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Abstract 16 

 17 

          The system of nonlinear equations for electromagnetic Rossby-Khantadze waves in a 18 

weakly ionized conductive ionospheric E-layer plasma with sheared zonal flow is given. Use 19 

of multiple-scale analysis allows reduction of obtained set of equations to (1+1)D nonlinear 20 

modified KdV (mKdV) equation with cubic nonlinearity describing the propagation of solitary 21 

Rossby-Khantadze solitons. 22 

 23 
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 25 

1. Introduction 26 

 27 

            Different satellite and ground-based investigations indicate presence of zonal flows in 28 

various atmospheric regions around the Earth (Pedlosky, 1987). The reason for the existence 29 

of zonal flows is the non-uniform warming of the Earth’s atmospheric regions by the sun. The 30 

presence of sheared flow along the meridians with inhomogeneous velocity, is closely 31 

connected with the ultra-low-frequency perturbations in ionospheric E and F regions of the 32 

ionosphere (Satoh, 2004; Shukla et al., 2003; Onishchenko et al. 2004; Kaladze et al., 2007; 33 

Kaladze et al., 2008). Effects of sheared flow appear in linear and nonlinear properties of the 34 

waves, and conditions suitable for that are available in Earth’s ionosphere. This gives rise to a 35 

variety of nonlinear phenomena like formation of solitary structures (solitons, vortices, zonal 36 

flows, etc.).  37 

          Due to a significant role in the global atmospheric circulation Rossby waves attract 38 

special scientific attention in connection with sheared zonal flows. Note that spatial 39 

nonhomogeneity of Coriolis parameter alongwith ambient geomagnetic field along the 40 

meridians causes the propagation of such coupled Rossby-Khantadze (RK) electromagnetic 41 

(EM) waves (see e.g. Kaladze et al. 2011). The generation of sheared RK EM planetary vortices 42 

in the ionospheric E-region also discussed (Kaladze et al., 2011; Kaladze et al., 2014). It was 43 

revealed, that propagation of coupled EM RK waves could be self-organized into solitary 44 

dipolar vortices and the possibility of the generation of intensive magnetic field is shown. In 45 

recent decades, several nonlinear phenomena related to the excitation of sheared zonal flows 46 

by EM Rossby waves were investigated. Taking into account Reynolds stresses zonal flow 47 

generations by short wavelength EM Rossby waves studied (Shukla et al., 2003; Onishchenko 48 

et al. 2004). The zonal flow’ generation in the ionospheric E-layer by Rossby waves revealed  49 
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by Kaladze et al. (2007). Such nonlinear Rossby wave structures broken  into numerous parts 50 

depends on the zonal flow energy (Kaladze et al., 2008). Numerical work on EM RK waves 51 

with sheared zonal flow in ionospheric E-plasma was found as well (Futatani et al., 2013, 52 

2015). In this work it was pointed out the splitting of vortices, where the energy is transported 53 

by sheared flow into multiple pieces.  Equatorial Rossby wave solitons under the action of 54 

sheared flows were also discussed (Qiang et al., 2001) and the existence of solitons was 55 

confirmed by the observations of Freja and Viking satellites (Qiang et al., 2001; Bostrom, 56 

1992; Dovner et al. 1994; Lindqvist et al., 1994). Jian et al., (2009) investigated nonlinear 57 

propagation of Rossby waves in stratified neutral fluids with zonal shear flow and obtained 58 

modified Korteweg-de Vries (mKdV) equation with cubic nonlinearity. Generation of the zonal 59 

flow alongwith magnetic field in the ionospheric E-plasma by Rossby-Khantadze EM 60 

planetary waves also discussed (Kaladze et al. 2012, Kahlon and Kaladze 2015). Possibility of 61 

magnetic field generation of 103 nT is predicted. Kaladze et al. (2019) investigated nonlinear 62 

interaction of magnetized electrostatic Rossby waves with   sheared zonal flows in the Earth’s 63 

ionospheric E-layer and developed the modified Korteweg-de Vries (mKdV) equation having 64 

cubic nonlinearity describing propagation of appropriate solitons. Some premises of the 65 

possibility of existence of planetary Rossby waves in the dynamo E-area of weakly ionized 66 

ionosphere and corresponding experimental interpretation was discussed by Forbes, 1996. 67 

Also, Vukcevic M. and Popovic L. Č., (2020) pointed out the possibility of many soliton 68 

structure formations at different latitudes, and at diverse ionospheric layers. Direct 69 

observations of such soliton structures from the surface of Earth or onboard the satellites are 70 

discussed. 71 

In the given manuscript, we generalize mentioned above results for the weakly ionized 72 

conducting ionospheric E-region plasma by incorporating along with stream-function 73 

evolution of geomagnetic field for electromagnetic RK waves, which to the best of our 74 

knowledge was not reported so far and thus provides novelty to this work. In Sec. 2, from the 75 

obtained system of nonlinear two-dimensional equations by using the multiple scale analysis 76 

and perturbation approach we derive one-dimensional mKdV equation with cubic nonlinearity 77 

describing solitary Rossby-Khantadze waves dynamics along with zonal (shear) flows. Sec. 3 78 

includes the discussion of the results. 79 

 80 

 81 

2. Mathematical Preliminaries 82 

 83 

          We consider partially ionized E-ionospheric region consisting of small concentration of 84 

electrons, ions and bulk of neutral particles, where such ionospheric plasma is enclosed in a 85 

spatially inhomogeneous geomagnetic field 𝑩0 = (0,𝐵0𝑦 ,𝐵0𝑧) and the Earth’s angular 86 

velocity 𝛀 = (0,Ω0𝑦 , Ω0𝑧). In weakly ionized ionospheric E-layer plasma, we consider two-87 

dimensional’ wave motion 𝐯 = (𝑢, v, 0), where 𝑢 = −
𝜕𝜓

𝜕𝑦
 , v =

𝜕𝜓

𝜕𝑥
 , and ψ(𝑥, 𝑦, 𝑡) is the stream 88 

function.  89 

 90 

We consider a local Cartesian system of coordinates with zonal x, latitudinal y, and z 91 

in local vertical direction. Then the nonlinear behavior of the sheared electromagnetic Rossby-92 

Khantadze waves can be narrated by the following 2D system of equations (e.g. Kaladze et al., 93 

2014),  94 

          {

𝜕∆𝜓

𝜕𝑡
+ β

𝜕𝜓

𝜕𝑥
+ J(𝜓, ∆𝜓) −

1

𝜇0𝜌
𝛽𝐵

𝜕ℎ

𝜕𝑥
= 0 ,

𝜕ℎ

𝜕𝑡
+ J(𝜓, ℎ) + 𝛽𝐵

𝜕𝜓

𝜕𝑥
+ 𝑐𝐵

𝜕ℎ

𝜕𝑥
= 0 ,

                                      (1) 95 
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The first equation describes the evolution of the z-component of vorticity (𝜁𝑧 = 𝒆𝑧 ∙96 

∇ × 𝐯 = Δψ) of the singly fluid momentum equation under the action of the geomagnetic field, 97 

v is the velocity of the incompressible neutral gas. The second equation is the z-component of 98 

the perturbed magnetic induction h obtained through Faraday’s law, and 𝛽 =
𝜕𝑓

𝜕𝑦
=

2𝜕Ω0𝑧

𝜕𝑦
 99 

describes the latitudinal inhomogeneity of angular velocity. Also the parameter 𝑐𝐵 = 𝛽𝐵/𝑒𝑛𝜇0  100 

with  𝛽𝐵 =
𝜕B0𝑧

𝜕𝑦
, describes the latitudinal inhomogeneity in the background magnetic field,  𝑛 101 

is the number density of the charged particles, 𝜇0 is the magnetic permeability and 𝐽(𝑎, 𝑏) =102 
𝜕𝑎

𝜕𝑥
 
𝜕𝑏

𝜕𝑦
 −

𝜕𝑎

𝜕𝑦
 
𝜕𝑏

𝜕𝑥
   is the Jacobian (responsible for the vector nonlinearity) and ∆= 𝜕𝑥

2 + 𝜕𝑦
2 . Note 103 

that the small concentration of charged particles (compared to the neutral particles) gives the 104 

contribution only in the inductive current (Kaladze, et al. 2013a, 2013b). It should also be noted 105 

that the ambient magnetic field and Coriolis parameter are spatially inhomogeneous, (Kaladze, 106 

et al., 2014). Details on the system (1) can be found in Kaladze, et al. (2012).  107 

 108 

The boundary conditions that are fulfilled for this system are given as,  109 

 110 

𝜓(0) = 𝜓(1) = 0 ,                            (2) 111 

 112 

which represents the flow’s edges, specifically along the south and north direction (Pedlosky 113 

(1987); Satoh (2004)). 114 

 115 

2.1 Perturbation and weakly nonlinear approach  116 

 117 

           The background stream function is considered in the following manner: 118 

 119 

Ψ(y) = −∫[U(y) − c0]dy .                                              (3) 120 

Here U(y) describes the basic background flow with c0 as a constant eigenvalue. The whole 121 

stream function 𝜓 is considered as the sum of background (zonal flow) stream function Ψ(y) 122 

and a disturbed stream 𝜓′ function. This assumption makes it a weakly nonlinear system, that 123 

is the subject of this study. While the perturbed magnetic field is also characterized by a small 124 

a parameter  𝜀. Therefore the stream function and the magnetic perturbations takes the form, 125 

                                     𝜓 = Ψ(𝑦) + 𝜀𝜓′ = −∫[𝑈(𝑦) − 𝑐0]𝑑𝑦 + 𝜀𝜓
′,   126 

                                     ℎ = 𝜀ℎ′                                                                                               (4) 127 

where 𝜀 ≪ 1 is a small parameter indicating that the perturbed quantities are small compared 128 

to the background parameters. 129 

            Using Eq (4) into (1) gives 130 

 131 

             {

𝜕∆𝜓′

𝜕𝑡
+ (𝑈(𝑦) − 𝑐0)

𝜕∆𝜓′

𝜕𝑥
+ (𝛽 − 𝑈′′)

𝜕𝜓′

𝜕𝑥
+

𝛽𝐵

𝜇0 𝜌

𝜕ℎ′

𝜕𝑥
+ εJ(𝜓′, ∆𝜓′) = 0 ,

𝜕ℎ′

𝜕𝑡
+ 𝜀J(𝜓′, ℎ′) + (𝑈(𝑦) − 𝑐0)

𝜕ℎ′

𝜕𝑥
+ 𝛽𝐵

𝜕𝜓′

𝜕𝑥
+ 𝑐𝐵

𝜕ℎ′

𝜕𝑥
= 0.

               (5) 132 

 133 

where 𝑈′′ =
𝑑2𝑈

𝑑𝑦2
 .  134 

 135 
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          By using the multiple scale analysis, we obtain the asymptotic solution where we take 136 

the spatial and temporal parameters as  𝑋 = 𝜀 𝑥  and time  𝑇 = 𝜀3𝑡 respectively. Further by 137 

eliminating  ℎ′ from 5(b) into 5(a) we get the single equation for 𝜓′ 138 

 139 

           ℒ0(𝜓) + 𝜀
2ℒ1(𝜓) + 𝜀 J (𝜓,

𝜕2𝜓

𝜕𝑦2
) + 𝜀3 J (𝜓,

𝜕2𝜓

𝜕𝑋2
) + 𝜀4  

𝜕3𝜓

𝜕𝑇𝜕𝑋2
= 0 .          (6) 140 

 141 

In Eq. (6) the prime on the perturbed stream function is dropped, and the following linear 142 

differential operators are introduced 143 

 144 

 145 

ℒ0 = [(𝑈 − 𝑐0)
𝜕2

𝜕𝑦2
+ 𝑝(𝑦) +

𝛼(𝑦)

𝑈−𝑐0+𝑐𝐵
]
𝜕

𝜕𝑥
 , ℒ1 =

𝜕

𝜕𝑇

𝜕2

𝜕𝑦2
+ (𝑈 − 𝑐0)

𝜕3

𝜕𝑋3
 ,     (7) 146 

 147 

where 𝛼(𝑦) =
𝛽𝐵
2

𝜇0 𝜌
  and 𝑝(𝑦) = 𝛽 − 𝑈′′. Here the parameter 𝛼 takes into account the spatial 148 

inhomogenity of the background magnetic field which was not considered before in Kaladze 149 

et al. (2019). 150 

 151 

Furthermore, we expand the stream function 𝜓 (in series with respect to the 𝜀) as: 152 

 153 

 𝜓 = 𝜓0 + 𝜀 𝜓1 + 𝜀
2𝜓2 +⋯ .                                                            (8) 154 

                      155 

           By using Eq. (8) into Eq. (6), we obtain from the lowest order O(𝜀0), the following 156 

equations,  157 

 158 

ℒ0[𝜓0] = 0,        with                    𝜓0 = 0 𝑓𝑜𝑟 𝑦 = 0,1 .                      (9) 159 

 160 

The above equation (9) is a linear differential equation. By performing a separation of variables 161 

method for  𝜓0 = 𝐴(𝑋, 𝑇) Φ0(𝑦)  into this form and substitute it into Eq. (7) we get the 162 

following equation with conditions of boundary: 163 

 164 

(
𝑑2

𝑑𝑦2
+

𝑝(𝑦)

𝑈−𝑐0
+

𝛼(𝑦)

(𝑈−𝑐0)(𝑈−𝑐0+𝑐𝐵)
) Φ0 = 0 ,      with    Φ0(0) = Φ0(1) = 0.               (10) 165 

 166 

Here we consider 𝑈 − 𝑐0 ≠ 0 and 𝑈 − 𝑐0 + 𝑐𝐵 ≠ 0. This is an eigenvalue problem for eigen 167 

value 𝑐0 . By specifying 𝑝(𝑦) and 𝛼(𝑦) , 𝛷0(𝑦) can be found. Since 𝑝(𝑦) and 𝛼(𝑦) have 168 

dependence on the variable y, it is not easy to solve this eigen value problem analytically. From 169 

the lowest order O (𝜀0), we see that the problem is time independent, but cannot be analytically 170 

solved as we have not substituted any definite dependence on y for the parameters 𝑝(𝑦) and 171 

𝛼(𝑦).Thus, in order to get more details about the amplitude of these waves, we go to the next 172 

order i.e. O (𝜀1) from Eqs. (7) and (8), we obtain 173 

 174 

ℒ0[𝜓1] = −J (𝜓0,
𝜕2𝜓0

𝜕𝑦2
) ≡ 𝐹1 = 𝐴

𝜕𝐴

𝜕𝑋
(
𝑝(𝑦)

𝑈−𝑐0
+

𝛼

(𝑈−𝑐0)(𝑈−𝑐0+𝑐𝐵)
)
𝑦
 Φ0

2 ,        (11) 175 

Furthermore, we carry out a separation of variables in the following manner 𝜓1 =176 
1

2
 𝐴2(𝑋, 𝑇) Φ1(𝑦) for non-singular neutral solutions into (11) 177 

 178 

(
𝑑2

𝑑𝑦2
+

𝑝(𝑦)

𝑈−𝑐0
+

𝛼

(𝑈−𝑐0)(𝑈−𝑐0+𝑐𝐵)
) Φ1 = (

𝑝(𝑦)

𝑈−𝑐0
+

𝛼

(𝑈−𝑐0)(𝑈−𝑐0+𝑐𝐵)
)
𝑦

Φ0
2

(𝑈−𝑐0)
,                 (12) 179 
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        180 

For the given boundary conditions Φ1(0) = Φ1(1) = 0. To get amplitude we solve Eqs. (7) 181 

and (8) in the next order i.e. O(𝜀2) which gives 182 

 183 

ℒ0[𝜓2] = −ℒ1[𝜓0] − J (𝜓0,
𝜕2𝜓1

𝜕𝑦2
) − J (𝜓1,

𝜕2𝜓0

𝜕𝑦2
) ≡  𝐹2,                  (13) 184 

 185 

with 𝜓2(0) = 𝜓2(1) = 0. 186 

 187 

Here it is pointed out that the dispersion effect, given in the definition of ℒ1 competes with 188 

weakly nonlinear effect, which appears through the Jacobian in Eq. (9). 189 

 190 

Furthermore, we again perform a separation of variables,  𝜓2 = 𝐵(𝑋, 𝑇)Φ2(𝑦) and multiply 191 

Eq. (13) by  𝜓0 and integrate over 𝑦, which yields 192 

 193 

∫ 𝑑𝑦 
𝐹2

𝑈−𝑐0
Φ0 = 0 .

1

0
                                                 (14) 194 

By substituting  𝐹2 and using 𝜓1 =
1

2
 𝐴2(𝑋, 𝑇) 𝛷1(𝑦) into Eq. (14) we get the modified KdV 195 

(mKdV) equation (Kaladze et. al (2019)) 196 

 197 
𝜕𝐴

𝜕𝑇
+𝑁 𝐴2  

𝜕𝐴

𝜕𝑋
+𝐷 

𝜕3𝐴

𝜕𝑋3
= 0 .                                      (15) 198 

This equation has a cubic nonlinearity, whereas the standard KdV equation has a quadratic 199 

nonlinearity. 200 

In Eq.(15) above 201 

 202 

𝑁 =
𝐼2

𝐼0
 ,            𝐷 = −

𝐼1

𝐼0
 ,                                            (16) 203 

where 204 

 

{
 
 
 
 

 
 
 
 𝐼0 = ∫

𝑑𝑦 Φ0
2(𝑦) [

𝑝(𝑦)

(𝑈(𝑦)−𝑐0)2
+

𝛼

(𝑈(𝑦)−𝑐0)2(𝑈(𝑦)−𝑐0+𝑐𝐵)
 ],

 

1

0

𝐼1 = ∫ 𝑑𝑦 Φ0
2(𝑦)

1

0

𝐼2 = ∫ 𝑑𝑦 
Φ0
2(𝑦)

𝑈(𝑦)−𝑐0
 

{
 
 

 
 

3

2
(

𝑝(𝑦)

𝑈(𝑦)−𝑐0
+

𝛼

(𝑈(𝑦)−𝑐0)(𝑈(𝑦)−𝑐0+𝑐𝐵)
)
𝑦
Φ1(𝑦)

−
1

2
Φ0
2(𝑦) [(

𝑝(𝑦)

𝑈(𝑦)−𝑐0
+

𝛼

(𝑈(𝑦)−𝑐0)(𝑈(𝑦)−𝑐0+𝑐𝐵)
)
𝑦

1

𝑈(𝑦)−𝑐0
]
𝑦}
 
 

 
 

,
1

0

        (17) 205 

 206 

Kaladze et al. (2019) and Jian et al. (2009) also obtained the same mKdV equation (15) 207 

with cubic nonlinearity for Rossby waves and pointed out that the background flow shear is a 208 

necessary condition for the existence of solitary waves, whereas in this work, we get the mKdV 209 

for the Rossby-Khantadze waves where the coefficients have been modified by inclusion of 210 

inhomogeneity in geomagnetic field. Moreover, the effect of shear basic flow on the spatial 211 

structure, propagation velocity and wave width of solitary Rossby waves have been studied. 212 

We would like to point out here the meridional dependence of functions 𝛽(𝑦), 𝛼(𝑦) and 𝑈(𝑦), 213 

that appears in the coefficients 𝑁 and 𝐷. 214 

 215 

Amid numerous exact solutions of mKdV equation (15) (see e.g. Wazwaz (2009)), we 216 

are interested in a soliton like traveling wave solution. The one-soliton solution of equation 217 

(15) is  218 
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𝐴(𝑋, 𝑇) = ±√
6𝑐

𝑁
𝑠𝑒𝑐ℎ (√

𝑐

𝐷
(𝑋 − 𝑐𝑇)) ,                                (18) 219 

where c is the traveling wave velocity, and the coefficients 𝑁 and 𝐷 are defined by Eqs. (16)-220 

(17). In order for a wave to have an exact solitary solution associated to it, one needs to a 221 

robust equation like the KdV. Modified KdV, as well, has infinite conservation laws 222 

associated to them, and hence is integrable and contain one and N-soliton solution. Shown in 223 

the above equation is the one soliton solution of the mKdV. One can use the Hirota’s method, 224 

where by using a suitable transformation, one converts the nonlinear equation into a bilinear 225 

equation, and then by using the Hirota’s differential operator and solving the subsequent 226 

equation, one can obtain a multi-soliton solution. Some types of mKdV spatially periodic 227 

solutions (cnoidal solutions) discussed (Kevrekidis et al. 2004). It was noted that mKdV 228 

equation having nonlinear term may have an alternate sign. Properties of such difference also 229 

discussed.  230 

 231 

 232 

3. Discussion 233 

 234 

           In the present paper, we have studied the nonlinear dynamics of large-scale 235 

electromagnetic Rossby-Khantadze waves with zonal flows in E-ionospheric plasma. Both the 236 

latitudinal inhomogeneities in angular velocity of the earth’s rotation and the geomagnetic field 237 

are taken into account. The latitudinal inhomogeneity of the magnetic field is responsible for 238 

coupled Rossby–Khantadze waves. Such coupling results in an appearance of dispersion of 239 

Khantadze waves. To derive the nonlinear modified KdV we used the multiple scale analysis 240 

technique. From the lowest order of O (𝜀0), we get an eigen-value problem with constant eigen-241 

value 𝑐0 along with the boundary conditions. The parameters 𝑝(𝑦) and 𝛼(𝑦) have dependence 242 

on the variable y, making it not possible to solve this eigen value problem analytically. From 243 

the next order O (𝜀1), by using separation of variables techniques and after doing some 244 

mathematical manipulations we arrive at the mKdV equation (15) with cubic nonlinearity of 245 

(1+1) dimension. Traveling wave solitary solution of this equation is given by Eq. (18), where 246 

the parameter √
6𝑐

𝑁
 describes the amplitude of solitary RK structures. The obtained coefficients 247 

𝑁 and 𝐷 depend on the spatially inhomogeneous Coriolis force 𝛼(𝑦) and background magnetic 248 

field 𝛽(𝑦), respectively.  249 

 In anticipation of future for the experimental observations of RK vortical motions in 250 

the weakly ionized ionospheric E-layer we expect the following characteristics. Apart from the 251 

ordinary Rossby waves electromagnetic RK perturbations generated by the latitudinal gradient 252 

of the geomagnetic field and represent the variation of the vortical electric field 𝑬v = 𝐯𝐷 × 𝑩0, 253 

where 𝐯𝐷 = 𝑬 × 𝑩0/𝐵0
2  is the electron drift velocity. RK waves propagate along the latitude 254 

with the velocity |𝑐𝐵| ≈ 2 − 20 𝑘𝑚/𝑠. Frequency (𝜔 = 𝑘𝑥𝑐𝐵) and the phase velocity 𝑐𝐵 255 

depend on the number density of the charged particles and vary by one order of magnitude 256 

during the daytime and nighttime conditions (which is so suitable for experimental 257 

observations). Such perturbations have relatively high frequency (104 − 10−1) 𝑠−1 and have 258 

wavelengths ~103 𝑘𝑚. Compared with the ordinary Rossby waves electromagnetic RK waves 259 

accompanied by the strong pulsations of the geomagnetic field 20-80 nT. Note that Khantadze 260 

waves in the middle and moderate latitudes observed at the launching of spacecrafts Burmaka, 261 

et al. (2006) and by the world network of ionospheric and magnetic observations Sharadze, et 262 

al. (1988); Sharadze, et al. (1989); Sharadze, (1991); Alperovich, et al. (2007). Forbes (1996) 263 

provides data analyses for discussing the penetration of Rossby type planetary waves effects 264 

into ionospheric dynamo E-region (100-170 km) and the electrodynamic interactions which 265 

ensue there. 266 



 7 

 267 

RK waves are mainly of zonal type and observed mainly during magnetic storms 268 

alongwith sub-storms, artificial explosions, earthquakes, etc. They give valuable information 269 

on large-scale synoptic processes and about external sources as well as dynamical processes in 270 

the ionosphere. Therefore, theoretical investigations of electromagnetic Rossby type 271 

oscillations will provide valuable information for further ionospheric experimental 272 

investigations. 273 

 274 
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