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Abstract. Sea surface temperature (SST) is a key factor in understanding the greater climate of the Earth and is an

important variable when making weather predictions. Methods of machine learning have become ever more present

and important in data-driven science and engineering including in important areas for Earth Science. We propose here

an efficient framework that allows us to make global SST forecasts by use of a coupled reservoir computer method

that we have specialized to this domain allowing for template regions that accommodate irregular coastlines. Reservoir5

computing is an especially good method for forecasting spatiotemporally complex dynamical systems, as it is a machine

learning method that despite many randomly selected weights, it is nonetheless highly accurate and easy to train.

Our approach provides the benefit of a simple and computationally efficient model that is able to predict sea surface

temperatures across the entire Earth’s oceans. The results are demonstrated to generally follow the actual dynamics of

the system over a forecasting period of several weeks.10

1 Introduction

As most of Earth’s surface is covered by water, global sea surface temperatures (SST) are an important parameter in under-

standing the greater climate of the Earth. Sea surface temperature (SST) is an important variable in the study of marine ecology

(Gomez et al., 2020; Novi et al., 2021), weather prediction (Dado and Takahashi, 2017), and to help predict future climate

scenarios (Pastor, 2021). Yet the task of predicting changes in the SST is quite difficult, due to large variations in heat flux,15

radiation, and diurnal wind near the surface of the sea (Patil et al., 2016).

Given the importance of sea surface temperature to the fuller Earth weather and climate system, there is significant inter-

est in forecasting this spatiotemporally complex process. Methods for predicting changes in the SST can be divided into two

different categories: numerical methods and data-driven methods. Numerical methods are based on the underlying knowledge

of the governing physics behind the system, and simulation thereof. These are widely used to predict SST over a large area20

(Stockdale et al., 2006; Krishnamurti et al., 2006). However, data-driven methods encompass statistical and machine learning

approaches, and are widely used to predict the SST, often with little to no knowledge regarding relevant physical principles

behind the dynamics of the system, hence reducing the complexity of the model. Several statistical methods that have been

used include: Markov models (Xue and Leetmaa, 2000; Johnson et al., 2000), linear regression (Kug et al., 2004), and empir-

1



ical canonical correlation analysis (Collins et al., 2004). Meanwhile machine learning methods have included: support vector25

machines (SVM) (Lins et al., 2013), long short term memory (LSTMs) (Zhang et al., 2017; Kim et al., 2020; Xiao et al.,

2019a), memory graph convolutional networks (MGCNs) (Zhang et al., 2021), etc. In this paper, we utilize coupled reservoir

computers (RC), therefore taking advantage of the reduced complexity of data-driven methods, while still being able to predict

temperatures globally due to the minimal training required by each RC. We have adapted the RC concept for spatiotemporal

processes to allow for coupled local templates that accommodate the peculiarities associated with varying coastlines.30

Reservoir computers have been shown to be excellent predictors of complex dynamical systems (Ghosh et al., 2021; Pandey

and Schumacher, 2020) regardless of the relative simplicity of the approach. They have even been shown to be proficient in

the prediction of spatiotemporally complex systems, such as the Kuramoto-Sivashinsky PDE (Vlachas et al., 2020) and cell

segmentation (Hadaeghi et al., 2021). The use of coupling is introduced due to the large number of points on the map, making

it computationally challenging to utilize a single large reservoir computer. The reservoirs are coupled together by making the35

reservoirs functions of points outside their forecast domain, effectively creating overlap.

2 Background

Reservoir computing is a type of recurrent neural net where the only layer trained is the output layer, which is done with a

simple linear method. Compared to traditional recurrent neural networks, reservoir computers utilize randomly generated input

and middle weights, which in effect reduces training time significantly. The reservoir computer is stated as follows (Jaeger and40

Haas, 2004),

ri+1 = q(Ari +WinXi + b) (1)

Y i+1 =Woutri+1 (2)

The inputs Xi (of total length dx) is the raw data which describes a system, in our case these would be the temperatures

at points in the sea. These are fed into the reservoir via the input matrix Win, which has weights which are determined via45

sampling a uniform distribution U(−σ,σ). The reservoir dimension N describes how many nodes there are to be within the

reservoir. Therefore in order to transform the inputs into the space of the reservoir, the dimensions of Win will be N × dx.

The reservoir state r, which evolves according to Eq. 1, carries information about the current and previous states of the sys-

tem. During training, the reservoir states are horizontally concatenated as time evolves to form the matrix R=
[
r1|r2| . . . |rttrain

]
,

where ttrain is the number of data points being used to train the model, and so correspondingly the computational complex-50

ity associated with the matrix operations stated in Eq. 2. The dimensions of R at the end of the training phase will then be

N × ttrain.

The reservoir matrix A which contains the middle weights, is a sparse matrix with with a set density d, with nonzeros values

that are sampled from a uniform distribution U(−β,β). A will have dimensions of N ×N corresponding to the N reservoir
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nodes. The spectral radius ρ of A is an important metaparameter in the formation of the RC (Jiang and Lai, 2019), and can55

be adjusted by scaling A (which essentially just involves changing β). The activation function q(s) is usually picked to be a

nonlinear function such as the sigmoid function or the hyperbolic tangent function. Often, a bias term b is included when one

desires to shift the activation function a set amount. After the training dataset is cycled through and the matrix R is completed,

the output matrix Wout is then found via a ridge regression:

Wout =YRT(RRT +λI)−1 (3)60

Which utilizes a regularization parameter λ to prevent overfitting. As the output matrix is transforming reservoir states to a

desired output Y i+1 (of length px), the dimension of Wout will be px×N . The trained model can then be used to forecast

autonomously by inserting the newly predicted values Y i+1 back into the reservoir on the next iteration as Xi.

3 Coupled Reservoir Computers

As we would like to predict the SST across the entire globe, it is computationally challenging to use a single reservoir computer65

to forecast for the entire map due to the number of points on the map. From the dataset, there will be a total of n ∗m points

on the map. If we were to use a single reservoir computer, the size of the input data Xi would be around 0.71 ∗n ∗m (as

71% of the Earth’s surface is water) for each time step. It will be seen in the Data section that the values of n and m that are

ultimately to train our model are 120 and 240 respectively, hence the total number of points that are not on land across the

map is about 20448. Hence, even if the reservoir dimension N is 15 : 1 with respect to the size of the input data (which is70

relatively small, for example the 3D Lorenz system requires a value of N around 300), the size of the resulting matrix A would

be 306720× 306720, which assuming each element requires 8 bytes, would require 750GB to store.

Therefore in this application, it is better to follow the methodology laid out by Pathak et al. (2018) to model the evolution

of the SST with the use of smaller reservoir computers which each cover a small domain of the map. This approach is advan-

tageous as the input and middle weights for a reservoir computer are chosen randomly, hence allowing us to reuse the same75

input matrices1 Win and the same reservoir matrix A between the individual RCs. Now, each individual RC learns the local

behavior of the points within it’s forecasting domain (defined as a pack) while still being connected to a the global system via

coupling with it’s neighbors.

A pack is essentially a collection of contiguous indices on the greater map that will be assigned to a given RC. In other

words, a pack is an RC model of the dynamics, for a local region of the globe, that is designed to accommodate any local80

peculiarities of the land-water interface and also it couples into other neighboring packs. This reservoir computer will then

be solely responsible for predicting the temperatures within it’s pack as time evolves. For simplicity’s sake in this study,

points within a pack are grouped in the shape of rectangles, where the number of rows of points within the pack is defined as

npack and the number of columns subsequently mpack . Therefore, each RC will be responsible for forecasting a maximum of

1Due to varying values of dx due to points on land, we cannot share a single input matrix Win between all RCs.
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npack ∗mpack spatial points on the map. As there are n ∗m total points on the map, the number of RCs needed will then be Pf85

= (n ∗m)/(npack ∗mpack ). An illustration of the various packs on a sample map are provided in Fig. 1.

Figure 1. The various packs on a sample map. The points within a pack that are blue are the eligible points in the ocean that the pack’s

designated reservoir computer will attempt to forecast. Points in green represent land, which are not eligible points and whose indices are

ignored in the formation of the pack.

No points containing land are assigned to a RC, therefore some packs will have more or less points than others, due to these

points on land. It should also be noted that no point on the map can be in more than one pack, as packs do not cross. The sea

surface temperatures of the points within the jth pack at the ith day are stacked in the vector Xjpack

i which is of length px.

X
jpack

i =


X

jpack,1
i

X
jpack,2
i

...

X
jpack,px
i

 (4)90

For the various reservoirs to interact with one another, coupling is introduced by finding the neighbors surrounding a pack.

The neighbors of a pack are the non-land points that are either directly touching or on the corner of a point within the pack. As

many points within a pack share similar neighbors, only unique neighbors are kept and their sea surface temperatures at the ith

day are compiled into the vector Xjneighbor

i . The neighbors for a given pack on the sample map are illustrated below in Fig. 2.
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Figure 2. Illustration of the jth pack with it’s valid neighbors denoted by a yellow highlight. In this example it is evident that px is equal to

32 (number of pack points in the ocean) and dx is equal to 54 (px plus the number of neighbors). It is also evident that npack and mpack are

both equal to 6 in this case.

The vectors Xjpack

i and X
jneighbor

i are combined to form the vector Xj
i (of length dx), which contains all of the sea surface95

temperatures for the pack and it’s neighbors at the ith day, and is ultimately the input for the jth reservoir computer.

Xj
i =

 X
jpack

i

X
jneighbors

i

 (5)

As we would like the model to predict sea surface temperatures within the pack at the next day Y
jpack

i+1 , the reservoir computer

for the jth pack can now be written as:

rji+1 = q(Arji +Wdx
inX

j
i + b) (6)100

Y
jpack

i+1 =Wj
outr

j
i+1 (7)

Each reservoir computer is trained over the entire training dataset from i= 1 : ttrain days. Each pack contains a distinct

output matrix Wj
out, such that the reservoir states are matched with the values of the SST within the pack at the next

day. In order to save computer memory, it is advisable to create an array of input matrices with values of dx from 1 to

(npack + 2 ) ∗ (mpack + 2 ) and then assign these to RCs with a similar value of dx, denoted by Wdx
in . One middle weight105

matrix A is shared between all the RCs, as the reservoir dimension N is set to be fixed between all of the reservoirs. The

architecture of a single reservoir computer is described in Fig. 3.
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Figure 3. Illustration of the architecture of the jth reservoir computer.
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4 Data

The dataset used to train and validate the model is titled “GHRSST Level 4 MUR 0.25deg Global Foundation Sea Surface

Temperature Analysis (v4.2)” which contains sea surface temperature data in degrees Kelvin on a global 0.25◦ grid from 2002110

to 2021 in one day increments. This version is based on nighttime GHRSST L2P skin and sub skin SST observations from

several instruments, and is publicly available online via PODAAC (dat). The data was downloaded with the use of OPeNDAP

on 10/10/2021.

The years 2003 to 2020 of the dataset were selected to form the training and validation dataset. The data is given in an

equirectangular format, which is used throughout the modelling process for simplification purposes even though this conse-115

quentially leads to a more refined mesh near the poles. The time series data was split into a training and validation dataset,

consisting of 6,533 days and 42 days respectively. We choose not to normalize the data, as the data is univariate and the

reservoir state is effectively scale free, with scale being re-introduced with the trained output matrix.

In order to reduce the number of spatial points within the dataset, the data was discretized such that the sea surface tem-

perature was now on a global 1.5◦ degree grid. This was performed by grouping original data points in a 6× 6 matrix and120

then taking the average over the group. If a grouping contained a point on land, this value was ignored in the computation of

the average of the group. Therefore, the dataset for a given day went from a 720× 1440 to a 120× 240. Hence, n = 120 and

m = 240 .

5 Forecasting

To subsequently forecast the global SST with the trained model, two different prediction types are performed. To begin testing125

the short-term accuracy of the model, daily predictions are performed over the course of 6 weeks. The actual values of the SST

are fed as inputs into the reservoir during this time period and the predicted values for the next day are read out. This type of

forecast has a real world application in the form of filling in SST datasets when there is cloud cover or data corruption (Case,

Jonathan L. et al., 2008), as the model can be used to estimate data for the missing days. Then, to test the long-term accuracy of

the model, the model is allowed to run autonomously over the same 6 weeks. Now, the model is still predicting SST each day130

but it only has access to it’s own previous prediction. This form of the forecast would be more applicable to weather prediction,

as it could be coupled with an atmospheric model to help predict near future weather patterns.

For both prediction types, the reservoir states are all cleared to zero prior to forecasting, and then ran over twarmup days

prior to the validation time frame, hence providing an initial condition for the model to begin from. Via cross validation, several

metaparameters (σ, N , and twarmup) were optimized and the values that were found to perform the best are described in Table135

1. It was noticed that the results were not significantly increased for a value of twarmup greater than 35 days. Results did

consistently improve with an increasing reservoir dimension N , leading us to choose the value N = 1000. One of the more

sensitive metaparameters was the value of σ, which was found to provide optimal results when having a magnitude of the order

10−4. In the spirit of simplicity, we choose not to rigorously optimize the remaining metaparameters, and rather choose them

based off of heuristics.140
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Table 1. Metaparameters Used.

Metaparameter Value

σ 3e− 4

ρ 1.0

b 0

q(s) tanh(s)

λ 0.02

d 0.05

N 1000

npack 4

mpack 4

ttrain 6,533 days

tvalidate 42 days

twarmup 35 days

The model was implemented on the MATLAB R2019b platform, from a personal laptop, and the training time was slightly

over 40 minutes. It is likely, given the embarrassingly parallelizable nature of this task, that an implementation that leverages

GPU style computation could speed this stage up considerably. To observe the effect of the random input and middle weights

on the model, 15 different models are created all with the same metaparameters as described in Table 1. Even though the model

predicts SST across the entire Earth, several time series at points chosen arbitrarily are included in each section to locally145

validate the forecast, the coordinates of which can be found below in Table 2. In this local time series analysis, the forecasts

from the 15 different models are averaged and one standard deviation in the predicted values are represented above and below

the average value with a shaded outline.

Table 2. Coordinates of Chosen Locations.

Location Key Latitude (◦ N) Longitude (◦ E)

Cook Strait a −41.25 174.50

Gulf of Mexico near Key West, FL b 24.75 −81.75

Coast of Gabon c 0.75 8.25

Southern Ocean near Heard Island d −55.00 73.50

East Coast of Japan e 35.25 141.75

Mozambique Channel f −18.75 41.25

Pacific Ocean near Tuvalu g −8.25 179.25

Coast of Ecuador h −3.75 −81.75

Bass Strait i −39.75 146.25

Laccadive Sea j −6.25 77.00
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To determine the quality of the forecast over the entire ocean, the mean absolute error (MAE), the root mean square error

(RMSE), and the maximum error in the forecast for a given day across the entire map are found. To find the MAE in the150

forecast at a given day, a weighted average is performed on the error ei across the map, where ep,i denotes the absolute error

at point p on the map at the ith day. We perform this weighting due to the mesh being more refined near the poles compared to

points near the equator, hence the area enclosed by each index Ωp isn’t constant. The actual area encompassed by a given point

was found by simply using MATLAB’s built in function areaquad(). The MAE in the forecast across the map at the ith day is

then given by Equation 8, where k is the number of points on the map that lie in the ocean (k ≈ 0.71 ∗n ∗m).155

MAEi =
1∑k

p=1Ωp

k∑
p=1

ep,iΩp (8)

Similarly, the RMSE on the ith day is then given by Equation 9:

RMSEi =

√√√√ 1∑k
p=1Ωp

k∑
p=1

e2p,iΩp (9)

Finally, the maximum error is simply the largest error in the forecast across all points on the ith day. These error values

are found for each of the 15 models every day in the forecasting period, and then subsequently average values and standard160

deviations between models are found.

5.1 Daily Forecasts

Daily forecasting operates by continually inserting the previous days actual SST Xi into the reservoirs and then reading out

what the model predicts will be the SST at the next day Y i+1, and then repeating this procedure over the course of the validation

time frame. The time series for the forecasted SST at the eight different points are provided below in Fig. 4 and is also matched165

with the actual SST each day in Fig. 5.
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Figure 4. One day forecasts of the sea surface temperature at various points in the ocean. The average forecasted SST and the true SST is

represented by the red and the blue line respectively. About the average there is a shaded outline representing ±1 standard deviation in the

forecast between models, though it is not entirely evident due to all models ultimately predicting similar values.

Figure 5. The true SST compared to the average predicted SST, for the model predicting one day at a time. The red line indicates the resulting

linear fit, while the blue line is the ideal place where the forecasted SSTs would match the true SST.
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Table 3. Regression Statistics for the Daily Forecasts. Note that ideally, the slope m would be equal to one, the intercept b would be equal to

zero, and the correlation coefficient r would be one.

Location m b r

a 1.09 −27.62 0.95

b 1.00 0.36 0.98

c 1.21 −63.96 0.91

d 0.93 19.94 0.89

e 0.99 3.92 0.98

f 1.01 −3.86 0.97

g 0.80 59.17 0.88

h 1.06 −17.51 0.95

i 0.94 16.90 0.94

j 1.10 −29.89 0.96

Via Fig. 4 it is apparent that the forecasted SST closely follows the actual SST over the validation time frame for almost

all locations. The model is seen to pick up on the changes in SST at locations where there is not a clear trend and the change

in SST is seemingly chaotic, such as locations h, i, and j, though there are some inaccuracies with the forecast at location g.

There is also very little deviation between models, indicating that the effect of randomness on the model is practically negligent170

with regard to forecasting daily SST. The correlation coefficients for the chosen sites are all 0.88 or greater, indicating a strong

relationship between the model’s forecast and the actual values. To quantify how the model performs over the entire globe the

MAE, RMSE, and the maximum error for the daily forecasts are described below in Fig. 6.

Figure 6. The evolution of the error for the 1 day forecasts. The mean absolute error in the forecast over the entire ocean is depicted in (a),

the root mean square in (b), and the maximum error in (c). The model average is represented via a dark blue line and one standard deviation

is represented by a shaded outline above and below the average.
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From Fig. 6 we see that for each daily prediction the average MAE between models typically fluctuates between 0.13−
0.15K, the RMSE between 0.18−0.24K, and the maximum error between 1−8K. By averaging these values over the course175

of the 6 week forecasting period we find that for a 1 day prediction horizon the model has as an average MAE of 0.136K,

an average RMSE of 0.197K, and an average maximum error of 3.308K. For context, for a 1 day prediction horizon Xiao et

al. (Xiao et al., 2019b) reported a RMSE of 0.35K for their forecast over the East China Sea with the use of a deep learning

model constructed from ConvLSTM’s, and Shi et. al (Shi et al., 2022) reported a RMSE of 0.241K for their cyclic evolutionary

network model forecasting over the South China Sea. It should also be noted that our error values typically don’t decrease over180

the forecasting period, indicating that the chosen warm-up time of 35 days is sufficient, as there would be a decline in the error

over time if the reservoir was gradually benefiting from more provided information.

5.2 6 Week Forecast

Meanwhile for the 6 week forecast, the forecasted sea surface temperatures Y i+1 are inputted back into the reservoir on the

next day, therefore taking the place of the actual SST Xi+1. This effectively allows the model to run autonomously over the185

validation time time frame for a total of 42 days. The eight time series for the forecasted SST are provided below in Fig. 7.

Figure 7. Forecasted sea surface temperatures at various points in the ocean with the model running autonomously. The average forecasted

and the actual SST is represented by the red and the blue line respectively, with a shaded outline surrounding the average forecasted SST

representing ±1 standard deviation in the forecast between the models.

From Fig. 7 it is apparent that the model typically predicts the general change in the SST for locations a, b, c, g, h, and j.

We find it especially impressive that the model is able to predict the cooling of the SST found at g and j and the warming at h.

Meanwhile, the results for locations d, e, and f are very poor given that the change in SST is fairly linear in the time leading up

to the forecasting period and during it. The results at location i are also poor, as the model is unable to anticipate the rise in SST190

that began around the commencement of the forecasting period. These forecasts also depict how the intrinsic randomness of
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the model does play a slight role in the model output as time evolves, but it is an interesting feature that the standard deviation

between models appears to reach a limit after several days of forecasting as seen in Fig. 7 (d), (e), (g), (h), (i) and (j); and the

standard deviation between models even decreases in Fig. 7 (c). To quantify how the model performs globally, we now refer to

Fig. 8 which depicts the error in the average SST forecast between the 15 models as well as the MAE, RMSE, and maximum195

error in the forecasts are described in Fig. 9.

Figure 8. The evolution of the error across the globe for the 6 week forecast. The error at each location is simply the difference between the

average forecasted value and the actual value.
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Figure 9. The evolution of the error for the 6 week forecast. The average model error statistics are plotted each day as well as ±1 standard

deviation. The mean absolute error in the forecast over the entire ocean is depicted in (a), the root mean square in (b), and the maximum error

in (c).

Via Fig. 8 it is observed that the model generally performs the best near the equator, with some slight difficulty predicting

the general warming of the ocean in the Southern Hemisphere and cooling in the Northern Hemisphere during this time frame.

The average MAE and RMSE rise to 0.32K and 0.45K respectively on the 7th day of forecasting, subsequently increasing

to 0.73K and 0.99K respectively by the end of 4 weeks. For context, for a prediction horizon of 1 week Xiao et. al (Xiao200

et al., 2019b) reports a RMSE of 0.85K and Shi et. al (Shi et al., 2022) reports a RMSE of 0.687K for their respective models

mentioned previously. Meanwhile for a prediction horizon of 4 weeks, Yang et al. (Yang et al., 2018) reports a RMSE of

0.726K for their CFCC-LSTM model forecasting over the Bohai Sea and a RMSE of 1.070K for the China Ocean. Similar

to the daily forecasts, it is also apparent that there is little deviation in the RMSE and MAE across the 15 models, once again

indicating that on average the models typically perform similarly regardless of the random weights which they are constructed205

from.

6 Conclusions

With the use of coupled reservoir computers, and specifically a collection of patches that represent local regions and designed to

accommodate coastal-land interface variations, we were able to model for excellent forecasting the spatiotemporally complex

dynamics of the global sea surface temperature over several weeks. The relative simplicity of the network architecture and the210

minimal training time is striking relative to other machine learning concepts. Even though our model is intended to describe

the dynamics of the entire ocean, it is still able to predict SST at specific locations. In the future, it is of interest to explore the

use of Next-Generation Reservoir Computers (NG-RC) in the task of predicting SST, as NG-RCs provide the added benefit of

less metaparameters to tune compared to a traditional RC (Jaeger and Haas, 2004; Bollt, 2021b, a; Gauthier et al., 2021). It is

14



also of interest to input other variables into the reservoir besides the SST, such as the surrounding air temperature (Jahanbakht215

et al., 2021) to observe if the results can be further improved.
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