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Abstract. Analytic solutions for the Advection-Diffusion equation have been explored in diverse scientific and engineering 

domains, aiming to understand transport phenomena, including heat and mass diffusion, along with the movement of water 

resources. Precipitation, a vital component of water resources, presents a modeling challenge due to the complex interplay 

between advection-diffusion effects and source terms. This study aims to improve the modeling of nonlinearly evolving 

precipitation fields by specifically addressing advection-diffusion equations with time-varying source terms. Utilizing analytic 10 

solutions derived through the integral transform technique, we modeled the time-varying source term and investigated the 

correlation between advection-diffusion and source term effects. While the growth of the field is mainly influenced by the 

amplitude, size, and timescale of the source term, it can be modulated by advection and diffusion effects. When the timescale 

of source injection is significantly shorter than the dynamic scale of the system, advection and diffusion effects become 

independent of the field growth. Conversely, when the timescale of source term injection is sufficiently long, the system 15 

evolution primarily depends on advection and diffusion effects. In turbulent regimes with strong diffusion and weak advection 

effects, a quasi-equilibrium state between growth and decay can be established by regulating the decay caused by advection. 

However, in regimes where advection effects are crucial, the decay process predominates over the growth process. 

1 Introduction 

The Advection-Diffusion equation has been widely employed to study the transport of heat, mass, and water resources in 20 

many areas of science and engineering, such as physics, atmospheric sciences, environmental sciences, and hydrology (e.g., 

Amiri et al. 2021; Davydova et al. 2017; Jinno et al. 1993; Kawamura et al. 1997; Kumar et al. 2010; Perez Guerrero et al. 

2009; Ryu et al. 2020; Shilsar et al. 2023; van Genuchten 1981). For instance, pollution issues in the air and rivers have been 

studied using transport modeling based on the Advection-Diffusion equation (e.g., Amiri et al. 2021; Shilsar et al. 2023). 

Additionally, atmospheric applications have been investigated, such as modeling greenhouse gases in the surface atmospheric 25 

layer (e.g., Davydova et al. 2017), and precipitation estimation and prediction (e.g., Jinno et al. 1993; Kawamura et al. 1997; 

Ryu et al. 2020). 

Among the various applications listed above, this study particularly focuses on the application of the Advection-Diffusion 

equation for quantitative precipitation estimation. The precipitation field, representing a significant water resource, evolves in 

a highly nonlinear manner, posing a considerable challenge in modeling. Notably, it can experience rapid development or 30 

decay due to the source term, encompassing physical processes. Although the currently proposed models cannot fully describe 

the complexity of precipitation evolution, such models have been extensively adopted for studying quantitative precipitation 

estimation and precipitation prediction (e.g., Ayzel et al. 2019; Germann & Zawadzki 2002, 2004, 2006; Kawamura et al. 

1997; Lee et al. 2010; Pulkkinen et al. 2019; Ryu et al. 2020; Turner et al. 2004). For instance, using a two-dimensional 

advection-diffusion model, it is demonstrated that there is a correlation between increased rainfall and turbulent diffusion, 35 

consistent with moisture injection due to strong turbulence (Kawamura et al. 1997). In addition to estimating precipitation 

quantitatively using observed events, weather prediction based on advection and diffusion has been extensively studied. 

Operational weather prediction models, based solely on advection, have been developed and adopted by meteorological 
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administrations (e.g., Germann & Zawadzki 2002, 2004, 2006; Lee et al. 2010; Turner et al. 2004). Indeed, many works have 

also presented public libraries for nowcasting based on advection (e.g., Ayzel et al. 2019; Pulkkinen et al. 2019). Furthermore, 40 

a recent study (Ryu et al. 2020) proposed a nowcasting model that incorporates both advection and diffusion, demonstrating 

that the model including diffusion effects outperforms the model without diffusion. Despite the aforementioned efforts, a 

complete understanding of the nonlinear physics inherent in precipitation fields has not yet been achieved. While the 

nowcasting studies listed above ignored the contribution of the source terms, it is crucial to thoroughly examine the effects of 

the source term, which includes dynamic processes such as the development and/or decay of precipitation fields. 45 

Growth and decay patterns exhibited in the precipitation field have been examined based on the analysis using weather radar 

data (Atencia et al. 2017; Foresti et al. 2018; Radhakrishna et al. 2012; Tang & Matyas 2018). For instance, to analyze the 

observed data, the source term has often been considered as zero-mean Gaussian noise in time and space (Jinno et al. 1993; 

Kawamura et al. 1997). This assumption is based on the temporal variation of weather conditions, and the solution remains 

continuous over the time domain. Through error analysis using MAPLE prediction, Atencia et al. 2017 demonstrated that the 50 

growth and decay in the diurnal cycle are significant for accurate precipitation nowcasting. Along with such quasi-periodic 

variations, the rapid growth and decay of fields have also been exhibited typically in precipitation fields, which cannot be 

accurately modeled using the quasi-periodic variation model. For instance, the orographic effect could contribute to the growth 

and decay of precipitation fields (Foresti et al. 2018). Additionally, the source terms associated with deep convective clouds 

and the amount of vapor on such cloud tops (e.g., So and Shin 2018) and moisture injection by jets (e.g., Lee et al. 2008) are 55 

also prominent for the growth of precipitation intensity. 

Due to the challenges in understanding the nonlinear evolutionary patterns of precipitation, models based on Deep Learning 

methods, which are free from relying on physics, have recently been developed by training data from weather radar, satellites, 

and surface observations (e.g., Shi et al. 2015, 2017; Agrawal et al. 2019; Ayzel et al. 2020; Choi et al. 2021; Ha & Lee 2023a; 

Ha & Lee 2023b; Kim & Hong 2022; Ko et al. 2022; Ravuri et al. 2021; Sønderby et al. 2020). The forecasting performance 60 

of these data-driven models is better than that of models based on advection and diffusion. However, the results obtained from 

Deep Learning models are difficult to explain due to the absence of physics. 

In this work, we examined the effects of the time-varying source term in the Advection-Diffusion equation and its applications 

on quantitative precipitation estimation and prediction. We first adopted the generalized integral transform technique (e.g., 

Perez Guerrero et al. 2009) to obtain the analytic solutions of the Advection-Diffusion equation with periodic boundary 65 

conditions. We then analyzed the behavior of the analytic solutions in the turbulent system and the intermediate system where 

both advection and diffusion effects are significant. Notably, the effects of the source term on the field growth and the effects 

of advection-diffusion on the field decay were mainly studied. 

The paper is organized as follows: In section 2, we describe the conditions for solving the equation. Then, in section 3, we 

present the analytic solution based on the integral transform technique. In section 4, we provide case studies and numerical 70 

results. Finally, in section 5, we offer a summary. 

2 Basic assumptions 

For an incompressible fluid system, we consider the boundary value problem for an Advection-Diffusion equation: 

𝜕𝑅(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
+ (𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
) 𝑅(𝑥, 𝑦, 𝑧, 𝑡) − (𝐷𝑥

𝜕2

𝜕𝑥2
+ 𝐷𝑦

𝜕2

𝜕𝑦2
+ 𝐷𝑧

𝜕2

𝜕𝑧2
) 𝑅(𝑥, 𝑦, 𝑧, 𝑡) = 𝑆(𝑥, 𝑦, 𝑧, 𝑡). (1) 

Here, 𝑅(𝑥, 𝑦, 𝑧, 𝑡)  represents the field undergoing advection and diffusion, 𝑢, 𝑣, 𝑤  denote the velocity components of 75 

advection. 𝐷𝑥 , 𝐷𝑦 , 𝐷𝑧 are the diffusion coefficients, and 𝑆(𝑥, 𝑦, 𝑧, 𝑡) represents the source term including physical processes. 

The variables of Equation (1), 𝑥, 𝑦, 𝑧, 𝑡, satisfy the following conditions: 

0 ≤ 𝑡 ≤  𝑇𝑠𝑦𝑠;  0 ≤ 𝑥 ≤  𝐿𝑠𝑦𝑠; 0 ≤ 𝑦 ≤  𝐿𝑠𝑦𝑠; 0 ≤ 𝑧 ≤  𝐿𝑠𝑦𝑠 , (2) 
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where 𝑇𝑠𝑦𝑠, 𝐿𝑠𝑦𝑠 represent the dynamical temporal and spatial scales of the physical system, respectively. We then define the 

dynamical evolution speed as 𝑉𝑠𝑦𝑠 ≡  𝐿𝑠𝑦𝑠/𝑇𝑠𝑦𝑠. 𝑉𝑠𝑦𝑠 is the upper limit of the advection speed, 𝑉𝑎𝑑𝑣 = (𝑢, 𝑣, 𝑤). In this work, 80 

𝑉𝑎𝑑𝑣  is assumed to be a stationary field. Indeed, it has been demonstrated that the relative importance is in the evolution of 

advection fields, and it has been concluded that uncertainties arising from the advection fields are less significant than 

uncertainties in the evolution of the precipitation field (Bowler et al. 2006). 

By assuming isotropic diffusion (𝐷 ≈ 𝐷𝑥 ≈ 𝐷𝑦 ≈ 𝐷𝑧), we define the characteristic spatial and temporal scales as follows: 

𝐿𝑑𝑖𝑓𝑓 , 𝑇𝑑𝑖𝑓𝑓 , 85 

𝐿𝑑𝑖𝑓𝑓 =
2𝐷

𝑉𝑎𝑑𝑣

;  𝑇𝑑𝑖𝑓𝑓 =
4𝐷

𝑉𝑎𝑑𝑣
2 =

2𝐿𝑑𝑖𝑓𝑓

𝑉𝑎𝑑𝑣

. (3) 

According to the conditions of the physical medium, the precipitation field can be categorized into three different regimes: the 

turbulent regime (i.e., diffusion-dominant regime), the intermediate regime, and the advection-dominant regime. These 

regimes can be classified based on the characteristic scales, 𝑉𝑎𝑑𝑣 , 𝐿𝑑𝑖𝑓𝑓 , 𝑇𝑑𝑖𝑓𝑓 . 

turbulent regime: 
𝑉𝑎𝑑𝑣

𝑉𝑠𝑦𝑠

≪ 1;
𝐿𝑑𝑖𝑓𝑓

𝐿𝑠𝑦𝑠

≫ 1;
𝑇𝑑𝑖𝑓𝑓

𝑇𝑠𝑦𝑠

≫ 10, (4) 90 

intermediate regime:
𝑉𝑎𝑑𝑣

𝑉𝑠𝑦𝑠

~ 0.1 − 1; 
𝐿𝑑𝑖𝑓𝑓

𝐿𝑠𝑦𝑠

 ~ 0.1 − 1;
𝑇𝑑𝑖𝑓𝑓

𝑇𝑠𝑦𝑠

~ 0.1 − 10, (5) 

advection dominant regime: 
𝑉𝑎𝑑𝑣

𝑉𝑠𝑦𝑠

~ 1; 
𝐿𝑑𝑖𝑓𝑓

𝐿𝑠𝑦𝑠

≪ 1; 
𝑇𝑑𝑖𝑓𝑓

𝑇𝑠𝑦𝑠

≪ 1. (6) 

To investigate the system including both the advection and diffusion effects, this work mainly considers the turbulent and 

intermediate regimes. 

3 Analytic solutions of Advection-Diffusion equation 95 

The analytic solution of the Advection-Diffusion equation has been extensively studied using the Integral Transform 

technique (e.g., Amiri et al. 2021; Perez Guerrero et al. 2009; Kumar et al. 2014; Shilsar et al. 2023), including the Generalized 

Integral Transform Technique (GITT; Cotta 1993; Perez Guerrero et al. 2009). 

The GITT method can be summarized as follows: (1) Defining the unknown function (i.e., the analytic solution) as a series 

expansion of eigenfunctions, (2) Converting the partial differential equation into ordinary differential equations based on 100 

integral and inverse transforms, and (3) Solving the ordinary differential equations and deriving the unknown functions using 

the inverse transform. 

In this work, we employ the GITT method, which has been proposed in previous studies (see Perez Guerrero et al. 2009; 

Kumar et al. 2010), to derive the analytic solution of Equation (1). By employing a change of variables, the solution, 

𝑅(𝑥, 𝑦, 𝑧, 𝑡) can be expressed as follows:  105 

𝑅(𝑥, 𝑦, 𝑧, 𝑡) = 𝜃(𝑥, 𝑦, 𝑧, 𝑡) exp(𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 +  𝑡(𝑏1 + 𝑏2 + 𝑏3)) . (7) 

Here, 𝜃(𝑥, 𝑦, 𝑧, 𝑡) represents the new function describing the intensity of the field, while the exponential term is the term 

corresponding to a traveling wave with arbitrary parameters, 𝑎1, 𝑎2,𝑎3, 𝑏1, 𝑏2 and 𝑏3 (physically, these parameters represent 

wavenumbers and frequencies). By using Equation (7), Equation (1) can be rewritten as follows: 
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𝜕𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
+ 𝜃(𝑥, 𝑦, 𝑧, 𝑡)[(𝑏1 + 𝑏2 + 𝑏3) + 𝑎1(−𝐷𝑥𝑎1 + 𝑢) + 𝑎2(−𝐷𝑦𝑎2 + 𝑣) + 𝑎3(−𝐷𝑧𝑎3 + 𝑤)]110 

+ (−2𝐷𝑥𝑎1 + 𝑢)
𝜕𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥
− 𝐷𝑥

𝜕2𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥2

+ (−2𝐷𝑦𝑎2 + 𝑣)
𝜕𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦
− 𝐷𝑦

𝜕2𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦2

+ (−2𝐷𝑧𝑎3 + 𝑤)
𝜕𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧
− 𝐷𝑧

𝜕2𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧2

=
𝑆(𝑥, 𝑦, 𝑧, 𝑡)

exp(𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑦 +  𝑡(𝑏1 + 𝑏2 + 𝑏3))
. (8) 

In accordance with the physical context, we choose the parameters 𝑎1, 𝑎2,𝑎3, 𝑏1, 𝑏2 and 𝑏3 as follows: 115 

𝑎1 =
𝑢

2𝐷𝑥

;  𝑎2 =  
𝑣

2𝐷𝑦

;  𝑎3 =  
𝑤

2𝐷𝑧

; 𝑏1 = −
𝑢2

4𝐷𝑥

;  𝑏2 = −
𝑣2

4𝐷𝑦

;  𝑏3 = −
𝑤2

4𝐷𝑧

. (9) 

The 𝑎1, 𝑎2, 𝑎3  indicate the wavenumber of diffusion, while 𝑏1, 𝑏2, 𝑏3 denote the frequency of diffusion. With these parameters, 

we obtain the following equation, 

𝜕𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
− 𝐷𝑥

𝜕2𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥2
− 𝐷𝑦

𝜕2𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦2
− 𝐷𝑧

𝜕2𝜃(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧2

=
𝑆(𝑥, 𝑦, 𝑡)

exp (
𝑢

2𝐷𝑥
𝑥 +

𝑣
2𝐷𝑦

𝑦 +
𝑤

2𝐷𝑧
𝑧 −  𝑡 (

𝑢2

4𝐷𝑥
+

𝑣2

4𝐷𝑦
+

𝑤2

4𝐷𝑧
))

, (10) 120 

with the initial condition, 𝜃(𝑥, 𝑦, 𝑧, 𝑡 = 0), 

𝜃(𝑥, 𝑦, 𝑧, 𝑡 = 0) =
𝑅(𝑥, 𝑦, 𝑧, 𝑡 = 0)

exp (
𝑢

2𝐷𝑥
𝑥 +

𝑣
2𝐷𝑦

𝑦 +
𝑤

2𝐷𝑧
𝑧)

. (11) 

 To apply the GITT method, we formulate the eigenvalue problem by solving the same boundary conditions as those of 

𝜃(𝑥, 𝑦, 𝑧, 𝑡). Then, the problem is defined as solving the equation for the nontrivial solutions, 𝜓(𝑥, 𝑦, 𝑧),  

∇2𝜓(𝑥, 𝑦, 𝑧) + 𝜇2𝜓(𝑥, 𝑦, 𝑧) = 0. (12) 125 

Here, the nontrivial solutions, 𝜓(𝑥, 𝑦, 𝑧) ≡ 𝜓𝑖(𝑥, 𝑦, 𝑧), satisfy orthogonality, 

∫ 𝜓𝑖(𝑥, 𝑦, 𝑧)𝜓𝑗(𝑥, 𝑦, 𝑧)
𝑉

𝑑𝑉̅ = 𝑁𝑖𝛿𝑖𝑗 , (13) 

where 𝑁𝑖 is the normalization factor and 𝛿𝑖𝑗 is the Kronecker delta. Using this orthogonality property, the transform pair (i.e., 

forward, Equation (14) and inverse, Equation (15)) can be derived as: 

𝜃̅𝑖(𝑡) = ∫ Ψ𝑖(𝑥, 𝑦, 𝑧)𝜃(𝑥, 𝑦, 𝑧, 𝑡)
𝑉

𝑑𝑉̅, (14) 130 

𝜃(𝑥, 𝑦, 𝑧, 𝑡) = ∑ Ψ𝑖(𝑥, 𝑦, 𝑧)𝜃̅𝑖(𝑡)

∞

𝑖=1

, (15) 

where Ψ𝑖(𝑥, 𝑦, 𝑧) ≡ 𝜓𝑖(𝑥, 𝑦, 𝑧)/√𝑁𝑖  is the normalized eigenfunctions. By implementing the operator ∫ Ψ𝑖(𝑥, 𝑦, 𝑧)
𝑉

𝑑𝑉̅, to 

Equation (12) with Equations. (14) and (15), the integral transformation of Equation (12) becomes a set of ordinary differential 

equations: 

𝑑𝜃̅𝑖(𝑡)

𝑑𝑡
+ 𝜇𝑖

2𝜃̅𝑖(𝑡) = 𝑆𝑖̅(𝑡); 𝑖 = 1,2, … . (16) 135 

Here, 𝑆𝑖̅(𝑡) represents the volume-integrated source-term defined as, 

𝑆𝑖̅(𝑡) = ∫ Ψ𝑖(𝑥, 𝑦, 𝑧)
𝑉

𝑆(𝑥, 𝑦, 𝑧, 𝑡)

exp (
𝑢

2𝐷𝑥
𝑥 +

𝑣
2𝐷𝑦

𝑦 +
𝑤

2𝐷𝑧
𝑧 −  𝑡 (

𝑢2

4𝐷𝑥
+

𝑣2

4𝐷𝑦
+

𝑤2

4𝐷𝑧
))

𝑑𝑉̅, (17)  
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and the initial conditions in Equation (11) can be transformed as follows: 

𝜃̅𝑖(𝑡 = 0) = ∫ Ψ𝑖(𝑥, 𝑦, 𝑧)
𝑉

𝑅(𝑥, 𝑦, 𝑧, 𝑡 = 0)

exp (
𝑢

2𝐷𝑥
𝑥 +

𝑣
2𝐷𝑦

𝑦 +
𝑤

2𝐷𝑧
𝑧)

𝑑𝑉̅. (18) 

Using Equations (17) and (18), Equation (16) can be solved with the follow analytic solution: 140 

𝜃̅𝑖(𝑡) = exp(−𝜇𝑖
2𝑡) [𝜃̅𝑖(𝑡 = 0) + ∫ 𝑆𝑖̅(𝜏)exp(𝜇𝑖

2𝜏)𝑑𝜏
𝑡

0

] . (19) 

Finally, we obtain 𝜃(𝑥, 𝑦, 𝑡) and 𝑅(𝑥, 𝑦, 𝑡) as follows: 

𝜃(𝑥, 𝑦, 𝑧, 𝑡) = ∑ Ψ𝑖(𝑥, 𝑦, 𝑧) exp(−𝜇𝑖
2𝑡) [𝜃̅𝑖(𝑡 = 0) + ∫ 𝑆𝑖̅(𝜏)exp(𝜇𝑖

2𝜏)𝑑𝜏
𝑡

0

]

∞

𝑖=1

, (20) 

𝑅(𝑥, 𝑦, 𝑧, 𝑡) = 𝜃(𝑥, 𝑦, 𝑧, 𝑡) exp (
𝑢

2𝐷𝑥

𝑥 +
𝑣

2𝐷𝑦

𝑦 +
𝑤

2𝐷𝑧

−  𝑡 (
𝑢2

4𝐷𝑥

+
𝑣2

4𝐷𝑦

+
𝑤2

4𝐷𝑧

)) . (21) 

The exponential term in Equation (21) represents the traveling wave, and 𝜃(𝑥, 𝑦, 𝑧, 𝑡) describes the time evolution of field 145 

intensity. In particular, the term, exp(−𝜇𝑖
2𝑡) in 𝜃(𝑥, 𝑦, 𝑧, 𝑡) indicates the field decay due to advection-diffusion. Such effects 

could regulate the growth of field intensity, and here we examine the effects of advection-diffusion decay in the presence of 

an arbitrary source-term, 𝑆𝑖̅(𝜏) > 0. Based on the relative importance of 𝜃̅𝑖(𝑡 = 0) and ∫ 𝑆𝑖̅(𝜏)exp(𝜇𝑖
2𝜏)𝑑𝜏

𝑡

0
 in Equation (20), 

we consider three different evolution patterns summarized as follows: 

(a) Evolution dominated by decay: purely decaying field due to the Advection and Diffusion: 150 

𝜃̅𝑖(𝑡 = 0) ≫ ∫ 𝑆𝑖̅(𝜏)exp(𝜇𝑖
2𝜏)𝑑𝜏

𝑡

0

, (22) 

(b) Evolution, including both decay and growth: The effects of field decay due to the Advection and Diffusion are com

parable to the growth effects driven by the source-term: 

𝜃̅𝑖(𝑡 = 0) ~ ∫ 𝑆𝑖̅(𝜏)exp(𝜇𝑖
2𝜏)𝑑𝜏

𝑡

0

, (23) 

(c) Evolution dominated by growth: purely growing field due to the source-term: 155 

𝜃̅𝑖(𝑡 = 0)  ≪ ∫ 𝑆𝑖̅(𝜏)exp(𝜇𝑖
2𝜏)𝑑𝜏

𝑡

0

. (24) 

In the following section, we discuss the applications of the analytic solutions with various types of source-terms. 

 

4 Applications of Advection-Diffusion equation 

In this section, we examine the physical implications of the analytic solution described in Section 3 by considering various 160 

applicable cases. We also report the results of numerical experiments. For the sake of simplicity, we here consider the solution 

of a one-dimensional system. 

 

4.1 One-dimensional solution and parameterization of advection and diffusion effects 

Hereafter, we express all variables as a dimensionless form: 165 

𝑥̃ =
𝑥

𝐿𝑠𝑦𝑠

;  𝑡̃ =
𝑡

𝑇𝑠𝑦𝑠

. (25) 

The analytic solution of the one-dimensional equation is then summarized as follows: 
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𝑅(𝑥̃, 𝑡̃) = exp(𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 𝑥̃ − 𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 𝑡̃) × ∑ Ψ𝑖(𝑥̃) exp(−𝜇𝑖
2𝑇𝑠𝑦𝑠 𝑡̃) [𝜃̅𝑖(𝑡̃ = 0) + ∫ 𝑆𝑖̅(𝜏̃)exp(𝜇𝑖

2𝑇𝑠𝑦𝑠𝜏̃)𝑑𝜏̃
𝑡

0

]

∞

𝑖=1

, (26) 

where 𝐿̃𝑑𝑖𝑓𝑓,𝑥 =  2𝐷𝑥 𝑢𝐿𝑠𝑦𝑠⁄ , and 𝑇̃𝑑𝑖𝑓𝑓,𝑥 =  4𝐷𝑥 𝑢2𝑇𝑠𝑦𝑠⁄ = 2𝐿̃𝑑𝑖𝑓𝑓,𝑥(𝑢 𝑉𝑠𝑦𝑠⁄ )−1 are the dimensionless diffusion length-scale 

and time-scale, respectively. 170 

We here introduce a set of eigenvalues to specify the eigenfunctions for the eigenvalue problem: 

𝛽𝑖 = 𝑖𝜋; 𝜇𝑖 =
𝛽𝑖√𝐷𝑥

𝐿𝑠𝑦𝑠

; 𝑖 = 1,2, … (27) 

The norms and the normalized eigenfunctions are then written as 

𝑁𝑖 =
1

2
; Ψ𝑖(𝑥̃) = √2 sin(𝛽𝑖𝑥̃) . (28) 

Note that these eigenfunctions and eigenvalues satisfy the following orthogonality property: 175 

∫ Ψ𝑖(𝑥̃)Ψ𝑗(𝑥̃)𝑑𝑥̃
1

0

= 𝛿𝑖𝑗 . (29) 

With this form of eigenfunctions and eigenvalues, the quantity (𝜇𝑖
2𝑇𝑠𝑦𝑠)

−1
 indicates the decay timescale of each eigenfunctions, 

(𝜇𝑖
2𝑇𝑠𝑦𝑠)

−1
= 𝛽𝑖

−2
𝐿𝑠𝑦𝑠

2

𝐷𝑥

𝑇𝑠𝑦𝑠
−1 = 2𝛽𝑖

−2𝐿̃𝑑𝑖𝑓𝑓,𝑠𝑦𝑠
−1 , (30) 

where 𝐿̃𝑑𝑖𝑓𝑓,𝑠𝑦𝑠 ≡ 2𝐷𝑥 (𝑉𝑠𝑦𝑠𝐿𝑠𝑦𝑠)⁄  is the systematic diffusion length. While the diffusion timescale, 𝑇̃𝑑𝑖𝑓𝑓,𝑥 becomes larger 

when the diffusion effect is dominant (with a large 𝐿̃𝑑𝑖𝑓𝑓,𝑥), (𝜇𝑖
2𝑇𝑠𝑦𝑠)

−1
 is independent of such parameters, but it only depends 180 

on the systematic diffusion length, 𝐿̃𝑑𝑖𝑓𝑓,𝑠𝑦𝑠. 

 In the analytic solutions described by equation (26), the only two free parameters, 𝐿̃𝑑𝑖𝑓𝑓,𝑥, and 𝑢 𝑉𝑠𝑦𝑠⁄  control all effects driven 

by advection and diffusion. In the following sections, we parametrized the advection and diffusion effects using the parameters, 

𝑢 𝑉𝑠𝑦𝑠⁄  and 𝐿̃𝑑𝑖𝑓𝑓,𝑥 to address the turbulent and intermediate regimes (i.e., equations (4) & (5)). For the turbulent regimes, we 

adopted the parameters, (𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 , 𝑢 𝑉𝑠𝑦𝑠⁄ ) = (0.1, 0.01), (0.5, 0.05). For the intermediate regimes, the parameters with higher 185 

advection speed were used: (𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 , 𝑢 𝑉𝑠𝑦𝑠⁄ ) = (1, 0.1), (2.5, 0.25), (5, 0.5). 

4.2 Evolution dominated by decay 

From equation (26), the source-free solution with 𝑆𝑖̅(𝜏̃) ≈ 0(i.e., 𝑆(𝑥̃, 𝑡̃) ≈ 0) is simply described as: 

𝑅(𝑥̃, 𝑡̃) ≈ exp(𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 𝑥̃ − 𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 𝑡̃) ∑ 𝜃̅𝑖(𝑡̃ = 0)Ψ𝑖(𝑥̃) exp(−𝜇𝑖
2𝑇𝑠𝑦𝑠 𝑡̃)

∞

𝑖=1

. (31) 

Boundary conditions are given as follows: 190 

𝑅(𝑥̃, 𝑡̃ = 0) = 1; 0 ≤ 𝑥̃ ≤ 1, (32) 

𝑅(0, 𝑡̃) = 0;  𝑅(1, 𝑡̃) = 0; 𝑡̃ > 0.  (33) 

From the boundary conditions, 𝜃̅𝑖(𝑡̃ = 0) becomes: 

𝜃̅𝑖(𝑡 = 0) = ∫ Ψ𝑖(𝑥̃)𝑅(𝑥̃, 𝑡̃ = 0) exp(−𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 𝑥̃) 𝑑𝑥̃

1

0

= ∫ Ψ𝑖(𝑥̃) exp(−𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 𝑥̃) 𝑑𝑥̃

1

0

195 

= √2
exp(−𝐿̃𝑑𝑖𝑓𝑓,𝑥

−1 ) [𝛽𝑖 exp(𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 ) − 𝐿̃𝑑𝑖𝑓𝑓,𝑥

−1 sin 𝛽𝑖 − 𝛽𝑖 cos 𝛽𝑖]

𝐿̃𝑑𝑖𝑓𝑓,𝑥
−2 + 𝛽𝑖

2
.  (34) 

In the turbulent regime, 𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 ≪ 1, for instance, the 𝜃̅𝑖(𝑡 = 0) can be approximated as 
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𝜃̅𝑖(𝑡 = 0) ≈
√2(1 − cos 𝛽𝑖)

𝛽𝑖

= {
2√2 𝛽𝑖⁄ ,   𝑓𝑜𝑟 𝑜𝑑𝑑 𝑖

0, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑖
. (35) 

This indicates the evolution of system could be insensitive to the diffusion effects for sufficiently larger diffusion length. When 

focusing solely on the time-dependent term, we can summarize the solutions as follows: 200 

𝑅(𝑥̃, 𝑡̃) ∝ ∑ exp(−(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃)

∞

𝑖=1

, (36) 

𝑑𝑅(𝑥̃, 𝑡̃)

𝑑𝑡̃
∝ − ∑(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠) exp(−(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)𝑡̃)

∞

𝑖=1

. (37) 

Without the source term, 𝑅(𝑥̃, 𝑡̃) decays as time, 𝑡̃, increases and the negative sign of 𝑑𝑅(𝑥̃, 𝑡̃) 𝑑𝑡̃⁄  is obvious for the decaying 

field. 

 205 

 

Figure 1: (a) – (e): Time evolution of field, 𝑹(𝒙̃, 𝒕̃)  with a set of parameters, (𝑳̃𝒅𝒊𝒇𝒇,𝒙
−𝟏 , 𝒖 𝑽𝒔𝒚𝒔⁄ ) =

(𝟎. 𝟏, 𝟎. 𝟎𝟏), (𝟎. 𝟓, 𝟎. 𝟎𝟓), (𝟏, 𝟎. 𝟏), (𝟐. 𝟓, 𝟎. 𝟐𝟓), (𝟓, 𝟎. 𝟓). (f) Time evolution of the spatially averaged field, 〈𝑹(𝒙̃, 𝒕̃)〉. 

 

To investigate the parameter dependence of the analytic solutions, we performed numerical experiments with the following 210 

set of parameters:(𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 , 𝑢 𝑉𝑠𝑦𝑠⁄ ) = (0.1,0.01), (0.5,0.05), (1, 0.1), (2.5, 0.25), (5, 0.5). Panels (a)-(e) of Figure 1 show the 

time evolution of 𝑅(𝑥̃, 𝑡̃) with five different parameter sets. In the turbulent regime with 𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 ≤ 1 (panels (a) – (c)), the time 

evolution of 𝑅(𝑥̃, 𝑡̃) weakly depends on the diffusion effects. In the intermediate regime with 𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 ≥ 1 (panels (c) – (e)), 

the field decay becomes more prominent with stronger advection effects (or, weaker diffusion effects).  The time evolution of 

spatially averaged fields, 〈𝑅(𝑥̃, 𝑡̃)〉 is shown in panel (f) to compare the spatially averaged decay rate, 𝑑〈𝑅(𝑥̃, 𝑡̃)〉 𝑑𝑡̃⁄ . Notably, 215 

although the advection speed increases 2 times, the decay rate only increases 1.36 times since the diffusion effects regulate the 

decay effects. 
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4.3 Evolution with stationary source term 

In the following sections, we take into account the non-zero source term in the analytical solution, as described in Equation 220 

(26). We begin by considering a straightforward scenario in which the source term is stationary, represented as 𝑆(𝑥̃, 𝑡̃) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Such an assumption characterizes the presence of constant injection into the system, making it suitable for the 

analysis of persistent field lasting for a significant timescale. In the case where 𝑆(𝑥̃, 𝑡̃) ≈ 1, the expression for 𝑆𝑖̅(𝜏̃) is derived 

as follows: 

𝑆𝑖̅(𝜏̃) = ∫ Ψ𝑖(𝑥̃)𝑆(𝑥̃, 𝑡̃) exp(−𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 𝑥̃ + 𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 𝜏̃)
1

0

𝑑𝑥̃225 

= √2
exp(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 𝜏̃ − 𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 ) [𝛽𝑖 exp(𝐿̃𝑑𝑖𝑓𝑓,𝑥

−1 ) − 𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 sin 𝛽𝑖 − 𝛽𝑖 cos 𝛽𝑖]

𝐿̃𝑑𝑖𝑓𝑓,𝑥
−2 + 𝛽𝑖

2

∝  exp(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 𝜏̃) . (38) 

Then the integral, 𝐼𝑠,𝑖(𝑡̃) including 𝑆𝑖̅(𝜏̃)  becomes: 

𝐼𝑠,𝑖(𝑡̃) = ∫ 𝑆𝑖̅(𝜏̃)exp(𝜇𝑖
2𝑇𝑠𝑦𝑠 𝜏̃)𝑑𝜏̃

𝑡

0

= √2
exp(−𝐿̃𝑑𝑖𝑓𝑓,𝑥

−1 ) [exp (𝑡̃(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)) − 1] [𝛽𝑖 exp(𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 ) − 𝐿̃𝑑𝑖𝑓𝑓,𝑥

−1 sin 𝛽𝑖 − 𝛽𝑖 cos 𝛽𝑖]

(𝐿̃𝑑𝑖𝑓𝑓,𝑥
−2 + 𝛽𝑖

2)(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)
. (39) 230 

In the turbulent regime, 𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 ≪ 1, 𝐼𝑠,𝑖(𝑡̃) becomes: 

𝐼𝑠,𝑖(𝑡̃) ≈  
√2(1 − cos 𝛽𝑖)

𝛽𝑖

[exp (𝑡̃(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)) − 1]

(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)
, (40) 

which demonstrates that the growth due to the source term also could be independent of the diffusion effects. When focusing 

solely on the time-dependent term, we can summarize the results as follows: 

𝐼𝑠,𝑖(𝑡̃) ∝  
1

𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠

[exp ((𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃) − 1] , (41) 235 

𝑅(𝑥̃, 𝑡̃) ∝ ∑ exp(−(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃) [𝜃̅𝑖(𝑡̃ = 0) + 𝐼𝑠,𝑖(𝑡̃)]

∞

𝑖=1

= ∑ exp(−(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃) {𝜃̅𝑖(𝑡 = 0) +
1

𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠

[exp ((𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃) − 1]}

∞

𝑖=1

, (42) 

𝑑𝑅(𝑥̃, 𝑡̃)

𝑑𝑡̃
∝ ∑ exp(−(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)𝑡̃)

∞

𝑖=1

. (43) 

According to Equations (42) and (43), the magnitude of 𝑑𝑅(𝑥̃, 𝑡̃) 𝑑𝑡̃⁄  decreases as time, 𝑡̃, increases. This indicates the system 

can evolve towards equilibrium by balancing the effects of the source term with the decay caused by advection and diffusion. 240 

Notably, the system reaches equilibrium more rapidly when the diffusion timescale is shorter (i.e., (𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠) is larger). 

To gain a more comprehensive understanding of the system, we conducted additional numerical experiments with the 

boundary conditions (32) and (33). The same parameter sets as in Figure 1 were used for these experiments. In Figure. 2., 

Panels (a)-(e) depict the time evolution of the precipitation field for three different parameter sets, while Panel (f) illustrates 

the time evolution of spatially averaged fields, 〈𝑅(𝑥̃, 𝑡̃)〉. Notably, we observed that the precipitation field with stronger 245 

advection effects (or weaker diffusion effects) converges more rapidly as shown in panel (f). In the case with strong advection 

effects with 𝑢 𝑉𝑠𝑦𝑠⁄ = 0.5 (black line in panel (f)), the decay due to the advection and the growth due to the source term 

becomes equalized, 𝑑〈𝑅(𝑥̃, 𝑡̃)〉 𝑑𝑡̃⁄ ≈ 0, within 𝑡̃ ≤ 1. In the turbulent regime with 𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 ≤ 1, the growth due to the constant 

source term weakly depends on the strength of diffusion effects. 
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 250 

 

Figure 2: The same as Figure 1 but including the stationary source-term. 

 

4.4 Time-varying source-term and application for precipitation estimation 

The section introduces the application of solutions with arbitrary source terms, particularly focusing on atmospheric systems. 255 

In these systems, the development and decay of precipitation are often modeled using a fixed coefficient 𝛾, expressed as 

~exp(−𝛾/𝑇𝑠𝑦𝑠), to address the quasi-periodic nature of weather patterns (e.g., diurnal variations; Brutsaert 1974; Jinno et al. 

1993). Under this assumption, the analytical solution maintains continuity throughout the entire domain, consistent with fluid 

properties. The significance of growth and decay within the diurnal cycle is emphasized through an error analysis of 

precipitation nowcasting using MAPLE (Atencia et al. 2017). This effect is attributed to the solar cycle, with heating energy 260 

resulting in an increase in average rainfall in the afternoon. However, in atmospheric systems, there are instances of rapid field 

intensity development due to source terms within very short time scales (𝑡𝑠 ≪ 𝑇𝑠𝑦𝑠). Such source terms could significantly 

enhance the growth of precipitation, particularly in localized areas. Additionally, the regulation effects due to advection-

diffusion on the field growth by the source term could be substantial for estimating the amount of precipitation more precisely. 

In this context, the behavior of the analytic solutions with time-varying source terms is examined. 265 
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Figure 3: Time evolution of field, 𝑹(𝒙̃, 𝒕̃), including the time-varying source-term, 𝑺(𝒙̃, 𝒕̃) ≈ 𝐞𝐱𝐩 (−(𝒕̃ − 𝒕̃𝒔)𝟐/𝟐𝝈̃𝟐) √𝟐𝝅𝝈̃𝟐⁄  with 𝝈̃, 

ranging from 0.1 to 0.8. Here, the parameter set (𝑳̃𝒅𝒊𝒇𝒇,𝒙
−𝟏 = 𝟐. 𝟓, 𝒖 𝑽𝒔𝒚𝒔⁄ = 𝟎. 𝟐𝟓) for intermediate regime is used as an example. 

 

We first consider a straightforward case. When the contribution timescale of the source term, 𝑡𝑠, is significantly shorter than 270 

the system's dynamical scale, denoted as 𝑡̃𝑠 = 𝑡𝑠 𝑇𝑠𝑦𝑠⁄ ≪ 1, the source term can be simplified as 𝑆(𝑥̃, 𝑡̃) ≈ 𝑁𝑠𝛿(𝑡̃ − 𝑡̃𝑠) with 

the normalization constant, 𝑁𝑠. In this scenario, the contribution of the source term can be calculated as follows: 

𝑆𝑖̅(𝜏̃) ∝ exp(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 𝜏̃) 𝛿(𝜏̃ − 𝑡̃𝑠), (44) 

𝐼𝑠,𝑖(𝑡̃) ∝ ∫ 𝛿(𝜏̃ − 𝑡̃𝑠)exp ((𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝜏̃) 𝑑𝜏̃
𝑡

0

= exp ((𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃𝑠) (2Θ(𝑡̃) − 1)Θ(𝑡̃𝑠 − 𝑡̃Θ(−𝑡̃))Θ(𝑡̃Θ(𝑡̃) − 𝑡̃𝑠)275 

=  exp ((𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃𝑠) Θ(𝑡̃ − 𝑡̃𝑠), (45) 

where, Θ(𝑥) is the Heaviside step function, 

Θ(𝑥) = {
0, 𝑥 < 0,
1, 𝑥 ≥ 0.

 (46) 

Using Equation (45), we obtain the field, 

𝑅(𝑥̃, 𝑡̃) ∝  ∑ exp(−(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃) [𝜃̅𝑖(𝑡̃ = 0) + 𝐼𝑠,𝑖(𝑡̃)]

∞

𝑖=1

280 

= ∑ {𝜃̅𝑖(𝑡̃ = 0) exp(−(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃)

∞

𝑖=1

+ 𝑁𝑠Θ(𝑡̃ − 𝑡̃𝑠) exp (−(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)(𝑡̃ − 𝑡̃𝑠))} . (47) 

In this case, rapid growth only occurs at 𝑡̃ =  𝑡̃𝑠 , while the field intensity typically decreases throughout the spatial domain, 

where 0 ≤ 𝑡̃ ≤ 1. 

To extend the analysis conducted earlier, we also consider a source term expressed as 𝑆(𝑥̃, 𝑡̃) ≈285 

𝑁𝑠 exp (−(𝑡̃ − 𝑡̃𝑠)2/2𝜎̃2) √2𝜋𝜎̃2⁄ , where 𝑡̃𝑠 represents the characteristic timescale of the source term, 𝜎 denotes the standard 

deviation, and 𝑁𝑠 is the normalization constant. Here, we examine the effects of the source term on the system evolved by 
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advection and diffusion, focusing on the significance of source-term timescales in the growth of precipitation intensity. The 

contributions of the source term and the resulting field can be summarized as follows: 

𝑆𝑖̅(𝜏̃) ∝
1

𝜎̃
exp (𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 𝜏̃ −
(𝜏̃ − 𝑡̃𝑠)2

2𝜎̃2
) , (48) 290 

𝐼𝑠,𝑖(𝑡̃) ∝ ∫
1

𝜎̃
exp ((𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)𝜏̃ −

(𝜏̃ − 𝑡̃𝑠)2

2𝜎̃2
) 𝑑𝜏̃

𝑡̃

0

≈ exp (
1

2
(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)

2
𝜎̃2 + (𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)𝑡̃𝑠)

× [1.25331 (erf (
−0.707107(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)𝜎̃2 + 0.707107(𝑡̃ − 𝑡̃𝑠)

𝜎̃
)

− erf (
−0.707107(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)𝜎̃2 − 0.707107𝑡̃𝑠

𝜎̃
))] , (49) 

 295 

𝑅(𝑥̃, 𝑡̃) ∝  ∑ exp(−(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃) [𝜃̅𝑖(𝑡̃ = 0) + 𝐼𝑠,𝑖(𝑡̃)]

∞

𝑖=1

≈ ∑ {𝜃̅𝑖(𝑡̃ = 0) exp(−(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃)

∞

𝑖=1

+ 𝑁𝑠exp (
1

2
(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)

2
𝜎̃2 − (𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)(𝑡̃ − 𝑡̃𝑠))

× [1.25331 (erf (
−0.707107(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)𝜎̃2 + 0.707107(𝑡̃ − 𝑡̃𝑠)

𝜎̃
)

− erf (
−0.707107(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)𝜎̃2 − 0.707107𝑡̃𝑠

𝜎̃
))]} . (50) 300 

In Equation (50), the growth of the field due to the source term mainly depends on the term exp (
1

2
(𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 + 𝜇𝑖
2𝑇𝑠𝑦𝑠)

2
𝜎̃2 −

(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)(𝑡̃ − 𝑡̃𝑠)). 

The behavior of numerical solutions with different forms of the source term, 𝑆(𝑥̃, 𝑡̃) is shown in Figure 3. The boundary 

conditions, (32) and (33), and the parameter, 𝜎̃, ranging from 0.1 to 0.4 with 𝑡̃𝑠 = 0.5 were used. Note that 𝑁𝑠 is determined 

by satisfying  𝜃̅𝑖(𝑡̃ = 0)  ≈  𝐼𝑠,𝑖(𝑡̃ = 0). For larger 𝜎̃, the advection-diffusion effects become substantial on the evolution of 305 

𝑅(𝑥̃, 𝑡̃). The difference in 𝜎̃ values can be interpreted as representing different types of precipitation. For instance, heavy 

convective rainfalls exhibited in a localized area could be modeled by the source term with a smaller 𝜎̃, whereas stratiform 

rainfalls exhibited over a larger area could be modeled by the source term with a larger 𝜎̃. 
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 310 

Figure 4: Time evolution of spatially averaged field, 〈𝑹(𝒙̃, 𝒕̃)〉, with different values of 𝑳̃𝒅𝒊𝒇𝒇,𝒙
−𝟏 , 𝒖 𝑽𝒔𝒚𝒔⁄  and  𝝈̃. 

 

 

Figure 5: The timescales of growth (solid lines; 𝑻̃𝒈𝒓𝒐𝒘𝒕𝒉) and decay (dashed lines; 𝑻̃𝒅𝒆𝒄𝒂𝒚) as a function of advection speed, 𝒖 𝑽𝒔𝒚𝒔⁄ . 

Note that 𝑻̃𝒈𝒓𝒐𝒘𝒕𝒉 ≈ 𝑻̃𝒅𝒆𝒄𝒂𝒚 in the case with 𝝈̃ = 𝟎. 𝟏. 315 

 

Figure 4 shows the time evolution of the spatially averaged field, 〈𝑅(𝑥̃, 𝑡̃)〉, with different values of 𝜎̃, ranging from 0.1 to 

0.8. The parameters (𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 , 𝑢 𝑉𝑠𝑦𝑠⁄ )  used to capture various effects of advection and diffusion are 
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(0.1,0.01), (0.5,0.05), (1, 0.1), (2.5, 0.25),  and (5, 0.5). In cases with smaller 𝜎̃  (panels (a) and (b)), the growth process 

during 0 ≤ 𝑡̃ ≤ 𝑡̃𝑠 weakly depends on the advection effect, whereas the decay process is strongly affected by the advection 320 

effect. In the intermediate regime, the field decay due to advection and diffusion becomes dominant over the growth through 

the source term when 𝜎̃ becomes larger (panel (d)). This is because for a sufficiently longer timescale, 𝜎̃ → ∞, the source term 

can be approximated as 𝑆(𝑥̃, 𝑡̃) → 0. In the turbulent regime, on the other hand, the field evolution is consistent with the 

persistent evolution in Section 4.3.  

In Figure 5, the growth and decay timescales as a function of the advection speed, 𝑢 𝑉𝑠𝑦𝑠⁄ ,  are shown with three different 𝜎̃ 325 

values. Here, in the time domain including the source term effects, 𝑡̃𝑠 − 𝜎̃ ≤ 𝑡̃ ≤  𝑡̃𝑠 + 𝜎̃, the timescales of growth and decay 

phases are defined as follows: (1) the timescale of growth phase: 𝑇̃𝑔𝑟𝑜𝑤𝑡ℎ = 𝑇𝑔𝑟𝑜𝑤𝑡ℎ 𝑇𝑠𝑦𝑠⁄ = 𝑡̃𝑚𝑎𝑥 − (𝑡̃𝑠 − 𝜎̃); (2) the timescale 

of decay phase: 𝑇̃𝑑𝑒𝑐𝑎𝑦 = 𝑇𝑑𝑒𝑐𝑎𝑦 𝑇𝑠𝑦𝑠⁄ = (𝑡̃𝑠 + 𝜎̃) − 𝑡̃𝑚𝑎𝑥. Here, 𝑡̃𝑚𝑎𝑥 indicates the timestep for maximum field intensity. The 

field is growing during 𝑡̃𝑠 − 𝜎̃ ≤ 𝑡̃ ≤  𝑡̃𝑠 + 𝜎̃ when 𝑇̃𝑔𝑟𝑜𝑤𝑡ℎ >  𝑇̃𝑑𝑒𝑐𝑎𝑦 . While the growth and decay timescales are almost 

comparable when 𝜎̃ is very small (i.e., the case with 𝜎̃ = 0.1), both 𝑇̃𝑔𝑟𝑜𝑤𝑡ℎ and 𝑇̃𝑑𝑒𝑐𝑎𝑦  depend on the advection and diffusion 330 

effects when 𝜎̃ becomes larger. Notably, the decay timescale can be comparable to the growth timescale when 𝑢 𝑉𝑠𝑦𝑠⁄  is 

sufficiently large, regardless of the presence of source term. 

We further elaborate on the implications of these results for measuring quantitative precipitation estimation. The time-varying 

source term can be applied to quantitative precipitation estimation by obtaining 𝜎̃ based on physical data. For example, deep 

convective clouds containing heavy precipitation can be detected using brightness temperature data from geostationary 335 

satellites (e.g., Kurino 1997; So & Shin 2018). Generally, larger convective clouds may lead to longer-lasting precipitation. 

Larger convective clouds often indicate stronger convective activity, resulting in the upward movement and cooling of 

moisture in the atmosphere. These conditions support the formation and sustenance of precipitation, potentially leading to a 

more prolonged period of precipitation. Additionally, a substantial fraction of growth and decay is attributed to orographic 

forcing (Foresti et al. 2018). By utilizing the size of deep convective clouds measured by geostationary satellites and the 340 

orographic information of the forecasting area, it is possible to empirically measure the corresponding 𝜎̃. The source term 

derived from such 𝜎̃ could be applicable for quantitative precipitation prediction. 

 

4.5 Statistical treatment 

 In the realistic system, the physical ingredients for the source term could follow a distribution, and thus, a statistically 345 

averaged source term needs to be defined. This section describes the mathematical framework for calculating the statistically 

averaged source term and its influence on the system's response over time.  Given the distribution of 𝜎̃ in the domain 𝜎̃1 ≤

𝜎̃ ≤ 𝜎̃2, denoted as 𝑁(𝜎̃), the statistically averaged source term can be defined as follows: 

〈𝑆(𝑥̃, 𝑡̃)〉 ≡
∫ 𝑆(𝑥̃, 𝑡̃)𝑁(𝜎̃)𝑑𝜎̃

𝜎̃2

𝜎̃1

∫ 𝑁(𝜎̃)𝑑𝜎̃
𝜎̃2

𝜎̃1

. (51) 

The statistically averaged contribution of the source term can be calculated through the equation (17): 350 

〈𝑆𝑖̅(𝜏̃)〉 = ∫ Ψ𝑖(𝑥̃)〈𝑆(𝑥̃, 𝑡̃)〉 exp(−𝐿̃𝑑𝑖𝑓𝑓,𝑥
−1 𝑥̃ + 𝑇̃𝑑𝑖𝑓𝑓,𝑥

−1 𝜏̃)
1

0

𝑑𝑥̃, (52) 

〈𝐼𝑠,𝑖(𝑡̃)〉 = ∫ 〈𝑆𝑖̅(𝜏̃)〉exp(𝜇𝑖
2𝑇𝑠𝑦𝑠𝜏̃)𝑑𝜏̃

𝑡̃

0

. (53) 

〈𝑆𝑖̅(𝜏̃)〉 represents the statistically averaged contribution of the source term associated with the 𝑖-th component. It involves the 

integral of Ψ𝑖(𝑥̃), the spatial profile of the component, multiplied by the statistically averaged source term and a decaying 

exponential term. 〈𝐼𝑠,𝑖(𝑡̃)〉  indicates the integral of the statistically averaged contribution of the source term over time, 355 
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incorporating a time-dependent exponential factor. Using the equations (52) and (53), the field evolution can be described as 

follows: 

𝑅(𝑥̃, 𝑡̃) ∝  ∑ exp(−(𝑇̃𝑑𝑖𝑓𝑓,𝑥
−1 + 𝜇𝑖

2𝑇𝑠𝑦𝑠)𝑡̃) [𝜃̅𝑖(𝑡̃ = 0) + 〈𝐼𝑠,𝑖(𝑡̃)〉]

∞

𝑖=1

. (54) 

 

5 Summary and discussion 360 

This study concentrates on the application of the Advection-Diffusion equation, specifically analyzing fluid systems with 

time-varying source terms that drive rapid growth in field intensity. Utilizing analytic solutions obtained through integral 

transform techniques, we examined fluid systems within turbulent and intermediate regimes. Assuming that time-varying 

source terms follow a Gaussian distribution in the temporal domain, we investigated their dependence on source term 

characteristics, advection, and diffusion effects. In the turbulent regime with a sufficiently larger diffusion length, precipitation 365 

evolution weakly depends on source term characteristics and advection effects. In the intermediate regime with a relatively 

smaller diffusion length, advection becomes significant in the precipitation evolution. Particularly, it enhances the decay rate 

and regulates growth mediated by source terms. Diffusion also plays a crucial role in regulating the decay of the precipitation 

field. 

While this study treated advection velocity as a stationary parameter to emphasize the relative importance of advection, 370 

diffusion, and source terms, a non-stationary velocity field could affect the relative importance of such effects. Here, we 

provide an intuition regarding the system evolution due to the presence of velocity perturbation. Assuming the velocity 

perturbation satisfying 𝛿𝑢 ≪ 𝑢, we examined the characteristics of diffusion effects modified by the velocity perturbation: 

𝐿̃𝑑𝑖𝑓𝑓,𝑥 =
2𝐷𝑥

𝑢𝐿𝑠𝑦𝑠

(1 +
𝛿𝑢

𝑢
)

−1

≈
2𝐷𝑥

𝑢𝐿𝑠𝑦𝑠

(1 −
𝛿𝑢

𝑢
) , (55) 

𝑇̃𝑑𝑖𝑓𝑓,𝑥 =
4𝐷𝑥

𝑢2𝑇𝑠𝑦𝑠

(1 +
𝛿𝑢

𝑢
)

−2

≈
4𝐷𝑥

𝑢2𝑇𝑠𝑦𝑠

(1 − 2
𝛿𝑢

𝑢
) . (56) 375 

Those equations represent that the positive perturbation, 𝛿𝑢 > 0 , reduces the diffusion effects, whereas the negative 

perturbation, 𝛿𝑢 < 0, enhances the diffusion effects. Indeed, Ryu et al. (2020) argued that precipitation nowcasting using a 

non-stationary velocity field can enhance the accuracy of quantitative precipitation estimation, as demonstrated in a case study 

in the Korean Peninsula. The analysis presented in this paper could be extended by solving the coupled partial differential 

equations comprising Advection-Diffusion and Burgers’ equations, which we leave for future work. 380 
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