Reviewer 1

This manuscript presents a deep learning-based statistical downscaling model for surface
winds over complex terrain. The model consists of two parts, correction of winds from a
regional atmospheric model, and conversion from a coarser grid to a finer grid, based on
information of high-resolution topography data and atmospheric conditions. Results indicate
that the proposed model better represent winds over Western Alps, for which the model is
trained. The manuscript is generally well written, and conclusions are clear. In particular,
analyses on the explainability increases its potential for real applications, where reliability of
the model matters. There are, however, still room for improvement in the presentation
quality. Therefore, my recommendation is publication after minor revisions are made.

We thank the Reviewer for the time dedicated to the review and for his constructive
comments that we believe help improve the manuscript. Please find below our answers to all
of your comments.

Minor comments:

1. |l understand that the model names, such as AROME and ARPS, are well known in
the community, but it would be better to present their full names somewhere in the
manuscript, such as the lines at which they appear for the first time or a list of names
at the end of manuscript.

AROME and ARPS acronyms are now fully explained at their first occurrence in the
manuscript.

As an illustration, Le Tourmelin et al. (2022) observed that AROME (the NWP
"Application of Research to Operations at MesoscalE" operated by Meteo-France)
wind fields are frequently underestimated at elevated and exposed areas.

More specifically this model was trained at replicating the behavior of the
atmospheric model ARPS ("Advanced Regional Prediction System") over complex Gaussian
topographies Helbig et al. (2017).

2. What is the source of high-resolution topography data?

The digital elevation model used in this manuscript is a combination of DEM from
different sources, used for current studies at our research lab (Snow Research
Center - CEN/CNRM/CNRS). Within France boundaries, the “RGE ALTI” DEM |[IGN],
i.e. a 5m grid-spaced DEM from the national cartography institute, is resampled to
30m and used. Outside of France, the “GLO-30" DEM, i.e. the 30m grid-spaced
Copernicus DEM, is used (Fahrland et al. 2020). Both DEM have been previously
processed to be assembled in a coherent way.

The following text has been added:

In this study, the DEM used has been obtained after merging RGE Alti DEM
resampled to 30m (IGN) inside of France boundaries and GLO-30 DEM in
Switzerland (Fahrland et al. 2020).



3.

In this manuscript, the data are divided into training and test datasets. However, in
many practices, people divide data into three sets: training, validation, and test,
where the validation dataset is used to tune hyperparameters. How did you tune the
hyperparameters?

Initially, we started the study using a validation dataset composed of a few stations in
order to properly calibrate hyperparameters. However, we found that the results on
the validation dataset were highly sensitive to the selected validation stations. This is
explained because wind conditions and associated metrics are highly variable in
mountainous terrain. Even though we did not stick to this evaluation procedure, this
step enabled us to derive a first sketch of the selected architecture.

Another procedure could have consisted in selecting hyperparameters using cross
validation. Given the fact that the derivation of the selected architecture required
hundreds to thousands of numerical experiences, each experience requiring several
hours of computations, multiplying the number of training instances to compute cross
validation would not have been possible with the resources at our disposal. These
many experiences are explained because we did not use a standard deep learning
architecture but built a rather more complex data flow that required much
experimentation.

In the end, we kept the hyperparameters both inherited from the first experiments
using a validation dataset and from the next experiments using only a test dataset.
When the architecture and hyperparameters were fixed, we ensured that we did not
overfit our network to the test database by training two alternative models with the
same architecture and inputs data on two alternative train sets. For each alternative
train set, alternative test sets were also obtained after selecting new test stations with
the same selection procedure as described in the article. The average three-fold
evaluation is presented below:

AROMEorecast  Neural Network  Neural Network+DEVINE ~ AROME. a1y sis
Variable Metric
Speed MAE [m s~ ] 1.32 £ 0.03 1.20 = 0.05 1.16 + 0.06 1.15 £ 0.04
RMSE [m s 1] 1.87 + 0.06 1.72 £+ 0.08 1.64 £+ 0.09 1.67 £ 0.07
Mean bias [ s71] -0.04 + 0.07 -0.05 + 0.08 0.00 + 0.04 -0.06 = 0.06
pll 0.60 £ 0.03 0.66 £ 0.02 0.70 = 0.02 0.69 £+ 0.02
Direction MAE [°] 44.0 £ 1.55 36214 354+1.22 37.1 £ 037

Notations in this Table follow the specifications from Table 3 in the main manuscript.

This choice is summarized in the main manuscript as follows:

Diverse architectures and hyperparameters were tested in order to converge to the
final model. We checked that our model doesn't overfit the test set by computing
metrics using a three-folds cross-validation strategy, presented in Table S1 in the

supplementary material.



Figure 4 and 5: Labels are too small. Please enlarge them.
The labels are now bigger.

Figure 6: In the main text, the bottom panel (Fig. 6b) appears first, and the top panel
(Fig. 6a) later. Because this is a bit confusing, | would suggest swapping the panels.
In addition, | would suggest citing the figures in the main text as Fig. 6a and Fig. 6b

by explicitly indicating the panel ID.

We followed your advice and updated the text and figures accordingly.

Figure 7: Please enlarge the labels. The lines are difficult to distinguish. You can use
different line types, such as dashed or dotted.

We updated the graphics accordingly.

Why does this study start downscaling at the forecast lead time of 6 h? | am curious
how these models perform at shorter lead times. In other words, do you assume the
same model error in AROME _forecast for the lead times from 6 to 29 hours?

We downloaded modeled data using the same procedure as in Vionnet et al. (2016),
Quéno et al. (2016), Le Toumelin et al. (2022) and similarly to Gouttevin et al. 2022.
In more detail, we only extracted lead times between +6 and +29h, issued from the
00:00 analysis. This allows us to reconstruct continuous atmospheric forcings over
the study period, as typically found in the forcing files of snow models such as
CROCUS, that are commonly processed at our lab. The choice of +6h was originally
selected in Vionnet et al. (2016) as a way to minimize the effect of the analysis at
00:00 on the simulations. Here, we adopted the same procedure in order to have
corrected and downscaled simulations comparable to the previously used set of data.
This offers the possibility to update previously used forcing files including AROME
data in the most consistent way.

However, this strategy does not assume that errors between lead time +6h and lead
time +29h are the same. Input variables used by the model allow the neural network
to access information correlated to the time of the day, which in our case also
corresponds to a given lead time. This way, the correction can take into account
varying performances following different lead times. We tested to include the lead
time among the input variables but did not observe any improvements. Constructing
an architecture that would correct shorter lead time (<6) or larger lead times (> 29) or
other analysis cycles (different from 00:00 UTC) would probably require training
different models, or informing the models about the lead times/analysis cycles used.

We added the following modifications to the main manuscript:

“Firstly, we built a continuous time series by extracting +6 to +29h AROME forecast
lead times, initialized with the analysis of 00:00 UTC, as in Quéno et al. (2016);
Vionnet et al. (2016),; Le Toumelin et al. (2022). This was done as a way to obtain
continuous time series, typically used to force snow and surface models as in Quéno
et al. (2016); Vionnet et al. (2016); Gouttevin et al. (2023).”



8. Related to the question above, have you applied “Neural Network+DEVINE” to
AROME_analysis? “AROME_analysis+Neural Network+DEVINE” may serve as a
good analysis product.

We didn’t apply “Neural Network+DEVINE” to “AROME_analysis* because we didn’t
have more data than used in the test set when it concerns AROME_analysis. With
the storage system hosting modeled data at our disposal, it requires months of
continuous downloading to obtain years of model outputs. As a consequence we can
not perform additional training within a short period of time. However, we fully agree
with the reviewer that training our model using AROME_analysis as inputs would be
of high interest for the community.

9. Figure 9: The color bars for (d) and (e) have no labels for negative values.
The label is now incorporated.

10. Page 25, line 3: A link to a reference is broken.
The link is now corrected.

11. Section 5.2: In this section, each paragraph looks very long. | would suggest splitting
the paragraphs for readability.

We thank the reviewer for this advice and agree that this section was hard to read as
a single uniform paragraph. We splitted the long paragraph into multiple paragraphs to
improve readability.

12. Figure 10 and 11: The yellow shadings and lines are difficult to read.

We changed the contrast and modified the color to a darker yellow to make the
shadings and the line more visible.

13. Figure 10: ALE increases as the wind speed increases at 515, 126, and 10 m. In
contrast, ALE is neutral for wind speed at 50 m, and ALE decreases as wind speed
at 5 mincreases. Do you have any interpretation on this behavior?

By construction, the ANN_speed computes a correction that is added to 10m
AROME wind speed. Consequently, we understand that model outputs will increase
or decrease in phase with this variable, which is confirmed by the ALE plot.

Then, ALE plots for wind speeds from other atmospheric levels give us insights on
how input values relate to the output values. This is informative to understand how
decisions are made inside the model but not necessarily why decisions are made or
if they relate to physical processes.

We note that AROME wind fields result from numerical computations that account for
processes from the free atmosphere down to the surface. It is very probable that
errors observed in the simulations of 10m wind fields result from modeling error
originating in different parts of the code. For example, inaccurate parametrizations of
atmosphere surface interaction can translate to errors in low level wind fields (e.g.



14.

15.

5m wind fields). Similarly, erroneous estimations of higher altitudes wind fields can
lead to errors in surface wind estimations. We hypothesize that these types of
behavior might be (partly) integrated in the decision making of the model regarding
wind variables.

Page 26, line 558-: Although this paragraph states that input variables perhaps have
large interactions, in the following sentence, it is also stated that input variables are
not correlated, which is a bit confusing. Could you clarify this point?

Interactions between two variables define how a specific set of values are combined
in order to determine the output of the model. In other words, the variables interact
one with each other within the model in order to create the output. On the other hand,
correlated variables are variables that can be linearly related. These two concepts
are independent.

To illustrate this point, we can hypothesize that a model downscaling wind fields
depends on large scale wind direction and atmospheric stability. For a given large
scale direction, the model might present various outputs given the air stability: the
feature “large scale wind direction” interacts with the feature “air stability” to produce
the model output. However, large scale wind directions and air stability can be
completely independent (i.e. not correlated): given a fixed large scale wind direction,
any type of air stability can be encountered in the input data.

We now specify in the text that the interaction between variables designates
interaction within the model:

Input variables of ANN_direction present scattered individual effects, probably
evidencing large interactions among input variables within the model when
computing the output, as visible on PDP (Fig. 11).

There are many typos and grammatical errors. Please doublecheck.

We apologize for these errors. We carefully read the article and removed all the

observed errors.
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The paper presents a deep learning-based strategy for downscaling wind fields over
mountainous terrain. The innovation of this work lies in the versatility of the approach,
achieved by separating the downscaling in two parts: i) Correcting large scale data provided
by a NWP model that serves as input for ii) a statistical downscaling model that assumes
perfect large scale input data. This decoupling ensures the downscaling model remains
independent of the NWP models providing the input data. The paper is well structured, the
method is mostly well presented and the results are discussed in a satisfactory manner. |
only have minor comments of which many are mere suggestions.

We thank the reviewer for his comments that helped to improve the manuscript. We
appreciated the time and the care dedicated to our study. Please find below our answer to
your comments.

e In general figures should be made a lot cleared with significantly larger font sizes (in
particular for ticks) and thicker lines. Please carefully revise all Figures for readability.

We followed your advice and revised figures 4, 5, 6, 7, 9, 10 and 11 and did our best
to improve readability.

e The wording is sometimes slightly peculiar. | would advice having a native English
speaker look over the manuscript.

We apologize for these errors. We carefully proofread the article and removed all the
observed errors.

e P2L28: NWP are --> NWP models are
Corrected.

e P2 L34: the literature --> literature
Corrected.

e P2 L35-37: Itis not clear to me how Dupuy et al. (2021) and Goutham et al. (2021)
relate to Zamo et al. (2016) and Hoehlein et al. (2020). What is the different way? |
suggest to either mention what the difference is, or don’t distinguish them so clearly
in the text.

The main difference between Dupuy et al. (2021) and Goutham et al. (2021) to Zamo et al.
(2016) and Hoehlein et al. (2020) is that the former developed statistical models specifically
calibrated to operate at individual locations. Application of their model out of their training
domain is not documented since their application targeted dedicated sites. Contrarily, Zamo
et al. (2016) and Hoehlein et al. (2020) models produce gridded outputs on a predefined
grid. This is different from other methods such as Helbig et al (2017) or the DEVINE model
that have been developed to be operated over any geographic region (i.e. not restricted to
specific locations as in Dupuy et al. (2021) and Goutham et al. (2021), nor specific grids as
in Zamo et al. (2016) and Hoehlein et al. (2020)).

The following modifications have been adopted:



e.g. Dupuy et al. (2021) and Goutham et al. (2021) develop statistical downscaling
methods specifically tailored to operate at specific, individual locations (their
calibration sites).

P2 L38: Not only these methods --> These methods not only
Corrected.

P2 L50: the literature --> literature

Corrected.

P3 L58: incorrect --> imperfect

Corrected.

P3 L59: imprecise initial condition and errors due to the assimilation procedure may
be redundant?

Thanks for noticing. Yes it is, we removed “imprecise initial conditions”
P3 L59: Perhaps etc. is better than ...
We changed ... into etc.

P3 L59-63: These sentences arouse the expectation that the manuscript addresses
uncertainty quantification of errors. However, | feel that the quantification of errors
and uncertainty of errors is not clearly distinguished throughout the manuscript.

This paragraph underlines the difficulty to attribute the error in the modeling chain:
NWP -> downscaling model -> results. Are the results good/bad because of
correct/incorrect downscaling or due to correct/incorrect initial conditions? The
following paragraph suggests that even though error identification might be hard,
error compensation is still possible, notably with the methods developed in this study.
To clarify this point, we rephrased the sentence as follows:

Furthermore, the use of a downscaling model also makes it difficult to determine the
origin of the modeling errors: whether the downscaling model accurately/inaccurately
simulates local-scale processes or if error compensation between the large-scale
forcing and the downscaling model scrambles the evaluation.

P3 L65: lower --> smaller
Corrected.
P3 L68: sufficiently the input wind --> the input wind sufficiently

Corrected.



P3 L72: of DEVINE --> of the DEVINE
Corrected.
P3 L72: | don’t understand how the effect of downscaling is accounted for.

The effect of downscaling is not accounted for during inference: the NWP data are
processed and lead to the derivation of a corrected wind field that is in turn used in
the downscaling model. The computation of the correction (ANN_speed and
ANN_direction) do not receive any feedback from DEVINE during inference.

However, during training, the back propagation algorithm takes into account DEVINE
when modifying the neural networks parameters. This is explained by the chain rule
that links the derivative of the loss function to the derivative of the neural network
parameters. With plain words, the chain rule computes how changes in the DEVINE
outputs affect the loss and then how changes in the parameters of the input neural
networks affect DEVINE outputs, and link the variations of these quantities.

We rephrased L72 to:

Indeed, the correction is made before the downscaling step, but the effect of
downscaling is accounted for in the optimization of the neural networks' parameters
that are responsible for the correction.

P3 L76: Again, | would rather use etc than ...
Corrected.

P4 L103: Why discard forecast lead times 1-6? Aren’t these very relevant for various
applications? Is it because short term forecasts are good enough and would not
benefit as much from a corrective step? Please shortly motivate your choice.

For simplicity, we extracted modeled data using the same procedure as in Vionnet et
al. (2016), Quéno et al. (2016) and similarly to Gouttevin et al. 2022, i.e. extracting
only lead times between +6 and +29h, issued from the 00:00 analysis. This is done
as a way to reconstruct continuous atmospheric forcing over the study period, as
typically found in the forcing files of snow models such as CROCUS, that are
commonly processed at our lab. The choice of +6h was originally selected in Vionnet
et al. (2016) as a way to minimize the effect of the analysis at 00:00 on the AROME
simulations and hence avoid a major inhomogeneity around 00:00 induced by data
assimilation at 00:00. Here, we kept it to finally obtain corrected and downscaled
simulations comparable to the previously used set of data, as a way to offer the
possibility to update previously used forcing files in the most consistent way.

However, we fully agree that discarding lead times +1 to +5h prevents us from
correcting specific lead times of high interest for other applications. Including these
lead times in our study would probably require a change in the deep learning
architecture, for example by informing the network about the processed lead time
(i.e. adding the lead time to the input variable) since, in this hypothetical new
configuration, a single lead time would not be equivalent to a single valid hour (more



10

than 24 lead time extracted) and lead-times close to the analysis time would likely
require different treatment within the model as the assimilation induces a high
inhomogeneity with respect to later lead-times. Another solution would be to fit
another model with the lead times of interest (e.g. +1 to +24h), but by keeping our
methodology based on the extraction of continuous time series.

Finally, your reflection on the potential lower errors found in first lead times is very
interesting. We had the same intuition, but results from Figure 7 also indicate that for
lead times between +6 and +29h, the influence of lead time on the error is of
secondary order when compared to the diurnal cycle of the error. It is probable that
this result also holds for lead time shorter than +6h.

We added the following modifications:

“Firstly, we built a continuous time series by extracting +6 to +29h AROME forecast
lead times, initialized with the analysis of 00:00 UTC, as in Quéno et al. (2016);
Vionnet et al. (2016); Le Toumelin et al. (2022). This was done as a way to obtain
continuous time series, typically used to force snow and surface models as in Quéno
et al. (2016); Vionnet et al. (2016); Gouttevin et al. (2023).”

P4 L108: | believe “dispose of” is misused throughout the manuscript. It means
“getting rid of”.

Indeed, we didn’t use this verb correctly. We changed “dispose of” L108 by “obtain”,
L226 by “have” and L282 by “obtain”.

P4 L114: introduce acronym AWS
Corrected.

P4 L120: | suggest to delete the sentence where you mention you use some stations
for training and others for evaluations here. It is well explained later and a bit
confusing to state it here.

We agree that this sentence adds redundancy and removed it..

Caption Figure 1: observation --> observations

Corrected.

Caption Figure 1: Add (not shown) after “Note that an additions data set”
The text has been added.

P7 L168: time --> times

Corrected.

P7 L171: How did you choose the hyperparameters?
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The choice of hyperparameters was derived following two distinct steps. We started
the study by calibrating hyperparameters using a validation dataset composed of
several stations. However, the results on the validation dataset were highly sensitive
to the selected validation stations, notably because wind conditions are highly
variable between stations in mountainous terrain. Even though we derived a first
sketch of the model architecture and hyperparameters with this method, we did not
stick with this evaluation procedure for the second step of the study.

In a second step, we worked using only a training step for model training and a
validation set for model evaluation. Hyperparameters have been selected to give
reasonable results on the test set. Ideally, we should have selected hyperparameters
using cross validation, i.e. partitioning training/test dataset several times and then
optimizing the averaged results obtained using the different test sets. Given the fact
that it required hundreds to thousands of numerical experiences to converge to the
final solution presented in this manuscript and that each experience requires several
hours of computations, using a cross validation procedure would not have been
possible with the resources at our disposal.

In the end, we kept the hyperparameters both inherited from the first experiments
using a validation dataset and from the next experiments using only a test dataset.
When the architecture and hyperparameters were fixed, we ensured that we did not
overfit our network to the test database by training two alternative models with the
same architecture and inputs data on two alternative test datasets, i.e. we verified
that the presented results are consistent with results obtained using a three-folds
cross validation strategy. These alternative test sets were obtained after selecting
new test stations with the same selection procedure as described in the article.

The averaged results using three distinct test sets, obtained after training the model
on three distinct training sets are reported below:

Table 6. Evaluation metrics obtained on the test dataset (Alps). MAE designates the mean absolute error, RMSE the root mean square error
and p the Pearson correlation coefficient. The mean absolute error for wind direction was computed by taking care of the cyclic nature of

wind direction.

AROME forecast  Neural Network — Neural Network+DEVINE ~ AROME,, a1y sis
Variable Metric
Speed MAE [ s~ '] 1.32 £ 0.03 1.20 £+ 0.05 1.16 + 0.06 1.15 + 0.04
RMSE [m s '] 1.87 £ 0.06 1.72 £ 0.08 1.64 = 0.09 1.67 = 0.07
Mean bias [m s~ 1] -0.04 + 0.07 -0.05 £ 0.08 0.00 = 0.04 -0.06 + 0.06
pll 0.60 + 0.03 0.66 + 0.02 0.70 = 0.02 0.69 + 0.02
Direction MAE [°] 440+ 1.55 362+14 354+1.22 37.1 +0.37

P7 L185: The term “label” might be confusing to some, as it has not been introduced
before. | suggest reducing the number of synonymous terms throughout the
manuscript. For example, choose either labels, targets or ground truth and use it
consistently.
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We removed the mention to “ground truth” and “labels” and now only refer to “targets”

for consistency.

P7 L191-195: | don’t think it adds value to add technical information here. This
information is relevant for those who are interested in the code and should therefore
be provided with the code publication.

This paragraph has been removed.

P10 L226: | don’t understand this sentence. | believe you are trying to explain how
you deal with the mismatch between the location of the observation and that of the
model grid points, but | don’t understand it. Please try to clarify.

Yes, this paragraph describes how it is important to extract grid points from our
simulated maps that match with observation sites. The text has been modified to
clarify this explanation:

In order to adapt the weights and biases of the ANNs, we adopted a sequential
approach. First, we optimized ANN_direction for wind direction, and then optimized
ANN_speed for wind speed. This order is motivated by the fact that an erroneous
direction can translate into erroneous high-resolution wind speeds with DEVINE as a
result of wrong topography adjustments, whereas the opposite will have less impact.
We selected 218 training observation stations in the french Alps measuring wind
speed and direction. Additionally, we used data from the nearest grid cell of AROME
at each of these stations to take into account large scale atmospheric conditions, and
extracted topographic maps around these observation stations to take into account
topography. It is important to note that in the end, our model outputs wind field maps
whereas observation stations provide information for isolated points in space. In
order to optimize the neural networks, we selected a single wind value at the center
of each simulated map that is compared to the corresponding target from the
observation station. This step required to accurately match the position of the center
of the simulated map with the observation station: this was possible by providing
input topographies to our model that were already centered on the location of the
observation sites.

P10 L229: This is related to my confusion on how the effect of downscaling is
accounted for (see comment on P3 L72). How exactly is DEVINE involved in the
neural network for the corrective step? Also, is the “observed ground truth”
observations here?

Following your previous comment on the semantic used in the manuscript, we
rephrased “observed ground truth” to “target” (which corresponds to observed wind
fields). We refer to our answer on your previous comment when it concerns the
optimization procedure.

P1- L235: Perhaps emphasize again that the motivation for not wanting to create a
new downscaling model is versatility.
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We followed your suggestion and now underline why modifying DEVINE weights
would lead to the obtention of a less versatile downscaling model.

This choice was made because our goal was to develop an optimization system to be
used with DEVINE, rather than fitting DEVINE to AROME wind fields. Modifying
DEVINE weights would lead to the creation of a new and less versatile downscaling
model (see Sect. 5), that assumes a specific type of input data (here AROME data),
with potential limitations in its scope of applicability.

e P10 L245: to produce squeezed --> to produce a squeezed
Corrected.

e Figure 2: In my opinion contains too much details on DEVINE, both in the caption
and the figure. Instead, the neural networks could be highlighted more. For example,
| was a little confused on how exactly the skip layers are incorporated. For example, |
was confused whether the network outputs a correction of the full wind
speed/direction fields.

The effect of ANN_speed on NWP speed is the following :
ANN_speed(topo variables, nwp speed, nwp dir.) = x + nwp speed (1)

where x = neural networkspeed(topo variables, nwp speed, nwp dir.) i.e. X

encompasses only the effect of the neural network.

The full output of ANN_speed adds "x" to it the original NWP wind speed
"nwp speed" through the skip connection (+ in the 1st equation).

The skip connection helps to compute a corrective term x that is in turn added to the
nwp speed to form the modified speed used to force DEVINE.

This is represented in Fig. 2 by the connection on the margin of the neural networks
but also by the “+” sign representing the operation from Eq. (3).

We simplified the figure caption as follows:

Scheme of the new model architecture. The architecture is composed of two artificial
neural networks (ANN) in addition to DEVINE downscaling model. The first ANN
predicts wind direction (orange, ANN_direction), the second one predicts wind speed
(blue, ANN_speed). Skip connections are represented by blue and orange
connections, associated with the sign “+”. Modified wind speed, direction and a high
resolution topographic map are then sent to DEVINE Le Toumelin et al. 2022, which
in turn outputs maps of the three components of wind fields (U, V, W) at high
resolution (30m). During the training step, wind direction and speed values are
computed at the maps' center (taken to coincide with an observation station) and
sequentially compared to in situ observation using appropriate loss functions (see
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Sect. 3.3.3). ANN_direction and ANN_speed optimizations are guided by the gradient
of these losses. We note that ANN_direction and ANN_speed have both an
independent model architecture, including the nature of input variables. "Topo.
variables" refer to input variables of topographic nature, "NWRP variables" to inputs
corresponding to forecasted meteorological and surface variables, "NWRP direction"” to
forecasted wind direction and "NWP speed" to forecasted wind speed. The
mathematical operations performed within DEVINE are listed using colored boxes
and are explicited in Le Toumelin et al. 2022. Finally, red dots following
ANN_direction and ANN_speed consist of the intermediate results of the network (i.e.
the ANN outputs) and are referred to as Neural Network.

We appreciate your feedback on the reliability of this figure. It appears to us that we
face a tradeoff between completeness of the methodology description and ease of
reading in this scheme. However, we would like to prioritize completeness and offer
the reader a full comprehension of our methodology based on this figure.
Furthermore, the explicit representation of the DEVINE model following codes from
Le Toumelin et al. 2023 helps readers to the original DEVINE publication to this work.

P13 L308: steps --> step
Corrected.

P14 first paragraph: If TPI and elevation are strongly correlated, it makes no sense to
compare their respective influences. Please compute the correlation, and, if it is high,
| suggest to state that it is not possible to identify any distinction between the two in
terms of influence on the result. You do note this to some extent, but this should be
emphasized and could reduce the discussion of this paragraph significantly and
rendering the corresponding figure moot.

The reviewer makes a good point. Our original formulation stating a high correlation
between TPI and elevation could not fully support our analysis.

We computed the correlation between TPI and elevation of the observation station
(Pearson correlation coefficient) and it equals to 0.39 (0.58 when we compare the
absolute value of TPI to elevation). In other words, TPl and elevation are partly
correlated.

Our intuition behind this result is that elevated regions (represented by the variable
elevation) host more peaks and ridges (for which TPI is a good proxy). Similarly, flat
terrain is often found on low elevation valleys. However, we can find peaks and
ridges at lower elevation, as well as plateaus on elevated terrain which explains the
partial correlation between both variables.

In our opinion, the part of our analysis dedicated to the joint effect of TPI is valid
(even though not optimally formulated): the negative bias of simulated wind speed
increases for the highest stations in our dataset when TPI increases. Reversely, for
the highest TPI, elevation will increase the negative bias. The intuition is that
elevation and summit act on wind speed through two distinct processes: high
elevation wind fields encounter the surface more easily at elevated stations (hence
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increasing observed speed and potentially increasing simulated negative bias).
Venturi effect permits the acceleration of observed wind speed on summits and
ridges. We believe these two processes are independent and can add on top of each
other.

We clarified and simplified the text by specifying the correlation value and removing
sentences that exaggerated the relationship between TPI and elevation. The new
text is (found L330 in the first version of the manuscript):

Notably, we observe that elevated stations are partially correlated with the TPI_500m
(Pearson correlation coefficient = 0.39). High positive values of TPI_500m indicate
that the observation station dominates its neighborhood, and is to some extent
"exposed". TPI_500m close to zero characterize stations on average at the same
elevation as their neighborhood in a radius of 500m, a definition that includes flat
terrain.

Figure 5: | am unfamiliar with wind roses (though | expect most readers won'’t be).
Does the size of the spoke indicate the frequency with which the direction in the
correspond bin occurs for all panels? So only the color coding is different than the
rest for panel d (observations)?

In this figure the spoke indicates the proportion of data in the considered direction.
For instance, Figure 5 (a) indicates the most frequent wind direction simulated by
AROME_forecast in the South-West (S-W) direction. According to the number on the
radial axis, the frequency of wind direction lying in this range is slightly superior to
10.4 %.

The colorbar indicates the modeling error. Following the same panel (Figure 5, (a)),
most directions forecasted in the South-West direction present errors lower than 30°
(dark blue).

To clarify this point, we changed:

“Numbers on the radial axis indicate the proportion in % of data in each bin
compared to the whole dataset.”

into:

“The spoke on the radial axis indicates the proportion in % of data that is predicted in
the considered direction.”

P15 L350: Please define RMSE and MAE (not just in figure/table captions)

The definition of MAE is now written in this sentence. RMSE definition is stated at the
first occurrence of the word L271.

P16 L366: reinforce previous --> reinforce a previous

Corrected.
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P16 L369: elevations --> elevation

Corrected.

P16 L375: (Fig 5) However --> (Fig 5). However
Corrected.

P20 L426: observation --> observations
Corrected.

| really like paragraph 4.5. It is indeed emphasizing the importance of separating the
corrective step from the downscaling step!

We thank the reviewer for this positive feedback.
P22 L457: modification --> modifications
Corrected.

P22 L458: Related to comments on P3 L72 and P10 L229, | don’t understand how
the network is aware of anything related to DEVINE.

We refer to our previous comment concerning the optimization procedure. As a
consequence, we rephrased L458 to:

Since the optimization of Neural Network has been obtained after backpropagating
error gradients through DEVINE and both ANNs, we can expect that the deep
learning model is to some extent aware of the expected effect of DEVINE and
prevents from overcorrecting AROME_ forecast.

P22 L467: application --> applications
Corrected.

P23 L481: | don’t understand this sentence. What challenges? Do you mean the
evaluation is more critical? If yes, please rephrase. Otherwise, please explain.

We thank the reviewer for noticing this unclear sentence. We have rephrased the
sentence as follows:

This corresponds to a very strict evaluation procedure, which makes it generally
harder to obtain good evaluation metrics versus simpler evaluation procedures that
only perform tests at the sites included in the training set (Bolibar et al., 2020;
Dujardin and Lehning, 2022).

Figure 10: Do | understand correctly that ALE are approximated local gradients
around the value of interest, averaged over time and space? And the shaded region
represents to corresponding standard deviation? Are the solid lines (the means) also
accumulated?
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Accumulated local effects (ALE) are tools to describe how a single input variable
affects the output on average. The difference between this tool and comparable
alternatives (e.g. Partial Dependence Plots) is that ALE give robust estimates of the
average effect on the output even though input variables are strongly correlated one
to each other (as it is in our case).

ALE work by first gridding the distribution of an input variable into a discrete interval.
In our case we used quantiles to build the interval. Then, we select all data instances
with the input variable of interest for a given bin in the grid. We alternatively modify
the instances by setting the variable of interest to the value of the uppermost value of
the bin. Then, we make a model prediction. We do the same procedure but replace
the input variable of interest with the lowermost value of the bin. We then compute
the difference between the results. These steps can be interpreted as a partial
derivative estimation with respect to the input variable of interest (we referred to a
gradient estimation even though it's not formally the same). This is the “error” in
accumulated local errors.

We then average the differences obtained in the following step for each bins.
Averaging model outputs for given data instances induces averaging outputs
obtained at different time steps and locations. This corresponds to the term “local” in
ALE.

Then, we accumulate the error and obtain the solid lines. This step can be
interpreted as an integration of the partial derivative of the results with respect to a
defined input variable. This corresponds to “accumulated” in ALE. In the end, this
procedure permits to isolate the effect of the input variable of interest on the outputs
(through the “derivative”) and then accumulate (“integrate”) the results in order to
retrieve the averaged effect of the input variable. This is now corrected L306:

This step can be interpreted as a computation of a partial derivative around a specific
value of variable_i

Since this method is based on computation of averaged values, it is also important to
note when averages hide large spread around mean values (i.e. very distinct
individual effects of the input variable of interest among the different instances). For
that, we computed standard deviations. These deviations are also accumulated:
since we accumulated mean values, deviations to the means are also accumulated
as a way to illustrate the potential spread increase.

Finally, the solid line in the plot corresponds to the ALE, and the shaded regions the
accumulated spread following the computation of averages in the ALE.

We summarize this discussion by adding the following information to Sect. 3.5.2 L
306:

The differences are then averaged to obtain the local effect of variable i for the
considered bin. A standard deviation around the mean value is also computed, as a
way to track the dispersion of individual effects. Local effects are then accumulated
and centered across each bin to finally obtain ALE. This step corresponds to an
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integration of the (averaged) local gradients and enables to represent the
dependence of model outputs to variable_i across its range. In this study, we also
accumulated the standard deviations as a way to keep track of the dispersion
characterizing the individual effects (shaded regions in Fig. 10).

We now specify that ALE correspond to the solid lines in the caption of Figure 10:

Accumulated Local Effect (ALE) associated with each input variable of ANN_speed
(solid lines).

P25 L524: | don’t see any indication of skip connections in Fig2. Perhaps it is
because the lines are too thin, or the figure too small (also see previous comment
about Fig 2).

Following our answer to your previous comment, the skip connections are now
mentioned in the caption.

They are highlighted by the connection that bypasses the fully connected network on
the left part of Fig. 2. They are also indicated by the “+” sign. This is now indicated in
the caption.

P25 L528: What exactly is the difference between real elevation and model
elevation?

Real elevation is the real elevation above sea level of the observation station. Model
elevation is the elevation of the NWP grid cell that gives meteorological information to
our model.

Please find below a short explanation on why model elevations differ from real
elevations:

NWP models numerically integrate differential equations representing the state of the
flow using numerical methods based on a grid discretisation. Grids are characterized
by their horizontal grid spacing, which is often on the order of one to several
kilometers for current NWP models (1.3 km for AROME). As a consequence, NWP
represents elevation as a variable on the discretized grid. Given the coarse scale
resolution of NWPs, it is very common that “model elevation”, i.e. elevation as
considered in the NWP grid, differs from “real elevation”.

P25 L535: Again, | am confused by this. How had neural network seen downscaled
simulations?

We refer to our previous comments concerning the effect of DEVINE on the
parameters of the neural networks during training.

P27 L589: | would delete the i) and ii). At least for me it was only confusing.

We deleted the ii) and (ii).
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e P28 L595: “best results” should be replaced with something like “most
improvements”.

Corrected.
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