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Abstract. The dynamics of ion holes (IHs) in plasmas where electrons follow the regularized Kappa distribution (RKD) and

ions follow the Maxwellian distribution (MD) are investigated based on the Bernstein-Greene-Kruskal (BGK) method. The

results show that the depth of the IHs, the allowed combination of width and amplitude to support physically plausible IHs

equilibrium depend on the spectral index κe and cut-off parameter α of the distribution function. That is, with increasing values

of the spectral index κe and cut-off parameter α, the IHs formed become deeper and allow a larger permissible region of width5

and amplitude. In contrast, with decreasing values of the spectral index κe and cut-off parameter α, the IHs formed become

shallower and have a smaller allowed range of width and amplitude. The present work may contribute to the comprehension of

the nonlinear structures in plasmas system where non-thermal particles are found.

1 Introduction

Coherent bipolar electric field structures with positive and negative polarity distributions are widely presented structures that10

can be observed in the near-Earth plasmas (Bale et al., 1998; Matsumoto et al., 2003; Lakhina et al., 2011), space plasmas

(Kakad et al., 2016; Goodrich et al., 2018), astrophysical plasmas (Vasko et al., 2018; Wang et al., 2020), laboratory plasmas

(Saeki et al., 1979; Matsumoto et al., 2021) and so on. From a dynamic viewpoint, Bernstein et al. (1957) gave a steady-state

solution for a coherent bipolar electric field structure with positive and negative polarity distributions in the one-dimensional

stationary Vlasov-Poisson equation. The coherent bipolar electric field structures were later referred to as the Bernstein-Greene-15

Kruskal (BGK) mode (Temerin et al., 1982). Electrons with appropriate energy, associated with the positive monopolar wave

potential, can be trapped in the potential well, forming what is known as electron holes (EHs) which have lower electron

number density at the centre of phase space compared to the background plasmas (Aravindakshan et al., 2020; Hutchinson,

2017). Likewise, ions of appropriate energy and correlated with the negative monopolar wave potential can also be trapped,

leading to the formation of ion holes (IHs) characterized by lower number density of ions at the centre of phase space compared20

to the background plasmas (Aravindakshan et al., 2018a, b, 2021, 2022).

The pseudopotential method (Gurevich, 1968; Sagdeev et al., 1969) and BGK method (Aravindakshan et al., 2018a, 2022)

are usually used to study IHs. In the pseudopotential approach, the distribution functions of the trapped and passing particles

are pre-assumed in order to obtain the electrostatic potential equation (Schamel, 1971; Bujarbarua et al., 1981; Schamel,
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1982). Whereas in the BGK approach, one assumes the form of electrostatic potential and the distribution function of passing25

particle to give the trapped ion distribution function (Aravindakshan et al., 2020, 2018a, b, 2021, 2022). Great efforts have

been devoted to study the dynamic of IHs in plasmas based on the BGK method. For example, in 2020, Aravindakshan et

al. (2020) proposed a novel BGK theory regarding IHs and applied it to the observations of the Magnetospheric Multiscale

Spacecraft (MMS), found that the theoretical predictions matched the observed results. In 2021, they investigated the influence

of different plasma parameters on the formation and structure of IHs (Aravindakshan et al., 2021). In 2022, Aravindakshan et30

al. (2022) explored the impact of the ion-to-electron temperature ratio on the IHs in dusty plasmas. In 2023, they studied the

effect of the ion-to-electron temperature ratio, Mach number, and the shape of the electron distribution on the properties of IHs

(Aravindakshan et al., 2023). Most of the studies mentioned above have postulated that the electrons follow the Maxwellian

distribution (MD) or standard Kappa distribution (SKD).

MD can describe the electron distribution in thermal equilibrium very well. However, it is not suitable for the description of35

the electron distribution in non-thermal equilibrium (Aravindakshan et al., 2018a; Li et al., 2023). It is well known that SKD is

appropriate for the situation where the spectral index κe exceeds 1.5, but not for the case of κe between 0 and 1.5. This is due

to the fact that the effective temperature should be finite and positive. In addition, it manifests diverging velocity moments and

a non-extensive entropy (Lazar et al., 2021). Besides these major limitations of SKDs, there is another observation limitation,

namely the inability of SKD to explain velocity distributions that are harder than v−5 (Haas et al., 2023). Gloeckler et al. (2012)40

analysed the superthermal tail using hourly-averaged proton velocity distributions at 1 AU and observed the distributions with

harder tails. These measurements also show that the kappa can be close to 2 or less than 2. For example, distributions of solar

wind electrons and solar energetic particles distributions have been found to have kappa values as low as 2 (Pierrard et al., 2022;

Oka et al., 2013). In order to overcome the limitations of SKDs, in 2018, Scherer et al. (2018) introduced exponential cutoff

in SKDs and named SKDs with exponential cutoff as regularized Kappa distribution (RKD). For RKD, the velocity moments45

of any order are convergent when κ > 0. More recently, the characteristics of nonlinear structures such as electrostatic solitary

waves, ion temperature gradient (ITG) modes, and EHs in plasmas where electrons follow the RKD have been investigated.

For instance, Liu (2020) conducted research on the existence conditions and properties of ion acoustic solitons (IAS). It was

shown that α and κe are key factors influencing the existence and the width of IAS. Lu et al. (2021) found that when the cut-off

index α increases, the amplitude and width of the solitary wave decrease and its propagation velocity is smaller than that of50

the electron containing the SKD. Liu et al. (2021) observed that the linear behavior of Langmuir wave (LW) is greatly changed

by the parameters α and κe and when κe < 1.5, the damping rate of LW is much larger than that with Maxwellian distributed

electrons. Zhou et al. (2022) examined linear and nonlinear ITG modes using a fluid model and discovered that the ITG modes

become unstable as the parameters α and κe increase. Haas et al. (2023) derived the pseudopotential in the weakly nonlinear

limit based on the pseudopotential method, found the most prominent solution to the resulting Poisson equation, discussed55

the drifting, non-drifting, oscillating and non-oscillating solutions, analysed the linear dispersion relations, and discovered

the existence of a high-frequency Langmuir mode, a low-frequency electron acoustic mode and the structure is recovered

as a standard electron hole structure when κ� 1. To the best of our knowledge, the IHs in unmagnetized and collisionless

electron-ion plasmas utilizing the BGK method with RKD electrons have not yet been explored.
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In the present work, the dynamic of IHs in plasmas are investigated in the context of RKD electrons based on the BGK60

approach. The paper is organized in the following way. In Section 2, the fundamental equations for ion BGK holes with RKD

electrons and the relation between width and amplitude are obtained. The analysis and discussion of the numerical results are

presented in Section 3. Finally, the summary and main conclusions of the work are given in Section 4.

2 Theoretical model

Let us consider a one-dimensional unmagnetized and collisionless plasma system consisting of ions and electrons which65

obey the RKD. The Vlasov and Poisson equations for the ions are given by
(
∂

∂t
+Vi

∂

∂x
− qi
mi

∂Φ
∂x

∂

∂Vi

)
fi = 0, (1)

d2Φ
dx2

=
−(qeNe + qiNi)

ε0
, (2)

where fi, qi, Vi, mi are the distribution function, charge, velocity and mass of ions, respectively. x is in the unit of the ion70

Debye length λdi =
(

kBTi
ε0N0e2

) 1
2

. Φ represents the electrostatic potential, and ε0 denotes the vacuum permittivity, Ne and Ni

represent the number densities of electrons and ions, which are assumed to be equal at a value of N0. The charge of electrons

is qe =−e, while the charge of ions is qi = e. Working in a coordinate system where the IHs in a stationary state is considered,

so that the quantities are independent of time. In this case, Eqs.(1) and (2) can be simplified to the following dimensionless

forms (Bernstein et al., 1957):75
(
v
∂

∂x
+

1
2
∂φ

∂x

∂

∂v

)
fi (x,v) = 0, (3)

d2φ

dx2
= ne−ni, (4)

where φ, v, ni are the electrostatic potential, ion velocity, ion number density normalized as kBTi
e , vth,i =

(
2kBTi
mi

) 1
2

, N0, with

kB and Ti being the Boltzmann constant and ion temperature, respectively.80

In the electrostatic potential, the regularized κ-distributed electrons can be expressed as (Liu, 2020):

ne = exp
(
α2φ

)(
1− φ

κe

)−κe+1/2U
[

3
2 ,

3
2 −κe;α2κe

(
1− φ

κe

)]

U
(

3
2 ,

3
2 −κe;α2κe

) , (5)

where κe, α, and U (a,c;x) are, respectively, the electron spectral index, the exponential cutoff parameter and the Kummer

function. In fact, in the case of α→ 0 and κe > 1.5, Eq.(5) is transformed into the SKD. When α→ 0 and κe→∞, Eq.(5)

reduces to the MD. Nevertheless, the distribution of electrons with the SKD in the potential field will be valid within the region85
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where κe is greater than 0 and α 6= 0. In this paper, we extended the SKD to the range of κ > 0 to demonstrate the impact of

the cut-off parameter α on the properties of ion BGK holes.

Under the small amplitude approximation, Eq.(5) can be approximated by Taylor expanding for φ/κe� 1 (Liu, 2020):

ne ≈ 1 +A
φ

κe
+

1
2
B
φ2

κe
2

+ · · · , (6)

where90

A= κe−
1
2

+κeα
2

[
1 +

3
2
U
(

5
2 ,

5
2 −κe;α2κe

)

U
(

3
2 ,

3
2 −κe;α2κe

)
]

and

B =κe
2− 1

4
+ 2α2

(
κe−

1
2

)
κe

[
1 +

3
2
U
(

5
2 ,

5
2 −κe;α2κe

)

U
(

3
2 ,

3
2 −κe;α2κe

)
]

+

κe
2α4

[
1 + 3

U
(

5
2 ,

5
2 −κe;α2κe

)

U
(

3
2 ,

3
2 −κe;α2κe

) +
15
4
U
(

7
2 ,

7
2 −κe;α2κe

)

U
(

3
2 ,

3
2 −κe;α2κe

)
]
.

It is noteworthy that under the condition of φ/κe� 1, the value of ne in Eq.(5) will not diverge as κe approaches zero.

The normalized form of MD for the ions takes the form:95

fi (v) =
1√
π

exp
(
−v2

)
. (7)

Introducing the normalized total particle energy,

w =
1
2
(
v2 +φ

)
, (8)

then Eq.(7) can be transformed into the following form:

fi (w) =
1√
π

exp(−2w+φ) , (9)100

where f (x,v)dv = f (w)dw/
√

2w−φ has been used.

When ions run into a negative electrostatic potential, some will be trapped while others pass through. Therefore, there are

two types of ions: the passing ions np and trapped ions ntr. Hence, the normalized Poisson equation (4) can be written in the

following form:

d2φ

dx2
= ne−np−ntr. (10)105

When w > 0, ions are trapped within the range of
[
−√−φ,+√−φ

]
, otherwise pass through, i.e., the integral forms for the

passing ions np and trapped ions ntr can be written as follows:

np =

−√−φ∫

−∞

fp (x,v)dv+

+∞∫

+
√−φ

fp (x,v)dv (11)
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and

ntr =

+
√−φ∫

−√−φ

ftr (x,v)dv, (12)110

where fp (x,v) and ftr (x,v) are the distribution functions of the passing and trapped ions, respectively. Substituting Eq.(7)

into Eq.(11) and after integration, the density np of the passing ion is

np = 1− erf
(√
−φ
)
, (13)

here, erf
(√−φ

)
represents the error function.

It has been revealed by spacecraft observations that Gaussian-shaped wave potential structures are commonly observed in the115

Earth’s magnetosphere (Matsumoto et al., 1994), space and astrophysical plasmas (Williams et al., 2006). Let us hypothesize

that the potential structure is of Gaussian form, i.e.,

φ(x) =−ψ exp
(
− x2

2δ2

)
, (14)

where ψ and δ denote the amplitude and width of the wave potential. By differentiating Eq.(14) twice with respect to x, one

obtains120

d2φ

dx2
=
x2φ

δ4
− φ

δ2
=−

2φ ln
(
− φ
ψ

)

δ2
− φ

δ2
. (15)

By substituting Eq.(15) into Eq.(10), the density of trapped ions is obtained as

ntr =A
φ

κe
+

1
2
B
φ2

κe
2

+ erf
(√
−φ
)

+
2φ ln

(
− φ
ψ

)

δ2
+
φ

δ2
. (16)

Then substituting Eq.(16) into Eq.(12), the trapped ion distribution function ftr can be expressed in the following form:

ftr(w) =− 2A
πκe

√
−2w− 8Bw

3πκ2
e

√
−2w+

2
√

2
√−w
πδ2

[1− 2ln(−8w/ψ )] +
ewI0 (w)√

π
,

(17)125

where I0 (x) denotes the first class of modified Bessel functions.

In order to have physical feasibility, the resulted trapped ion distribution function must be greater than zero, then the width-

amplitude relationship for stable equilibrium of IHs can be obtained as follows:

δ2 ≥ 6
√

2
√−wκ2

e [1− 2ln(−8w/ψ )]
6
√

2
√−wAκe + 8

√
2
√−wBw− 3κ2

eewI0 (w)
, (18)

which restricts both the width and amplitude of the wave potential responsible for sustaining IHs. When α= 0 and κe→∞,130

Eqs. (17) and (18) return to the results obtained by Aravindakshan et al. (2022) in the Appendix.
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3 Analysis and discussion

In this section, the plasma parameters related to ion BGK holes are examined by analyzing Eqs.(19) and (20). Studying the

trapped ion distribution function that emerges in the phase space is imperative to obtain a more comprehensive understanding

of the qualitative influence of relevant plasma parameters. In the phase space, the behavior of the trapped ion distribution135

functions versus x and v for various electron spectral indices κe and cut-off index α are illustrated in Figs. 1, 2 and 3. It can be

observed from Figs. 1 and 2 that the depth of the IHs becomes greater in response to an increased κe. It is also worth noting

that the distribution function for both κe = 3 and κe = 100 is not significantly different when α= 0 and α= 0.01, it is due to

the fact that when α tends to 0 and κe is greater than 1.5, RKD tends to SKD. As α approaches 0 and κe approaches infinity,

RKD approaches MD. From a physical standpoint, the concentration of superthermal electrons is determined by κe. The lower140

the electron spectral index κe, the higher the concentration of superthermal electrons, then the higher the amount of energy it

carries. As a result, more energy is transferred to the ions, then the ions have enough energy to escape the potential well and not

be trapped, resulting in the inhibition of the formation of ion holes, so the formed holes are shallower. In addition, in Fig. 3, it

can also be clearly seen that when α increases, the IHs becomes deeper. This can be attributed to the fact that a large the cut-off

index α will lead to a decrease in the concentration of superthermal electrons. Consequently, fewer superthermal electrons will145

not be able to cause more ions to escape from the potential well and become passing ions. As a consequence, a greater number

of ions are trapped, resulting in the formation of deeper holes.

Figure 1. The phase space structure of the trapped ion distribution function ftr (x,v) in x− v space for different κe at α= 0, δ = 0.2 and

ψ = 2. (a)κe = 3, (b)κe = 100.
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Figure 2. The phase space structure of the trapped ion distribution function ftr (x,v) in x− v space for different κe at α= 0.01, δ = 0.2

and ψ = 2. (a)κe = 0.3, (b)κe = 1, (c)κe = 3, (d)κe = 100.
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Figure 3. The phase space structure of the trapped ion distribution function ftr (x,v) in x− v space for different κe at α= 0.2, δ = 0.2 and

ψ = 2. (a)κe = 0.3, (b)κe = 1, (c)κe = 3, (d)κe = 100.

For a better understanding, the variations of ftr in relation to the energy parameter w for various κe and α is depicted in

Fig. 4. As shown in Fig. 4(a), when w approaches 0, the six curves converge to the point of ftr (w) = 0.58. When α= 0, the

distribution functions for κe = 3 and κe = 100 almost coincide with the distribution function when α= 0.01. In Fig. 4(a), the150

difference between ftr corresponding to w =−0.1 and the maximum value of ftr represents the depth of the IHs formed, from

which it can be found that a higher κe leads to deeper IHs. Physically speaking, a lower κe results in an increase in the electron

concentration in the high-energy tail of the SKD, which implies that more superthermal electrons are present. The presence of
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more superthermal electrons means that superthermal electrons have higher energies, which allows them to escape from the

potential well and form IHs. As a result, this will lead to the formation of a shallower IH encompassing comparatively less155

trapped ions. From Fig. 4(b), it can be seen that the larger α is, the deeper the IHs are formed. Physically, the larger α restricts

the presence of high-energy electrons, thereby limiting the population of superthermal electrons and enhancing the number of

trapped ions in plasmas. Consequently, a higher α leads to deeper IHs.

-0.10 -0.08 -0.06 -0.04 -0.02 0.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

w

f t
r(
w
)

(a)

�=0.01,κe=0.3

α=0.01,κe=1

α=0.01,κe=3

α=0.01,κe=100

α=0,κe=3

α=0,κe=100

-0.10 -0.08 -0.06 -0.04 -0.02 0.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

w

f t
r(
w
)

(b)

�e=0.3

�e=1

�e=3

�e=100

Figure 4. The trapped ion distribution function vs energy w for different κe and α, while keeping δ = 0.2 and ψ = 2 as fixed. (a)α= 0 and

α= 0.01, (b)α= 0.1, where the black dashed, pink dashed, blue, green, red and purple line correspond to κe = 3, 100, 0.3, 1, 3 and 100,

respectively.

The impact of α and κe on the physically plausible region for the existence of IHs is shown in Fig. 5. It can be seen from

Fig. 5(a) that for α= 0, the curves of κe = 3 and κe = 100 are almost identical with α= 0.01. In the case of a smaller κe, it160

9

https://doi.org/10.5194/npg-2023-25
Preprint. Discussion started: 8 January 2024
c© Author(s) 2024. CC BY 4.0 License.



can be observed that the plausible range increases. From a physical perspective, when the κe is smaller, there will be a greater

number of superthermal electrons carrying more energy, resulting in a higher energy transfer to the ions. Due to the presence of

a large number of energetic ions, the plausible region of the IHs becomes larger. In Fig. 5(b), one can find that when α is larger,

the observed plausible region is smaller. Physically, as α decreases, there are more superthermal electrons which carry more

energy. They transfer more energy to the ions. In other words, there are a large number of high-energy ions, so the plausible165

region of the IHs is larger.
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Figure 5. The variation of width δ vs amplitude ψ for different κe and α. (a)α= 0 and α= 0.01, (b)α= 0.1, where the black dashed, pink

dashed, blue, green, red and purple line correspond to κe = 3, 100, 0.3, 1, 3 and 100, respectively.
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4 Conclusions

In this paper, assuming that the electrons follow RKD and ions obey MD, the kinetic properties of IHs in plasmas are

investigated by using the BGK approach. The effects of the spectral index κe and cut-off parameter α on the structure of the

IHs are analysed. It is found that as the values of κe and α increase, the depth of the IHs formation increases while the region170

in which the IHs exist becomes smaller. Physically, when κe and α increase, the number of superthermal electrons decreases,

more ions are trapped in the IHs, and the deeper IHs are formed. It may be stressed here that the results of present work may

provide some theoretical references for the understanding of the nonlinear structures in plasmas system where non-thermal

particles are found.
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