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Abstract. Assessing wind fields at a local scale in mountainous terrain has long been a scientific challenge partly because of

the complex interaction between large-scale flows and local topography. Traditionally, the operational applications that require

high resolution wind forcings rely on downscaled outputs of numerical weather predictions systems. Downscaling models

either proceed from a function that links large scale wind fields to local observations (hence including a corrective step), or use

operations that account for local scale processes, through statistics or dynamical simulations, and without prior knowledge of5

large scale modeling errors. This work presents a strategy to first correct and then downscale the wind fields of the numerical

weather prediction model AROME operating at 1300 m grid spacing, by using a modular architecture composed of two artificial

neural networks and the DEVINE downscaling model. We show that our method is able to first correct the wind direction and

speed from the large scale model (1300m), and then accurately downscale it to a local scale (30m) by using the DEVINE

downscaling model. The innovative aspect of our method lies in its optimization scheme that accounts for the downscaling10

step in the computations of the corrections of the coarse scale wind fields. This modular architecture yields competitive results

without suppressing the versatility of the downscaling model DEVINE, which remains unbounded to any wind observations.

1 Introduction

Understanding the declination of synoptic winds at a local scale in complex terrain is crucial for a wide range of applications,

including assessing the dispersion of pollutants, predicting wildfire spread, and evaluating wind energy potential (Giovannini15

et al., 2020; Wagenbrenner et al., 2016; Dujardin and Lehning, 2022). Local winds also have a significant impact on the

evolution of the snowpack. The high variability of wind fields in complex terrain generates local gradients in the surface

energy balance, which in turn influence the interaction between the snowpack and the atmosphere. These interactions can lead

to significant spatial variability in the seasonal snowpack at the slope scale (Mott et al., 2018). In addition, wind can cause

snow redistribution on snow-covered areas through erosion and deposition processes, which is a major concern for avalanche20

hazard prediction (Lehning and Fierz, 2008).
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Wind fields variability at a local scale in mountains is largely driven by two factors: terrain forced-flow, which refers to the

direct impact of topography on large scale winds, and thermally driven flows, which result from local temperature gradients

caused by terrain inhomogeneity and variable shading (Whiteman, 2000). Terrain forced flow and thermal winds interact with

each other, causing local variations both in speed and direction, making it challenging to understand and model mountain25

winds.

Many applications rely on the ability of Numerical Weather Prediction (NWP) systems to model synoptic scale wind fields

above mountains (Quéno et al., 2016; Vionnet et al., 2016). NWP models are generally characterized by their horizontal grid

spacing on the order of one or several kilometers. Despite constant increase in horizontal resolution in recent years, a large

number of use cases still require downscaling techniques to reach their resolution of interest (Vionnet et al., 2021; Marsh et al.,30

2020).

Several methods have emerged to adapt the wind fields provided by NWP systems (in this work referred to as "large scale")

to a local scale. Statistical downscaling is a family of methods that adapt large scale information, such as NWP outputs, to local

scale specificities using statistical operations. Another approach, dynamical downscaling, relies on models to directly simulate

atmospheric and surface processes at higher resolution. A large variety of statistical downscaling methods can be found in35

literature: e.g. Dupuy et al. (2021) and Goutham et al. (2021) develop statistical downscaling methods specifically tailored

to operate at specific individual locations (their calibration sites). In a different way, Zamo et al. (2016) and Höhlein et al.

(2020) adapt large scale NWP wind fields to specific target grids at a higher resolution. On the contrary, more general methods

such as Winstral et al. (2017) can theoretically be applied to any area with the inclusion of appropriate terrain descriptors as

inputs. These methods not only increase the resolution of the simulated variables, but they also include corrective terms that40

can compensate for systematic errors in NWP modeling: this is a direct consequence of the use of an optimization/training

step that links modeled data to wind observations. Such methods can also be referred to as Model Output Statistics (MOS) or

bias correction methods, and frequently present favorable statistics when evaluated using observed wind data. Since statistical

relationships are derived by linking outputs from a specific NWP system to observed values, two challenges emerge. First, their

use is restricted to a unique NWP system or NWP system version. Second, the model capability to extrapolate wind values on45

areas where no calibration has been performed can be challenging and must be rigorously assessed.

Conversely, other downscaling methods restrict their use to the modeling or parameterization of local scale processes only,

without any optimization based on observations. These methods may improve evaluation metrics through the added value of

the representation of missing processes, however, they don’t compensate for systematic errors in large scale modeling and

hardly compete in terms of evaluation metrics with methods including a corrective step. However, their use is not restricted to50

any specific NWP nor to any specific geographic area. A large array of the aforementioned models can be found in literature,

ranging from simple statistical relationships (Liston and Elder, 2006; Helbig et al., 2017) to dynamical downscaling methods

including atmospheric models of various complexity (Wagenbrenner et al., 2016; Raderschall et al., 2008; Vionnet et al., 2017).

DEVINE (Le Toumelin et al., 2022) is a brand-new example of statistical downscaling models that represent wind fields at a

local scale without incorporating any fit to observed data. Indeed, DEVINE simulates the adaptation of large scale wind fields55

to high resolution terrain (30m) by using a fully convolutional neural network. More specifically this model was trained at
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replicating the behavior of the atmospheric model ARPS ("Advanced Regional Prediction System") over complex Gaussian

topographies (Helbig et al., 2017).

Consequently, systematic errors originating from the NWP large scale inputs can eventually be transferred and amplified

through DEVINE. These errors can have a variety of origins, like missing or imperfect parameterizations, too coarse model60

topography, errors due to the assimilation procedure etc. Furthermore, the use of a downscaling model also makes it difficult to

determine the origin of the modeling errors: whether the downscaling model accurately/inaccurately simulates local-scale pro-

cesses or if error compensations between the large-scale forcing and the downscaling model scramble the evaluation. However,

even though error attribution is complex, identifying typical weather and topographic situations where inputs or downscaled

data are incorrect is more accessible, notably thanks to deep learning.65

As an illustration, Le Toumelin et al. (2022) observed that AROME ("Application of Research to Operations at Mesoscale",

an operational numerical weather prediction system used by Meteo-France) wind fields are frequently underestimated at ele-

vated and exposed areas. After using DEVINE, they noted smaller errors: thanks to the ability of the downscaling model to

simulate terrain forced flow at a local scale and notably strong wind accelerations over summits and crests, the initial NWP

underestimation is reduced. Since some wind speed underestimation remains, it is not clear whether the downscaling model70

does not accelerate the input wind sufficiently, or if the initial NWP wind speeds are too low. Whatever their origin, deep

learning technics jointly with in situ measurements and ancillary atmospheric and toporaphic data may enable an a posteriori

compensation of such systematic biases.

In this context, we design and present a strategy, based on deep learning, that corrects NWP input wind fields upstream of

the DEVINE downscaling method. Indeed, the correction is made before the downscaling step, but the effect of downscaling is75

accounted for in the optimization of the neural networks’ parameters that are responsible for the correction. In turn, most errors

affecting the coarse-scale wind fields are corrected without affecting the spatial extrapolation capabilities of the downscaling

model and diminishing the associated performances. By scrutinizing a set of variables including many variables that can

influence air motion (e.g. temperature, humidity, boundary layer height etc) and advanced topographic metrics, the artificial

neural networks developed for this correction optimize NWP wind speed and direction before calling the downscaling model.80

With this modular architecture, we provide an end-to-end chain including downscaling and model output statistics, that permit

to boost the evaluation performances of the DEVINE downscaling model.

2 Data

In this study, we used forecasts from the AROME NWP system as inputs to our new downscaling strategy. We rely on forecasts

from AROME both for large scale wind fields and other atmospheric variables used in the corrective step. Our models also make85

use of high resolution topographical information (30m). Quality-controlled wind observations acquired over a large network

of automatic weather stations (AWS) are used for model training (train set) and evaluation (test set). We finally compared the

performance of our models to the operational analysis of the AROME system.
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2.1 AROME

The AROME NWP system embeds a limited-area model, notably run by Meteo-France for short term weather forecasting90

operations. It simulates the state of the atmosphere and the surface over a European domain including the french Alps, Pyrenees

and Corsica. The model solves the non-hydrostatic fully compressible Euler Equations by using a semi-Lagrangian and semi-

implicit numerical solver and by including a spectral representation of several prognostic variables (Seity et al., 2011; Bénard

et al., 2010). The physics is inherited from the Meso-NH model (Lafore et al., 1998; Lac et al., 2018) and the dynamical core

from ALADIN-NH (Bubnová et al., 1995). The model is driven at its borders by the ARPEGE model. It simulates energy95

and mass exchanges between the atmosphere and the surface thanks to the SURFEX platform (Masson et al., 2013). Notably,

AROME uses the SURFEX/ISBA model over land (Noilhan and Mahfouf, 1996; Masson et al., 2013) and the simplified

snowpack scheme from Douville et al. (1995) over snow covered areas. Since 2018, AROME operates with a 1.3km horizontal

grid spacing over France, which is of high interest for applications that require high resolution information about the state of

the boundary layer such as weather forecasting over complex terrain (Quéno et al., 2016; Vionnet et al., 2016). The AROME100

system also includes a 3Dvar assimilation scheme, which takes into account radial winds observed by radars in addition to the

assimilation of 10-m wind speeds. We note that wind observations in complex terrain are frequently neglected for assimilation

due to their lack of spatial representativity (Gouttevin et al., 2023). Eventually, their distance to AROME initial guess can also

lead to their exclusion of the assimilation cycle.

AROME analyses are produced every UTC hours whereas the model is also run in forecast mode every 3h. For this study,105

we built two different products from the aforementioned cycles. Firstly, we built a continuous time series by extracting +6

to +29h AROME forecast lead times, initialized with the analysis of 00:00 UTC, as in Quéno et al. (2016); Vionnet et al.

(2016); Le Toumelin et al. (2022). This was done as a way to obtain continuous time series, typically used to force snow and

surface models as in Quéno et al. (2016); Vionnet et al. (2016); Gouttevin et al. (2023). This way, we were able to construct

a continuous time series of 11 variables from AROME forecasts between the 1st of September 2017 to the 1st of October110

2020 at an hourly time step (AROMEforecast). The variables are detailed in Table 2 and their respective use described in Sect.

3.3. For the same period, we extracted the same variables, from the analysis cycles (AROMEanalysis) also at an hourly time

step. Finally, we obtain two datasets from AROME: AROMEforecast are representative of forecasted atmospheric and surface

conditions and AROMEanalysis are representative of an a posteriori product, giving the most plausible state of the atmosphere

at the considered date. In the following study AROMEforecast are used as inputs of the post-processing and downscaling115

schemes, as would be within an operational high-resolution forecast system, whereas AROMEanalysis serves as a reference

"best" product to compare with.

2.2 Observations

We gathered hourly wind field observations from AWS originating from different observation networks in Switzerland and

France in order to train and evaluate our models. In detail, we used a total of 273 observation stations. Among them, 214120

stations are located in Switzerland, and correspond to data provided by MeteoSwiss, the Swiss Federal Office of Meteorology
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Figure 1. In situ observations stations used to train the model (218 blue dots) and evaluate the model (55 red dots). All stations are localised

in Switzerland and France. Train/test partitioning was performed using a stratified sampling method described in Sect. 3.4. Note that an

additional data set (not shown) constituted from observations collected in Corsica and in the french Pyrenees has been used in Sect. 4.5 in

order to evaluate the applicability of our model to other mountain ranges.

and Climatology. Then, 59 stations are located in France among which 54 are from Météo-France observational networks and

5 from the GLACIOCLIM network ("Les GLACIers un observatoire du CLIMat" - "Glacier: an observatory of the climate").

We note the use of three AWS from the Col du Lac Blanc instrumental site, a high-altitude observatory specifically dedicated

to the study of mountain meteorology and drifting-snow (Vionnet et al., 2017; Guyomarc’h et al., 2019). The observational125

sites are located in various types of environments, all representative of alpine terrain. This includes snow covered areas, slopes,

exposed terrain but also lower elevation valleys and some stations localized around urbanized terrain.

Since most of the wind observations used in this study were obtained in complex terrain and frequently under challenging

meteorological conditions, we applied a quality check procedure to our observational dataset, inspired from Lucio-Eceiza et al.

(2018a, b). As extensively detailed in Le Toumelin et al. (2022), this procedure first asserts a correct data compilation and130

storage including chronological sorting, a search for eventual repeated dates and the distinction between true North (360°)

and undefined direction when wind speed is null (0°). Moreover, it ensures the validity of observed speeds and directions by

removing unrealistic observations (e.g. speeds > 100 ms−1 or negative directions). The quality check also includes the use of

log profiles to unify the observational height of wind fields (here set at 10m) for measuring devices located below 10m above

the surface. This procedure uses snow height information when available to adjust wind profile correction. Moreover, some135

additional tests are designed to detect suspicious speeds or direction sequences. As an example, icing of wind sensors is a typical
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case of sensor dysfunction in complex terrain and is reflected by the acquisition of null or constant speed/direction for several

consecutive hours. The quality check procedure also takes care of other typical suspicious sequences of data such as extremely

high speed variations (extreme spikes or lows in time series) and constant sequences of positive speeds for consecutive hours

or days. Finally, longer term rolling means are scrutinized to detect the suspicious rise or decline of observed mean speeds140

which can shed light on the occurrence of systematic errors of diverse nature (e.g. mast tilting, new vegetation or urbanization

in the vicinity of the sensor).

2.3 Terrain parameters

Since the local topography has a large impact on wind fields, several topographic parameters are used as input variables to

the corrective strategy, so as to capture the dominant local features of the topography. Among the selected parameters, the145

TPI500m (Weiss, 2001) consists of computing the difference between a digital elevation model (DEM) pixel elevation and the

mean elevation of neighboring pixels within a fixed radius (here taken at 500m). Consequently, the TPI500m gives an integrated

vision of the relative elevation of the considered pixel: positive TPI500m indicates that the pixel of interest is higher than the

neighboring pixels, negative TPI500m indicate the opposite. The curvature, computed following Liston and Elder (2006),

quantifies how much a terrain differentiates from a plane. The Laplacian, computed as in Le Toumelin et al. (2022), also gives150

an estimation of the local elevation variation and enables to detect small scale peaks or bowls within topographic maps. The

slope, obtained as the root mean squared slope using first order finite differences as in Helbig et al. (2017), quantifies the local

slope of topography. The aspect indicates the orientation of a pixel relative to the North direction. Finally, the parameter α,

adapted from Dujardin and Lehning (2022) is computed following equation 1.

α= arctan(tan(slope) ∗ cos(wind direction− aspect)) (1)155

α is a proxy firstly indicating how wind direction should be modified in order to align perpendicularly to the aspect. Further-

more α also increases with the slope so that it is higher over steep slopes than over flat terrain. Similarly to wind direction, α

is expressed in degree. Since α and aspect are computed using values from direct neighboring pixels, they tend to be sensible

to small scale variations in topographic features. To reduce this variability, we averaged all aspects and α values using a 3x3

moving window, i.e. averaging all α values given the 8 α values from the neighboring DEM pixels (30m spaced). In this study,160

the DEM used has been obtained after merging RGE Alti DEM resampled to 30m (IGN) inside of France boundaries and

GLO-30 DEM in Switzerland (Fahrland et al., 2020).

3 Method

3.1 Artificial neural network

Artificial neural networks (ANNs) are a specific type of machine learning model. They are constituted by interconnected units165

called neurons, which hold floating point values, all organized in different layers. In a layer, neurons transmit the information

6



received from previous layer’s neurons to the next layer’s neurons. Communication consists of first an affine modification of

each neuron value using weights (slope parameters) and biases (intercepts). Then, all neuron modified values are summed and

pass through a nonlinear activation function which produces the next layer’s neuron input values. Finally, the first layer holds

the raw inputs, while the last layer holds the predicted values. All weights and biases are typically initialized using random170

values and then modified using optimization algorithms based on gradient descent methods. Such methods are based on the

computation of the gradient of a loss function between the neural network output and the expected output with respect to the

network weights and biases. Weights and biases are then optimized in the opposite direction of the gradient in order to minimize

the loss. By replicating this strategy a large number of times over a large number of samples, artificial neural networks can

learn complex patterns that link the training inputs to the training target outputs. Finally, we note the existence of different175

hyperparameters, which consist of parameters that are not weights and biases (e.g. the number of neurons and the number of

layers). These parameters are not learnt during the training process but rather fixed independently.

3.2 DEVINE

DEVINE is a downscaling model based on a Unet convolutional neural network (Ronneberger et al., 2015) designed to adapt

wind fields to high resolution topography (30m) in complex terrain (Le Toumelin et al., 2022). This model takes as inputs180

high resolution topography (30m) and large scale wind fields above the topography and provides 3D wind fields with a 30m

grid spacing as output. DEVINE uses convolutions to detect advanced spatial features on topographic maps and to assemble

them into more complex patterns within a latent space. This latent representation is then used to reconstruct high resolution

wind fields using spatial interpolation and convolutions to finally obtain wind simulations at the same resolution as the input

topography. The model was trained using 7279 ARPS simulations performed by Helbig et al. (2017). These simulations were185

run over a large range of synthetic Gaussian topographies of diverse complexity, using similar constant initial atmospheric

conditions across all simulations. The trained model showed good behavior at reproducing ARPS simulation on an evalua-

tion dataset. As a case study, Le Toumelin et al. (2022) applied DEVINE to downscale AROME forecasted wind fields in the

french Alps and used observations from 61 in situ stations for model evaluation. Qualitatively, the model simulates coherent

spatial structures, characteristic of terrain forced flows. Notably, the model is able to detect ridges and summits and to sim-190

ulate acceleration as observed within ARPS simulations that served as targets. Similarly, DEVINE shows good behavior at

detecting windward and leeward areas and is able to modify speed accordingly. Some directional shifts were observed around

topographic barriers (channeling), but remain modest. Some other features of mountain winds occurring at the slope scale

such as recirculation areas or upslope/downslope thermal flows are not accounted for. Quantitatively, in addition to its spatial

extrapolation abilities, DEVINE improves AROME evaluation metrics notably at the most elevated and exposed stations. A195

significant improvement in modeling the highest wind speeds has also been observed, which is of high interest for applications

demanding good precision above a certain speed threshold such as drifting-snow modeling.
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Table 1. Input variables used in ANNspeed and ANNdirection

Name Unit ANNspeed ANNdirection Details

Wind speed5m ms−1 x

Wind speed10m ms−1 x x

Wind speed50m ms−1 x

Wind speed126m ms−1 x

Wind speed515m ms−1 x

Wind direction ° x x 10m wind direction

Boundary LayerHeight m x

LWnet W m−2 x Longwave radiation budget

SWnet W m−2 x Shortwave radiation budget

T2m °C x 2-m temperature

Cloud cover x Varies between 0 (no cloud) and 1

Elevationmodel m x AROME surface elevation

Elevation m x Elevation from a 30m DEM

TPI500m m x

Laplacian m−1 x

Slope x

Curvature x

α ° x see Sect. 2.3

aspect ° x

3.3 Neural network + DEVINE

3.3.1 Architecture

The model presented in this study corresponds to an extension of the DEVINE model. It consists of the addition of two ANNs200

that process large scale NWP data and local scale topographic data prior to the use of the DEVINE downscaling model. More

precisely, a first neural network is designed to compute an additive correction for the NWP wind direction (ANNdirection)

aiming at compensating for large scale modeling errors, and a second network performs similar corrections for the NWP wind

speed (ANNspeed). The modified large scale wind speed and direction are then used to feed the DEVINE downscaling model,

that also uses a high resolution topographic map (30m) of the area considered. In details, ANNdirection uses 4 input variables205

(2 topographic parameters and 2 variables from the NWP system) and ANNspeed uses 17 variables (5 topographic variables

and 12 NWP variables), all listed in Table 2. The outputs of the overall model (referred to as Neural networks + DEVINE) are

the same as DEVINE outputs, i.e. high resolution maps of the three components of the wind vector.
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Table 2. Architecture, hyperparameters ans loss functions used in Neural Network and Neural Network+DEVINE

Name ANNspeed ANNdirection Details

Activation function Selu Gelu Excluding output neuron

Activation function (output) Linear Linear Output neuron only

Batch size 128 128

Dropout rate 0.25 0.35

Epochs 10 5

Initializer GlorotUniform GlorotUniform Glorot and Bengio (2010)

Learning rate 0.001 0.001

Loss function Lspeed Ldirection Sect. 3.3.3

Number of layers 2 2 Excluding input and output layers

Optimizer Adam Adam Kingma and Ba (2014)

Units per layer [50, 10] [50, 10]

As the ANNdirection and ANNspeed need to output wind speed and direction, they need to take into account the typical

range of wind speed (positive values, generally below 100 ms−1) and direction values (0 to 360°). To facilitate such a task,210

we used skip connections: considering ANNdirection (respectively ANNspeed), the initial NWP direction (respectively speed)

is added to the value of the ANN’s output neuron so that the network concentrates on the computation of a direction difference

(respectively speed difference) instead of computing directly direction (respectively speed). Furthermore, care has to be taken

to activation functions used before the skip connection: the direction difference (respectively speed difference) should not be

constrained to positive or negative values only (as in relu functions for instance) since modifications can be either positive or215

negative depending on weather and topographic situations. Hence, we selected a linear activation function for the last layer

of both input networks, before calling the skip connection layer. Furthermore, after adding modifications suggested by the

network to the initial wind direction (respectively speed), i.e. after the skip connection layer, we had to ensure that no negative

values were produced. For that, we used a relu activation function that caps negative values to zero. Hyperparameters and

architecture details are summarized in Table 2. Diverse architectures and hyperparameters were tested in order to converge to220

the final model. We checked that our model doesn’t overfit the test set by computing metrics using a three fold cross-validation

strategy, presented in Table S1 in the supplementary material.

3.3.2 Training

In order to adapt the weights and biases of the ANNs, we adopted a sequential approach. First, we optimized ANNdirection for

wind direction, and then optimized ANNspeed for wind speed. This order is motivated by the fact that an erroneous direction225

can translate into erroneous high-resolution wind speeds with DEVINE as a result of wrong topography adjustments, whereas

the opposite will have less impact. We selected 218 training observation stations in the french Alps measuring wind speed
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and direction. Additionally, we used data from the nearest grid cell of AROME at each of these stations to take into account

large scale atmospheric conditions, and extracted topographic maps around these observation stations to take into account

topography. It is important to note that in the end, our model outputs wind field maps whereas observation stations provide230

information for isolated points in space. In order to optimize the neural networks, we selected a single wind value at the center of

each simulated map that is compared to the corresponding target from the observation station. This step required to accurately

match the position of the center of the simulated map with the observation station: this was possible by providing input

topographies to our model that were already centered on the location of the observation sites. The optimization process involved

backpropagating the gradient of a loss function, which was computed using the wind direction or speed value simulated by235

DEVINE and the targets. The loss functions used in this study are describe in Sect. 3.3.3 and correspond to a cosine distance for

optimizations of the direction, and a modified mean squared error for optimization of wind speed. During the optimization of

ANNdirection, both DEVINE and ANNspeed weights and biases are kept frozen. Similarly DEVINE and ANNdirection weights

and biases are not updated during ANNspeed optimization. We note that DEVINE parameters were directly taken from the

original model Le Toumelin et al. (2022) and have not been modified in this study. This choice was made because our goal was240

to develop an optimization system to be used with DEVINE, rather than fitting DEVINE to AROME wind fields. Modifying

DEVINE weights would lead to the creation of a new and less versatile downscaling model (see Sect. 5), that assumes a

specific type of input data (here AROME data), with potential limitations in its scope of applicability. Once trained, Neural

network + DEVINE can model wind fields at high resolution, even over areas not included in the training process. Additionally,

intermediate values (i.e. ANN outputs, referred to as Neural Network) are saved for model interpretability purpose (red dots in245

Fig. 2).

3.3.3 Loss functions

Two loss functions were selected for training ANNdirection and ANNspeed. For ANNdirection we selected the cosine dis-

tance (Ldirection, Eq. 2) to account for angular differences between direction predictions (directionmodel) and observations

(directionobs). We also took care to express all directions in degrees or radians when required.250

Ldirection = 1− cos(directionobs − directionmodel) (2)

For ANNspeed we designed a custom loss function that targets the main errors typically found in AROME forecasted wind

fields. Previous studies (e.g. Dujardin and Lehning (2022); Bolibar et al. (2020)) demonstrated that the use of a classic loss

function (e.g. mean squared error) tends to produce a squeezed distribution around the mean value of the output and poor eval-

uation metrics. Our loss function, denoted as Lspeed (Eq. 3), is designed to penalize three specific characteristics of AROME’s255

wind field errors as follows: Lspeed (i) compares simulated values to actual in situ observations using the mean squared error

(mse), (ii) uses the factor τ to foster the correction of speed underestimations over overestimations (τ is arbitrarily fixed to 0.6

for cases of underestimations and 0.4 for overestimations) and (iii) places a higher penalty on errors made at high wind speeds

by scaling Lspeed with observed speeds (speedobs).
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Figure 2. Scheme of the new model architecture. The architecture is composed of two artificial neural networks (ANN) in addition to

DEVINE downscaling model. The first ANN predicts wind direction (orange, ANNdirection), the second one predicts wind speed (blue,

ANNspeed). Skip connections are represented by blue and orange connections, associated with the sign “+”. Modified wind speed, direction

and a high resolution topographic map are then sent to DEVINE (Le Toumelin et al., 2022), which in turn outputs maps of the three

components of wind fields (U, V, W) at high resolution (30m). During the training step, wind direction and speed values are computed at the

maps’ center (taken to coincide with an observation station) and sequentially compared to in situ observation using appropriate loss functions

(see Sect. 3.3.3). ANNdirection and ANNspeed optimizations are guided by the gradient of these losses. We note that ANNdirection and

ANNspeed have both an independent model architecture, including the nature of input variables. "Topo. variables" refer to input variables

of topographic nature, "NWP variables" to inputs corresponding to forecasted meteorological and surface variables, "NWP direction" to

forecasted wind direction and "NWP speed" to forecasted wind speed. The mathematical operations performed within DEVINE are listed

using colored boxes and are explicited in Le Toumelin et al. (2022). Finally, red dots following ANNdirection and ANNspeed consist of the

intermediate results of the network (i.e. the ANN outputs) and are referred to as Neural Network.

Lspeed = speedobs ∗ τ ∗mse(speedobs,speedmodel)

where

 τ = 0.6 if speedobs ≤ speedmodel

τ = 0.4 if speedobs > speedmodel

(3)260
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3.4 Data partitioning

Deep-learning applications commonly involve the use of a training set for model optimization and a test set for model evalu-

ation. Many studies (Goutham et al., 2021, e.g) implement random train/test split, i.e. randomly extracting test samples from

the training set to form a test set. As underlined by Dujardin and Lehning (2022), this method can lead to an overestimation of

the model performance. Evaluating a model after random sampling in a temporal context is equivalent to assessing the ability265

of the model to reconstruct an incomplete time series given the information of all other known time steps. Furthermore, using

random split or a simple temporal split means that the ability of the model to predict at unknown areas is not documented. This

can be detrimental for a large number of applications that require downscaled data over areas different from the calibration

area. In this study, we decided to evaluate our model both over observational sites not used during training and for a year that

was not included during training. This method corresponds to a spatio-temporal extrapolation assessment and provides a strict270

evaluation procedure, closer to real use cases where a model is run over diverse areas, largely not present in the training set.

Consequently, we divided our dataset into a training set and a test set using a temporal and a spatial split.

Space partitioning

The spatial split involved a stratified selection process that resulted in the selection of 55 AWS sites from the 273 sites available

in the Alps. We first identified six topographic and geographic descriptors for the AWS locations, calculated as described in275

Sect. 2.3 : elevation, the TPI, the slope, the local Laplacian, and the x and y geographical coordinates of the stations (expressed

using the Lambert93 projection). For each parameter, we split the 273 AWS sites in 3 groups according to their position in the

parameter’s distribution: stations with a parameter below the 0.33 quantile, between the 0.33 and 0.66 quantile or above the

0.66 quantile. We then divided each of these three groups into three additional categories, according to the root mean square

error (RMSE) of AROMEforecast at each site. We applied a random sampling without replacement in the final three groups280

and ensured that no station was selected twice. Considering the six parameters categorized in three intermediate groups that

are in turn categorized in 3 groups, we identify 6∗3∗3 = 54 stations that are representative of diverse topographic parameters,

geographic locations and AROME performances. We also included Col du Lac Blanc station (latitude = 45.12°, longitude =

6.11°; elevation = 2720 m), as it has been studied in Le Toumelin et al. (2022) and we wanted to study our new model at this

site. After this spatial split, our training set is composed of the remaining 218 AWS sites and our test set of the 55 selected285

AWS sites. The stratified selection process favors the selection of a test set that is balanced among the six selected parameters

and has a diverse range of AROME performance, limiting the risk of unbalanced properties of the observational sites among

training and test sets.

Time partitioning

The temporal split simply consisted of excluding the last year of data from the training set, and excluding the first two years290

from the test set. Finally we obtain two years of data at 218 sites for training and one other year at 55 other sites for evaluation.
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3.5 Neural network interpretability

3.5.1 Partial Dependence Plots

In statistical modeling, interpretability methods give insights on the causes that lead a model to make a specific decision.

Among these methods, the Partial Dependence Plots (PDP) is an intuitive method giving insights on the isolated effect of a295

given variable on the model outputs. Their computation consist of iteratively fixing all instances of the studied input variable

variablei at a precise value defined in a given range and observing the mean effect on the model outputs. By averaging over all

model outputs, PDP permit to focus solely on the influence of variablei on the outputs. PDP suppose independence between

input variables since fixing variablei to a given value comes with no modification of the other input variables. Using PDP with

correlated features can lead to unrealistic situations where model predictions are performed for implausible data instances (e.g.300

studying the effect of temperatures > 20 °C over high altitude stations during winter nights). However contrary to Accumulated

Local Effects (see Sect. 3.5.2), PDP do not suppose any ordering in the input variable, contrary to accumulated local effects

(see Sect. 3.5.2). Following this property, we use PDP in this work to study the impact of ANNdirection input features on wind

direction simulations.

3.5.2 Accumulated local effects305

Accumulated Local Effects (ALE) also permit to study the influence of a given input variable on the model outputs. Unlike

more common methods such as PDP or feature importance ranking (McGovern et al., 2019), ALE are robust to correlated

structures in the input variables, which frequently occur in atmospheric sciences. In contrast to PDP, ALE compute differences

of prediction for a small window around specific values of a given input variable variablei, based on its conditional distribution.

In details, this is done by firstly grouping variablei values in n bins of identical number of instances (quantiles). For each bin,310

a difference of model predictions is obtained after fixing all instances of variablei to the uppermost value of the bin and

subtracting predictions obtained after fixing the same instances to the lowermost values of the bins. This permits to overcome

the correlation issue of PDP because prediction differences are only computed for data instances in the considered variablei’s

bin. This step can be interpreted as a computation of a partial derivative around a specific value of variablei. The differences

are then averaged to obtain the local effect of variablei for the considered bin. A standard deviation around the mean value is315

also computed, as a way to track the dispersion of individual effects. Local effects are then accumulated and centered across

each bin to finally obtain ALE. This step corresponds to an integration of the (averaged) local gradients and enables to represent

the dependence of model outputs to variablei across its range. In this study, we also accumulated the standard deviations as a

way to keep track of the dispersion characterizing the individual effects (shaded regions in Fig. 10). Similarly, two dimensional

ALE plots can also be obtained to highlight the effects of the interaction of two features within the model, without considering320

first order effects. Two dimensional ALE plots are well suited to observe if two features interact within the model and help

decomposing higher order causes that lead to model prediction. In this study, ALE are used to understand how input variables

of ANNspeed influence Neural Network + DEVINE simulations. More details about ALE can be found in Molnar (2022).
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4 Results

4.1 AROME performance in the Alps325

AROMEforecast performances in simulating wind speed in complex terrain depends on the topography. Indeed, we compared

AROMEforecast outputs to observed wind speeds in Figure 3, for a three year period at an hourly time step and for all stations

available in the Alps (training + test). We then analysed the influence of topography by grouping observation stations by their

quartiles in both TPI500m and elevation distributions. We observe that AROMEforecast are marked by a negative mean bias

at both elevated and high TPI500m stations. The joint effect of TPI500m and elevation is all the more marked since speed330

discrepancies increase with TPI500m for the highest elevation category. Oppositely, for lower elevation and TPI500m closer

to 0 (i.e. TPI500m in the second and third quartiles), we note a positive speed bias, less intense than its negative counterpart.

Numbers in Fig. 3 indicate the number of observation stations in each group and inform on the topographic characteristics of our

observational dataset. Notably, we observe that elevated stations are partially correlated with the TPI500m (Pearson correlation

coefficient = 0.39). High positive values of TPI500m indicate that the observation station dominates its neighborhood, and is335

to some extent "exposed". TPI500m close to zero characterize stations on average at the same elevation as their neighborhood

in a radius of 500m, a definition that includes flat terrain.

Complementary, we observe that AROMEforecast negative bias varies with observed wind speed. Figure 4 (a) compares

AROMEforecast hourly simulations to hourly observations and shows the onset of a negative bias with increasing observed

speed. This behavior is characterized by a departure from the 1-1 line for the highest observed wind speeds. This observation is340

consistent with Fig. 3 since generally, (i) wind speed increases with elevation, and (ii) high speeds are generally observed over

summits, crests and ridges (Whiteman, 2000), which designate topographic features often characterized by high TPI500m.

Figure 4 confirms and generalises the results from Le Toumelin et al. (2022) who already evidenced this AROMEforecast

underestimation pattern in the french Alps: note that the test set used in Fig. 4 shares 5 observation stations with Le Toumelin

et al. (2022) data set.345

Finally, AROMEforecast captures realistic wind direction patterns in the Alps. This is qualitatively shown in Fig. 5 (a) and

(d) where AROME wind distribution closely resembles the observed wind distribution. We nevertheless observe discrepancies

such as a shift in the most frequent wind direction. Indeed, the west-southwest wind direction is the most frequent direction

among our observations whereas AROMEforecast predominantly simulates south-west wind fields. For all directions, we

note that most wind direction errors are inferior to 60°, and inferior to 30° when forecasted among the dominant directions350

(west-southwest and south-west). The largest direction errors (i.e. errors superiors to 90°) affect all directions in comparable

proportions. We finally observe that AROMEforecast tends to overestimate the west-northwest, northwest and north-northwest

direction while underestimating the north directions.

4.2 Model evaluations

In this section, we evaluate the performances of different wind products, including AROMEforecast and AROMEanalysis but355

also the results of our deep-learning corrections and/or downscaling models (DEVINE, Neural Network, and Neural Net-

14



Figure 3. Mean wind speed error of AROME forecasts versus observed wind speed (color) at all stations available (training + test) in the

Alps. The results are categorized by TPI500m and elevation quartiles (q) at the observation stations. The numbers indicate the number of

observation stations within each category. TPI500m (respectively elevation) values of q25, q50 and q75 are -20m, -2m and 11m (respectively

482m, 859m, 1605m).

work+DEVINE). Consequently, we use the test dataset, which was not used to train the deep learning models. We remind that

AROMEforecast serves as input for DEVINE and Neural Network+DEVINE, while both deep learning models did not use

directly any data from AROMEanalysis as input. Integrated evaluation metrics first highlight improved RMSE, MAE (Mean

Absolute Error), mean bias and coefficient correlation with DEVINE over AROMEforecast (Table 3). Such improvements360

are not able to bridge the gap between AROMEforecast and AROMEanalysis, the latest showing largely improved evaluation

metrics. However, the use of Neural Network+DEVINE improves statistics (except mean bias), ultimately showing the best

results among all wind products.

We also observe (as expected) an improved behavior of AROMEanalysis over AROMEforecast notably through a partial

correction of the departure from the 1-1 line for high observed speeds initially observed in AROMEforecast (Fig. 4). More365

generally, AROMEanalysis data are centered around the 1-1 line suggesting a better agreement between simulations and ob-

servations. Similarly, we observe that DEVINE generates increased wind speed, notably for the highest observed speeds. Such

a modification compensates for AROMEforecast initial underestimation. However, contour lines which indicate data density

still reveal some dispersion around the 1-1 line with DEVINE. Neural Network+DEVINE also shows a partial correction for

the highest observed speeds and shows generally less dispersion around the 1-1 line. A close inspection of the lowest wind370

speeds however indicates some overestimation of null and speeds inferiors to 1 ms−1.

We then scrutinized the model performances for wind speed with respect to elevation in Fig. 6 (a). DEVINE perfor-

mances are comparable to AROMEforecast performances for low elevated stations, additionally to the fact that contrary to

AROMEforecast, DEVINE provides a spatialized signal at a local scale. Improvements are however observed for higher stations
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and can be attributed to the ability of DEVINE to simulate acceleration at exposed and elevated stations where AROMEforecast375

denotes a negative bias compared to observations. These results reinforce a study with DEVINE (Le Toumelin et al., 2022), who

observed similar behaviors. AROMEanalysis presents better evaluation metrics compared to AROMEforecast and DEVINE at

all elevation categories. However, we still observe some errors at the most elevated stations. Neural Network+DEVINE finally

improves DEVINE evaluation metrics at all elevations categories, matching AROMEanalysis metrics on the second and third

quartiles and outperforming it for the most elevated stations. In detail, the boxplot indicates slightly lower median errors for380

AROMEanalysis compared to Neural Network+DEVINE at all categories except for the highest stations, but also shows that

the largest modeling errors are less frequent with Neural Network+DEVINE among the third and fourth quartile.

In terms of wind direction, AROMEanalysis largely diminishes the largest modeling errors observed in AROMEforecast.

Wind distribution patterns highlight a reinforcement of the occurrence of wind in the south-west direction, which is still

different from the observed wind patterns (Fig. 5). However, we see improvement in the reduction of north north-west pre-385

dictions and better characteristics concerning the North to East winds. On the other hand, as noted in Le Toumelin et al.

(2022), DEVINE simulates directions close to AROMEforecast, without introducing any major change. Similarly to observa-

tions, Neural Network+DEVINE simulates most winds in the west south-west direction, and largely reduces the occurrence

of the largest wind direction errors (Fig. 5). The improved performance is striking in the dominant westerly directions. Fig-

ure 6 (b) sheds light on the distribution of errors according to the elevation category of the observation stations and shows390

similar characteristics to speed errors. Similarly to AROMEanalysis, Neural Network+DEVINE improves wind direction mod-

eling over AROMEforecast and DEVINE at all elevation categories, notably at the most elevated stations where Neural Net-

work+DEVINE has the lowermost median value for direction error among all the products compared.

Table 3. Evaluation metrics obtained on the test dataset (Alps). MAE designates the mean absolute error, RMSE the root mean square error

and ρ the Pearson correlation coefficient. The mean absolute error for wind direction was computed by taking care of the cyclic nature of

wind direction.

AROMEforecast DEVINE Neural Network Neural Network+DEVINE AROMEanalysis

Variable Metric

Speed MAE [ms−1] 1.34 1.29 1.21 1.16 1.18

RMSE [ms−1] 1.92 1.81 1.73 1.62 1.71

Mean bias [ms−1] -0.14 -0.02 -0.17 -0.05 -0.15

ρ [] 0.60 0.66 0.68 0.72 0.69

Direction MAE [°] 44 43 35 35 37

4.3 Influence of forecast lead time and seasonality

In this section, we analyse model performances with respect to forecast lead times (Fig. 7 (a) and (c)) and month of the year395

(Fig. 7 (b) and (d)). We note that in our study, a forecast lead time has a one-to-one relationship with the hour of the day. In terms
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(a) (b)

(d) (e)

(c)

Figure 4. 1-1 plots of simulated versus observed wind speed. The models are (a) AROMEforecast, (b) DEVINE, (c) Neural Network, (d)

Neural Network + DEVINE and (e) AROMEanalysis. Black lines indicate data density. This figure only uses data from the test set.

°

(a) (b) (c)

(d) (e) (f)

Figure 5. Wind roses of modeled wind directions for (a) AROMEforecast, (b) DEVINE, (c) Neural Network + DEVINE, (e) Neural Network,

(f) AROMEanalysis and (d) observed wind directions. Colors in (a), (b), (c), (e), and (f) indicate wind direction modeling error, obtained

by comparing modeled to observed wind directions. Colors in (d) indicates the speed category of the observed wind. Only wind directions

acquired for observed and modeled wind speeds above 1 ms−1 have been considered. The spoke on the radial axis indicates the proportion

in % of data that is predicted in the considered direction.
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(b)

(a)

Figure 6. Wind direction absolute error (a) and wind speed absolute error (b) categorized by the elevation of the observation station where

the measurements were held. In details, the four categories correspond to the four quartiles of the elevation distribution among observation

stations: elevation increases from left to right. Each boxplot color indicates a different model. This figure only uses data from the test set.

of speed, AROMEforecast errors are characterized by a peak occurring for lead times between 10h and 20h i.e. mostly during

midday and afternoons, in phase with the daily peak of average wind speed. This peak vanishes with AROMEanalysis which

shows considerable improvements compared to the forecasts. Moreover, we observe that DEVINE evidences small, yet notable

improvements compared to AROMEforecast. Neural Network shows general improvements compared to AROMEforecast and400

DEVINE by shifting down the error curve, but still conserves a peak around lead time 15h. Finally, the use of DEVINE

after Neural Network (Neural Network+DEVINE) again diminishes the mean error, in a quite similar manner to the use of
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DEVINE after AROMEforecast. Ultimately, we observe that mean errors are lower with Neural Network+DEVINE than with

AROMEanalysis for the largest (> 18) and lowest (< 8) lead times.

We obtain similar model rankings in terms of wind direction. Nevertheless, we observe that AROMEforecast direction405

error is marked by a minimum around 12h, which is interestingly shifted from the maximum in speed error observed at 15h.

This minimum is shifted by one hour and intensified in AROMEanalysis and not modified in Neural Network nor in Neural

Network+DEVINE. The modification added by DEVINE to the evaluation metrics are low in terms of direction. However, a

clear diminution of the error is observed when using Neural Network and Neural Network+DEVINE, which underlines the

added value Neural Network, much over DEVINE, in terms of directional predictions. Similarly to speed predictions, the best410

statistics among all products are obtained with Neural Network+DEVINE over the largest part of the day, distinctively for the

lowermost and uppermost lead times when it outperforms AROMEanalysis.

When modeling errors are interpreted with regards to the month of the year, we observe a peak in speed error during winter

months (Fig. 7, (b) and (d)). This observation is consistent with the fact that in mountainous terrain highest wind speeds often

occur in winter (Kruyt et al., 2017). Model intercomparison highlights a similar ordering between models to what happens at the415

daily scale. The use of Neural Network notably shifts down the error curve. Ultimately, Neural Network+DEVINE compares

well with AROMEanalysis notably during winter months when it outperforms it. Oppositely to wind speeds, wind direction

errors do not evidence any dependence on seasonality. Model ordering is however comparable to the ordering concerning speed

metrics, with the difference that the use of DEVINE does not evidence any improvements in terms of aggregated metrics. Again,

Neural Network+DEVINE permits to reduce wind modeling error, with a reduction leading to lower errors in winter compared420

to AROMEanalysis.

4.4 Influence of the loss function

The design of an appropriate loss function was important to ultimately obtain the best performing model, presented in this study.

The function used to optimize ANNspeed (Lspeed) permits to obtain better integrated metrics (MAE, RMSE and Pearson corre-

lation coefficient) but also to capture wind speed distribution closer to the observed speed distribution. As demonstrated in Fig.425

8 which compares observed speed quantiles to simulated quantiles, the use of Lspeed shortens the gap between AROMEforecast

quantiles and the 1-1 line. When fitting the ANNspeed with a classical MSE loss function, we obtain a speed distribution with

Neural Network+DEVINE which overestimate low quantiles and underestimates high quantiles, i.e. has a tendency to squeeze

results around a mean value as already observed by (Dujardin and Lehning, 2022) for similar applications. The improvements

observed after using Lspeed are most notable for high wind speed, which is consistent with the different terms composing430

Lspeed (see Sect. 3.3.3). This however contrasts with a degradation of the simulation of very low wind speeds: emphasizing

the correction of high wind speeds comes with the cost of putting less penalty on lower wind speeds, and hence results in a

model that performs worse concerning first speed quantiles. The use of MSE in place of Lspeed to optimize ANNspeed also

deteriorates integrated metrics, illustrated by a 12% increase in MAE on the test set. We did not design a custom loss function

for direction but simply selected Ldirection (Eq. 2) which immediately yielded satisfactory results.435
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(d)

(b)(a)

(c)

Figure 7. Wind speed absolute error as a function of the forecast lead time (a) and month of the year (b). Wind direction absolute error as a

function of the forecast lead time (c) and month of the year (d). Color indicate the different models. This figure only uses data from the test

set.

4.5 Sensitivity to the geographical situation

When fitted using observation from the Alps, Neural Network+DEVINE yields poor evaluation metrics in terms of speed when

evaluated against data from other mountain ranges, but performs well for downscaling wind direction. We evaluate the ability

of our models to correct and downscale AROMEforecast over 18 AWS in Corsica and 21 AWS in the Pyrenees mountain

ranges, which are all located hundreds of kilometers from the Alps, and exposed to different weather regimes. Data from these440

ranges were not used during training. In Corsica and Pyrenees, Neural Network+DEVINE systematically degrades RMSE,

MAE and Pearson correlation coefficient for wind speed when compared to AROMEforecast and AROMEanalysis (Table 4).

As an illustration, the RMSE increases by 7% with Neural Network+DEVINE compared to AROMEforecast. Oppositely, we

observe that DEVINE alone improves AROMEforecast metrics in a similar manner as in the evaluation performed in the Alps

(Table 3). Surprisingly, the evaluation of wind direction highlights improvement with Neural Network+DEVINE with respect to445

AROMEforecast (MAE is reduced by 6°), whereas DEVINE is again not influencing mean wind direction. Wind direction from

Neural Network+DEVINE are however on average less precise than with AROMEanalysis, contrary to the Alpine situation. We

can hypothesize that since ANNdirection input variables include almost only variables of topographic nature, correction added

by ANNdirection are more linked to local topography than to meteorological situations and hence better generalize to other

mountain ranges. This exploration of the extrapolation abilities of our models to other mountain ranges points towards the need450

of additional trainings if the models are to target areas outside the Western (french and Swiss) Alps. It however confirms the

generic character of DEVINE as highlighted already in Le Toumelin et al. (2022), that does not require any further calibration

to be applied to a diversity of Alpine-type mountain ranges.
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Figure 8. Plot of the observed quantiles versus the modeled quantiles for different models. A perfect simulation would present all quantiles

along the 1-1 line (red). Each color refers to a single model. mse refers to Neural Network+DEVINE optimized using a mean square error

loss function and Lspeed to the reference simulation i.e. Neural Network+DEVINE optimized using Lspeed (Eq. 3). This figure only uses

data from the test set.

Table 4. Evaluation metrics obtained by comparing simulation to observed data in other mountain ranges (Corsica and Pyrenees) than the

one used during training (Alps). No data from Corsica (18 AWS) nor Pyrenees (21 AWS) was used during training. MAE designates the

mean absolute error, RMSE the root mean square error and ρ the Pearson correlation coefficient. The mean absolute error for wind direction

was computed by taking care of the cyclic nature of wind direction.

AROMEforecast DEVINE Neural Network Neural Network+DEVINE AROMEanalysis

Variable Metric

Speed MAE [ms−1] 1.53 1.51 1.69 1.64 1.23

RMSE [ms−1] 2.28 2.20 2.49 2.38 1.85

Mean bias [ms−1] -0.37 -0.13 -0.52 -0.28 -0.31

ρ [] 0.71 0.73 0.65 0.67 0.82

Direction MAE [°] 40 40 34 34 30
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4.6 Case study

To illustrate the added value of Neural Network+DEVINE compared to DEVINE alone, we selected a case study at a moun-455

tain observation station located near Piz Corvatsch in South-Western Switzerland (latitude=46.41, longitude=9.82, eleva-

tion=3294m). On the 8th of October 2019 at 06h00 (UTC), AROMEforecast simulates calm wind conditions (1 ms−1) for a

wind coming from the South-West (242°). DEVINE downscales the large scale wind field of AROMEforecast to a local scale.

As a result, it increases AROMEforecast wind speed up to 1.47 ms−1 at the close vicinity of the location of the AWS, since

the site is localised on a ridge, prone to wind acceleration (Fig. 9). On the contrary to both AROMEforecast and DEVINE, the460

observation indicates a wind coming from the North-West (329°) and a much larger speed (6.4 ms−1), which is also partially

captured by AROMEanalysis which indicate a direction of 293° and a speed of 1.81 ms−1. This example sheds light on high

discrepancies than can affect DEVINE input variables (5.4 ms−1 speed error, 87° direction error). Oppositely, Neural Network

modifies AROMEforecast wind direction by introducing a 80° clockwise direction change, which puts the direction closer to

the observations. Similarly, Neural Network multiplies the speed by a factor 2.6 ultimately reaching a value of 2.7 ms−1.465

After Neural Network, DEVINE downscales these modified large scale conditions. As typically observed with DEVINE, mod-

ifications in wind directions are modest. However, the speed reaches 3.02 ms−1, reducing the initial error by 31%. Since the

optimization of Neural Network has been obtained after backpropagating error gradients through DEVINE and both ANNs,

we can expect that the deep learning model is to some extent aware of the expected effect of DEVINE and prevents from

overcorrecting AROMEforecast. By scrutinizing the day before and after this specific meteorological situation, we observe470

that AROMEforecast systematically underestimated wind speed at this specific location, which is partially corrected by Neu-

ral Network+DEVINE. However, this model chain is also responsible for lowering the speed temporal variability, which was

already too low with AROMEforecast. During this period, the direction shifts from North-East to a West direction. Largest

modeling errors are observed during the transition period, where Neural Network+DEVINE contributes to bridge the gaps to

observations. During the last hours, AROMEforecast captures a more correct wind direction at the station, and the added value475

of Neural Network+DEVINE is lower. Neural Network+DEVINE however still keeps its ability to spatialize the wind signal

over the study area, which is necessary for many applications that require high resolution forcings in complex terrain.

5 Discussion

5.1 Performances and modularity of the chosen architecture

Neural Network+DEVINE evidences improved metrics when compared to AROMEforecast and DEVINE both in terms of480

speed and direction. This is highlighted by more accurate 1-1 plots for wind speed (Fig. 4), better wind distributions (Fig. 5),

lower speed and direction errors when errors are categorized by elevation (Fig. 6), forecast lead time or month (Fig. 7) and

improvements in integrated metrics (RMSE, MAE and correlation coefficient, Table 3). Evaluation metrics obtained with Neu-

ral Network+DEVINE sometimes overpass metrics obtained with AROMEanalysis, for example at elevated stations or during

winter month, suggesting that our method induces notable added value when compared to other well known atmospheric prod-485
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Figure 9. Use case of Neural Network+DEVINE at Piz Corvatsch in Switzerland for the 7th to the 9th of October 2019. (a) presents a

time series of observed and simulated wind speeds, (b) presents observed and simulated wind directions and (c) modeling errors in wind

direction. (d) represents a 2D view of the wind map around the station for the 8th of October 2019 at 06h00 UTC. This date corresponds

to the shaded areas in (a), (b) and (c). Small arrows were obtained using DEVINE, fed by AROMEforecast. (e) was similarly obtained

but using Neural Network+DEVINE. AROMEanalysis and Neural Network (intermediate result) are shown for interpretation. Colors inside

arrows indicate wind speed: red colors indicate speed larger than AROMEforecast and blue arrows the opposite. The geographical position

of AROMEforecast corresponds to the location of the nearest grid cell from the observation station in the AROME grid. AROMEanalysis

and Neural Network are located at the same exact position but were moved in the close vicinity of AROMEforecast for visual purposes. The

high resolution arrows in (d) and (e) correspond to the downscaled signals by DEVINE and Neural Network + DEVINE, characterized by a

lower grid spacing than the other wind products ; these arrows were initially distant from 30m and have been downsampled to 90m for visual

purposes. This location (Piz Corvatsch) and times (7th to the 9th of October 2019) are only found in the test set.

ucts. Even though comparisons between Neural Network+DEVINE and AROMEanalysis are limited by a scale discrepancy,

supplementary analysis shows that the comparison still holds when AROMEanalysis is downscaled to a 30m horizontal grid

spacing with DEVINE (Fig. S1 in supplementary material). Improved evaluation metrics are all the more encouraging as met-

rics have been obtained using a spatio-temporal extrapolation assessment, i.e. testing the model at locations not included in the

training set and for a year not included either. This corresponds to a very strict evaluation procedure, which makes it generally490

harder to obtain good evaluation metrics versus simpler evaluation procedures that only perform tests at the sites included in

the training set (Bolibar et al., 2020; Dujardin and Lehning, 2022).

The modular architecture of Neural Network+DEVINE appears to us as one of its greatest assets. Decoupling the spatial

interpolation of wind fields (in DEVINE) from its correction (in Neural Network) makes the model robust to new NWP
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systems or NWP version evolutions. Indeed, if a new version of AROMEforecast was to be released with important changes,495

possibly breaking the learned relationships between input variables and observed wind, our architecture permits to simply

bypass Neural Network and rely on DEVINE while a new fit is performed with the new NWP version. The same reflection

applies to the use of Neural Network+DEVINE at other mountain ranges. As demonstrated in Sect. 4.5, the full model chain is

not directly operable on mountain ranges where no data was used during training. As a consequence, a training step is required

to adapt Neural Network weights and biases to learn geographically variable relationships between inputs and targets (mostly500

for ANNspeed). In the meantime, and contrarily to more classical models that perform model output statistics, the user could

rely on the standalone use of DEVINE which showed good generalization capabilities to other alpine-type mountain ranges.

Reversely, if user applications that require high resolution wind forcing are not only dependent on the spatial structure of the

signal but also require a high degree of plausibility of the downscaled values, the integration of a training phase in the pipeline

is possible and would lead to an optimized version of the downscaling scheme. This flexibility doesn’t exist in downscaling505

methods that do not incorporate any fit to observed data.

Since we didn’t modify the DEVINE downscaling model in this study, but only added upstream modifications related to

coarse scale wind fields, our new architecture inherits the pro and cons of the downscaling model when it concerns the local

structure of simulated wind fields. On the one side, using DEVINE favors the simulation of spatially consistent three dimen-

sional outputs at a local scale since DEVINE was built to replicate the structure of outputs provided by an atmospheric model510

(Helbig et al., 2017). On the other side, DEVINE limitations persist, which is illustrated for instance by the absence of local

scale turbulent structure in the wind outputs (Le Toumelin et al., 2022).

In addition to potential applications in wildfire spread modeling, wind energy forecast, wind energy potential assessment,

pollutant dispersion evaluation, drifting-snow modeling and avalanche hazard forecasting (Giovannini et al., 2020; Wagen-

brenner et al., 2016; Dujardin and Lehning, 2022; Lehning and Fierz, 2008), other applications are sensitive to the accu-515

racy of wind forcing in mountainous terrain. For instance, meteorological forecasters rely on accurate wind predictions in

mountains for weather nowcasting and short-term forecasting: they could benefit from the use of a high resolution product

such as Neural Network+DEVINE since the modeling chain yields improved wind values when compared to other products

(e.g. AROMEforecast and AROMEanalysis) under specific topographic and weather situations. Other examples are the use

of physics-based models for research purposes on past and future trends in water availability, glaciers evolution and more520

generally environmental changes. These models often require meteorological information such as wind speed at various scales

of interest including the hectometric scale. For instance Réveillet et al. (2018) showed the importance of correctly simulating

wind speed in order to simulate the mass-balance of a medium-sized Alpine glacier when using an energy-balance model, an

issue that concerns past simulations as much as future projections. Since input variables used in Neural Network are standard

NWP output and topographic indicators derivable from DEMs, we hypothesize that Neural Network could be trained by using525

reanalyses (e.g. SAFRAN, Vernay et al. (2022), ERA5 Hersbach et al. (2020)). On top of a capability to downscale reanal-

ysis wind fields in the past, this could enable to also downscale the wind of climate projections bias-corrected against these

reanalyses, at the instance of the ADAMONT projections (Verfaillie et al., 2017) widely used in France.
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5.2 Neural network explainability

ANNspeed input features have various, unequal and non-linear contributions to Neural Network+DEVINE outputs (Fig. 10),530

as estimated using ALE (see Sect. 3.5.2). In summary, ALE determine the effect of each input variable on the average output,

conditionally to values of an input feature. Most prominent effects are observed for WindSpeed10m input feature (Fig. 10,

(p)), which confirms our expectations since it corresponds to the downscaled variable, modified in ANNspeed output. The

use of a skip connection (Fig. 2) for this variable may also play a role in maintaining it as the most important variable for

downscaling even though correlated variables, such as wind speed at other atmospheric levels, are also used as inputs. Wind535

speed computed by AROMEforecast at other atmospheric levels evidence strong effects on the outputs, most notably when it

concerns high speed values.

Topographic parameters also have strong impacts on the speed outputs, particularly when it concerns the tails of the pa-

rameter distributions. Real elevation (elevation, Fig. 10 (g)) and model elevation (elevationmodel, Fig. 10 (f)) have opposite

effects: the first one tends to be positively correlated to speed outputs, the second one presents a negative correlation. Two540

dimensional ALE plots (not shown) suggest almost no second order interaction between both variables. The joint effect of

these variables, approximated by the sum of the first and second order effects, suggests increasing speed outputs with increas-

ing elevation. This confirms our initial interpretation of AROMEforecast biases (see Sect. 4.1) that highlighted an average

underestimation of speed by AROMEforecast over elevated regions. Interestingly, the TPI500m, which was also a variable we

identified to possibly account for AROMEforecast biases, presents diverse effects on the outputs. As Neural Network+DEVINE545

was trained after comparing observed values to downscaled simulations, the effects in Fig. 10 do not only compensate for bi-

ases in AROMEforecast but can also relate to local scale effects in the downscaling module, i.e. counterbalancing missing or

incorrectly represented local processes in DEVINE.

Finally, we observe that input variables related to the state of the atmosphere (green shaded areas in Fig. 10) have a lower

influence on the output and tend to be less dispersed. Interestingly, we see that net shortwave radiations at the surface (SWnet,550

Fig. 10 (c)) increase the speed outputs. This supports Le Toumelin et al. (2022) who observed speed underestimation with

AROMEforecast during afternoon of summer month, where SWnet are generally high. On the opposite, net longwave radi-

ations (LWnet, Fig. 10 (a)), 2-m temperature (T2m, Fig. 10 (b)), cloud cover (Fig. 10 (e)) and the local slope (fig. 10 (j))

show very modest influence on the outputs. Removing iteratively slope and cloud cover from the input features, which are the

less impactful input variables according to ALE, and re-training the model, did not impact the evaluation metrics. However,555

removing all variables with a low ALE (LWnet, T2m, cloud cover and slope) starts to evidence modifications in evaluation

metrics, with for instance the correlation coefficient dropping from 0.72 to 0.70. This could be due to (i) feature interactions

not observed in one dimensional ALE plots, (ii) some unexpected over-fitting of the test set, and (iii) visualization artefact from

Fig. 10. Indeed, Fig. 10 highlights the largest effects on the outputs, making ALE close to 1 ms−1 look negligible, however

we remind that 1 ms−1 almost accounts for 50% of the mean speed value (2.23 ms−1 in AROMEforecast).560

ALE appear here as useful for model interpretation, but also as a tool for input variable selection. Indeed, we can distinct

three groups of input features with unequal importance within the model (topographic variables, wind related variables and
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Figure 10. Accumulated Local Effect (ALE) associated with each input variable of ANNspeed (solid lines). ALE are expressed in ms−1 and

can be interpreted as the effect of a specific variable at a certain value compared to an average prediction. Shaded areas indicate cumulative

dispersion around the mean local effects and increase in each panel from left to right by design. Variation in shaded areas indicate additional

uncertainty and comparisons of shaded areas accross panels give insights on uncertainty differences in ALE computation. The small ticks at

the top of each panel represent distribution quantiles that were used to compute ALE. Green, violet and yellow colors indicate respectively

input meteorological variables, topographic variables and wind related variables.

other weather related variables). This is partly supported by additional sensitivity tests that reveal a larger increase of the

RMSE when removing the topographic variables (RMSE=1.68 ms−1 versus 1.62 ms−1 with all variables included), or the

wind related variables with the exception of Wind speed10m (RMSE=1.67 ms−1) from ANNspeed input features, than when565

removing other meteorological variables (RMSE=1.65 ms−1).

This is of interest for the application of the Neural Network + DEVINE correction and downscaling strategy to a variety of

products like reanalyses, as solely topographic, or topographic plus basic atmospheric variable may be easier to access, retrieve

and process, than a complex suit of ancillary weather variables not always available in the reanalysis archives.

Input variables of ANNdirection present scattered individual effects, probably evidencing large interactions among input570

variables within the model when computing the output, as visible on PDP (Fig. 11). Before using PDP for ANNdirection, we

asserted that input variables were not correlated one to each other by checking Pearson correlation coefficients. We studied the
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Figure 11. Partial Dependence Plot (PDP) for each input variable of ANNdirection. PDP represent the mean prediction value obtained after

fixing all instance of a specific input variable to a certain value. Shaded areas indicate one standard deviation around the mean effect.

impact of input features on the directional difference added to NWP direction on the final on ANNdirection output neuron rather

than on the value of the downscaled wind direction, as a classic mean value is not defined for cyclic variables such as wind

direction. Note that the modifications computed by ANNdirection also take into account DEVINE effects, which is modest575

concerning wind direction, and can eventually influence model interpretation. The WindSpeed10m does not modify the mean

direction, which was expected. The mean effect for wind direction fluctuates around 0 which suggests some small adjustment

given certain azimuths. The mean effect of aspect is also close to 0, excepted around 50 and 100°. The three aforementioned

variables were not expected to have a mean effect, which is arguably confirmed by the PDP. However interactions among

variables could be anticipated, which is also suggested by the large dispersions around mean effects. Contrarily, α has a strong580

effect for negative values, which was intuitively expected since this variable already incorporates some interaction between

wind direction and aspect. Surprisingly we do not observe the same behavior for positive α. We remind that highest absolute

values for α are obtained when a flow arrives perpendicular to a steep vertical slope. The large dispersion around each PDP

mean value suggests different scenarios and large variable interactions. Finally, we underline the fact that interpretability meth-

ods are not only important to understand how a model deals with inputs and for feature selection, but also to anticipate model585

output modifications linked with future evolutions of the model providing input data (here AROMEforecast). As discussed in

the previous section, NWP are under constant evolution, frequently incorporating new or modified parameterizations that tend

to modify the model’s general behavior and affect several atmospheric variables. Interpretability methods such as in Fig. 10

permit to approximate typical effects that can be obtained through the correction and downscaling model, and anticipate the

upcoming of possible modeling errors following NWP updates.590
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6 Conclusion and perspectives

Understanding the complex patterns that characterize wind in mountainous terrain is of high importance for several applica-

tions, with direct consequences on environment and human societies. Despite years of continuous improvements, NWP models

still rely on downscaling techniques to represent wind features at a local scale in mountains. Not only do the typical km-scale

spatial resolution limits their use for several applications, but NWP models are also affected by systematic errors linked to595

typical meteorological or topographic situations. In this study, we used a large network of observation stations to identify and

apprehend AROMEforecast systematic errors. We observed a strong link between model biases and topographic parameters

(joint effect of elevation and TPI500m) but also a tendency to underestimate largest observed speeds.

Aware of the aforementioned limits, we here designed a new post-processing architecture, called Neural Network+DEVINE,

with both the purposes of correcting AROMEforecast errors (i.e. applying model output statistics) and increasing the spatial600

resolution of the wind signal (i.e. downscaling). This new combined architecture benefits from the use of two artificial neural

networks to sequentially correct the coarse scale wind signal for direction and speed according to specific meteorological and

topographic situations, before using the statistical downscaling model DEVINE for the spatial interpolation of the wind fields.

This hybrid architecture yields better integrated metrics (MAE, RMSE, mean bias and correlation coefficient) compared

to previous alternatives. The evaluation metrics show performances similar to AROMEanalysis, a system benefiting from605

assimilation techniques to estimate the most plausible state of the atmosphere in complex terrain. Notably, most improvements

are obtained at elevated and exposed stations, and also during winter months and more generally for simulating the largest

observed speeds, which suggests our new method is well tailored for drifting-snow applications.

This new type of downscaling model greatly benefits from its modular architecture on several points. By making a distinction

between correction and downscaling, our design adds flexibility to the different use cases of our model: it is now easy to either610

use the optimized version (Neural Network + DEVINE), or only rely on DEVINE downscaling models when required. Finally,

the whole architecture permits to output consistent three dimensional wind fields previously corrected with wind observations.

This is a direct consequence of relying on DEVINE for modeling winds at a local scale, an advantage that is counterbalanced

by the fact that DEVINE limitations are also inherited by our new architecture.

This work also stresses the potential of deep learning techniques for the correction of other near-surface atmospheric vari-615

ables. The general architecture designed here, with a model tailored to correct large scale errors followed by a more general

downscaling scheme could favourably be applied for the bias-correction and downscaling of other variables like 2m air tem-

perature, that similarly exhibits high spatial variations in complex terrain in relation with topographic and meteorological

gradients.

Future work should include a generalization of our model to other forecast cycles. Indeed, we only used here forecasts620

initialized from the 00h00 analysis, making our model a proof of concept that needs to be generalized to other forecast cycles.

Furthermore, our design adds up to a large array of existing solutions to downscale wind fields in complex terrain for which

an intercomparison project is highly required. Such a project could include the use of dense observational networks to assess

precisely the behavior of wind at a local scale. This exercise could help listing the pro and cons of each methods, often
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developed over different areas and targeting distinct end user application cases, and reveal each method value for operational625

applications. The wealth of near-surface observations to be acquired at high spatial resolution in the central European Alps

within the TeamX campaign (Serafin et al., 2020), complemented with the observations routinely acquired by the local met-

services, will provide an adequate database for this venture.
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