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Abstract. Multi-level Monte Carlo methods have established as a tool in uncertainty quantification for decreasing the com-

putational costs while maintaining the same statistical accuracy as in single-level Monte Carlo. Lately, there have also been

theoretical efforts to use similar ideas to facilitate multi-level data assimilation. By applying a multi-level ensemble Kalman

filter for assimilating sparse observations of ocean currents into a simplified ocean model based on the shallow-water equations,

we study the practical challenges of applying these method to more complex problems. We present numerical results from a5

realistic test case where small-scale perturbations lead to chaotic behaviour, and in this context we conduct state estimation

and drift trajectories forecasting using multi-level ensembles. This represents a new step on the path of making multi-level data

assimilation feasible for real-world oceanographic applications.

Short Summary

Efficient search-and-rescue at sea is supported by rapid forecasts of drift trajectories based on a dynamical model and data10

assimilation of in situ observations. The multi-level approach can accelerate computations by running models on various

resolutions. This work explores the practicality of multi-level methods for realistic data assimilation applications by considering

a challenging shallow-water case for the ocean dynamics.
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1 Introduction

The multi-level Monte Carlo (MLMC) method leverages ensemble simulations of varying accuracy to approximate statis-15

tical quantities (Giles, 2008). By harnessing the cost-effectiveness of low-fidelity simulations within the ensemble, MLMC

estimators achieve the same theoretically statistical accuracy as classical single-level approaches but at significantly reduced

computational expenses. In spatio-temporal applications, the different levels often correspond to solving the same problem on

varied grid resolutions, where there is a decrease in computational costs with lower resolution (Mishra and Schwab, 2012).

This approach has become an established tool in the realm of uncertainty quantification, primarily due to its computational20

efficiency (Giles, 2015). Recently, the adaptation of multi-level methodologies has extended into the field of data assimilation,

aimed at updating ensembles of numerical models with partial and noisy observations of the system. While related work on

multi-level data assimilation (MLDA) has largely concentrated on theoretical analyses of potential gains (Hoel et al., 2016;

Beskos et al., 2017; Jasra et al., 2020; Chernov et al., 2021), our study distinguish itself by applying these methods to a practical

scenario of real-world relevance.25

Our motivation to exploit MLDA arises from search-and-rescue (SAR) operations at sea, where efficient prediction of drift

trajectories with associated uncertainties is of utmost importance. Drift trajectory models used operationally (e.g., Dagestad

et al. (2018)) typically compute the trajectories by using already available forecasts of the ocean currents generated by gen-

eralised circulation model (e.g., Shchepetkin and McWilliams (2005)). Circulation models are typically expensive to run on

the computer, meaning that the available input fields for the trajectory model are either from a deterministic forecast, or a30

small ensemble at best. To complement this approach, one has suggested to run larger ensembles of simplified ocean models to

investigate the uncertainty of the ocean currents, facilitate data assimilation, and consequently quantify the uncertainty in the

drift trajectories (Røed, 2012). By obtaining in situ observations during the SAR operation, such an ensemble can furthermore

be updated efficiently through data assimilation (Holm et al., 2020a, b).

Within this context, we aim to apply and investigate the properties of the recently proposed MLDA methods within an35

existing GPU-accelerated framework for running ensembles of simplified ocean models (Brodtkorb and Holm, 2021). The

simulation framework builds on finite-volume schemes, and we will therefore formulate the MLDA in that setting. The driving

questions for carrying out this work revolve around assessing the potential gain in computational efficiency as indicated by the

existing theoretical analysis and the practicability of the approach. More specifically, the key research questions we address

are:40

i) How can one extend an existing simulation framework designed for single-level ensembles to run multi-level ensembles?

And which performance gain can MLDA deliver when we do not have perfect run time scaling?

ii) Often in MLMC, one optimises the ensemble sizes with respect to a single statistical quantity of interest, but in data

assimilation one is interested in several quantities of interests, among others state mean, variance, and correlations with

observations. How can one still configure a multi-level ensemble for MLDA?45
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iii) How does the configuration of multi-level ensemble influence the quality of the data assimilation? And how does these

MLDA results compare to equivalent data assimilation methods for traditional single-level ensembles?

iv) How can a multi-level ensemble be used for drift trajectory forecasting?

1.1 Related work

MLMC is an efficient approximation method for quantities of interest that involve high-dimensional integrals, and it was50

originally introduced for numerical integration (Heinrich, 2001). For uncertainty quantification, the method was first presented

for the estimation of expected values (Giles, 2008). The multi-level estimator was then constructed by using approximations

of increasing accuracy, by choosing ensembles on the different levels and employing a telescopic sum (Giles, 2015). For this

concept, Schaden and Ullmann (2020) first derived ways to construct the best linear unbiased estimators in the scalar case with

fixed budget, before Destouches et al. (2023) did the same in the multi-dimensional case. For obtaining numerical solutions55

to partial differential equations (PDEs), the hierarchy of levels was constructed by solving the problem on increasingly fine

grids, and using the MLMC on the results (Dodwell et al., 2015). The case of hyperbolic conservation laws and finite volume

methods have been separately analysed for the application of MLMC by Mishra and Schwab (2012) and Fjordholm et al.

(2020), including the particular model of the shallow-water equations (Mishra et al., 2012a).

Ensemble-based data assimilation is a set of techniques that incorporate observations into a probabilistic forecast generated60

by running an ensemble of numerical models (Evensen et al., 2022). The nature of the methods are commonly split into ensem-

ble Kalman filters (EnKF), particle filters (PF), and ensemble variational methods (EnVar) and an overview with emphasis on

geophysical problems can be found in Carrassi et al. (2018) and Vetra-Carvalho et al. (2018). Adaptions to the characteristics

of the model or the data exist, and include approaches for drifter observations (Sun and Penny, 2019).

PFs are non-linear filters that in their purest form evaluate Bayes’ rule directly by adjusting the relative importance or weights65

of each ensemble member according to its resemblance to the observations (Van Leeuwen et al., 2019). In the multi-level ver-

sion of PFs, the weights are updated first on the coarsest level as in the single-level PF, and then on increasingly finer coupled

levels (Jasra et al., 2017; Latz et al., 2018). In contrast, variational methods solve a numerical optimisation problem that seeks

to minimise the discrepancy between the numerical model and the observations with respect to the observation uncertainties,

and the difference between the prior state and the posterior with respect to the so-called background error covariances. En-70

Var seeks to estimate the background error covariance using an ensemble, and multi-level ensembles can been used for this

purpose (Bierig and Chernov, 2014; Mycek and De Lozzo, 2019).

Our interest lies in EnKFs, which are derived from the linear Gaussian model, but still proves highly useful in many non-

linear applications and are therefore popular in practice (Evensen, 2006). The multi-level EnKF (MLEnKF) was first introduced

for temporal processes by Hoel et al. (2016), where the multi-level estimator is applied to the Kalman Gain. This result was75

extended to spatio-temporal processes by Chernov et al. (2021), and similar approaches were developed in history matching

where the multi-level ensembles are complemented with hybrid filters (Fossum et al., 2020; Nezhadali et al., 2020).
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1.2 Contribution and outline

In this work, we discuss and assess the applicability of multi-level data assimilation techniques to practical ocean forecasting

applications. We do this through using simplified ocean models represented by rotating shallow-water equations, assimilating80

observation from a particular challenging test case, before using the posterior multi-level ensemble to forecast drift trajectories.

In this regard, this work brings MLDA one step further from proof-of-concept towards application in operational models.

First, we revise the MLEnKF introduced by Chernov et al. (2021) to a finite-volume framework and incorporate localisation

seamlessly into the multi-level structure, enabling robust data assimilation. Subsequently, we direct the attention on a set

of emerging practical challenges and suggest pragmatic solutions. Among others, we work with the assumptions of both85

theoretical and practical computational work and explain how it influences the performance of MLDA. Furthermore, we use an

existing GPU-accelerated framework for shallow-water simulations, which is optimised for fine spatial resolution, and set up a

data assimilation case with opposing jets. We assimilation sparse observations using the MLEnKF. For this system, we present

that the numerical results show the same state estimation quality as a single-level EnKF of corresponding theoretical error, but

we obtain a speed-up of up to a factor 2. Lastly, we demonstrate further practical use of multi-level ensembles in Sect. 5 by90

showing how to use the posterior ensemble for drift trajectory modelling and forecasting.

The rest of the paper is structured as follows. In Sect. 2, we introduce the general data assimilation problem, repeat the basis

for multi-level statistics, and describe the MLEnKF in the context of numerical models based on finite-volume methods. In

Sect. 3, we elaborate on practicalities in the implementation of MLDA. In Sect. 4, we compare numerical results for single-

level EnKF and MLEnKF. Sect. 5 is dedicated to forecasting of drift trajectories. In Sect. 6, we finish with some concluding95

remarks.

2 Multi-level data assimilation

We start by introducing the data assimilation problem as it appears in ocean forecasting, and then recap the MLMC approach

in this context to outline the suggested MLEnKF in a form that is applicable to models based on finite-volume schemes. This

lays the ground for the specific discussion of practical issues and implementation details in the remainder of the article.100

2.1 The data assimilation problem

Data assimilation is a central methodology that integrates observational data into a numerical representation of the same system.

We consider a state variable x(t) ∈ Rnx , which is evolved forward in time by

x(t + ∆t) =M(x(t)) + δx, (1)

where M is the model operator and δx is a random model error term that represents missing or unresolved physics in the105

model. In our application, M will be a simplified ocean model solved numerically by a finite-volume method on a regular

Cartesian grid. The state x(t) will therefore represent grid cell averages of physical variables for all grid cells in the domain
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at time t. This means that the size of the state vector nx will be the product of the number of grid cells in the domain and the

number of physical variables included in the model.

The computational cost of simulating the forward model in (1) depends on the numerical model itself and on the chosen110

discretisation. In general, coarser resolutions are significantly faster to run than finer ones. For a two-dimensional grid with cell

edges of size ∆x, the computational effort to solve (1) numerically is

O(∆x−3), (2)

see, e.g., Mishra et al. (2012a). Here, one magnitude comes from the fact that the numerical solver has to take time steps

proportional to ∆x. This means that doubling ∆x or equivalently four-dividing the number of grid cells (in two dimensions)115

reduces the computational cost eight times.

In sequential data assimilation, the state is evolved by finite model time steps and we are interested in the incorporation of

data at the isolated model time steps where all quantities are at the same point in time. Hence, unless otherwise stated, we omit

notation of time in the state vector for better readability, and we set x = x(t).

We consider incomplete and noisy observations y ∈ Rny of the true state of the simulated system denoted xtrue. The model120

for the observation is

y = Hxtrue + ε, (3)

where H is the observation operator and ε∼N (0,R) is the observation noise, which we assume to be Gaussian with a diagonal

covariance matrix R. Furthermore, we restrict ourselves to linear observation operators mapping from the state space to the

observational space, meaning H ∈ Rny×nx .125

With the forward model and the observations in place, the data assimilation problem consists of updating the prior (empirical)

probability density function p(x) of the state x with the observations y to obtain the conditional posterior probability density

function p(x|y). This is done using Bayes’ theorem. In the rest of this paper, we consider sequential data assimilation in terms

of filtering, meaning that the model in (1) is only used to evolve the state between observations times.

2.2 Single-level EnKF130

To represent the probability distributions for the state, we use ensembles (xe)
N
e=1 which facilitate Monte Carlo estimation to

infer statistical quantities of interest. In the classical case, we use the notation

x =
1
N

N∑

e=1

xe (4a)

and

x̃e = xe−x (4b)135

for the ensemble average and anomalies, respectively. Then, the unbiased single-level estimators for the mean and covariance

are

µSL[x] = x (5a)
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and

ΣSL[x,x] =
1

N − 1

N∑

e=1

x̃e(x̃e)⊤. (5b)140

Here, the statistical quality of the estimator depends on the number of ensemble members, the quantity of interest as well as

the grid resolution. In terms of computer resources, there is a trade off between the grid resolution and the ensemble size, and

it is accepted that the same ensemble approximates the mean and the covariance with different accuracy. Similarly, the mean

and the anomalies in the modelled ensemble observations without noise are denoted by

y =
1
N

N∑

e=1

Hxe (6a)145

and

ỹe = Hxe−y, (6b)

respectively.

The EnKF is a popular technique for assimilating observation data into an ensemble. In this approach, covariances between

the state and data variables are computed from the ensembles, and in doing so, one also forms a Monte Carlo approximation of150

the Kalman gain K. The state vectors in the ensemble are then linearly updated, see, e.g., Evensen (2006) and Carrassi et al.

(2018). In sequential data assimilation routines, this procedure is then repeated at all data gathering times.

For the single-level EnKF, the Kalman gain can be approximated by

KSL = ΣSL
XY (ΣSL

Y Y )−1, (7)

with155

ΣSL
XY =

1
N − 1

N∑

e=0

x̃e(Hx̃e)⊤ (8a)

and

ΣSL
Y Y = HΣSL

XY +R. (8b)

Here, ΣSL
XY estimates the cross-covariance between the state and the corresponding predicted observations, while ΣSL

Y Y is the

covariance between the observations. Note that the construction of a large state covariance matrix is circumvented in (8). Then,160

the ensemble is updated by

xa
e = xe +KSL(y + εe−Hxe), e = 1, . . . ,N, (9)

where the superscript a marks the posterior (often called the analysis) states, and εe are independent realisations of the ob-

servation noise. Various algebraically equivalent forms of the Kalman update exist and in practice the cross-covariance or

the Kalman gain matrix is often tapered away from observation indices to avoid spurious correlations that are theoretically165

irrelevant but naturally appear because of Monte Carlo variability.
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2.3 Multi-level Monte Carlo

We recall the basics of MLMC for the sake of completeness and for introducing consistent notation.

2.3.1 Up- and downscaling

The multi-level approach relies on the definition of a hierarchy of grids. Starting with the original grid of interest that has170

the finest resolution, computationally less expensive grids are defined. The steps in this hierarchy of discretisations are called

levels and denoted with superscripts 0, . . . ,L where L is the original finest level. The corresponding states are represented

by xl ∈ Rnl
x for l = 0, . . . ,L with n0

x < · · ·< nL
x as vectors of different dimensions, where nL

x = nx for consistency with the

single-level notation.

For the projections between the different levels, it becomes computationally convenient to nest grids. There are several175

possible techniques for nesting a finite-dimensional vector, but it is helpful to take into consideration what the state variables

actually represent (Farmer, 2002). For example for point values linear interpolation may be adequate. Given a two-dimensional

grid for a finite-volume scheme, where the state variables represent average values for the grid cells, coarser grids can be

built by iteratively merging neighbouring cells from the next finer grid. Note that we restrict ourselves here to a coarsening

factor of 2 as it is computationally most convenient, and then nested grids are generated by merging two times two cells each.180

For nested meshes and in particular for the one-cell to/from four-cells scheme, simple repeating/averaging provides feasible

up/downscaling which is conservative in accordance with the finite-volume framework and also computationally efficient. This

enables us to execute algebraic calculations for states on different levels, but for improved readability, the up- and downscaling

is never explicitly denoted.

2.3.2 Multi-level estimators185

A multi-level ensemble consists of coarse members and pairs of states members at subsequent levels:

{x0
e}N0

e=1, {xl+
e , xl−

e }N l

e=1, l = 1, . . . ,L. (10)

Here, the partners xl+
e and xl−

e in a pair share the same realisation, but xl+ is defined on level l and xl− on level l− 1. Note

that, e.g., x2− and x1+ are defined on the same level and hence, the notation with + and − in the superscript is used to

distinguish them. For simplicity, we let xL = xL+ as these are the only ensemble members defined on the finest grid.190

According to the level dimensions, a hierarchy of model operators Ml, l = 0, . . . ,L evolves states on the different grids

in time. This means, for example, that xl+ is evolved by Ml and xl− by Ml−1. In the case of consistent model equations,

the different model operators Ml represent the same numerical solver with different underlying grids according to the level

definition. Similarly, the model perturbations δxl are projections from the original noise on the finest resolution.

A multi-level estimator utilises a telescoping sum over the levels for the estimation of quantities of interest, and this con-195

struction makes it different from the typical empirical approximation of classical Monte Carlo estimators. For the expected
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value, we have the following telescoping sum property

E
(
xL

)
=

L∑

l=1

E
(
xl+−xl−)

+ E(x0), (11)

and in general, for a function g : Rnx → Rng for some ng ∈ N, we have

E
(
g(xL)

)
=

L∑

l=1

E
(
g(xl+)− g(xl−)

)
+ E(g(x0)). (12)200

The above motivates the following general approximation

E
(
g(xL)

)
≈

L∑

l=1


 1

N l

N l∑

e=1

(
g(xl+)− g(xl−)

)

 +

1
N0

N0∑

e=1

g(x0) (13)

using a multi-level ensemble of samples. Following the above expression, one can define multi-level estimators for the mean

and covariance

µML[xL] = x0 +
L∑

l=1

(xl+−xl−) (14a)205

and

ΣML[xL,xL] = Σ0 +
L∑

l=0

(Σl+−Σl−), (14b)

where xl+ and Σl+ are the single-level mean and covariance estimators on level l estimated by the ensemble (xl+
e )Ne

e=1 only.

The analogous notation is used for the (xl−
e )Ne

e=1 ensemble. By the use of linearity, the covariance at the finest level becomes

ΣML[xL,xL] =
1

N0− 1

N0∑

e=0

x̃0
e(x̃

0
e)
⊤+

L∑

l=1

1
N l− 1

N l∑

e=1

(
x̃l+

e (x̃l+
e )⊤− x̃l−

e (x̃l−
e )⊤

)
, (15)210

where the differences are taken between the partners on every level directly.

2.3.3 Theoretical results

We now fix a function g which is given by the statistic one wants to compute. Under certain assumptions, a multi-level estimator

for E[g(x)] yields a computational speed-up for estimating the quantity of interest while keeping a fixed statistical accuracy τ2.

Alternatively, from the reverse perspective, the estimator yields improved statistical accuracy while keeping the computational215

work fixed (Giles, 2015; Lye, 2020).

The main idea is that if the numerical discretisation convergences in the sense that ∥g(xl)−g(xl−1)∥2 → 0 almost surely as

l→∞, then the variance of the details Var[g(xl+)− g(xl−)] =O(E(∥g(xl)− g(xl−1)∥22)) will be small for large l. In other

words, the sampling error on the finer levels is small, meaning we need fewer samples on the finer, more expensive levels. On

the coarser levels we will need more samples, but the coarser levels are cheaper to compute due to (2).220
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Let cl denote the cost of generating a sample xl at level l and let Cl be the cost of xl+−xl− which actually involves

two simulations, where C0 = c0 by definition. The cost is determined by the computational work it takes to solve the PDE

numerically with some software on some hardware. The theoretical costs can be specified using (2) or must be found in

practice by measuring the run time of the simulation for different numerical grid sizes. Analogously, let ∥ · ∥2 be the L2-norm

over the domain, then let225

vl = ∥Var[g(xl)]∥2 (16a)

and

V l = ∥Var[g(xl+)− g(xl−)]∥2, (16b)

where we set V 0 = v0. These variances can be estimated beforehand using experiments or theoretical considerations of con-

vergence in the setting of the numerical discretisation used.230

Based on such analysis, one can efficiently allocate computational resources, where by rule-of-thumb a speed-up is achieved

if

V l ≪ v0 (17a)

and

C0 ≪ ·· · ≪ CL. (17b)235

For the best speed up, we need a strong correlation between the levels and a strong computational scaling for the different

resolutions. Given a fixed number of levels L and corresponding variances {Vl}L
l=0 and computational costs {Cl}L

l=0, one can

derive optimal sample numbers and a theoretical speed-up against single-level Monte Carlo. We will do so in Sect. 3.1.3.

2.4 Multi-level ensemble Kalman filter

The application of the multi-level estimator for the Kalman gain approximation in spatio-temporal problems is originally240

suggested in Chernov et al. (2021). Our work builds on this and revises the method for hierarchically gridded data and explains

the construction of the matrix operators. Note that the Kalman gain KML is a matrix Rnx×ny using the finest resolution. It can

be constructed by the multiplication of the state-observation cross-covariance and the inverse of the observation covariance

from (7) and we hence draw the attention to these matrices. Using the multi-level estimator for ΣXY , we arrive at

ΣML
XY =

1
N0− 1

N0∑

e=0

x̃0
e(ỹ

0
e)
⊤+

L∑

l=1

1
N l− 1

N l∑

e=1

(
x̃l+

e (ỹl+
e )⊤− x̃l−

e (ỹl−
e )⊤

)
, (18)245

where differences between partner levels are taken on the finer resolution and contributions of the different levels are upscaled

in the end. The observation covariance matrix can be extracted from ΣML
XY as before in (8) or calculated independently from

(14).

9

https://doi.org/10.5194/npg-2023-27
Preprint. Discussion started: 4 January 2024
c© Author(s) 2024. CC BY 4.0 License.



For updating the multi-level ensemble, the Kalman gain is downscaled onto the respective level. In the MLEnKF, the analysis

state then becomes for the coarsest level250

x0,a
e = x0

e +KML(y + ε0
e −Hx0

e), e = 1, . . . ,N0 (19a)

and for the pairs on the higher level it is

xl+,a
e = xl+

e +KML(y + εl
e−Hxl+

e ), xl−,a
e = xl−

e +KML(y + εl
e−Hxl−

e ), e = 1, . . . ,N l. (19b)

Here, the observation noise εl
e are independent realisations for all ensemble members on all levels, where pairs on higher

levels again share the same realisation.255

In the estimation, we upscale recursively to the next level. This means that for the computation of the difference between

two levels xl+−xl−, we upscale xl− to have the same resolution as xl+. Eventually, we end up with an estimator on the

finest level. In the ensemble update step, the spatial dimension of the Kalman gain is then downscaled to the respective level,

the observation dimension stays unmodified all the time. Moreover, simple algebraic transformations ensure that the order

of scaling and evaluation of statistical quantities does not matter. For example, the covariance matrix can be formed on a260

coarse grid and then upscaled to a finer grid by applying the projection operator from one side and its transposed from the

other. Alternatively, the states can first be upscaled to the finer grid before the covariance matrix is assembled. Both of these

procedures give the same result.

Figure 1 shows a schematic illustration of conditioning with multi-level ensembles. Simulations of state variables and syn-

thetic data (left) are generated on the coarsest level and at partner levels. All these are used to fit the Kalman gain matrix which265

is enables linear updating of the ensembles at various resolution levels with the observations (right).

With this implementation of the MLEnKF, we stay close to the formulation of Chernov et al. (2021). But even though we

employ a analogous estimation and updating scheme as Chernov et al. (2021), their theoretical assumptions no longer hold

in our set-up and it is further unlikely for realistic applications to have a mean-field reference. Nonetheless, we strive for a

computational speed-up through the MLEnKF, but we use more practical ways to assess the MLDA quality. The estimation270

over nested grids also shares similarities with Fossum et al. (2020), but in contrast to them we avoid the hybridisation with

Bayesian averaging and we keep the higher levels coupled.

3 Practical considerations

Until now we have discussed MLDA and its potential using MLEnKF on a theoretical level. In the following, we discuss some

of the challenges we face and the choices that we have to make when applying MLEnKF to practical applications.275

3.1 Multi-level ensemble sizes

The optimal configuration of the multi-level ensemble depends on the reduction of computational costs towards coarser grids,

but also on the quantity of interest that we want to estimated. In sequential data assimilation cycles, there are actually multiple

10
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Level L
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KML

Figure 1. In multi-level conditioning with the MLEnKF, the empirical Kalman gain is assembled by a telescopic sum from the multi-level

prior ensemble. Here, we use single observation location for illustration purposes. The Kalman gain is represented on the finest resolution

and then projected to each level for updating. The update combines the prior ensemble with the data weighted by the Kalman gain for each

ensemble member.

quantities of interest at different steps in time and at different locations. High-quality estimation of multi-level ensemble mean

and standard deviation are important to make robust statements regarding the forecast. This again relies on the estimation of280

the Kalman gain which must be constructed at every update time from the covariance estimation. Assessment scores may also

be used to evaluate the quality of the ensemble-based representation, and these tasks require various kinds of functions.

For single-level ensembles, the decision for an ensemble size is straightforward and is typically based on how many samples

one can afford within the computational budget. In the multi-level case, the allocation of the computational budget is more

involved. Often the assumption of exponentially growing ensemble sizes towards the coarsest resolution is used to guarantee285

the desired theoretical properties (Bierig and Chernov, 2014; Chernov et al., 2021). For a fixed work budget, optimal weights

in the construction of the multi-level estimator could be derived (Schaden and Ullmann, 2020; Destouches et al., 2023) and

strategies accounting for parallelisation should be considered (Mishra et al., 2012b).

In practical sequential data assimilation, a fixed multi-level ensemble size has to be chosen for all of the necessary estimation

throughout the simulation. To ensure a proper assimilation quality, we choose the ensemble size tailored for the Kalman gain290

estimation in the MLEnKF. It is further expected that the correlation between the levels decreases over simulation time, so that

we relate our choice to the last assimilation time in order to be conservative.

3.1.1 Practical vs. theoretic work

We draw the attention first to the scaling of computational costs over the hierarchy of grids. Even though the theoretical

work required for solving the shallow-water equations is given by (2), numerical simulation software does not always give295

perfect scaling in practice, or at least not at for all problem sizes. Most often, small problem instances are not able to keep
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Figure 2. Practical computational work for different simulators with respect to number of grid cells. (a) Wall run time for Alsvinn on different

computing infrastructures. (b) Relative run time compared to the largest problem instance for deterministic models using GPU Ocean and

Alsvinn, and model with model errors using GPU Ocean. Both figures include theoretical scaling as a dashed line for reference.

the computer fully occupied, thereby leading to suboptimal computational performance. To investigate this issue, we consider

two different simulation frameworks solving PDEs using finite-volume methods with explicit time stepping. The first one is

the GPU-accelerated simulation framework GPU Ocean (Brodtkorb and Holm, 2021), which we will use to run simplified

ocean model in the later examples. The second one is Alsvinn (Lye, 2019), which is a more generic finite-volume framework300

specifically designed for MLMC applications, running both on CPU and GPU.

Figure 2 shows the computational performance of the two simulation frameworks with respect to the grid resolution. In

Figure 2(a), we measure wall run times for Alsvinn using single-core CPU, multi-threaded CPU, and GPU. For large problems,

we see that all these hardware configurations give perfect weak scaling (same slope as the dashed line) and that the GPU

code is roughly ten times faster than multi-core CPU and fifteen times faster than the single-core CPU code, respectively.305

However, the performance on the GPU drops more rapidly than on the CPU when the problem size decreases. This is because

the very large number of computational cores on the GPU requires large problem instances to be fully utilised, and smaller

problems lead to idle resources. The same pattern is also seen using a multi-core CPU. As a consequence, even though the

GPU gives best performance on high resolutions, the single-core CPU performs best on extremely coarse grids. Alsvinn can

use the configuration that is best for a given grid resolution and moreover, pairs of simulations in the multi-level ensemble310

can be distributed between GPU for the finer partners and CPU for the coarser partners. As we observe that the run time of a

high-resolution simulation on the GPU is about the same as the run time of a CPU simulation on the next coarser level, this

heterogeneous parallelisation facilitates best possible use of the computational resources.
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In Figure 2(b), we measure relative performance of GPU Ocean with and without additive model errors with respect to grid

resolution, keeping Alsvinn’s performance on the GPU as a reference. GPU Ocean was developed for efficient high-resolution315

simulation of simplified ocean models and we again see perfect scaling for problems with > 5122 grid cells. For coarser

resolutions than 5122 we observe that both deterministic methods only achieveO(∆x−1) performance, which is expected when

a problem size can be executed fully concurrently on the GPU, such that only the time stepping becomes dominant. When we

perturb the model using additive model errors (see details in Sect. 4.1.2) every 60 s, however, we see that the performance drops

even more for coarse grid resolutions. Whereas the model perturbations are negligible at high grid resolution, it becomes more320

and more dominating as coarser grids allow for larger finite-volume time steps. Eventually, the simulator alternates between

one numerical time step and one model error perturbation, and the computational cost does not reduce any further.

The potential speed-up through multi-level is the larger the steeper the slopes of the computational scaling, but based on the

observations in Figure 2, the assumption of perfect theoretical scaling cannot always be taken for granted. Although the GPU

simulations open up for only a mitigated speed-up compared to the single-core CPU simulations, it is beneficial for the over all325

computational costs to use the simulation hardware that is fastest foe each given resolution. In the following, we will therefore

work with both assumptions, on the one hand with theoretical scaling as upper bound for the speed-up and on the other hand

with the practical costs to assess the actual speed-up for the GPU Ocean simulator.

3.1.2 Variance analysis

To take advantage of the theoretical results for MLMC discussed in Sect. 2.3.3, we must experimentally determine the values330

of vl and V l for a function g. There exist various arguments for different functions and those arguments influence the choice

of the ensemble size implicitly. In the final forecasts, the mean is often the first quantity of interest, and hence one potential

choice for a function is

g1(x) = x. (20)

Alternatively, as the Kalman gain mostly depends on the estimation of the covariance matrix and the covariance has the form335

Cov[x] = E[g(x)] with

g2(x) = x̃2, (21)

we can use this definition of g in the analysis.

To determine the values vl and V l, we construct a trial experiment inspired by the corresponding MLMC trial experiments.

We start by defining N ensemble members on every level, where one member per level shares the noise realisation with one340

member on all the other levels. Then, we run a trial data assimilation experiment with a randomly sampled truth, where we

calculate the Kalman update on the finest level and project it to the coarser levels. Finally, we approximate the variances in

(16) for each physical variable individually.

In practice, it is prohibitive to run a trial experiment to determine the correlations between the levels for every new scenario

before running the multi-level data assimilation. We have repeated the same set-up with different stochastic truths and have345
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seen qualitatively very similar results, such that the hope is that one can extrapolate from one trial experiment to multiple

scenarios. However, from a conservative mindset, the trial set-up has to be relevant enough for a new scenario, e.g., this is a

reasonable assumption for tidal signals on different days, but not necessarily for other extreme weather conditions.

3.1.3 Optimal ensemble size

With the collected values for computational costs and variances per level, the multi-level ensemble size can be derived optimally350

in different ways. We follow the approach for optimal speed-up, such that for fixed statistical accuracy τ2, we set the ensemble

size as

N l =

⌈√
V l

Cl
Cτ

⌉
with Cτ =

1
τ2

L∑

l=0

√
V lCl, (22)

and choose τ2 as small as possible so that the resulting multi-level is still feasible within the computational budget (Müller,

2014). This is done per primary variable.355

3.2 Localisation

Due to the finite sample approximation of the Kalman gain, spurious long-distance correlations are expected to degrade the

quality of the updates. Localisation is a common strategy to improve the practical performance of EnKFs (Sakov and Bertino,

2010). Within MLEnKFs, localisation has also been analysed for level-local formulations (Hoel et al., 2020). However, we

will incorporate spatial localisation into the MLEnKF and the term “localisation” will in the rest of this article refer to spatial360

localisation. In the construction of the state covariance matrix, the entries corresponding to long-distance correlations are

diminished and for the multi-level covariance estimator, we can pick this tapering for each level individually (Destouches

et al., 2023).

Let w ∈ Rnx×ny be a tapering matrix that contains identical rows w. In the updates in (9) or (19), we use the Schur product

of the kernel and the Kalman gain w ◦K. Generally, the need for localisation primarily arises due to a small number of365

ensemble members. As the involved number of ensemble members varies per level in the multi-level case, the MLEnKF offers

the possibility to include localisation on each level independently. We incorporate this directly into the construction of the

Kalman gain by

ΣML,loc
XY =

w0

N0
◦

N0∑

e=0

x̃0
e(ỹ

0
e)
⊤+

L∑

l=1

wl

N l
◦

N l∑

e=1

(
x̃l+

e (ỹl+
e )⊤− x̃l−

e (ỹl−
e )⊤

)
, (23)

where wl entries are either w or 1. In this case, ΣML
Y Y cannot be extracted from ΣML,loc

XY as in (8b), but has to be calculated on370

its own by (14b). The level-wise application for localisation leads to a biased estimator in theory, but localisation has shown to

be a powerful heuristic in practice (Carrassi et al., 2018). For the case of spatially sparse observations, ny ≪ nx, one can also

conduct sequential processing of observations and choose w including relaxation (Beiser et al., 2023).

14

https://doi.org/10.5194/npg-2023-27
Preprint. Discussion started: 4 January 2024
c© Author(s) 2024. CC BY 4.0 License.



3.3 Negative eigenvalues

While the empirical measure associated with a classical Monte-Carlo estimator is positive in the sense that all Dirac con-375

tributions have a positive sign, this is not the case for multi-level estimators where the differences between the levels can

introduce negative values. For example, the lack of the positiveness property yields that approximated variances can become

negative, which is statistically invalid. Moreover, the multi-level covariance estimator is no longer guaranteed to be positive

semi-definite, which can be seen from the estimated covariance matrix having negative eigenvalues.

Methods to construct positive semi-definite matrices are expensive (Maurais et al., 2023) and the calculation of eigenvalues380

for large matrices can be prohibitively costly. We circumvent the assemblance of the full covariance matrix ΣXX and rather

work with the low-dimensional matrix ΣY Y in the suggested MLEnKF approach. With very sparse observation data, its

eigenvalues are fast to compute.

While developing the code for the numerical experiments in Sect. 4, we noticed rare occasions of slightly negative eigenval-

ues and we identify these to be associated with situations where the observation locations lie on a wave front. If no mitigation385

strategy is implemented and K is used directly in the update, the ensemble shows non-physical behaviour over time and even-

tually becomes useless. Visually, strong waves in opposite directions take over to dominate the dynamics. For plain MLMC

this is less of a problem, but it becomes pivotal for data assimilation within the MLEnKF and requires special attention. Since

this seems to happen only rarely in our experiments, we overcome this issue simply by skipping the data assimilation to avoid

non-physical properties in the multi-level estimation, when the smallest eigenvalue ΣY Y becomes negative. By doing this,390

we have noticed that the ensemble results stayed well calibrated and physically reasonable. We monitored slightly negative

eigenvalues in less that 1:10.000 times of the assimilated observations, such that missed assimilation becomes negligible.

Alternatively, one could replace the Kalman gain by a single-level Monte Carlo estimator from one of the levels in case of

negative eigenvalues, but we have seen that it is most important to keep updates statistically and physically sound. In mitigation

strategies, it is not enough to manipulate only ΣY Y , but also ΣXY should be corrected correspondingly as we have learnt from395

independent experiments.

4 Application to simplified ocean model

We now study the performance of MLEnKF for assimilating sparse observations into a simplified ocean model. The experiment

setup is chosen to model rotational phenomena that resembles ocean currents, and the intention is to first use the observations

from our synthetic truth to do state estimation (in this section), and then use the posterior multi-level ensemble to forecast drift400

trajectories (Sect. 5).

4.1 Problem description

As our numerical test case, we consider two geostrophic jets in a periodic domain modelled by the shallow water equations in

a rotating frame of reference. Although the jets initially represent steady state, small perturbations lead to chaotic instabilities,
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meaning that pure Monte Carlo runs without any data assimilation result in a symmetric multivariate distribution with large405

spread around the mean. We consider an identical-twin experiment, where we run an independent simulation which represents

the truth, and from which we sample observations. We then use the same model to run the multi-level ensemble, and use

MLEnKF to assimilate the observations. In general, and unless otherwise stated, our experiment consists of three phases:

– three days of model spin-up,

– seven days of data assimilation, and410

– three days of forecast.

This specific experimental design have previously also been used in both Holm et al. (2020b) and Beiser et al. (2023), although

with different configurations for the observations.

4.1.1 Shallow-water model and initial conditions

The shallow-water model is a non-linear hyperbolic system of equations for conservation of mass and momentum in two415

dimensions given by



η

hu

hv




t

+




hu

hu2 + 1
2gh2

huv




x

+




hv

huv

hv2 + 1
2gh2




y

=




0

fhv

−fhu


 . (24)

Here, η represents the sea surface elevation as a deviation of some equilibrium mean, and hu and hv are the moments in x- and

y-directions. The equilibrium depth is given by H , so that the total water depth becomes h = H +η. Furthermore, we have the

gravitational constant g = 9.81m/s2 and the Coriolis parameter f = 0.0012/s. To represent the model M, we simulate (24)420

using the GPU-accelerated framework GPU Ocean (Brodtkorb and Holm, 2021), which uses a high-resolution central-upwind

finite-volume scheme based on Chertock et al. (2017). For the numerical experiments, we consider a rectangular domain of

size 666km× 1332km with constant depth H = 230m and periodic boundary conditions. At the finest resolution we span a

512× 1024 grid such that the state vector xL = (ηi,j ,hui,j ,hvi,j)
512,1024
i=1,j=1 collects all the conserved variables within the grid.

The initial conditions consists of two opposed jets in the northern and southern part of the domain, and is motivated by a test425

case suggested by Galewsky et al. (2004) for validating shallow-water models on a rotating sphere. These jets are initially in a

steady-state with respect to geostrophic balance, meaning that they satisfy the relation

hu =−gh

f

∂η

∂x
and hv =

gh

f

∂η

∂y
. (25)

The system is however unstable, meaning that small perturbations lead to developments of complex currents and eddies over

time. By introducing perturbations through random sampling of the model error term, the currents of different model realisa-430

tions will evolve in different ways and the model behaves chaotically.
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4.1.2 Model perturbations

The random model errors δx collects perturbations δη,δhu,δhv for each of the physical variables. We construct the noise by

generating samples from a Karhunen-Loeve-type random field for δη, and assigning δhu and δhv according to the geostrophic

balance in (25). With a scaling parameter Θ and a decay parameter θ, the perturbation in η is created by435

δη = Θ
i0+I∑

i=i0

j0+J∑

j=j0

αsin
i,j i−θj−θsin(2iπζ)sin(2jπξ) +αcos

i,j i−θj−θ cos(2iπζ)cos(2jπξ). (26)

We here parameterise the domain as ζ,ξ ∈ [αx,1 +αx]× [αy,1 +αy] and introduce the shifting αx,αy ∼ U [0,1] to break up

spatial patterns. Note that δη is continuous and it is evaluated in the cell centres to get discrete realisations. For the rectangular

domain, we set i0 = 1 and j0 = 2 to obtain basis functions with the same physical scales in x and y directions. Moreover, we

use I = J = 7 basis functions per axis, θ = 0.9 for the decay, and Θ = 0.001 for the scaling.440

For multi-level methods, it is essential that the partners in a pair share the same realisation. When the stochasticity enters

the system only via initial conditions or external forcing, the coupling is rather easy to realise in the implementation. However,

in this MLDA case, we have frequent perturbations working directly on the state variables, which means that the two partner

simulations should share the same realisation of the model error on their different levels. It is thus necessary to evolve coupled

simulators to the same time and transfer information about the sampling. Since the performance of the simulation of a coupled445

pair should not be affected much by the model error, we take care that only some data for the sampling is transferred between

the partners.

The necessary information to sample a single realisation of δx is contained in the 2IJ random numbers αsin
i,j ,αcos

i,j ∈ U [−1,1]

and αx and αy . Therefore, the same realisation of the model error can be easily applied to coupled simulations on different

levels by communicating only these numbers and evaluating (26) in the cell centres of the corresponding grid. For all numerical450

experiments, we employ a model time step ∆t = 60s meaning that we perturb the simulated states after every minute.

4.1.3 Sparse in situ observations

After 3d of spin-up, we retrieve observations from the synthetic truth simulated on the finest level for the next 7d. In particular,

the truth is perturbed with the same model error distribution as the ensemble and is displayed in Figure 3. We see the turbulent

evolution starting from the steady state at t = 0d. We consider 50 regularly distributed locations, that are about 100km apart455

from each other, for momentum observations and we collect data every 15min. Note that η is unobserved. For the observation

noise, we choose a standard deviation of 0.1m/s in the current velocities, which corresponds to R = 500I2 as the observation

covariance matrix for the momentum at a single location. Furthermore, we parameterise the localisation with a radius of 50km

and a relaxation factor 0.25, where details on the localisation radius and the relaxation can be found in Beiser et al. (2023).

4.2 Multi-level configuration460

To first get an impression of how the relevant dynamics are maintained by different grid resolutions in our case, we run a single

realisation of the model on different grid resolutions, where all of them use the same realisation of the model error. Figure 4
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Figure 3. The synthetic truth at different times during the experiment: Starting with a westward jet in the north and an eastwards in the south,

turbulent dynamics builds up over the following days and becomes clearly visible from day 6.
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Figure 4. Same realisation of the shallow-water model for different resolutions after simulation until t = 10d.

shows the resulting currents at t = 10d. Here, we see that on the two finest levels, 1024× 512 and 512× 256, the currents are

almost the same with only minor details on the sharpness of some features. With 256× 128 grid cells, the main structures are

still intact, although most of the details are smoothed out. On the coarsest resolution 128×64, however, we no longer recognise465

the shape of the currents from the finest resolution, and the solution contains few details in general.

To find the optimal configuration of the multi-level ensemble sizes as discussed in Sect. 3.1, we need to experimentally

assess the computational cost of running the model at each level cl, the variance at each level vl, and the difference between

the variance for partner levels V l. For the GPU Ocean code, we saw in Sect. 3 that we only maintain theoretic computational

performance for problem instances with more than 5122 grid cells. We therefore measure the practical cost of running the470

model for the grid sizes that we will use in our multi-level experiments to determine the computational work Cl. These values

behave qualitatively very similar to the curve in Figure 2 where the considered resolutions are in the range where we are

close to the theoretical scaling between the two finest levels, but the curve flattens out for the coarser levels. Because the

relative high computational cost for coarse simulations is somewhat special for GPU-accelerated code, and we also want to

discuss the practicability of multi-level data assimilation in general, we will consider both the theoretical cost and practical cost475

18

https://doi.org/10.5194/npg-2023-27
Preprint. Discussion started: 4 January 2024
c© Author(s) 2024. CC BY 4.0 License.



128× 64

256× 128

512× 258

1024× 512

103

104

105

g 1

η

128× 64

256× 128

512× 258

1024× 512

107

108

109

1010
hu

vl V l

128× 64

256× 128

512× 258

1024× 512

107

108

109

1010
hv

128× 64

256× 128

512× 258

1024× 512

101

102

103

104

g 2

η

128× 64

256× 128

512× 258

1024× 512

1011

1012

1013

hu

128× 64

256× 128

512× 258

1024× 512

1011

1012

1013

hv

(a)

(b)

Figure 5. Variance analysis per variable: Showing the variance per level (blue lines) and between the partner (red lines) after 10 days of trial

experiment for (a) g1 and (b) g2, where g1 represents the mean as quantity of interest and g2 the variance, respectively.

when configuring the multi-level ensemble size. The assumption of theoretic computational cost then represents the speed-up

potential through using multi-level statistics if obtainable through other software frameworks.

Figure 5 shows the results of a trial experiment as in Sect. 3.1.2 for quantities of interest based on the mean g1, as given by

(20), and the covariance g2, as in (21). Hereby, the variances are recorded per variable, such that the columns in the display

correspond to η, hu and hv. In all panels the curve for vl is increasing, indicating that many details are lost at the coarser levels.480

Also, all curves for the variances between the levels V l lie below vl, but they do not have a strongly decreasing slope. For the

function g2 in panel (b) both curves are even closer together than for g1 in panel (a). We note that the relative changes between

the levels is most relevant for the ensemble size and not the actual magnitudes. In the data assimilation experiment, only data

for the momentum was assimilated and the plots for hu and hv are qualitatively similar per function, but for η it looks different.

While this is not an ideal scenario for maximal speed-up through multi-level estimators, these kinds of variances are more485

likely to be faced in many practical scenarios. In this sense, the case is on the edge for the multi-level approach to be beneficial.
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Table 1. Ensembles with the same theoretical error as a single level ensemble with Ne = 50 in relation to the listed functional.

Case Work Function SWE Ensemble Size Speed Up

Name for Cl for V l variable 1024× 512 512× 256 256× 128 128× 64 Factor

(A) theoretical g1 hu 13 46 134 275 2.3

(B) practical g1 hu 14 86 - - 1.7

(C) theoretical g2 hu 19 66 185 - 1.7

For a speed-up through multi-level estimation, it would be beneficial if the fine levels have very strong correlation. If the

simulation results on the finer levels become too similar, however, there would be no incentive to use very fine resolution, as a

coarser, and thereby less costly, level can deliver the same information. In such a case, the limitation often lies in the model and

no longer in the resolution. Nevertheless, if fine grids are important for the resolution of local features in parts of the domain,490

multi-level methods are still meaningful despite that those high resolutions may be strongly coupled globally.

The optimal ensemble sizes depend on the number of levels, the computational cost per level Cl and the function g. The latter

goes into expression (22) via the variances V l. For the computational costs, we consider configurations with both theoretical

scaling and the practical performance. Because hu is dominating in the assimilation for most of the experiment time, we

pick this primary variable for further analysis. We then choose multi-level ensemble sizes that match the theoretical error of a495

single-level ensemble with 50 members for the same function. Table 1 lists three different multi-level configurations along with

their corresponding speed-up. To have a representative set of sufficiently different experiments, we chose a different number of

levels for each of the cases. Either way, we note that in all cases the ensemble sizes increases towards the coarser levels. The

computational work of the single-level ensemble is CSL = 50 cL and the computational work of the multi-level ensemble CML

is calculated by summing over the levels analogously, meaning that the speed-up is a factor of500

CSL

CML
, (27)

where the computational costs for the data assimilation are neglected in this consideration. It is crucial to note that multi-level

methods do not always yield a speed-up and that this depends on the characteristics of the problem represented by Cl and

V l. For the combination of practical work and function g2, we will not obtain a speed-up and have therefore not included that

combination.505

4.3 Numerical results

Such a complex example as in this article is to the best of the authors knowledge not yet covered by any theoretical results.

Moreover, the multi-level ensemble is derived for the estimator of certain quantity of interest, but there is no mean-field EnKF

distribution accessible for practical comparison. For understanding the properties of practical data assimilation methods, one

is often more interested in the prediction error versus the data or the simulated truth.510
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Figure 6. ERR and STD during the data assimilation experiment for ensembles of equal theoretical error. The curves are smoothed with

a moving average over a 3h interval to reduce the noise in the plot. Vertical lines mark transitions between spin-up, data assimilation, and

forecast.

4.3.1 Calibration and spread

We assess the error in the mean (ERR) of the ensemble per variable

ERR = ∥µ[x]−xtrue∥2, (28)

where the mean estimate comes from a single-level ensemble as in (5) or from a multi-level ensemble as in (14). Note that the

criterion in (28) was not directly used in the design of the multi-level estimators, but it gives insight about the state estimation515

resulting from the data assimilation. We oppose the ensemble calibration with the ensemble spread measured by the empirical

standard deviation (STD).

In Figure 6, we show the ERR (solid) and STD (dotted) over time for four different experiments for each of the physical

variables. Keep in mind that the phase before 3d is spin-up and that after 10d is plain forecast. The black lines represent a

single-level experiment with Ne = 50, whereas the other three represent the three multi-level configurations from Table 1.520

For the single-level experiment, we see that the STD lies under the ERR, but it follows the same trends. For the multi-level

experiments, they all show the same quality in terms of ERR for hu and hv (middle and right display), confirming that the

assumption of same statistical errors in the ensembles was legit. For the unobserved variable η (left display), the error for

the single-level ensemble on the finest level is quite noisy, but the multi-level ensemble smooths this out. This is a feature of

multi-level ensemble methods, as it benefits from a coarse estimation with less spurious correlations, but we do not want to525

overrate this as it does not have a big impact on the currents. In our experiments, the assumption of the different computational

costs per level does not affect the results, as expected. More surprisingly, the use of the interchanging of g1 and g2 does not

change the curves much either. All results for ERR of the moments are basically equivalent, but the STD is a bit higher for

the multi-level cases. Due to high costs of a single experiment in this practical setup, it is prohibitive to evaluate the statistical

error by repetitions of the full experiment.530
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Figure 7. ERR and STD during the data assimilation experiment for the multi-level ensemble (A) with (blue) and without (red) localisation

on the coarsest level.

While it is not practical to abstain from localisation with only 50 ensemble members in the single-level case, it is reasonable

to do so for the coarsest level of case (A) with 275 members. In Figure 7, we show the comparison of localisation on all levels

(blue) and localisation on all but the coarsest level (yellow). There is no equivalent single-level experiment for this approach.

Comparing the ERR for the two experiments, we clearly see that the ensemble without localisation on the coarsest level is

pushed much stronger towards the truth in the beginning of the DA period. This is because the updates are not tapered but535

rather extend over the entire domain. Together with this, the standard deviation is also reduced by a similar magnitude in the

early phase. However, once the dynamics becomes more turbulent around day 6 to 7, the curve for ERR without localisation

on the coarsest level approaches the other experiment. In this unstable regime, small spurious correlations seem to be enough

to cause deviations from the truth. The ensemble without localisation at the coarsest level keeps the lower STD during the

remaining course of the experiment.540

4.3.2 Multi-level eligibility

As discussed before, MLDA differs from MLMC by the fact that the ensemble is repeatedly used for estimation over time. In

Figure 8, we plot the relative variance of the difference in the function g at level l compared with the variance of g at that level,

e.g. V l/vl defined in (16). Going from dark blue (fine level) to light blue (coarse level), the variance in the difference gets

relatively larger compared with the variance in the function. The dotted lines represent the relative variance in a pure Monte545

Carlo experiment without any data assimilation, whereas the solid lines show the situation with data assimilation using the

MLEnKF. In all three displays (η, hu, hv), the solid lines tend to go above the dotted line when data assimilation starts after 3d

of spin-up. Data assimilation reduces the uncertainty in the ensemble, and this means the values for vl (denominator here) will

go down, especially in the beginning of the data assimilation process. The exception is the coarsest level, where the solid and

dotted lines are much more similar. This indicates the sparse observations has most effect locally, and the relative differences550

are hence largest at the finer levels.
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Figure 8. Relative variance of the level differences to the variance on those levels over the time of the data assimilation experiment (A).

MLMC experiment with same ensemble size for reference.

4.3.3 Rank histograms

To assess the spread in the analysis ensemble produced by the MLEnKF, we repeat a shorter version of the data assimilation

experiment multiple times. We choose a multi-level ensemble of sizes 12, 37 and 88 on the three highest levels, corresponding

to a single-level ensemble with 40 members for g1 and practical work. For each of these replicate experiments, we initialise555

a new truth and a new ensemble using the same parameters as before. We then spin the ensemble up for three days, followed

by one day with data assimilation and three hours of forecast. At the end of the forecast, we record the truth and the ensemble

values at 24 different locations in the domain. These locations are chosen by a regular equidistant 4×6 pattern, and are assumed

to be uncorrelated within the time frame of the assimilation and forecast.

Rank histograms are a common technique to visually evaluate sample and ensemble spread, where uniform histograms are560

usually considered desirable (Hamill, 2001). For multi-level ensembles, the formulation by a probability integral transform

value is useful (Gneiting et al., 2007), where one rank corresponds to the truth’s function value of the empirical cumulative

distribution function represented by the ensemble. The rank can therefore be estimated as an expectation value. For the true

observation value y, the multi-level rank at an observation location can be defined by evaluating the multi-level estimator in

(13) with the indicator function g = 1[−∞,y]. The ranks are then given as continuous values, meaning that we can choose the565

histogram bins independent of the ensemble sizes. Similarly to the practical challenges discussed in Sect. 3.3, a straightfor-

ward evaluation of the indicator function does however lead to some imperfections caused by the multi-level estimator. First,

the ranks are not guaranteed to be bounded between 0 and 1, and second, the multi-level ensemble is not optimised for the

approximation of this particular discontinuous function.

Figure 9 visualises the histograms for 138 repeated rank experiments using bins of width 0.05. Altogether, this means570

138·24≈ 3000 testing observations. Most prominently, we see that the multi-level rank histograms differ from classical single-

level histograms by taking values smaller than 0 and bigger than 1. However, in this case, those values are the minority and the

rank histograms can be interpreted similar to classical ones. The histogram for hv is close to a uniform distribution indicating
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Figure 9. Multi-level rank histograms for each primary variable generated by more than 3000 observations. The dotted line represents a

uniform distribution for reference.

that the statistics of the multi-level posterior ensemble is correct in the sense that it has the same distribution as the truth in

this experiment. Also for hu, we recognise neither a clear bell nor U-shape. There are however fewer ranks associated with the575

larger values, but at the same time we also have the largest collection of values that are larger than one. While the histogram

for η has more outliers in the lower end, the general rank histogram is still close to uniform, such that we see no indication of

systematic errors in the data assimilation with the MLEnKF.

5 Multi-level drift trajectory forecasting

In the previous section, we explored the multi-level state estimation problem through data assimilation, and we assessed the580

quality of the approximate posterior distribution of the ocean states directly. Now, we discuss how we can use the multi-level

ensemble to forecast derived quantities of interest, specifically through probabilistic forecasting of drift trajectories.

5.1 Multi-level drift trajectory model

Drift trajectories are typically computed either online as part of the dynamical ocean model, or offline through dedicated drift

trajectory simulation software that takes the output files from the dynamical ocean simulator as input (Dagestad et al., 2018;585

Delandmeter and van Sebille, 2019). Here, we consider the online approach using a passive drift model. We let Ψ(t) ∈ R2

contain the drifter’s x and y coordinates at time t, and update its position by

Ψ(t + ∆t) = Ψ(t) +∆t


 u(t,Ψ(t))

v(t,Ψ(t))


 . (29)

Here, the time step is the same as the time step for the simplified ocean model, and u and v are bi-linear reconstructions of the

simulated ocean currents in space to best represent the exact location of the drifter at time t.590

Using a single-level ensemble of dynamical models, the simplest way to produce a probabilistic trajectory forecast is to

simulate one drifter per ocean ensemble member and solve (29) for each of them. In a multi-level ensemble, however, the
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individual ocean states are no longer realisations from the statistical distribution they collectively describe, and the "one drifter

per ocean model" approach fails. Instead, we must construct an ensemble of Nd drifters that behave according to the statistical

estimates of the currents obtained from the multi-level ensemble. One such option is to let each drifter realisation be advected595

according to a random walk by sampling

ud(t,Ψd(t))∼N (µu(t,Ψd),σu(t,Ψd(t))), (30)

where the normal distribution mean µu and standard deviation σu are based on that of the multi-level ensemble using (14) for

the velocity u at time t and position Ψd(t) for drifters d = 1, ...,Nd. A corresponding expression is used for v.

If the sampling in (30) is uncorrelated in time, however, all drifters will be estimates of the mean as t increases. This can be600

seen through a comparison to the single-level "one drifter per ocean model" approach. In the single-level case, a drifter that is

associated with an ocean state that represents an extreme from the ocean state probability distribution will consistently generate

a corresponding trajectory that becomes an extreme in the trajectory distribution as well. By sampling the currents according

to (30), the probability that one drifter consistently follows a extreme current is highly unlikely.

For this reason, we instead simulate drifters through what can be described as a biased walk. Thus, we let βd,u,βd,v ∼605

N (0,1) be a random normal distributed bias for the velocities u and v, respectively. We sample these only once for each drifter

d = 1, ...,Nd and keep these fixed over time. We then evolve each drifter’s position by

Ψd(t + ∆t) = Ψd(t) +∆t


 µu(t,Ψd) +

√
βd,uσu(t,Ψd(t))

µv(t,Ψd) +
√

βd,vσv(t,Ψd(t))


 , (31)

so that each drifter follows a consistent path within the probability distribution for the currents. Note that (31) also can be used

for a single-level ensemble by using the corresponding single-level estimators for the velocities.610

5.2 Numerical results

In the following, we generate three days trajectory forecasts for passive drifters starting at 100 randomly chosen initial locations

in the domain at day 10 of our experiment as described in Sect. 4.

We consider three different cases: Classical single-level trajectories generated by attaching drifters to each ocean model

ensemble member; using the statistical approach of the biased walk in (31) for exactly the same single-level run; and using615

the biased walk for the multi-level ensemble experiment from case (A) in Sect. 4. For the biased walks, we choose Nd = 50

drifters and ∆t = 60s.

Figure 10 shows the trajectory forecast with the three different methods for three different initial positions. For drifter (a) in

the top row, all drifter ensembles follow the curve of the true trajectory and cover the true drifter’s final position with slightly

different spread. Drifter (b) is harder to predict as all three methods suggest that it can either drift down to the right or up620

to the left. We see, however, that the multi-level ensemble suggests higher probability to the left which is correct, whereas

both methods based on the single-level ensemble give higher probability to the right. On the other side, the true trajectory for

drifter (c) in the lowermost row is only an outlier in the the multi-level ensemble. Here, the single-level ensemble gives a good
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Figure 10. Drift trajectories for single-level and multi-level ensembles with different trajectory modelling approaches. We use 50 ensemble

members in the forecasts by statistics, and for the multi-level plot, we use the ensemble of case (A). The blue trajectory comes from the true

realisation. We show the trajectories for three different starting positions.

prediction of the true drifter when we make the forecast directly with one drifter per ocean ensemble member. Whereas for the

biased walk, the true trajectory is still well represented by the ensemble, the ensemble has a very large spread.625

This shows that it is hard to assess the quality of each method based on the trajectory forecast of just the a few initial

positions. We therefore look at the ensemble calibration and spread for all 100 drifters similar to what was done for the state

estimation. During the drifter forecast period in the experiment, the drifter error in the mean is

ERR(t) = ∥µ[Ψ(t)]−Ψtrue(t)∥2. (32)

In Figure 11, the drifter error ERR and the standard deviation of the drifter ensemble (STD) is averaged over all 100 starting630

positions and plotted over time for the different methods. We notice that the calibration curves for all methods are very close,

but the spread using multi-level methods is a little bit bigger. This is in line with the results of the state estimation in Figure

6. The same single-level ensemble is used twice here for both trajectory modelling approaches, such that these differences

originate not in the ocean states but purely from the drifter modelling. Here, we see that the spread of the biased walk is larger

than of the traditional method per ensemble member. Hence, we can pinpoint the increased spread of the multi-level drifter635
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Figure 11. Calibration and spread of the drift trajectory forecasts.
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Figure 12. Levels of estimated kernel densities for the final position of drifter (c) from Figure 10. True trajectory is plotted in blue.

ensemble compared to the classical single-level approach with drifter per member first to the biased walk modelling and second

to the state ensemble spread.

We have repeated the experiments with varying parameters for the biased walk and observed that for Nd < 50 drifters, results

are not robust, while for Nd > 50 the improvements start to stagnate. Similarly, for drifter time steps up to approximately

∆t = 5min the results are qualitatively comparable.640

From the final positions of the modelled drifters, the probabilities of their where-about can be calculated by kernel density

estimation. Figure 12 shows the areas corresponding to the probability levels of 90, 75, 50 and 25% for drifter (c), along with

its true trajectory in blue. The mode and the spread of the probability distributions differ between the methods, but we see as

in Figure 10 that the single-level ensemble covers this particular drifter slightly better than the multi-level ensemble.

To investigate coverage properties further, we follow the idea of rank histograms, and we record how often one of the 100645

simulated true drifters ends in each of the four probability areas. Table 2 shows the results for the same probability levels as
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Table 2. Probabilities of the true drifters to be in the corresponding probability zone at the end of the forecast.

Drifter Probability levels

Case 25% 50% 75% 90%

SL (by member) 16 46 69 85

SL (by statistics) 26 55 74 90

ML (by statistics) 38 65 84 91

in Figure 12. The counting results suggest that the single-level with biased walk matches the right spread very well, while the

classical single-level is slightly under-dispersive and the multi-level trajectories are slightly over-dispersive. This is in line with

the results from Figure 11, where the error in the mean is the same for all three methods, but the spread in the ensembles differ

correspondingly at day 13 .650

6 Concluding remarks

In this article, we have applied the MLEnKF successfully to a simplified ocean model. While MLDA has shown potential in a

theoretical context and in proof-of-concept examples, we have focused towards applications with practical relevance in ocean

forecasting. On the way, we have discussed various practical challenges that naturally arise when MLDA is implemented.

The goal of multi-level methods is to gain a computational speed-up with respect to a single-level method, while maintaining655

the same statistical error. First in Sect. 2, we have revised the MLEnKF by Chernov et al. (2021) for nested grids like in finite-

volume methods. The practical considerations are discussed in detail in Sect. 3, and summary points are:

i) We re-used our existing GPU-accelerated simulator GPU Ocean, which is optimised for running single-level ensembles

of high resolution, and we extended it by the integration of the MLEnKF. While a flexible choice of the resolution in the

simulator enables to run ensembles on different levels, the devil was in the details, and an efficient choice of the model660

error became crucial for multi-level ensembles with coupled pairs.

As multi-level methods profit from lower computational costs on coarser levels, the performance scaling between the

levels influences the speed-up directly. Even though the GPU framework in our example enables to run very fast simula-

tions, it has suboptimal performance scaling for problems with very coarse grid resolutions. This reduced the potential

of computational benefits through MLDA. Meanwhile, we were still interested in the upper bound of the computational665

speed-up, that may be obtainable for other software frameworks. We therefore considered and discussed the speed-up

under assumptions of both theoretical and practical work. We obtained a theoretical speed-up up to a factor 2.

ii) For practical reasons, we fixed one multi-level ensemble throughout the full numerical experiments and used that one

for the estimation of different quantities of interest at different times. For the multi-level ensemble configuration, we ran
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a trial experiment with single-level data assimilation to record the variances per level at the final time and discussed two670

quantities of interest that are purposeful for data assimilation. This choice again influenced the theoretical speed-up, but

we have seen that it does not change the assimilation and forecast quality in any relevant range.

iii) To assess the quality of multi-level data assimilation, we tested three different multi-level ensemble configurations with

same theoretic statistical quality as a given single-level ensemble. All three cases resulted in qualitatively the same mean

and spread compared to each other. Rank histograms from repeated short-span experiments indicated an appropriate fit675

of the ensemble distribution.

Compared to the equivalent single-level experiment, the multi-level experiments gave similar error in the mean but

slightly larger spread for the partially observed momentum, but significantly lower error and spread for the unobserved

sea-surface elevation.

iv) We have introduced a drift model based on a so-called biased walk, that relies on the estimation of the mean and the680

variance of the currents. Therefore, the posterior multi-level ensemble could be used for the relevant estimations and

we demonstrated how multi-level ensembles can be used for forecasting of drift trajectories. We compared the classical

single-level drifter modelling with one drifter per ensemble member to the biased walk approach, where we used both

the single-level and the multi-level ensemble for the estimations. The averaged results for 100 initial drifter positions

show that the error in the mean is qualitatively the same for all, but the spreads of the drifter ensemble differ.685

With this article, we have laid the ground for a general discussion of the applicability of MLDA in ocean forecasting and we

have addressed the most prominent points to advance multi-level methods one step further towards practical relevance in data

assimilation.

Code availability. The source code used to produce the results presented in this paper is available under a GNU free and open source

license in order to enhance scientific exchange, see https://github.com/metno/gpuocean for the core and https://github.com/FlorianBeiser/690

multilevelDA for the examples. Upon acceptance, we will upload the final version of the code to Zenodo and include the DOI here.
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