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Abstract 16 
 17 
          The system of nonlinear equations for Rossby-Khantadze waves in a weakly ionized 18 
conductive ionospheric plasma with sheared zonal flow is given. Use of multiple-scale analysis 19 
allows reduction of obtained set of equations to one-dimensional so called nonlinear modified 20 
KdV (MKdV) equation describing the propagation of solitary Rossby-Khantadze waves. 21 
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1. Introduction 25 
 26 
            Different satellite and ground-based investigations indicate presence of zonal flows in 27 
various atmospheric regions around the Earth (Pedlosky, 1987). The presence of sheared flow 28 
along the meridians with inhomogeneous velocity, is connected with the ultra-low-frequency 29 
perturbations in E and F regions of the ionosphere (Satoh, 2004; Champeaux et al. 2008; Shukla 30 
et al., 2003; Onishchenko et al. 2004; Kaladze T.D., 2007; Kaladze et al., 2008). Effect of 31 
sheared flow can be seen in the linear and nonlinear properties of the waves, and conditions 32 
suitable for that are available in Earth’s ionosphere. This gives rise to a variety of linear and 33 
nonlinear phenomena like zonal flows. Rossby waves may exist and this may occur in the upper 34 
atmosphere and in the oceans; and these play a significant role in the global atmospheric 35 
circulation. 36 
          The reason for the existence of zonal flows is the non-uniform warming of the Earth’s 37 
atmospheric regions by the sun. In recent decades, several nonlinear phenomena related to the 38 
excitation of sheared (zonal) flows were investigated. For instance, Benkadda et al., (2011) 39 
investigated the excitation of zonal flows in fusion plasmas by taking drift waves into account. 40 
Using Hasegawa Wakatani model, Champeaux et al. (2008) investigated the excitation of zonal 41 
flows in drift wave turbulence. Lately, zonal flow generations for short wavelength 42 
electromagnetic Rossby waves have also been studied by taking Reynolds stresses into account 43 
(Shukla et al., 2003; Onishchenko et al. 2004). 44 
The production of zonal flow in E-ionospheric layer by Rossby waves was investigated by 45 
Kaladze et al. (2007). The authors considered the effects of the zonal flows on nonlinear 46 
structures in Rossby waves and it was shown that such structures split into various segments 47 
based on the collection of zonal flow energy (Kaladze et al., 2008). A different concept was 48 
considered by Benkadda et al. (2011) where they emphasized on the interaction of high 49 
frequency drift waves with those having lower frequencies.  50 
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          More recently, it was seen, that propagation of coupled Rossby-Khantadze (RK) waves 51 
could be self-organized into dipolar (solitary) vortices (Kaladze, 2014). The spatial 52 
inhomogeneity of Coriolis parameter and ambient magnetic field along the meridians causes 53 
the propagation of such coupled RK waves. The numerical simulation of the same problem 54 
was carried out by Kaladze, et al. (1999) where the possibility of modulation mechanism in 55 
ionospheric plasmas was discussed, in turn leading to the formation and transport of dust flows 56 
and particles respectively. Numerical solutions of RK waves with sheared zonal flow in weakly 57 
ionized ionospheric E-plasma region was investigated as well (Futatani et al., 2015). In his 58 
work he has pointed out the splitting of vortices, where the energy is transported by sheared 59 
flow into multiple pieces. The equatorial Rossby waves were discussed under similar sheared 60 
flows in the beginning of the millennia (Qiang et al., 2001) and the existence of solitons was 61 
confirmed by the observations of Freja and Viking satellites (Qiang et al., 2001; Bostrom, 62 
1992; Lindqvist et al., 1994; Dovner et al. 1994, YunLong Shi et al. 2018). The generation of 63 
shear flow by Rossby-Khantadze waves in E-ionospheric region has also been discussed 64 
(Kaladze, et al. 2014). Earlier, Kaladze et al. (2009) had earlier investigated the properties of 65 
magnetized solitary Rossby waves with the interaction of zonal flows (sheared) and developed 66 
the mKdV equation. By considering the 𝛽-plane approximation, similar work was done by Jian 67 
et al., (2009). 68 
 In the present paper, we have considered the effect of magnetic field for the MKdV 69 
equation for RK waves. Such case has not been reported so far and thus provides novelty to 70 
this work. Here we have investigated solitary Rossby-Khantadze (RK) waves by incorporating 71 
sheared zonal flows in a partially ionized conducting plasma, found in the ionospheric E-72 
region. In Sec. 2, by using the multiple scale analysis and perturbation approach from a system 73 
of nonlinear two-dimensional equations we derive one-dimensional MKdV equation 74 
describing solitary Rossby-Khantadze waves’ dynamics along with zonal (shear) flows. In Sec. 75 
3, includes the discussion of the results. 76 
 77 
 78 

2. Mathematical Preliminaries 79 
 80 
          We consider weakly ionized E-ionospheric region comprising of electrons, ions and 81 
neutrals particles, where the ionospheric plasma is enclosed in a geomagnetic field 𝑩# =82 
%0, 𝐵#), 𝐵#*+. Similarly, the angular velocity of the earth contains no x-component, 𝛀 =83 
%0, Ω#), Ω#*+. In this layer therefore, two-dimensional consideration of the wave motion 84 
provides complete information about its propagation in terms of stream function ψ(𝑥, 𝑦, 𝑡), 𝐯 =85 
(𝑢, v, 0), with 𝑢 = −78

7)
 and v = 78

79
 .  86 

 87 
           The nonlinear behavior of the sheared Rossby-Khantadze waves can be described by 88 
the following system of 2D equations, where the first equation is obtained from the z-89 
component of the curl of vorticity with 𝜁* = ∆𝜓 and the second one is obtained from the z-90 
component of magnetic field, through Faraday’s law. Here we obtained the following system 91 
of Eqs. (1) under the assumption that electron and ion flows due to the small concentration 92 
number (compared to the neutral particles) gives the contribution only in the inductive 93 
current (Kaladze, et al. 2013). The quantity  𝜁* = 𝒆* ∙ ∇ × 𝐯  is the z-component of the 94 
vorticity. It should also be noted that the ambient magnetic field and Coriolis parameter are 95 
spatially inhomogeneous,  𝑓 = 2Ω#* (Kaladze, et al., 2014): 96 
 97 

          C
7∆8
7D

+ β 78
79
+ J(𝜓, ∆𝜓) − H

IJK
𝛽L

7M
79
= 0	,

7M
7D
+ J(𝜓, ℎ) + 𝛽L

78
79
+ 𝑐L

7M
79
= 0	,

                                      (1) 98 
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In Eq. (1), ℎ represents the z-component of perturbed magnetic field and 𝛽 = 7Q
7)
= R7SJT

7)
 99 

describes the latitudinal inhomogeneity present in the vertical component of angular velocity. 100 
Also the parameter 𝑐L = 𝛽L/𝑒𝑛𝜇#  with  𝛽L =

7YJT
7)

, describes the latitudinal inhomogeneity in 101 
the background magnetic field,	𝑛 is the number density of the charged particles, 𝜇# is the 102 
magnetic permeability and 𝐽(𝑎, 𝑏) = 7]

79
	7^
7)
	− 7]

7)
	7^
79

   is the Jacobian (responsible for the vector 103 
nonlinearity) and ∆= 𝜕9R + 𝜕)R . 104 
 105 

The boundary conditions that are fulfilled in this system are given as,  106 
 107 

𝜓(0) = 𝜓(1) = 0	,                            (2) 108 
 109 

which represents the flow’s edges, specifically along the south and north direction [1, 2]. 110 
 111 

2.1 Perturbation and weakly nonlinear approach  112 

 113 
           The background stream function is considered as: 114 
 115 

Ψ(y) = −∫[U(y) − c#]dy	.                                              (3) 116 

Here U(y) describes the basic background flow with c# as a constant eigenvalue. The whole 117 
stream function 𝜓 is considered as the sum of background (zonal flow) stream function Ψ(y) 118 
and a disturbed stream 𝜓j function, along with a normalized small parameter 𝜀 ≪ 1. Which 119 
forms a weakly nonlinear system, that is the subject of this study. While the perturbed magnetic 120 
field is also characterized by a small a parameter ε. Therefore the stream function and the 121 
magnetic perturbations takes the form, 122 

                                     𝜓 = Ψ(𝑦) + 𝜀𝜓j = −∫[𝑈(𝑦) − 𝑐#]𝑑𝑦 + 𝜀𝜓j,   123 
                                     ℎ = 𝜀ℎj                                                                                               (4) 124 
 125 
            Using Eq (4) into (1) gives 126 
 127 

             C
7∆8p

7D
+ (𝑈(𝑦) − 𝑐#)

7∆8p

79
+ (𝛽 − 𝑈jj) 78

p

79
+ qr

IJ	K
7Mp

79
+ εJ(𝜓j, ∆𝜓j) = 0	,

7Mp

7D
+ 𝜀J(𝜓j, ℎj) + (𝑈(𝑦) − 𝑐#)

7Mp

79
+ 𝛽L

78p

79
+ 𝑐L

7Mp

79
= 0.

               (5) 128 

 129 
where 𝑈jj = stu

s)t
 .  130 

 131 
          By using the multiple scale analysis, we obtain the asymptotic solution where we can 132 
take the spatial and temporal parameters as  𝑋 = 𝜀	𝑥  and time  𝑇 = 𝜀x𝑡 respectively. Further 133 
by eliminating  ℎj from 5(b) into 5(a) we get the single equation for 𝜓j 134 
 135 
           ℒ#(𝜓) + 𝜀RℒH(𝜓) + 𝜀	J z𝜓,

7t8
7)t

{ + 𝜀x	J z𝜓, 7
t8
7|t

{ + 𝜀} 	 7
~8

7�7|t
= 0	.          (6) 136 

 137 
Throughout Eq. (6) the prime on the perturbed stream function is dropped.  138 
 139 



 4 

           Here we introduce the following linear differential operators: 140 
 141 
 142 

ℒ# = �(𝑈 − 𝑐#)
7t

7)t
+ 𝑝(𝑦) + �())

u��J��r
� 7
79

 , ℒH =
7
7�

7t

7)t
+ (𝑈 − 𝑐#)

7~

7|~
 ,     (7) 143 

 144 
where 𝛼(𝑦) = qr

t

IJ	K
  and 𝑝(𝑦) = 𝛽 − 𝑈jj. Here the parameter 𝛼 involves the spatial 145 

inhomogeneous background magnetic field which was not considered before in Kaladze et al. 146 
[16]. 147 
 148 
Furthermore, we denote the disturbed stream function 𝜓 (the asymptotic expansion) as: 149 
 150 

 𝜓 = 𝜓# + 𝜀	𝜓H + 𝜀R𝜓R + ⋯	.                                                            (8) 151 
                      152 
           By using Eq. (8) into Eq. (6), from the lowest order O(𝜀#), we get the following equation 153 
with conditions of boundary: 154 
 155 
 156 

ℒ#[𝜓#] = 0,								with																				𝜓# = 0	𝑓𝑜𝑟	𝑦 = 0,1	.                      (9) 157 
 158 
The above equation (9) is a linear differential equation. By performing a separation of variables 159 
method for  𝜓# = 𝐴(𝑋, 𝑇)	Φ#(𝑦)  into this form and substitute it into Eq. (7) we get the 160 
following equation with conditions of boundary: 161 
 162 

z s
t

s)t
+ �())

u��J
+ �())

(u��J)(u��J��r)
{	Φ# = 0	,						with				Φ#(0) = Φ#(1) = 0.	              (10) 163 

 164 
Here we consider 𝑈 − 𝑐# ≠ 0 and 𝑈 − 𝑐# + 𝑐L ≠ 0. This is an eigenvalue problem for eigen 165 
value 𝑐# . By specifying 𝑝(𝑦) and 𝛼(𝑦) , 𝛷#(𝑦) can be found. Since 𝑝(𝑦) and 𝛼(𝑦) have 166 
dependence on the variable y, it is not easy to solve this eigen value problem analytically. From 167 
the lowest order O (𝜀#), we see that the problem is time independent, but cannot be analytically 168 
solved as we have not substituted any definite dependence on y for the parameters 𝑝(𝑦) and 169 
𝛼(𝑦).Thus, in order to gain more information about the amplitude of these waves, we go to the 170 
next order i.e. O (𝜀H) from Eqs. (7) and (8), we obtain 171 
 172 

ℒ#[𝜓H] = −J z𝜓#,
7t8J
7)t

{ ≡ 𝐹H = 𝐴 7�
7|
z�())
u��J

+ �
(u��J)(u��J��r)

{
)
	Φ#

R	,        (11) 173 

Furthermore, we carry out a separation of variables in the following manner 𝜓H =174 
H
R
	𝐴R(𝑋, 𝑇)	ΦH(𝑦) for non-singular neutral solutions into (11) 175 

 176 
z s

t

s)t
+ �())

u��J
+ �

(u��J)(u��J��r)
{	ΦH = z�())

u��J
+ �

(u��J)(u��J��r)
{
)

�J
t

(u��J)
,                 (12) 177 

        178 
For the given boundary conditions ΦH(0) = ΦH(1) = 0.	To get amplitude we solve Eqs.(7) 179 
and (8) in the next order i.e. O(𝜀R) which gives 180 
 181 

ℒ#[𝜓R] = −ℒH[𝜓#] − J z𝜓#,
7t8�
7)t

{ − J z𝜓H,
7t8J
7)t

{ ≡ 	𝐹R,                  (13) 182 
 183 
with 𝜓R(0) = 𝜓R(1) = 0. 184 
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 185 
Here it is pointed out that the dispersion effect competes with weakly nonlinear effect. 186 
 187 
Furthermore, we take 𝜓R = 𝐵(𝑋, 𝑇)ΦR(𝑦) and multiply Eq. (13) by  𝜓# and integrate over 𝑦, 188 
which yields 189 
 190 

∫ 𝑑𝑦	 �t
u��J

Φ# = 0	.H
#                                                  (14) 191 

By substituting  𝐹R	and using 𝜓H =
H
R
	𝐴R(𝑋, 𝑇)	𝛷H(𝑦) into above Eq. (14) results in the 192 

modified KdV (MKdV) equation  193 
 194 

7�
7�
+ 𝑁	𝐴R 	7�

7|
+ 𝐷	 7

~�
7|~

= 0	.	                                     (15) 195 
 196 
Here 197 
 198 

𝑁 = �t
�J
	,												𝐷 = − ��

�J
	,                                            (16) 199 

 200 

	

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝐼# = ∫ 𝑑𝑦	Φ#

R(𝑦)	[ �())
(u��J)t

+ �
(u��J)t(u��J��r)

	],
	

H
#

𝐼H = ∫ 𝑑𝑦	Φ#
R(𝑦)H

#

𝐼R = ∫ 𝑑𝑦	 �J
t())

u��J
	

⎩
⎪
⎨

⎪
⎧

x
R
z�())
u��J

+ �
(u��J)(u��J��r)

{
)
ΦH(𝑦)

− H
R
Φ#
R(𝑦) ¢z�())

u��J
+ �

(u��J)(u��J��r)
{
)

H
u��J

£
)⎭
⎪
⎬

⎪
⎫

,H
#

        (17) 201 

 202 
Kaladze et al. [16] and Jian et al. [17] also obtained the same MKdV equation for Rossby waves 203 
as equation (15) and pointed out that the background flow shear is a necessary condition for 204 
the existence of solitary waves, whereas in this work, we get the MKdV for the Rossby-205 
Khantadze waves where the coefficients have been modified by inclusion of inhomogeneity in 206 
geomagnetic field. Moreover, the effect of shear basic flow on the spatial structure, propagation 207 
velocity and wave width of solitary Rossby waves have been studied.  208 
  209 
Here the function 𝛽(𝑦), 𝛼(𝑦) and 𝑈(𝑦) are related to the coefficients N and D. 210 
 211 

The solution of modified KdV equation (15) is, 212 
 213 

𝐴(𝑥, 𝑡) = ±¨©�
ª
𝑠𝑒𝑐ℎ ¬¨�


(𝑥 − 𝑐𝑡)® .                       (18) 214 

 215 
Where the coefficients D, and N are defined above. 216 

3. Discussion 217 
 218 
           In the given paper, we studied the nonlinear dynamics of large-scale electromagnetic 219 
Rossby-Khantadze waves with zonal flows in E-ionospheric plasma. Both the latitudinal 220 
inhomogeneities in angular velocity of the earth’s rotation and the geomagnetic field are taken 221 
into account. The inhomogeneity of the magnetic field with latitude is responsible for coupled 222 
Rossby–Khantadze waves. Such coupling results in an appearance of dispersion of Khantadze 223 
waves. To derive the nonlinear modified KdV we used the multiple scale analysis technique. 224 
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From the lowest order of O (𝜀#), we get an eigen value problem with constant eigen value 𝑐# 225 
along with the boundary conditions. The parameters 𝑝(𝑦) and 𝛼(𝑦) have dependence on the 226 
variable y, making it not possible to solve this eigen value problem analytically. From the next 227 
order O (𝜀H), by using separation of variables techniques and after doing some mathematical 228 
manipulations we arrive at the modified KdV equation of one dimension. The derived quantity 229 

¨©�
ª

 describes the amplitude of solitary waves. The obtained coefficients 𝑁 and 𝐷 depend on 230 

spatial inhomogeneous Coriolis force 𝛼(𝑦) and background magnetic field 𝛽(𝑦), respectively. 231 

The parameter ¨©�
ª

  obtained above describes the amplitude of obtained such Rossby-232 

Khantadze waves.  233 
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