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Abstract. The theory of stratified turbulent flow developed earlier by the authors is applied to data from the upper oceanic

level to confirm that small-scale
::::::
different

:::::
areas

::
of

:::
the

::::::
ocean.

::
It

::
is

::::::
shown

:::
that

:
turbulence can be amplified and supported at a

quasi-stationary level even at large gradient Richardson numbersdue to .
::::
The

:::::
cause

::
of

::::
that

:
is
:
the exchange between kinetic and

potential energies
::
of

:::::::::
turbulence. Using the mean profiles of Brunt-Väisälä frequency and vertical current shear given in Forryan5

et al. (2013), the profiles of kinetic energy dissipation rate are calculated, to be .
::::
The

:::::
results

:::
are

:
in reasonable agreement with the

experimental data. This confirms the importance of including potential energy into realistic models of subsurface turbulence.

1 Introduction

At present, it is well established that the processes in the upper mixed layer of the ocean and inland waters play a significant role

both in the development of global climate models and in the creation of regional weather forecast models (e.g., Hostetler et al.,10

1993; Ljungemyr et al., 1996; Tsuang et al., 2001; Mackay, 2006). Small-scale and mesoscale processes effectively interact

with each other and provide energy sink for currents and waves of larger scales. Such processes as wind wave breaking, surface

and subsurface shear flows created, in particular, by anomalously large surface waves under hurricane winds and intense

solitons of internal waves, can cause turbulent mixing and the resulting fine structure formation with areas of sharp gradients

of temperature and salinity. Whereas the mechanisms of generation of small-scale turbulence are understood reasonably well,15

the problem of its interaction with other types of motions and long-time support is less clear. Earlier works were based on

the Miles’s instability condition Ri < 1/4, where Ri is the gradient Richardson number. However, in many observations,

turbulence exists in a quasi-stationary regime at much larger Ri, up to 10 and more. In some works, it was explained by

the presence of fine structure of current, with thin layers of strong shear (Smyth et al., 2013). A more general description

is based on the semi-empirical k− ε
:::::
K − ε equations (Burchard, 2002; Burchard and Bolding, 2002; Mellor and Yamada,20

1982) showing that the developed turbulence can be amplified and supported under a softer condition Ri < 1 (Monin and

Yaglom, 1964). Similar equations were used in more specific models of formation of the upper turbulent layer (Ostrovsky and

Soustova, 1969), and
:
of

:
the action of internal waves on turbulence (Ivanov et al., 1983; Strang and Fernando, 2001; Stretch

et al., 2001). However, even that is insufficient to explain many observations in the ocean and atmosphere where the turbulence

is observed at significantly larger Ri , up to 10 and more (Forryan et al., 2013; Avicola et al., 2007; Galperin et al., 2021). New25
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theoretical models have also appeared for describing non-stationary turbulent processes in the atmosphere and ocean, .
:::::
They

::
are

:
based on spectral approaches

:::::::
approach, confirming, in particular, the absence of a critical Richardson number for describing

turbulent-wave processes in a stratified fluid (Sukoriansky et al., 2003, 2005b, a; Galperin and Sukoriansky, 2020; Galperin

et al., 2021, 2007).

In Ostrovsky and Troitskaya (1987), in
:::::
within

:
the framework of a kinetic approach, a closed non-stationary model of tur-30

bulence interacting with a variable current was suggested, that includes a
:
.
::
It

:::::::
includes

:
mutual transformation between kinetic

and potential energies of turbulence. The latter is due to
::::::::
associated

::::
with

:
the density fluctuations occurring in stratified turbu-

lence (Monin and Ozmidov, 1981). The theory suggested in Ostrovsky and Troitskaya (1987) is based on a solution of the

equation for the variable probability distribution function of fluid velocity and density. This approach reduces the uncertainty

of standard semi-empirical k− ε
:::::
K − ε

:
schemes and naturally includes the potential energy of turbulence in the model. As35

a result, small-scale turbulence can be supported at a non-zero level by the average shear at any finite values of the gradient

Richardson number, without a threshold. Later this approach was further developed in Zilitinkevich et al. (2007a, b); Soustova

et al. (2020) in application to atmospheric turbulence, where the energy and flux budget (EFB) model was added to the theory.

The correspondence between this theory and the k− ε
:::::
K − ε model, as well as the proper parametrization related to

:::::
using the

turbulent Prandtl number, are discussed in recent works (Gladskikh et al., 2023; Rodi, 1980).40

In this paper, the non-stationary kinetic model of turbulence is used to describe the evolution and structure of the upper tur-

bulent layer with the parameters taken from in situ observations. Particular attention is paid to the cases of the large Richardson

number and the role of turbulent potential energy in explaining the observation data. As an example, we use some data from

the paper (Forryan et al., 2013) that provided a relatively detailed set of measured data
::::::::::
measuremets

:
for three cruises made

::::
taken

:
in 2006-2009 in different areas of the world ocean: North Atlantic (cruise D3406, June-July 2006, and cruise D321, July45

- August 2007) and Southern Ocean (cruise JC29, November-December 2008). These experiments were aimed at studying

turbulent mixing in the presence of a stratified shear flow associated with mesoscale motions such as eddies and fronts. With

the given profiles of current shear and buoyancy frequency taken from Forryan et al. (2013), the theory developed in Ostrovsky

and Troitskaya (1987) yields the results that satisfactorily agree with the measurements of the turbulent dissipation rate given

in Forryan et al. (2013). The details of measurements can be found in Forryan et al. (2013) and references therein.50

2 Basic equations

The general equations obtained in Ostrovsky and Troitskaya (1987), see also Gladskikh et al. (2023), are shown in the Ap-

pendix. Here they will be used for the particular case of known profiles of horizontal current shear ∂⟨ux⟩/∂z = Vz where

⟨ux⟩= V (z) is the ensemble-average horizontal velocity, and average density ⟨ρ(z)⟩=R(z). Here z is vertical coordinate. As

a result, we have a system of two equations for the kinetic energy of turbulence b(t,z)
::::::
K(t,z) and potential energy P (t,z) per55

unit volume. The latter is related to the density fluctuations ⟨ρ′2⟩:

P =
⟨ρ′2⟩g2

2N2R2
(1)
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Here g is the gravity acceleration, R(z) is defined above, and N2(z) is the squared Brunt-Väisala frequency. Note that here

z-direction is chosen downwards. Under the above conditions, the general equations (18) of Ostrovsky and Troitskaya (1987)

or (6) of Gladskikh et al. (2023) are reduced to two equations for b and P :60
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Here L is the outer scale of turbulence and G is the anisotropy parameter tending to 1 for strongly anisotropic turbulence

with a small vertical scale compared to the horizontal scale. For details see Ostrovsky and Troitskaya (1987). Here we use

:::::::
consider the model of locally isotropic turbulence, for which G∼ 0.5. The use of a more sophisticated model that accounts65

for the turbulence anisotropy is redundant for the purposes of this paper, which involves comparison with experimental data

(Forryan et al., 2013) that have uncertainties within an order of magnitude. The parameter L can be taken from empirical data

(Rodi, 1980) or found from the turbulence spectrum (Forryan et al., 2013; Lozovatsky et al., 2006). C and D are empirical

constants. The terms Cb3/2/L and Db1/2P )/L
::::::::
CK3/2/L

::::
and

::::::::::
DK1/2P/L

:
in (2) define the dissipation rates of kinetic and

potential energy, respectively.70

Before analyzing the full system (2), we note that some significant conclusions can be made from a reduced, local ODE

system following from (2) after neglecting the last, diffusive terms in these equations:
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The coordinate z is now a parameter in these equations. In particular, they define a stationary distribution (a stable equilib-75

rium point on the phase plane of variables b and P ):

bK
: st(z) =

V 2
z L

2

2C
f(Ri), Pst(z) =

V 2
z L

2

D
−b−K

::: st (4)

where Ri = V 2
z /N

2 is Richardson number, and

f(Ri) = 1− (4− 3G)Ri +
[
1+R2

i (4− 3G)2 +Ri(4− 6G)
]1/2

. (5)

It is noteworthy that at Ri →∞, f has a non-zero limit f∞ = 6(1−G)/(4− 3G)> 0 (it is 1.2 for G= 0.5). Hence, the80

turbulent energy remains finite at large Richardson numbers. General features of this solution and the turbulent Prandtl number

following from it are discussed in Ostrovsky and Troitskaya (1987); Gladskikh et al. (2023). Certainly
::
In

::::
what

:::::::
follows, the

applicability of these simple solutions must
:::
will be verified by solution

:::::::::
comparison

:::::
with

:::
the

:::::::
solutions

:
of full equations (2)or

at least by estimates of the diffusion terms neglected in these equations. In the experiments, the dissipation rate of kinetic
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turbulent energy ε is commonly measured as a characteristic of turbulence. Within the semi-empirical approach, it is defined85

as Kolmogorov (1941):

ε=
Cb3/2

L

CK3/2

L
::::::

. (6)

It is necessary to choose the empirical constants in the above equations and in (6). There exists a broad literature discussing

these values for different laboratory and onsite conditions, but in
:
.
::
In

:
the semi-empirical models they are only

:::::::::
commonly

defined by scalingand can vary for different turbulent motions. We choose the outer turbulence scale based on the results of90

spectral approach Forryan et al. (2013); Galperin et al. (2007), in which the minimal wave number for the energy-carrying

spectrum approximated by empirical functions is of the order of 2 cpm. Here we take L= 0.58 m. The range of the constant C

is also wide in the literature. Since we are mainly interested in the quasi-equilibrium regime when the shear source is balanced

with dissipation of turbulent energy, we use the data of Rodi (1980) to take C =D = 0.09. Anyway, we are only
::::::
mainly

concerned about the order of obtained values; indeed, in the data of Forryan et al. (2013) considered below, the spread of data95

is about
::
up

::
to an order.

In what follows we solve the systems (2) and (3) using the Wolfram Mathematica 13 program and compare them with each

other and the data of in situ measurements.

3 Application of the local model

As mentioned, here we apply the theory to the data of three cruises described in Forryan et al. (2013). First, we digitized red100

curves in Fig. 2 of that paper (as mentioned, there is a large dispersion of real data, but we naturally use mean profiles). Then,

using the given profiles of Vz and N2, we calculated the Richardson number as shown in Fig. 1.

::::
Note

:::
that

:::
for

:::::
water

::::::
density

:::
of

::::
1000

::::::
kg/m3

:
,
:::::
static

:::::::
pressure

::
in

::::
dbar

::::::::
coincides

::::
with

:::::
depth

::
in

::::::
meters

::
so

:::
that

:::
in

:::
our

::::::::::
calculations

::
we

::::
use

:::
the

:::::
depth,

:::::::::
neglecting

:::::
small

:::::::::
differences

::
in

:::::::
density. As seen from Fig. 1, Richardson number exceeds 1 within all range

of the available data, and its maximum lies in the range of 10− 23.105

3.1 Cruise JC29

Now, using the interpolation of digitized data for N2 and Vz given in Fig. 2 of Forryan et al. (2013), we solved equations (3)

with the initial conditions b(0,z) = b0 exp(−0.1z)
:::::::::::::::::::::
K(0,z) =K0 exp(−0.1z)

:
and P (0,z) = P0 exp(−0.01z) (we remind that

in the local model, z is a given parameter). The values b0 :::
K0 and P0 varied from 10−6 to 10−5 m2/s2 with slight changes in

transient processes but with the same asymptotic values of b
::
K and P at large times. Figure 2 shows the solutions for several110

depths covering the range shown in Forryan et al. (2013).

Using this solution, we calculate the turbulent dissipation rate (6) and compare it with the data of Forryan et al. (2013)

after digitizing both and interpolating them by smooth functions. The result is shown in Fig. 4. Here the difference between

theory and measurements is mainly within a half-order. Considering the large spread of experimental data, this is a rather good

agreement.115
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Figure 1. Profiles of Richardson number for three cruises calculated from Fig. 2 of Forryan et al. (2013) [14].

Figure 2. Temporal variation of kinetic (left panel) and potential (right panel) energy for the conditions of cruise JC29. From top to bottom:

z = 20,30,50,100,180 m. Here b0 = P0 = 10−6 m
:::::::::::::
K0 = P0 = 10−6

3.2 Cruise D306

To save space, for another two cruises we show only the asymptotic profiles of the corresponding values at large times. For

Cruise D306, the values of kinetic and potential energies are of the same order as for JC29 (Fig. 4).

Figure 5 shows the turbulence dissipation rate.

Here again the difference between theory and data of Forryan et al. (2013) is within half-order.120
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Figure 3. Profiles of turbulent kinetic energy dissipation rate for JC209
:::
JC29. Green - interpolated data of Forryan et al. (2013) [14]. Blue -

theory.

Figure 4. Profiles of kinetic (blue) and potential (green) at t= 40000 for D306
:

at
::::::::
t= 40000

:
s.

Figure 5. Profiles of turbulent kinetic energy dissipation rate for D306. Green - interpolated data of Forryan et al. (2013). Blue - theory.
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3.3 Cruise D321

The corresponding dependencies for cruise D321 are given in Fig. 6 and 7.

Figure 6. Profiles of kinetic (blue) and potential (green) at t= 40000 for D321.

Figure 7. Profiles of turbulent kinetic energy dissipation rate for D321. Green - interpolated data of Forryan et al. (2013). Blue - theory.

Here again, one can see a good agreement between the theory and the mean measured profile.

4 Comparison with the full system

The above results were obtained in neglection of vertical turbulence diffusion. To verify this approximation, we solved the125

full system (2) with the same parameters and initial conditions, adding boundary conditions for fluxes of kinetic and potential

energy:

FbFK
:::

=

√
b∂b

∂z

√
K∂K

∂z
:::::::

, FP =

√
b∂P

∂z

√
K∂P

∂z
.

:::::::

(7)
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in the form
::::
They

:::
are

:::::
given

::
to

:::
be

:
compatible with the initial conditions for

:
at

:
initial points z0 from which the plots start in

Fig. 2 of Forryan et al. (2013), and
::::
tend

::
to zero values at the deepest points. Then the solutions for b

:
K

:
and P were compared130

with those of the local system (3). Here we again
:
3.

:::::::
Figures

:::::
below

:
show such a comparison for the asymptotic values. In what

follows, the above local solutions are shown in blue, and the solutions of equations (2)
:
2 with diffusion, in orange.

Figure 8. Cruise JC29: Comparison of profiles of kinetic (left panel) and potential (right panel) energies obtained from (3) (local) and (2)

(full).

Figure 9. Cruise D306: Comparison of profiles of kinetic (left panel) and potential (right panel) energies obtained from (3) (local) and (2)

(full).

In all three cases, the local and full models are practically identical. Evidently, this means the closeness of data for the

dissipation rate that is a function of b
::
K. Hence, for the vertical scales of variation of average values, vertical diffusion can be

neglected, and one can use the simplified local equations (3).135

5 Discussion and conclusions

In this paper we demonstrated that including the potential energy of turbulence (associated with density fluctuations in the

presence of stratification) in the semi-empirical, Reynolds-type equations of a turbulent flow allows to explain the existence and

evaluate the parameters of small-scale turbulence at large Richardson numbers. Application of these equations to the results of
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Figure 10. Cruise D321: Comparison of profiles of kinetic (left panel) and potential (right panel) energies obtained from (3) (local) and (2)

(full).

Forryan et al. (2013), where the measurements of profiles of buoyancy frequency, current shear, and dissipation rate of turbulent140

energy are shown together for three different areas of the ocean, provides not only qualitative but a reasonable quantitative

agreement between the theory and experimental data. We have also shown that the contribution of turbulent diffusion to the

level of turbulent pulsations is insignificant . Thus, even in the conditions of strong stable stratification, the turbulence is

maintained by the local shear of the mean flow velocity.
::
in

:::
the

:::::
above

::::
case.

:

Here we limited ourselves by the semi-empirical approach with Kolmogorov scaling significantly modified by adding145

the equations for the potential energy of turbulence. Considering the dispersion of experimental data
:::
For

::::::
further

::::::::
progress,

::::
more

:::::::
specific

:::::::::::
experimental

::::
data

:::
sets

:::
are

:::::::::
desirable.

::::::
Indeed,

::
in
::::

the
:::::
above

:::::::::::
calculations,

::
we

:::::
used

:::
the

:::::::
average

:::
data

:::
for

:::::::::
buoyancy

::::::::
frequency,

:::::::
velocity

:::::
shear,

::::
and

:::
the

:::
rate

::
of

::::::
kinetic

::::::
energy

:::::::::
dissipation

::::::
plotted

::
in

:::
red

::
in

:::::
figure

::
2
::
of

:::::::::::::::::
Forryan et al. (2013)

:
.
::::::::
However,

::
the

:::::
same

:::::
figure

:::::
shows

::
a
:::::::::
significant,

:::
up

:
to
:::
an

:::::
order,

::::
data

:::::
scatter

:::::
from

::::
each

:::::
cruise,

::::::::
obtained

::
in

:::::::
different

::::::::
locations

:::
and

::
on

::::::::
different

::::
days.

::::
The

::::::
authors

:::
do

:::
not

::::::
specify

:::
the

:::::::::
confidence

:::::::
intervals

::
of

:::
the

:::::
data,

:::
and

:::
no

:::::::::
correlation

:::::::
between

:::::::
different

::::::
curves

:::
for

::::
shear

::::
and150

::::::::
buoyancy

::::::::
frequency

::::::
curves

::
is

::::::
known.

:::::
Still,

:
it
::
is
:::::::
possible

::
to
::::::::

evaluate
:::
the

:::::::
maximal

::::
span

:::
of

:::::
results

:::::
based

:::
on

:::
the

:::::::
extreme

::::::
curves

::
in

::::
each

::::
plot.

:::
For

::::
that,

:::
we

::::::::
digitized

:::
the

:::::::
leftmost

:::
and

::::::::
rightmost

::::::
curves

:::
for

:::
the

:::::
shear

:::
and

:::::::::
buoyancy,

::::::::::
interpolated

:::::
them,

::::
and

::::
used

::
the

::::::::
resulting

::::::::
functions

::
to

::::::::
calculate

:::
the

:::::
limits

::
of

:::
the

:::::::::
theoretical

::::
TKE

:::::::::
dissipation

::::
rate

:::::
using

::::::::
equations

:
4
::::
and

::
5.

:::
For

:::::
cruise

::::
306

::
It

:
is
::::::
shown

::
in

::
9.

:

::::
Note

:::
that

:::
the

::::
data

::::::::
scattering

:::
for

:::
this

:::::
value shown in Forryan et al. (2013) and

:::
lies

:::::
within

:::
the

::::::::
maximal

::::::::
theoretical

:::::
limits

::::::
which155

::::::
implies

:::
that

::::::::
knowing

:::
the

::::
real

:::
data

:::
for

::
a
::::::
specific

:::::::
location

::::
and

::::
time

::
of

:::
the

::::::::::::
measurement,

:::
we

:::::
would

::::::::::
reasonably

::::
well

::::::
predict

:::
the

:::::::::::
corresponding

:::::
depth

::::::::::
dependence

:::
for

::::::::
turbulent

::::::
kinetic

::::::
energy

:::::::::
dissipation

::::
rate.

::::::
Similar

::::::
results

::::
take

::::
place

:::
for

:::::
other

::::::
cruises.

:

::::
Note

::
in

::::::::::
conclusion

:::
that

::::
the

::::::
kinetic

::::::::
approach

::::
used

:::
in

:::
the

::::::::
equations

:::::
used

:::::
above

::::::
allows

::
to

::::::::
naturally

:::::::
include

:::
the

::::::::
potential

:::::
energy

::::
into

::::::::::::
consideration.

::::::::::
Considering a large variation of empirical parameters given in different sources (Smyth et al., 2013;

Liu et al., 2017; You et al., 2003), for now it seems more important to use the new, quantitative experimental data whenever160

available, rather than add more details to the relatively simple semi-empirical theory. In particular, we
:::
the

::::::
further

:::::
study

::
it

:::::
seems

::::::::
important

::
to

::::
find

:::::
more

::
of

:::::::::::
experimental

::::
data

:::::::
allowing

::
to
:::::

apply
:::

the
:::::::

theory.
:::
We

:::
also

:
plan to extend the present approach

to description of dynamic
::::::::::
time-varying

:
turbulence in the field of internal waves (e.g., Moum et al., 2022).
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Figure 11.
:::::::
Maximal

:::::
(black)

::::
and

::::::
minimal

:::::
(gray)

::::::
profiles

::
of

:::::::
turbulent

:::::
kinetic

::::::
energy

::::::::
dissipation

:::
rate

:::
for

::::
D306

::::::::
calculated

::::
from

:::
the

:::::::
maximal

::::::
possible

:::::
scatter

::
of

:::
data

:::
for

:::
N2

:::
and

:
S
:::::
given

:
in
::::::::::::::::
Forryan et al. (2013).

:::
Red

::
-
::::::
average

::::
value,

:::::
shown

::
in
::::
blue

::
in

:
5.

Acknowledgements. The work was supported by the RSF project No. 23-27-00002.

165

10



References

Avicola, G., Moum, J., Perlin, A., and Levine, M.: Enhanced turbulence due to the superposition of internal gravity waves and a coastal

upwelling jet, J. Geophys. Res., 112, id.C06 024, 2007.

Burchard, H.: Applied Turbulence Modelling in Marine Waters, Springer, Berlin/Heidelberg, Germany, 2002.

Burchard, H. and Bolding, K.: Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer, J. Phys.170

Oceanogr., 31, 1943–1968, 2002.

Forryan, A., Martin, A., Srokosz, M., Popova, E., Painter, S., and Renner, A.: A new observationally motivated Richardson number based

mixing parametrization for oceanic mesoscale flow, J. Geophys. Res. Oceans, 118, 1405–1419, https://doi.org/10.1002/jgrc.20108, 2013.

Galperin, B. and Sukoriansky, S.: QNSE theory of the anisotropic energy spectra of atmospheric and oceanic turbulence, Phys. Rev. Fluids,

5, id 063 803, 2020.175

Galperin, B., Sukoriansky, S., and Anderson, P.: On the critical Richardson number in stably stratified turbulence, Atmos. Sci. Lett., 8, 65–69,

2007.

Galperin, B., Sukoriansky, S., and Qiu, B.: Seasonal oceanic variability on meso-and submesoscales: a turbulence perspective, Ocean. Dy-

nam., 71, 475–489, 2021.

Gladskikh, D., Ostrovsky, L., Troitskaya, Y., Soustova, I., and Mortikov, E.: Turbulent transport in a stratified shear flow, J. Mar. Eng.180

Technol., 11, 136, https://doi.org/10.3390/jmse11010136, 2023.

Hostetler, S., Bates, G. T., and Giorgi, F.: Interactive coupling of a lake thermal model with a regional climate model, J. Geophys. Res., 98,

5045–5057, https://doi.org/1029/92JD02843, 1993.

Ivanov, A., Ostrovsky, L., Soustova, I., and Tsimring, L.: Interaction of internal waves and turbulent in the upper layer of the ocean, Dynam.

Atmos. Oceans, 7, 221–232, 1983.185

Kolmogorov, A.: Doklady AN SSSR (in russian), 30, 299, 1941.

Liu, Z., Lian, Q., Zhang, F., Wang, L., Li, M., Bai, X., and Wang, F.: Weak thermocline mixing in the North Pacific low-latitude western

boundary current system, Geoph. Res. Lett., 44, 530–539, https://doi.org/10.1002/2017GL075210, 2017.

Ljungemyr, P., N., G., and A., O.: Parameterization of lake thermodynamics in a high-resolution weather forecasting mode, Tellus A, 48,

608–621, 1996.190

Lozovatsky, I., Roget, E., Figueroa, M., Fernando, H. J. S., and S., S.: Sheared turbulence in weakly stratified upper ocean, Deep-Sea Res.

Pt. I, 53, 387–407, https://doi.org/10.3390/jmse11010136, 2006.

Mackay, M.: Modeling the regional climate impact of boreal lakes, Geophys. Res. Abstracts, 8, 05 405, 2006.

Mellor, G. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys., 20,

851–875, 1982.195

Monin, A. and Ozmidov, R.: Ocean Turbulence (in russian), Gidrometeoizdat, Leningrad, Russia, 1981.

Monin, A. and Yaglom, A.: Statisticheskaya gidromekhanika (in russian), chap. 1, Nauka, Moscow, 1964.

Moum, J., Hughes, K., Shroyer, E., Smyth, W., Cherian, D., Warner, S., Bourlès, B., Brandt, P., and Dengler, M.: Deep cycle turbulence in

Atlantic and Pacific cold tongues, Geoph. Res. Lett., 49, e2021GL097 345, https://doi.org/10.1029/2021GL097345, 2022.

Ostrovsky, L. and Soustova, I.: Upper mixed layer of the ocean as a sink of internal wave energy (in russian), Okeanologia, 19, 973–981,200

1969.

11

https://doi.org/10.1002/jgrc.20108
https://doi.org/10.3390/jmse11010136
https://doi.org/1029/92JD02843
https://doi.org/10.1002/2017GL075210
https://doi.org/10.3390/jmse11010136
https://doi.org/10.1029/2021GL097345


Ostrovsky, L. and Troitskaya, Y.: Model of turbulent transfer and the dynamics of turbulence in a stratified shear flux, Izv. Akad. Nauk SSSR,

Fiz. Atmos. Okeana, 3, 101–104, 1987.

Rodi, W.: Prediction methods for turbulent flows, Hemisphere Publishing Corporation, Washington, kollmann, w. edn., 1980.

Smyth, W., Moum, J., Li, L., and Thorpe, S.: Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial205

turbulence, J. Phys. Oceanogr., 43, 2432–2455, 2013.

Soustova, I., Troitskaya, Y., Gladskikh, D., Mortikov, E., and Sergeev, D.: A simple description of the turbulent transport in a stratified

shear flow as applied to the description of thermohydrodynamics of inland water bodies, Izv. Atmos. Ocean. Phys., 56, 603–612, https:

//doi.org/10.1134/S0001433820060109, 2020.

Strang, E. and Fernando, H.: Vertical mixing and transports through a stratified shear layer, J. Phys. Oceanogr., 31, 2026–2048, 2001.210

Stretch, D., Rot, J., Nomura, K., and Venayagamoorthy, S.: Transient mixing events in stably stratified turbulence, in: Proceedings of the

14th Australasian Fluid Mechanics Conference, Adelaide, Australia, 10-14 December 2001, pp. 625–628, 2001.

Sukoriansky, S., Galperin, B., and Staroselsky, I.: Cross-term and ε-expansion in RNG theory of turbulence, Fluid Dyn. Res., 33, 319, 2003.

Sukoriansky, S., Galperin, B., and Perov, V.: Application of a new spectral theory of stably stratified turbulence to atmospheric boundary

layer over sea ice, Bound.-lay. meteorol., 117, 231–257, 2005a.215

Sukoriansky, S., Galperin, B., and Staroselsky, I.: A quasi-normal scale elimination model of turbulent flows with stable stratification, Phys.

Fluids, 17, id 085 107, 2005b.

Tsuang, B.-J., Tu, C.-J., and Arpe, K.: Lake parameterization for climate models, Tech. Rep. 316, Max Planck Institute for Meteorology,

2001.

You, Y., Suginohara, N., Fukasawa, M., Yoritaka, H., Mizuno, K., Kashino, Y., and Hartoyo, D.: Transport of North Pacific Intermediate220

Water across Japanese WOCE sections, J.Geoph. Res., 108, 3196, https://api.semanticscholar.org/CorpusID:129316495, 2003.

Zilitinkevich, S., Elperin, T., Kleeorin, N., and Rogachevskii, I.: Energy-and flux-budget (EFB) turbulence closure models for stably-stratified

flows. Part I: Steady-state, homogeneous regimes, Bound.-lay. meteorol., 125, 167–191, 2007a.

Zilitinkevich, S., Elperin, T., Kleeorin, N., Rogachevskii, I., and Esau, I.: A hierarchy of Energy and Flux-Budget (EFB) turbulence closure

models for stably stratified geophysical flow, Bound.-lay. meteorol., 146, 341–373, 2007b.225

Appendix A: Dynamical equations for a turbulent stratified flow

Here we briefly outline the general system of equations for a turbulent stratified flow obtained in Ostrovsky and Troitskaya

(1987) and developed in Soustova et al. (2020); Gladskikh et al. (2023). Without dwelling on the details which are described in

these works, here we briefly outline the main points of the model. It begins by introducing the variable probability distribution

function:230

f(v,λ,r, t) = ⟨δ(u−v)δ(ρ−λ)⟩, (A1)

where δ is Dirac delta-function, and the angular parentheses denote the ensemble averaging. Using this together with the

Navier-Stokes equations for u and ρ, and supposing a Gaussian distribution function, the authors of Ostrovsky and Troitskaya

(1987) obtained the expressions for the average fluxes of turbulent energy, momentum, and mass. They are the same as in the
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common k-ϵ
:::::
K − ε

:
theory, except for the mass flux, having the form:235

⟨ρ′u′
i⟩=−LV
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∂xi
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V 2ρ0
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(A2)

where V =
√
⟨u′2⟩ and L, as above, is the outer scale of turbulence, g is the gravity acceleration, and βi are the components

of the vector
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In an incompressible fluid considered here, ∇u= 0. The potential energy of fluctuations is determined from the last equation240

because of (A8). Equations (A6) are a particular case of this system for the given average current and density stratification. In

general, such effects as internal wave damping by turbulence can be included in the solution as well. On the other hand, the

turbulence ”breakdown” phenomenon, in which, in certain phases of the wave, the velocity shear cannot maintain a nonzero

level of turbulent energy obtained using the common semi-empirical equations (Ivanov et al., 1983), does not exist here. This

is also confirmed by numerical calculations using parametrization obtained based on the model above, given in the work245

(Gladskikh et al., 2023).
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