
Dear reviewer and NPG community,

Thank you for reviewing our paper. To foster the possibility of having construc-
tive discussions about our work1, we first reply and suggest action items to the
seven ”Significant issues” identified by the reviewer as listed under ”General
comments”. In a subsequent post, we would like to take the opportunity to
provide point-by-point answers to all your comments, including the ”Specific
comments” and ”Technical corrections”.

Before getting to the listed issues, we would like to point out that we clearly
stated the scope of the paper, including four clearly marked research questions
in L26 – L49, which we return to and answer at the end of the paper on L658
– L685. Furthermore, the contribution of the paper is described on L79 – L91
in Section 1.2 ”Contribution and Outline”. As far as we can see, none of the
reviewer’s general comments seem to discuss or acknowledge the scope of our
research, the research questions we aim to answer, or the novel contribution we
claim to bring to the scientific community. We are disappointed, and in fact a
bit puzzled, that these elements are not discussed in this review.

Rather than reviewing our paper, the reviewer criticizes the established
building blocks of our work. Hence, as will be clear from our reply to each of the
raised ”significant issues”, we point out that several of the reviewer comments
are outside the scope of our paper on multi-level Monte Carlo and assimilation
of sparse ocean data.

Additionally, we point to NPG’s aims & scope2. The journal is ”devoted to
breaking the deadlocks often faced by standard approaches in Earth and space
sciences”, and to apply innovative concepts and methodologies to address the
complexity in geoscience systems. We believe that our application of a multi-
level ensemble Kalman filter applied to a simplified ocean model fits very well
into this. In light of this, we would like to invite the editor to also participate
in this discussion.

Yours sincerely,
Florian Beiser
On behalf of all the authors

1as encouraged by NPG, see https://www.nonlinear-processes-in-geophysics.net/

peer_review/interactive_review_process.html
2https://www.nonlinear-processes-in-geophysics.net/about/aims_and_scope.html
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Replies to General comments

1. Assimilation of Unavailable Observations

Reviewer: This paper assimilates unavailable observations of zonal and merid-
ional momentum.

Reply: In our work, we use an identical twin experiment to assess the applica-
bility of the multi-level ensemble Kalman filter (MLEnKF). Contrary to most
of the literature on multi-level Monte Carlo, we apply the method to a shallow
water equation (SWE) model which is more relevant to oceanographic applica-
tions than previous examples that are of a theoretical flavor, see the original
presentations Hoel et al. (2016); Chernov et al. (2021). The setup uses sparse
observations of a subset of the physical model variables, i.e. the momentum at
50 locations in the domain. This design is in agreement with the experiment’s
purpose.

In the introduction, L24 – 34, we explain how our work is motivated by
search-and-rescue (SAR) operations at sea, and how ensembles of simplified
ocean models can be used complementary to available operational circulation
forecasts. The in-situ observations mentioned in this regard, can be made by
local buoys or drifters (such as Rabault et al. (2022)) released from the SAR
vessel. To assimilate such observations into SWE models, they must be mapped
from observational space (velocity) to model space (momentum), where the as-
sociated observation error accounts for the representation error in this mapping.
As a step towards these types of applications, we have in our work shown the
applicability of MLEnKF for a relevant model through an identical twin exper-
iment.

Action item: We will make the purpose of our experimental setup clearer in the
text. We will also improve the description of our motivation in the introduction
to better show the relevance of our experiments.

2. Inconsistent Localization

Reviewer: P fHT localization is applied only to the first part of the Kalman
gain, despite the presence of HP fHT in the inversed part.

Reply: We use Kalman gain localisation which has been commonly done in
data assimilation, see e.g. Chen and Oliver (2010) or Chapter 10.4 in Evensen
et al. (2022). In comparison with other localization approaches, this type is
natural for our particular situation with sparse data and a large model space
(see also our reply to Comment 3).

Action item: We will improve text description and add references on this
topic, which is established in the literature.
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3. Challenges in Practical Implementation

Reviewer: Formulation based on the perturbed observation method results in an
exceedingly large size matrix of the Kalman gain, posing challenges for practical
system implementation and difficulties in parallel computation.

Reply: A characteristic of our case is sparse observational data, meaning that
the matrices required in the Kalman gain are not problematically large. Within
this regime, the computationally expensive part is in fact the forward calcula-
tion of the differential equations of the state (and particularly so at the fine-
resolution level). This is why we employ multi-level methods combined with
GPU-accelerated models.

It is not the intention that our implementation of the MLEnKF will replace
the operational data assimilation systems for integrating all available data. In-
stead, we study tools and methods capable of assimilating subsets of observa-
tional data within ensembles, in this case at multiple levels. We argue that
ensembles of (efficient) simplified models has a role to play by complementing
the large operational model systems for specialized applications (such as sparse
data in SAR operations). See our introduction, L29 – 34. We also write in our
abstract L4 – 5, By applying a multi-level ensemble Kalman filter for assimilat-
ing sparse observations of ocean currents....

Due to this, the reviewer’s comment falls outside the scope of our paper. We
also point out that the contribution of our work is to make a new step on the
path of making multi-level data assimilation feasible for real-world oceanographic
applications (Abstract, L7 – 8), and we do not hide the fact that there are more
steps to be taken in the future for advancing the applicability of MLEnKF
further.

Action item: We will clarify both in the introduction and in the Kalman
updating expressions that our work is within the regime of sparse observational
data.

4. Numerical Instabilities and Negative Eigenvalues

Reviewer: Negative eigenvalues lead to numerical instabilities when applying
eigenvalue decomposition to the inversed matrix in the Kalman gain. The like-
lihood of implementing the MLMC–based EnKF successfully is questionable.

Reply: Other researchers, before our paper, have recognized the challenges
of estimating covariances within the framework of multi level Monte Carlo
(MLMC) methods, with no guarantees for getting positive definite covariance
matrices (all eigenvalues larger than 0), see e.g., Maurais et al. (2023) and
Shivanand (2023) and the references therein. Building on the established un-
derstanding, we honestly discuss this challenge in Section 3.3 (L375 – 376):

While the empirical measure associated with a classical Monte-Carlo
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estimator is positive in the sense that all Dirac contributions have
a positive sign, this is not the case for multi-level estimators where
the differences between the levels can introduce negative values.

When other researchers in future work aims to further develop a MLMC-based
data assimilation scheme that depends on eigenvalue decomposition, we believe
that our discussion in Section 3.3, along with that of others, will be a helpful
resource for them to find a way to understand this challenge and formulate
solutions.

As we discuss in Section 3.3 (L391 – 392), the issue with negative eigen-
values is infrequent (less than 1:10 000 times of the assimilated observations).
For sparse observations in particular, we show that the known problem can be
handled in a pragmatic way, and that potential errors introduced in the process
are negligible.

Action item: We will add references to the appropriate literature early in
Section 3.3, to help explain that this is a known challenge.

5. Unreasonable System Settings

Reviewer: Because of the chosen system settings, such as the absence of
stochastic external forcing, filter divergence is likely to occur as seen in de-
creasing the ensemble spread kept over the assimilation period. Therefore, the
experimental period of 10 days was too short to conclude. In addition, there
are other numerous issues such as inconsistency between the observation errors
used for generating observations and the prescribed observation error covariance
matrix.

Reply: While we agree that our experimental setup is not described well enough
(as illustrated by some of the reviewer’s ”Specific comments”), we do not agree
with the statement that we cannot make any conclusions.

The aim of the experimental design was to generate ensembles of arbitrary
sizes with turbulent and (initially) chaotic behavior, in which drift trajectory
forecasts made through pure Monte Carlo experiments would have too high
uncertainties to be helpful, but where successful data assimilation improves the
forecasts significantly. Since the mentioned decrease in the ensemble spread
occurs in both the single- and multi-level experiment (Fig. 6 of our paper),
we do not see how this affects the scientific contribution of our paper on the
applicability of the MLEnKF. Moreover, since our work is motivated by SAR
operations at sea, assimilation and forecast periods of seven and three days,
respectively, are already in the upper time-range relevant for this application.

This experiment was first outlined in a paper presenting a GPU-accelerated
implicit equal-weight particle filter (Holm et al., 2020), which we refer to in
our paper. Here, we should have pointed out for the reader that more details
concerning the experiment could be found in that paper, along with a pure
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Monte Carlo experiment and data assimilation experiments with too sparse
and/or inaccurate observations to give improved forecasts.

On the specifically mentioned inconsistency (related to L457), our intention
was to use a standard deviation around 0.1 m/s in the current velocities. To
map this value to the observation error covariance matrix, which acts on the
momentum, we multiply by the equilibrium depth (230 m) and square the result,
which gives us R = 529 I. Since this value is arbitrarily chosen, we fixed
R = 500 I (both in the observation error and the observation error matrix).
We see that our description of this was inaccurate, and it will be clarified when
revising the manuscript.

Action item: We will add more details about the experimental design and
setup, possibly by also including an appendix. We will also carefully go through
the specific comments from the reviewer related to this comment.

6. Lack of Statistical Tests

Reviewer: The lack of statistical tests in the sensitivity experiments raises
questions to significantly identify differences between the single- and multi-level
Monte Carlo methods.
Reply: The statistical properties of the MLEnKF has been analysed in the-
oretical settings by Chernov et al. (2021). Our work aims at exploring the
applicability of MLEnKF, focusing on the practical challenges of applying the
method to more applied geophysical problems than what has been done before.
We keep the single-level EnKF as a reference, and the main result of the pa-
per is and will still be related to the available speed-up of introducing multiple
levels. The fact that MLEnKF works at all for this type of model is a novel
contribution to both the multi-level and data-assimilation communities.

But going beyond this main result of speed-up, we have, before submitting
our paper, conducted tens of replicate runs related to the statistics of the outputs
and the sensitivity of the MLMC settings. The results from all these tests have
had qualitatively similar results as the reference experiment that we used in the
paper. We will however summarize the key findings of these replicate runs in
the revised paper.

Action item: We will add a discussion around our replicate studies in the
simulation study.

7. Language and Presentation Issues

Reviewer: The manuscript contains numerous instances of ambiguous expres-
sions, typos, incorrect grammar, and a lack of definitions for words and mathe-
matical symbols. It appears that co-authors may not have conducted a thorough
review of the manuscript.‘
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Reply: We thank the reviewer for pointing out specific grammatical mis-
takes and suggestions for clarifying the notation. We are prepared to carefully
modify and improve the text and notation of the paper.

Action item: We will carefully go through the text of the paper and also let
a native English person read through and provide comments to us.
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