series that was taken from 

[Grossman and Joachimski, 2022] rather than the [Veizer et al., 1999] stack whose characteristics are given in table A1, A2. 

 2165 

 

 No. Regime Description Resolution, 

time 

Resolution, 

space 

Time 1 weather Thermistor, 2 hours 1/15 s 1 mm 

2 weather Lander, 3 yrs hourly 1m 

3 weather Montreal, 17yrs hourly 1m 

4 macroweather 20 CR: 0 - 40 N, every 2o 

longitude 

monthly 2ox2o 

5 climate GRIP paleo temp. 85 years 1m 

6 climate EPICA paleo temp. Depth  1m 
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7 macroclimate Zachos stack 5kyrs global 

8 megaclimate Veizer stack 553kyrs global 

Space 9 weather Aircraft 0.5s 280m 

10 weather ECMWF reanalysis daily 1o 

11 macroweather ECMWF reanalysis monthly 1ox1o 

12 climate 20CR reanalysis 140 years 2ox2o 

 

Table A1: A summary of the data used in fig.  2,  4.  study (for more details, see [Lovejoy, 2018]).  In fig.  2, the (top) series was the 
updated series from [Grossman and Joachimski, 2022].  It replaces the similar but somewhat lower resolution Veizer stack (no. 8 in 
the table). 2170 

 

 

 Data

a# 
H C1 a qD gmax 

(theory) 
gmax 

(observed) 

Time 1 0.54±0.003 0.013±0.001 1.60±0.08 3.1 0.34 0.39 

2 0.36±0.02 0.011±0.002 1.46±0.05 3.4 0.31 0.38 

3 0.38±0.01 0.021±0.001 1.50±0.07 6.2 0.22 0.27 

4 -0.24±0.01 0.052±0.003 1.56±0.02 7.2 0.32 0.22 

5 0.20±0.02 0.047±0.006 1.40±0.12 5.1 0.30 0.30 

6 0.41±0.01 0.01±0.01 1.46±0.15 5.0 0.24 0.28 

7 -0.30±0.03 0.083±0.014 1.49±0.13 3.3 0.44 0.31 

8 0.33±0.03 0.107±0.016 1.52±0.31 1.7 0.65 0.52 

Space 9 0.485±0.004 0.055±0.002 1.52±0.16 3.5 0.38 0.38 

10 0.55±0.02 0.070±0.005 1.41±0.06 13.0 0.35 0.38 
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11 0.56±0. 018 0.154±0.006 1.55±0.03 8.4 0.56 0.43 

12 0.47±0.02 0.182±0.011 1.64±0.11 5.2 0.62 0.51 

Table A2: The scaling parameters H, C1, a and probability exponents qD.  The far right columns give theoretical estimates of the 
maximum spike heights using the parameters C1, a, qD and the scale ratio l of the plots in fig.  2 (= 1000 except for data sets 10, 11, 
12 where l = 360, 360, 180 respectively; the spike plot for data set #6 is not shown).  The theory column uses these parameters with 2175 
the multifractal theory described in the text to estimate the solution to the equation .  The “observed” column 

determines gmax from the spike plot directly:   where is the maximum spike. For 

comparison, for l =1000, Gaussian probabilities of 10-3 , 10-6, 10-9 yield respectively gmax = 0.20, 0.26, 0.30.  Error estimates for the 
right hand columns (extremes) were not given due to their sensitivity to the somewhat subjective choice of range over which the 
regressions were made.  2180 

 

Appendix B: Estimation methods for wide range scaling processes 

B.1:  Introduction 

 In 1994, a new H<0 technique was proposed by [Peng et al., 1994] that was initially applied to biological series; the Detrended 

Fluctuation Analysis (DFA) method.  The key innovation was simply to first sum the series (effectively an integration of order 2185 

one), that has the effect of adding one to the value of H.  The consequence is that in most geophysical series and transects (as 

long as H>-1), the resulting summed series had H>0  allowing the more usual difference and difference-like fluctuations to be 

applied.  Over an interval Dt, the DFA method estimates fluctuations in the summed series by using the standard deviation of 

the residuals of a polynomial fit over the interval length Dt (i.e. a different regression for each fluctuation at each time interval).  

We return to this in more detail in section B4, but for the moment, note that the interpretation of the DFA “fluctuation function” 2190 

is sufficiently opaque that typical plots do not bother to even use units for the fluctuation amplitudes. 

Over the following nearly decades, there evolved several more or less independent strands of scaling analysis, each with their 

own mathematical formalism and interpretations.  The wavelet community dealing with fluctuations directly; the DFA 

community wielding a method that could be conveniently implemented numerically; and the turbulence community, focused 

on intermittency.  In the meantime, most geo-scientists continued to use spectral analysis, occasionally with Singular Spectral 2195 

Analysis (SSA), or Multi Taper Method (MTM) or other refinements. 

New clarity was achieved by the first “Haar” wavelet [Haar, 1910].  There were two reasons for this: the simplicity of its 

definition and calculation and the simplicity of its interpretation [Lovejoy and Schertzer, 2012a].  To determine the Haar 

fluctuation over a time interval Dt, one simply takes the average of the first half of the interval and subtracts the average of the 

second half (Fig. 17 bottom, see section B3 for more details).  As for the interpretation, when H is positive, then it is (nearly) 2200 

the same as a difference, whereas whenever H is negative, the fluctuation can be interpreted as an “anomaly” (in	this	context	

an	anomaly	is	simply	the	average	over	a	segment	length	Dt	of	the	series	with	its	long	term	average	removed,	see	section	

c γmax( ) =1
γmax = log ΔT / ΔT( )max / logλ ΔT / ΔT( )max
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Section	B3).   In both cases, in addition to a useful quantification of the fluctuation amplitudes, we also recover the correct 

value of the exponent H.    Although the Haar fluctuation is only useful for H in the range -1 to 1, this turns out to cover most 

of the series that are encountered in geoscience (see e.g. fig. 18). 2205 

 

B.2 Fluctuations revisited  

 

The inadequacy of using differences as fluctuations forces us to use a different definition.  The root of the problem is that 

“cancelling” series (H<0) are dominated by high frequencies whereas “wandering” series (H>0) are dominated by low 2210 

frequencies (see figs. B3, B4 discussed in section B2).  As we discuss below, differencing can be thought of as a filtering 

operation that emphasizes the low frequencies so much that in the H>1 case, the result depends on the very lowest frequencies 

present in the series (later).  Conversely, the difference filter doesn’t much affect the high frequencies, so that in the H<0 case, 

difference fluctuations are determined by the very highest frequencies.  In either case, the difference-filtered results are 

spurious in the sense that they depend on various details of the empirical samples: the overall series length and the small scale 2215 

resolution respectively.  Mathematically, the link between the mean amplitude of the fluctuation and the lags has been broken.   

How can we remedy the situation?  First consider the case -1<H<0.   If we could obtain a new series whose exponent was 

raised by 1 then it’s exponent would be 1+H which would be in the range 0≤1+H≤1, hence it’s fluctuations could be analysed 

by difference fluctuations.   But this turns out to be is easy to achieve.  Return to the simple sinusoid, frequency w, period Dt 

= 1/ w: T(t) = Asin wt where the amplitude A of this elementary fluctuation is identified with DT.   Now, consider its derivative: 2220 

Aw coswt.  Since the difference between sine and cosine is only a phase, taking derivatives yields oscillations/fluctuations 

with the same period Dt but with an amplitude multiplied by the factor w =1/Dt.  Now consider the integral: -Aw-1 coswt; 

fluctuations of the series obtained by integration are simply multiplied by w-1, or equivalently by Dt.   Therefore, if the average 

fluctuations are scaling with <DT(Dt)> ≈DtH, then we expect any reasonable definition of fluctuation to have the property that 

fluctuations of derivatives (for discrete series, differences) or fluctuation of  integrals (sums) to also be scaling but with 2225 

exponents respectively decreased or increased by 1.   More generally, it turns out that a filter w-H corresponds to an Hth order 

integral (when H<0, to a derivative). 

With this in mind, consider a series with -1≤H≤0 and replace it by its “running sum”  so that its mean 

differences will have the scaling <Ds(Dt)> ≈Dt1+H with exponent 1+H in the useful range between zero and one.  But now 

notice that  = s(t)-s(t-Dt) is simply the sum of the T(t) over Dt values, hence where	 	is	the	2230 

s ti( ) = T t j( )
j=1

i

∑

Δs Δt( ) Δs Δt( ) = ΔtTΔt TΔt
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temporal	average	over	the	interval	 length	Dt.	 	We	conclude	that	when	-1<H<0,	the	mean	of	a	time	average	over	an	

interval	 of	 length	Dt	 has	 the	 scaling	 .	 	 Indeed,	 this	 provides	 a	 straightforward	 interpretation:	when	 -

1<H<0,	H	quantifies	the	rate	at	which	the	means	of	temporal	averages	decrease	as	the	length	of	the	temporal	averaging	

Dt	increases.		The	only	technical	detail	here	is	that	when	H<0,	 ,	so	that	this	interpretation	can	only	be	

true	if	the	long	term	(large	Dt)	temporal	average	of	the	series	is	indeed	zero.		To	ensure	this,	it	is	sufficient	to	remove	2235 

the	overall	mean	 	of	the	series	before	taking	the	running	sum	( ).		Whenever	-1≤H≤0,	the	resulting	average	

is	therefore	a	useful	and	easy	to	interpret	definition	of	fluctuation,	called	the	“anomaly”	fluctuation.		To	distinguish	

it	from	other	fluctuations	we	may	denote	it	by	 .				

From the way it was introduced by a running sum transformation of the series, we see that the anomaly fluctuation will be 

dominated by low frequency details whenever H>0 and by high frequency details whenever H<-1 (see however section B3 for 2240 

some caveats when H<0).  The variation of the standard deviation of the anomaly fluctuation with scale is sometimes called 

“climactogram”, [Koutsoyiannis and Montanari, 2007].  However, because it is an anomaly statistic, it is only useful when 

H<0, see [Lovejoy et al., 2013b]. 

It turns out that many geophysical phenomena have both -1≤H≤0 and 0≤H≤1 regimes (fig. 18) so that it is useful to 

have a single fluctuation definition that covers the entire range -1≤H≤1.   From the preceding, it might be guessed that such a 2245 

definition may be obtained by combining both differencing and summing; the result is the Haar fluctuation.  To obtain 

 
it suffices to take the differences of averages (or equivalently, averages of differences, the order doesn’t 

matter): the result is 
 
i.e. the difference of 

the average over the first and second halves of the interval between t and t+Dt (notice that in terms of the running sum, s(t), it 

is expressed in terms of second differences).   
 
is a useful estimate of the Dt scale fluctuation as long as -2250 

1≤H≤1.  Note that we don’t need to remove the overall mean 	since taking differences removes any additive constant.  

But what does the Haar fluctuation mean, how do we interpret it? Consider first the Haar fluctuation for a series with 0≤H≤1.   

We have seen that for such series, the anomaly fluctuation changes little: it saturates.  Therefore taking the temporal averages 

of the first and second halves of the interval yields roughly the values at the centre of the intervals so that 

 where Cdiff is a “calibration” constant of order 1.  Conversely, consider the Haar 2255 

fluctuation for a series with -1≤H≤0.  In this case it is the anomaly fluctuation of the consecutive differences over intervals of 

length Dt/2 but for H<0, the differences “saturate” (yielding roughly a constant independent of Dt), so that when -1≤H≤0,

TΔt ≈ Δt H

lim
Δt→∞

Δt H = 0

T ʹT =T −T

′TΔt

ΔT Δt( )( )anom = ʹT Δt

ΔT Δt( )( )Haar

  
ΔT Δt( )Haar

=Tt ,t−Δt /2 −Tt−Δt /2,t−Δt = s t( )− 2s t − Δt / 2( ) + s t − Δt( )( ) / Δt

ΔT Δt( )( )Haar
T

ΔT Δt( )( )Haar = Cdiff ΔT Δt( )( )dif
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.   The numerical factors Cdiff, Canom that yield the closest agreements depends on 

the statistics of the series.  However, numerical simulations, much data analysis and the theory discussed below, shows that 

(especially for H≈>0.1, see fig. B5) using Cdiff = Canom = C = 2 gives quite good agreement so that if we define the “calibrated” 2260 

Haar fluctuation
 

as = then we find  for 

0≤H≤1 and for -1≤H≤0.  Therefore the interpretation of the “calibrated” Haar 

fluctuation is very close to differences (0≤H≤1) and anomalies (-1≤H≤0) and it has the advantage of being applicable to any 

series with regimes in the range -1≤H≤1; this covers almost all geophysical fields that have been analysed to date. 
So what about other ranges of H, other definitions of fluctuation?   From the above, the obvious method of extending the range 2265 

of H’s is to use derivatives or integrals (for series, differences and running sums) which respectively decrease or increase the 

exponents.  Hence for example, a fluctuation that is useful over the range 0≤H≤2 can be obtained simply by taking the second 

differences rather than the first and combining this with summing (s(t) above) to yield the “Quadratic Haar” fluctuation valid 

over the range -1≤H≤2: . While these higher 

order fluctuations are quite adequate for estimating exponents H, the drawback is that their interpretations are no longer simple; 2270 

fortunately, they are seldom needed.  More examples are given in the next section. 

B.3 Fluctuations as convolutions, filters and the H limits 

 

To get a clearer idea of what’s happening, let’s briefly put all of this into the framework of wavelets, a very general method 

for defining fluctuations.  The key quantity is the “mother wavelet” Y(t) which can be practically any function as long as it 2275 

has an overall mean zero: this is the basic “admissibility condition”.  The fluctuation at a scale Dt at a location t is then simply 

the integral of the product of the rescaled, shifted mother wavelet:   

	
	 (64)	

DT(Dt) is the Dt scale fluctuation.  The fluctuations discussed in the previous section are the following special cases: 2280 

 

Difference fluctuations 

ΔT Δt( )( )Haar =Canom ΔT Δt( )( )anom

ΔT Δt( )( )Haar,cal 2 Tt+Δt/2,Δt/2 −Tt,Δt/2( ) ΔT Δt( )( )Haar ,cal ≈ ΔT Δt( )( )dif
ΔT Δt( )( )Haar ,cal ≈ ΔT Δt( )( )anom

  
ΔT Δt( )Haar 2

= s t( )− 3s t − Δt / 3( ) + 3s t − 2Δt / 3( )− s t − Δt( )( ) / Δt

ΔT Δt( ) = 1
Δt
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(65)	

 

Anomaly fluctuations 2285 

	 (66)	

	where	 	 (67)	

Haar fluctuations 

(68)	

These	fluctuations	are	related	by:	2290 
 

	 (69)	

 

These	 are	 shown	 in	 fig.	 B1	 and	 some	 other	 common	wavelets	 in	 fig.	 B2.	 	 	 Table	 B1	 gives	 definitions	 and	 Fourier	

transforms.		 2295 

In order to understand the convergence/divergence of different scaling processes it is helpful to consider the Fourier transforms 

(indicated with a tilde).  The general relation between the Fourier transform of the fluctuation at lag Dt, and the series 

 obtained from the fact that the fluctuation is a rescaled convolution: 

	 (70)	

ΔT Δt( )( )diff =T t +Δt / 2( )−T t −Δt / 2( ); Ψ t( ) = δ t −1/ 2( )−δ t +1/ 2( )

ΔT Δt( )( )anom =
1
Δt

ʹT ʹt( )d ʹt ;
t

t+Δt

∫ ʹT t( ) =T t( )−T t( )
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τ
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0 otherwise
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We see that the fluctuation is simply a filter with respect to the original series (its Fourier transform  is multiplied by 2300 

).  Table B1, shows Y(w) for various wavelets and figs. B4, B5 shows their modulli squared). 

Taking the modulus squared and ensemble averaging (“<.>”), we obtain: 

 

(71)	

Where  and are the spectra of the fluctuation and the process respectively.    2305 

We may now consider the convergence of the fluctuation variance using Parsevals’ theorem: 

	
	 (72)	

(we	have	used	the	fact	the	spectrum	is	a	symmetric	function).		Now	consider	scaling	processes:	

	 (73)	2310 

and consider the high and low frequency dependence of the wavelet: 

	 (74)	

Plugging	these	forms	into	the	integral	for	the	fluctuation	variance,	we	find	that	the	latter	only	
converges	when:	

	 (75)	2315 

When H’ is outside of this range, the fluctuation variance diverges; in practice it is dominated by either the highest (H’<Hhigh) 

or the lowest (H’>Hlow) frequencies present in the sample.   We use the prime since this discussion is valid for second order 

moments - not only for Gaussian processes (where H’= H), but also for multifractals where H’= H-K(2)/2. 

 T ω( )!

 Ψ ωΔt( )!
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∞
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When , then the variance is finite and the fluctuation variance  is: 

	 (76)	2320 

If ET is a pure power law (Eq. 63), then we obtain:  

	 (77)	

the integral is just a constant and since b-1 = 2H’, as expected we recover the scaling of the fluctuations (Dt2H’).  We also have 

C(Dt)=C is a pure “calibration” constant (independent of Dt).    

The difference between different fluctuations is the integral on the far right.  As long as it converges, the difference between 2325 

using two different types of fluctuations is therefore the ratio C: 

	 (78)	

where Yref is the reference wavelet (here we consider differences or anomalies).    Fig. B5 shows C for the reference wavelet 

= the anomaly for H’<0 and the difference for H’>0; it can be seen that the canonical value C =2 is a compromise that is mostly 

accurate for H’>0.1 but is not so bad for negative H’.  If needed, we could use the theory value from the figure, but in real 2330 

world applications, there will not be perfect scaling; there may be zones of both positive and negative H’ present so that this 

might not be advantageous.  Finally, we defined H’ as the RMS fluctuation exponent, and have discussed the range over which 

this second order moment converges for different wavelets characterized by Hlow, Hhigh.   In the quasi Gaussian case, we have 

<(DT(Dt))q> ≈DtqH so that H’ = H and the limits for convergence of the q = 1 and q = 2 moments are the same.  However, more 

generally, in the multifractal case the limits will depend on the order of moment considered; with the range 	2335 

being	valid	for	the	first	order	moment.			

  In summary; when the wavelet falls off quickly enough at high and low frequencies, the fluctuation variance 

converges to the expected scaling form.  Conversely	whenever	the	inequality	 	is	not	satisfied,	then	

the	fluctuation	variance	depends	spuriously	on	either	high	or	low	frequency	details.			
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 2340 
Fig. B1. The simpler wavelets discussed in the text, see table A1 for mathematical definitions and properties.  The black bars 
symbolizing Dirac delta functions (these are actually infinite in height!) indicate the difference fluctuation (poor man’s wavelet), the 
stippled red indicates the anomaly fluctuation, the blue rectangles the Haar fluctuation (divided by 2) and the red line, the first 
derivative of the Gaussian.   

 2345 

 
 

Fig. B2.  The higher order wavelets discussed in the text: the black bars (representing Dirac delta functions) indicate the second 
difference fluctuation, the solid blue, the Quadratic Haar fluctuation and the red, the “Mexican Hat wavelet ” or second derivative 
of Gaussian fluctuation. 2350 
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Table B1  A comparison of various wavelets along with their frequency (Fourier) representation and low and high frequency 
behaviours.  At the right, the range of H’ over which they are useful is indicated.  For the anomaly fluctuation, see the text.  The 2355 
normalization for the Quadratic Haar is chosen to make it close to the Mexican Hat. 
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Fig. B3:  The simple wavelets/fluctuations discussed in the text in the frequency domain.  The power spectrum of the wavelet filter 2360 

is shown on a log-log plot (  is the Fourier transform of ).   The key asymptotic behaviour is shown by the 

reference lines.   

 

 
 2365 

Fig. B4: The power spectra filters for the higher order wavelets/fluctuations discussed in the text, along with reference lines 
indicating the asymptotic power law behaviours.  Note that the Mexican Hat (second derivative of the Gaussian) decays exponentially 
at high frequencies, equivalent to an exponent .  
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 2370 
Fig. B5:  The theoretical calibration constant C for the RMS second moment (Eq. 78).  Notice that for H’≈>0.1 that it is close to the 
canonical value C = 2. 

 

B.4 Stationarity/Nonstationarity 

To illustrate various issues, we made a multifractal simulation with H = -0.3 (Fig. B6, C1 =0.1, a=1.8, section 3.2.2), 2375 

and then took its running sum, Fig. B7.  Notice that as expected, while B6 with H<0 has cancelling fluctuations, Fig. B7 with    

H = 1 -0.3 = 0.7, is “wandering”.   Now compare the left and right hand sides of Fig. A7 – are they produced by the same 

stochastic process, or is the “drift” on the right hand side caused by an external agent that was suddenly switched on?   When 

confronted with series such as this that appear to behave differently over different intervals, it is often tempting to invoke the 

action of a statistically nonstationary process.  This is equivalent to the conviction that no conceivable (or at least plausible) 2380 

unique physical process following the same laws at all times could have produced the series.  

It is worth discussing stationarity in more detail since it is a frequent source of confusion, indeed all manner of “wandering” 

signals lead to claims of nonstationarity.  Adding to this is the fact that common stochastic processes - such as drunkard’s 

walks (Brownian motion) - are strictly speaking nonstationary (see however below).    

What’s going on?  The first thing to be clear about is that statistical stationarity is not a property of a series or even of finite 2385 

number of series, but rather of the stochastic process generating the series.  It is a property of an infinite ensemble of series.  It 

simply states that the statistical properties are translationally invariant along the time axis, i.e. that they do not depend on t.   

Statistical stationarity is simply the hypothesis that the underlying physical processes that generate the series are the same at 

all instants in time.  In reality, the “wandering” character of an empirical signal is simply an indication that the realization of 

’	



133 
 

the process has low frequency components with large amplitudes – that over the (finite) available range, that it tends to be 2390 

dominated by them (this is a characteristic of all scaling processes with H>0).   

However, once one assumes that the process comes from a certain theoretical framework – such as random walks - then the 

situation is quite different because this more specific hypothesis can be tested.  But let’s take a closer look.  A theoretical 

Brownian motion process x(t) (defined for all t≥0) is an example of a process with stationary increments: the rule for the drunk 

to go either to the left or to the right (an incremental change of position) - is always the same Dx(Dt) is indeed independent of 2395 

t. The only reason that x(t) is nonstationarity is that the drunkard’s starting location is special - let’s say x(0)=0 - so that the 

statistics of x(t) depend on t.   However on any finite domain it is a trivial matter to make the process perfectly stationary: one 

need only randomize the drunk’s starting location x(0).   Note that this method doesn’t work for pure mathematically defined 

Brownian motions that are defined on the infinite x axis because it is impossible to define a uniform random starting position 

between .  However, real processes always have finite bounds and – more to the point – real scaling processes always 2400 

have outer scales, so that in practice (i.e. over finite intervals), even classical random walks can be made stationary.  

B.5 Nonwavelet fluctuations: Detrended Fluctuation Analysis 

We mentionned that the Detrended Fluctuation Analysis (DFA) technique was valid for -1≤H≤n (with n usually =1; linear 

DFA).   Since it is valid for some negative H, it is an improvement over simply using differences and has been used in climate 

analyses (e.g. [Kantelhardt et al., 2001], [Koscielny-Bunde et al., 2006; Monetti et al., 2003]).  Unfortunately, the 2405 

determination of the DFA fluctuations is not simple nor is its interpretation so that often, the units of the fluctuation function 

are not even given.  Other difficulties with the DFA method have been discussed in [Varotsos and Efstathiou, 2017]. 

To understand the DFA, take the running sum s(t) of the empirical time series (in DFA jargon, the “profile”, see Fig. B6).  

Then break s(t) into blocks of length Dt and perform regressions with nth order polynomials (in Fig. B7, Dt was taken as half 

the total interval length, and linear regressions were used, i.e. n = 1).   For each interval length Dt, one then determines the 2410 

standard deviation F of the regression residues (see Fig. B8).   Since F is a fluctuation in the summed series, the DFA fluctuation 

in the original series, (DT)DFA is given by: 

	 (79)	

 

 2415 
In words, (DT)DFA is the standard deviation of the residues of polynomial regressions on the running sums of the series divided 

by the interval length.  Note that the usual DFA treatments do not return to the fluctuations in the original series, they analyze 

F (not F/Dt) which is the fluctuation of the running sum, not the original series.  Due to its steeper slope (increased by 1),  plots 

of  logF-logDt look more linear than log(F/Dt) - logDt.  For series with poor scaling - or with a transition between two scaling 

regimes – this has the effect of giving the illusion of good scaling and may have contributed to the popularity of the technique!   2420 

±∞

ΔT( )DFA =
F
Δt
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However, in at least several instances in the literature, DFA of daily weather data (with a minimum resolution of 2 days), failed 

to detect the weather /macroweather transition - breaks in the scaling were spuriously hidden from view at the extreme small 

Dt end of the analysis.   

Finally the usual DFA approach defines the basic exponent a not from the mean DFA fluctuation but rather from the RMS 

DFA fluctuation:  2425 

	 (80)	

Comparing this to the previous definitions and using  we see (Eq. 75) that: 

	 (81)	

Interpretations of the DFA exponent a typically (and usually only implicitly) depend on the quasi Gaussian assumption.  For 

example, one sometimes discusses “persistence” and “antipersistance”.  These behaviours can be roughly thought of as types 2430 

of “cancelling” or “wandering” but with respect to Gaussian white noises (i.e. with H = -1/2) rather than (as here) with respect 

to the mean fluctuations that are determined by the sign of H which is equivalent to instead characterizing the scaling of the 

process with respect to the “conservative” (pure multiplicative, H = 0) multifractal process.  A “persistent” Gaussian process 

is one in which the successive increments are positively correlated so that the variance of the process grows more quickly than 

for Brownian Motion noise, i.e. a >1/2, while an “antipersistent” process on the contrary has successive increments that are 2435 

negatively correlated so that it grows more slowly (a<1/2, see eq. 81 with K(2) = 0 that holds for Gaussian processes).  For 

Gaussian processes this distinction is associated with precise mathematical convergence/divergence issues.  However, if the 

process is non Gaussian this criterion is not relevant and the classification itself is not very helpful whereas the sign of the 

fluctuation exponent H remains fundamental (in particular, in the more general multifractal case).  In terms of interpretation, 

the drawback of the a>1/2, a<1/2 classification is that the neutral (reference) case of persistence/antipersistence (a =1/2) is 2440 

white noise which itself is highly “cancelling” (it has H = -1/2), so that even for Gaussian processes, the 

persistence/antipersistence classification is not very intuitive. 

In applications of the DFA method, much is said about the ability of the method to remove nonstationarities.  Indeed, it is easy 

to see that an nth order DFA analysis removes an nth order polynomial in the summed series, i.e. an n-1th order polynomial in 

the original series.  In this, it is no different from the “Mexican hat” or other wavelets and their higher order derivatives (or to 2445 

the simple polynomial extensions of fluctuations such as the Quadratic Haar fluctuation discussed above).  In any case, it 

removes such trends at all scales, not only at the largest so that it is misleading to describe it as removing nonstationarities.  In 

addition, the stationarity assumption is still made with respect to the residuals from the polynomial regression – just as with 

the wavelet based fluctuations.  If one only wants to remove nonstationarities, it should be done as a “pretreatment” i.e. trends 

should only be removed over the entire series not over each interval, over each segment within the series.  Finally, the most 2450 

F2 Δt( ) 1/2
≈ Δt a

ΔT ≈ ΔT( )DFA

a = 1+ ′H = 1+ H − K 2( ) / 2
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common and strong geophysical nonstationarities are due to the diurnal and annual cycles, and none of these techniques remove 

oscillations.   

We conclude that the only difference between analyzing a data series with the DFA or with wavelet based fluctuation 

definitions is the extra and needless complexity of the DFA – the regression part – that makes its interpretation and 

mathematical basis unnecessarily obscure.  Indeed, Fig. B9 numerically compares spectra, (Haar) wavelets and DFA exponent 2455 

estimates showing that Haar wavelets are at least as accurate as DFA but have the added advantage of simplicity of 

implementation and simplicity of interpretation. 

If the underlying process is multifractal, then one naturally obtains huge fluctuations (in space, huge structures, “singularities”) 

but these are totally outside the realm of quasi Gaussian processes so that when they are inappropriately interpreted in a quasi 

Gaussian frameworks, they will be are often mistakenly treated as nonstationarities (in space, mistakenly as inhomogeneities.  2460 

 
Fig. B6:  A simulation of a (multifractal) process with H = -0.3, C1=0.1, a=1.8 showing the tendency for fluctuations to cancel. 

 

 
Fig. B7:  The running sum (s(t)) of the previous realization with H = 1+(-0.3) = 0.7; note the wandering character.  Also shown are 2465 
the two regression lines used to define the fluctuations of the Detrended Fluctuation Analysis technique, for fluctuations with lags 
Dt half of the length shown.  For each regression, the fluctuation is estimated by the root mean square of the residues from the lines; 
see Fig. B8. 
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 2470 

Fig. B8: The H = -0.3 series of Fig. B6 with the residues of the two regression lines in Fig. B7 used to determine the DFA fluctuations 
for lags �t half of the length shown (blown up by factors of three, green, red).  For each regression, the fluctuation is estimated by 
the root mean square of the residues from the lines.  
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Fig. B9:  Comparison of the bias in estimates of the second order structure function (dx(2)), obtained from numerical multifractal 
simulations with parameters a = 1.8, C1 = 0.1 and with the fluctuation H as indicated.   Theoretically, the (unbiased) second order 
structure function exponent x(2) = 2H-K(2) and with these parameters, K(2) = 0.18.   For each value of H from -9/10 to +9/10 (at 
intervals of 1/10) 50 realizations of the process were analyzed, each of length 214 = 16384 points.  Difference fluctuations were only 
applied to the H >0 cases and anomaly fluctuations for H <0.  Spectra, Haar and Multifractal Detrended Fluctuation Analysis 2480 
(MFDFA) were applied over the whole range.   We see that the latter methods are quite accurate (to within about —0.05) over the 
range ≈ -0.7 < H < ≈ 0.7.  Over this range particular the Haar fluctuations have a bias of about +0.01 while the MFDFA have a bias 
of about -0.02.  In comparison, the difference and anomaly fluctuations have stronger biases (of about ±0.1) near the limits of their 
ranges i.e. when .   Adapted from [Lovejoy and Schertzer, 2012a]. 
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