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Abstract. Sea surface temperature (SST) is a key factor in understanding the greater climate of the Earth and is an

important variable when making weather predictions. Methods of machine learning have become ever more present

and important in data-driven science and engineering including in important areas for Earth Science. We propose here

an efficient framework that allows us to make global SST forecasts by use of a coupled reservoir computer method

that we have specialized to this domain allowing for template regions that accommodate irregular coastlines. Reservoir5

computing is an especially good method for forecasting spatiotemporally complex dynamical systems, as it is a machine

learning method that despite many randomly selected weights, it is nonetheless highly accurate and easy to train.

Our approach provides the benefit of a simple and computationally efficient model that is able to predict sea surface

temperatures across the entire Earth’s oceans. The results are demonstrated to replicate
::::::::
generally

:::::
follow

:
the actual

dynamics of the system over a forecasting period of several weeks.10

1 Introduction

As most of Earth’s surface is covered by water, global sea surface temperatures (SST) are an important parameter in under-

standing the greater climate of the Earth. Sea surface temperature (SST) is an important variable in the study of marine ecology

(Gomez et al., 2020; Novi et al., 2021), weather prediction (Dado and Takahashi, 2017), and to help predict
:::::
project

:
future

climate scenarios (Pastor, 2021). Yet the task of predicting changes in the SST is quite difficult, due to large variations in heat15

flux, radiation, and diurnal wind near the surface of the sea (Patil et al., 2016).

Given the importance of sea surface temperature to the fuller Earth weather and climate system, there is significant inter-

est in forecasting this spatiotemporally complex process. Methods for predicting changes in the SST can be divided into two

different categories: numerical methods and data-driven methods. Numerical methods are based on the underlying knowledge

of the governing physics behind the system, and simulation thereof. These are widely used to predict SST over a large area20

(Stockdale et al., 2006; Krishnamurti et al., 2006). However, data-driven methods encompass statistical and machine learning

approaches, and are widely used to predict the SST, often with little to no knowledge regarding relevant physical principles

behind the dynamics of the system, hence reducing the complexity of the model. Several statistical methods that have been

used include: Markov models (Xue and Leetmaa, 2000; Johnson et al., 2000), linear regression (Kug et al., 2004), and empir-
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ical canonical correlation analysis (Collins et al., 2004). Meanwhile machine learning methods have included: support vector25

machines (SVM
:::::
SVMs) (Lins et al., 2013), long short term memory

:::::
neural

:::::::
networks

:
(LSTMs) (Zhang et al., 2017; Kim et al.,

2020; Xiao et al., 2019a), memory graph convolutional networks (MGCNs) (Zhang et al., 2021), etc. In this paper, we utilize

coupled reservoir computers (RC
:::
RCs), therefore taking advantage of the reduced complexity of data-driven methods, while

still being able to predict temperatures globally due to the minimal training required by each RC. We have adapted the RC

concept for spatiotemporal processes to allow for coupled local templates that accommodate the peculiarities associated with30

varying coastlines.

Reservoir computers have been shown to be excellent predictors of
::
at

::::::::
predicting

:
complex dynamical systems (Ghosh et al.,

2021; Pandey and Schumacher, 2020) regardless of the relative simplicity of the approach. They have even been shown to

be proficient in the prediction of spatiotemporally complex systems, such as the Kuramoto-Sivashinsky PDE (Vlachas et al.,

2020) and cell segmentation (Hadaeghi et al., 2021). The use of coupling
::
In

:::
our

::::
case,

:::
the

:::
use

:::
of

::::::
coupled

::
of

::::::::
reservoir

:::::::::
computers35

is introduced due to the large number of points on the map, making it computationally challenging to utilize a single large

reservoir computer. The reservoirs are coupled together by making the reservoirs functions of points outside their forecast

domain, effectively creating overlap.

2 Background

Reservoir computing is a type of recurrent neural net where the only layer trained is the output layer, which is done with a40

simple linear method. Compared to traditional recurrent neural networks, reservoir computers utilize randomly generated input

and middle weights, which in effect reduces training time significantly. The reservoir computer is stated as follows (Jaeger and

Haas, 2004),

ri+1 = q(Ari +WinXi + b) (1)

Y i+1 =Woutri+1 (2)45

The inputs Xi (of total length dx) is the raw data which describes a system, in our case these would be the temperatures

at points in the sea. These are fed into the reservoir via the input matrix Win, which has weights which are determined via

sampling a uniform distribution U(−σ,σ). The reservoir dimension N describes how many nodes there are to be within the

reservoir. Therefore in order to transform the inputs into the space of the reservoir, the dimensions of Win will be N × dx.

The reservoir state r, which evolves according to Eq. 1, carries information about the current and previous states of the sys-50

tem. During training, the reservoir states are horizontally concatenated as time evolves to form the matrix R=
[
r1|r2| . . . |rttrain

]
,

where ttrain is the number of data points being used to train the model, and so correspondingly the computational complex-

ity associated with the matrix operations stated in Eq. 2. The dimensions of R at the end of the training phase will then be

N × ttrain.
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The reservoir matrix A which contains the middle weights, is a sparse matrix with with a set density d, with nonzeros values55

that are sampled from a uniform distribution U(−β,β).
:::
The

::::::
matrix A will have dimensions of N ×N corresponding to the N

reservoir nodes. The spectral radius ρ of A is an important metaparameter in the formation of the RC (Jiang and Lai, 2019),

and can be adjusted by scaling A (which essentially just involves changing β). The activation function q(s) is usually picked to

be a nonlinear function such as the sigmoid function or the hyperbolic tangent function. Often, a bias term b is included when

one desires to shift the activation function a set amount. After the training data set
::::::
dataset

:
is cycled through and the matrix R60

is completed, the output matrix Wout is then found via a ridge regression:

Wout =YRT(RRT +λI)−1 (3)

Which utilizes a regularization parameter λ to prevent overfitting. As the output matrix is transforming reservoir states to a

desired output Y i+1 (of length px), the dimension of Wout will be px×N . The trained model can then be used to forecast

autonomously by inserting the newly predicted values Y i+1 back into the reservoir on the next iteration as Xi.65

3 Coupled Reservoir Computers

As we would like to predict the SST across the entire globe, it is computationally challenging to use a single reservoir computer

to forecast for the entire map due to the number of points on the map. From the data set
:::::
dataset, there will be a total of n ∗m

points on the map. If we were to use a single reservoir computer, the size of the input data Xi would be around 0.71 ∗n ∗m
(as 71% of the Earth’s surface is water) for each time step. It will be seen in the Data section that the values of n and m that70

are ultimately to train our model are 120 and 240 respectively, hence the total number of points that are not on land across

the map is about 20448. Hence, even if the reservoir dimension N is 15 : 1 with respect to the size of the input data (which is

very smallfrom previous experience
:::::::
relatively

:::::
small, for examplethe

:
:
:::
the

::::
value

:::
of

::
N

:::::::::
commonly

::::
used

:::
for

:::
the 3D Lorenz system

requires a value of N around 300
:
is

::::
1000

::::::::::::
(Bollt, 2021b)), the size of the resulting matrix A would be 306720×306720, which

assuming each element requires 8 bytes, would require 750GB to store.75

Therefore in this application, it is better to follow the methodology laid out by Pathak et al. (2018) to model the evolution

of the SST with the use of smaller reservoir computers which each cover a small domain of the map. This approach is advan-

tageous as the input and middle weights for a reservoir computer are chosen randomly, hence allowing us to reuse the same

input matrices1 Win and the same reservoir matrix A between the individual RCs. Now, each individual RC learns the local

behavior of the points within it’s
::
its forecasting domain (defined as a pack) while still being connected to a the global system80

via coupling with it’s
::
its

:
neighbors.

A pack is essentially a collection of contiguous indices on the greater map that will be assigned to a given RC. In other

words, a pack is an RC model of the dynamics, for a local region of the globe, that is designed to accommodate any local

peculiarities of the land-water interface and also it couples into other neighboring packs. This reservoir computer will then

1Due to varying values of dx due to points on land, we cannot share a single input matrix Win between all RCs.
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be solely responsible for predicting the temperatures within it’s
::
its

:
pack as time evolves. For simplicity’s sake in this study,85

points within a pack are grouped in the shape of rectangles, where the number of rows of points within the pack is defined as

npack and the number of columns subsequently mpack . Therefore, each RC will be responsible for forecasting a maximum of

npack ∗mpack spatial points on the map. As there are n ∗m total points on the map, the number of RCs needed will then be Pf

= (n ∗m)/(npack ∗mpack ). An illustration of the various packs on a sample map are provided in Fig. 1.

Figure 1. The various packs on a sample map. The points within a pack that are blue are the eligible points in the ocean that the pack’s

designated reservoir computer will attempt to forecast. Points in green represent land, which are not eligible points and whose indices are

ignored in the formation of the pack.

No points containing land are assigned to a RC, therefore some packs will have more or less points than others, due to these90

points on land. It should also be noted that no point on the map can be in more than one pack, as packs do not cross
::::::
overlap.

The sea surface temperatures of the points within the jth pack at the ith day are stacked in the vector Xjpack

i which is of length

px.

X
jpack

i =


X

jpack,1
i

X
jpack,2
i

...

X
jpack,px
i

 (4)

For the various reservoirs to interact with one another, coupling is introduced by finding the
::::::::
including

:::
the

::::
SST

::
of
::::

the95

neighbors surrounding a pack. The neighbors of a pack are the non-land points that are either directly touching or on the corner

of a point within the pack. As many points within a pack share similar neighbors, only unique neighbors are kept and their sea

surface temperatures at the ith day are compiled into the vector Xjneighbor

i . The neighbors for a given pack on the sample map

are illustrated below in Fig. 2.
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Figure 2. Illustration of the jth pack with it’s
::
its valid neighbors denoted by a yellow highlight. In this example it is evident that px is equal

to 32 (number of pack points in the ocean) and dx is equal to 54 (px plus the number of neighbors). It is also evident that npack and mpack

are both equal to 6 in this case.

The vectors Xjpack

i and X
jneighbor

i are combined to form the vector Xj
i (of length dx), which contains all of the sea surface100

temperatures for the pack and it’s
::
its

:
neighbors at the ith day, and is ultimately the input for the jth reservoir computer.

Xj
i =

 X
jpack

i

X
jneighbors

i

 (5)

As we would like the model to predict sea surface temperatures within the pack at the next day Y
jpack

i+1 , the reservoir computer

for the jth pack can now be written as:

rji+1 = q(Arji +Wdx
inX

j
i + b) (6)105

Y
jpack

i+1 =Wj
outr

j
i+1 (7)

Each reservoir computer is trained over the entire training dataset from i= 1 : ttrain days. Each pack contains a distinct

output matrix Wj
out, such that the reservoir states are matched with the values of the SST within the pack at the next

day. In order to save computer memory, it is advisable to create an array of input matrices with values of dx from 1 to

(npack + 2 ) ∗ (mpack + 2 ) and then assign these to RCs with a similar value of dx, denoted by Wdx
in . One middle weight110

matrix A is shared between all the RCs, as the reservoir dimension N is set to be fixed between all of the reservoirs. The

architecture of a single reservoir computer is described in Fig. 3.

5



Figure 3. Illustration of the architecture of the jth reservoir computer.

4 Data

The dataset used to train and validate the model is titled “GHRSST Level 4 MUR 0.25deg Global Foundation Sea Surface

Temperature Analysis (v4.2)” which contains sea surface temperature data in degrees Kelvin on a global 0.25◦ grid from 2002115

to 2021 in one day increments. This version is based on nighttime GHRSST L2P skin and sub skin SST observations from

several instruments, and is publicly available online via PODAAC (dat). The data was downloaded with the use of OPeNDAP

on 10/10/2021.

The years 2003 to 2020 of the data set
::::::
dataset

:
were selected to form the training and validation data set

::::::
dataset. The data is

given in an equirectangular format, which is used throughout the modelling process for simplification purposes even though120

this consequentially leads to a more refined mesh near the poles. The time series data was split into a training and validation

data set
::::::
dataset, consisting of 6,533 days and 42 days respectively.

::
We

::::::
choose

:::
not

::
to

:::::::::
normalize

:::
the

::::
data,

::
as

:::
the

::::
data

:
is
:::::::::
univariate

:::
and

:::
the

:::::::
reservoir

:::::
state

:
is
:::::::::
effectively

:::::
scale

::::
free,

::::
with

::::
scale

:::::
being

::::::::::::
re-introduced

::::
with

:::
the

::::::
trained

:::::
output

:::::::
matrix.

In order to reduce the number of spatial points within the data set
:::::
dataset, the data was discretized such that the sea surface

temperature was now on a global 1.5◦ degree grid. This was performed by grouping original data points in a 6× 6 matrix and125

then taking the average over the group. If a grouping contained a point on land, this value was ignored in the computation of the

average of the group. Therefore, the data set
::::::
dataset for a given day went from a 720× 1440 to a 120× 240. Hence, n = 120

and m = 240 .
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5 Forecasting

To subsequently forecast the global SST with the trained model, two different prediction types are performed. To begin testing130

the short-term accuracy of the model, daily predictions are performed over the course of 6 weeks. The actual values of the

SST are fed as inputs into the reservoir during this time period and the predicted values for the next day are read out.
::::
This

:::
type

:::
of

::::::
forecast

::::
has

:
a
::::
real

:::::
world

:::::::::
application

::
in

:::
the

:::::
form

::
of

:::::
filling

::
in

::::
SST

:::::::
datasets

:::::
when

::::
there

::
is

:::::
cloud

:::::
cover

::
or

::::
data

:::::::::
corruption

:::::::::::::::::::::::::
(Case, Jonathan L. et al., 2008),

:::
as

:::
the

::::::
model

:::
can

:::
be

::::
used

::
to

:::::::
estimate

::::
data

:::
for

:::
the

:::::::
missing

:::::
days.

:
Then, to test the long-term

accuracy of the model, the model is then allowed to run autonomously over the same 6 weeks. Now, the model is still predicting135

SST each day but
:
it
:
only has access to it’s own previous prediction.

::::
This

::::
form

:::
of

:::
the

:::::::
forecast

:::::
would

:::
be

:::::
more

:::::::::
applicable

::
to

::::::
weather

:::::::::
prediction,

:::
as

:
it
:::::
could

:::
be

::::::
coupled

::::
with

:::
an

::::::::::
atmospheric

::::::
model

::
to

::::
help

::::::
predict

::::
near

:::::
future

:::::::
weather

:::::::
patterns.

:

For both prediction types, the reservoir states are all cleared to zero prior to forecasting, and then ran over the 7
:::::::
twarmup

days prior to the validation time frame, hence providing an initial condition for the model to begin from. The metaparameters

:::
Via

::::
cross

:::::::::
validation,

::::::
several

:::::::::::::
metaparameters

:::
(σ,

:::
N ,

::::
and

::::::::
twarmup)

::::
were

::::::::
optimized

::::
and

:::
the

:::::
values

:
that were found to work well140

with the model
::::::
perform

::::
the

:::
best

:
are described in Table 1. The spectral radius ρ of A was set to one by dividing A by it’s

largest eigenvalue.
::
It

:::
was

:::::::
noticed

:::
that

:::
the

::::::
results

::::
were

:::
not

:::::::::::
significantly

::::::::
increased

:::
for

:
a
:::::
value

::
of

:::::::
twarmup:::::::

greater
::::
than

::
35

:::::
days.

::::::
Results

:::
did

::::::::::
consistently

:::::::
improve

::::
with

:::
an

:::::::::
increasing

:::::::
reservoir

:::::::::
dimension

:::
N ,

::::::
leading

:::
us

::
to

::::::
choose

:::
the

:::::
value

::
N

::
=

:::::
1000. One of

the most important values in tuning the performance of the reservoir computer was found to be
::::
more

::::::::
sensitive

:::::::::::::
metaparameters

:::
was

:::
the

:::::
value

::
of

:
σ, the value which determined the

:::::
which

::::
was

:::::
found

::
to

:::::::
provide

::::::
optimal

::::::
results

:::::
when

::::::
having

:
a
:

magnitude of145

the values in the input matrix Win.
:::::
order

:::::
10−4.

::
In

:::
the

:::::
spirit

::
of

:::::::::
simplicity,

:::
we

::::::
choose

:::
not

::
to

:::::::::
rigorously

:::::::
optimize

:::
the

:::::::::
remaining

:::::::::::::
metaparameters,

::::
and

:::::
rather

::::::
choose

::::
them

:::::
based

:::
off

::
of

:::::::::
heuristics.

Table 1. Metaparameters Used.

Metaparameter Value

σ 3e− 4

ρ 1.0

b 0

q(s) tanh(s)

λ 0.02

d 0.05

N
550

::::
1000

npack 4

mpack 4

ttrain 6,533 days

tvalidate 42 days

::::::
twarmup: ::

35
::::
days
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The model was implemented on the MATLAB R2019b platform, from a personal laptop, and the total training time was

slightly under 30 minutes.
::::
over

::
40

::::::::
minutes.

::
It

::
is

::::::
likely,

:::::
given

:::
the

:::::::::::::
embarrassingly

:::::::::::
parallelizable

::::::
nature

::
of

::::
this

::::
task,

::::
that

:::
an

:::::::::::::
implementation

:::
that

::::::::
leverages

:::::
GPU

:::::
style

::::::::::
computation

:::::
could

::::::
speed

:::
this

:::::
stage

:::
up

:::::::::::
considerably.

:::
To

:::::::
observe

:::
the

:::::
effect

:::
of

:::
the150

::::::
random

:::::
input

:::
and

::::::
middle

:::::::
weights

::
on

:::
the

::::::
model,

:::
15

:::::::
different

::::::
models

:::
are

::::::
created

:::
all

::::
with

:::
the

::::
same

:::::::::::::
metaparameters

:::
as

::::::::
described

::
in

:::::
Table

::
1. Even though the model predicts SST across the entire Earth, several time series at points chosen arbitrarily are

included in each section to compare the forecastto the actual SST over the validation time frame
:::::
locally

:::::::
validate

:::
the

:::::::
forecast,

the coordinates of which can be found below in Table 2. It is likely, given the embarrassingly parallelizable nature of this

task, that an implementation that leverages GPU style computation could speed this stage up considerably
:
In

::::
this

:::::
local

::::
time155

:::::
series

:::::::
analysis,

:::
the

::::::::
forecasts

::::
from

:::
the

:::
15

:::::::
different

::::::
models

:::
are

::::::::
averaged

:::
and

::::
one

:::::::
standard

::::::::
deviation

::
in

:::
the

::::::::
predicted

::::::
values

:::
are

:::::::::
represented

:::::
above

::::
and

:::::
below

:::
the

:::::::
average

:::::
value

::::
with

:
a
::::::
shaded

::::::
outline.

Table 2. Coordinates of Chosen Locations.

Location

:::
Key

Latitude (◦ N) Longitude (◦ E)

Cook Strait

:
a

−41.25 174.50

Gulf of Mexico near Key West, FL

:
b

24.75 −81.75

Coast of Gabon

:
c

0.75 8.25

Southern Ocean near Heard Island

:
d

−55.00 73.50

East Coast of Japan

:
e

35.25 141.75

Mozambique Channel

:
f

−18.75 41.25

Pacific Ocean near Tuvalu

:
g

−8.25 179.25

Coast of Ecuador

:
h

−3.75 −81.75

:::
Bass

:::::
Strait

:
i

::::::
−39.75

:::::
146.25

:

:::::::
Laccadive

:::
Sea

: :
j

:::::
−6.25

::::
77.00

:

To determine the quality of the forecast over the entire ocean, the mean absolute error (MAE), the root mean square error

(RMSE), and the maximum error in the forecast for a given day across the entire map are found. To find the MAE in the

forecast at a given day, a weighted average is performed on the error ei across the map, where ep,i denotes the absolute error160

at point p on the map at the ith day. We perform this weighting due to the mesh being more refined near the poles compared

to points near the equator, hence the area enclosed by each index
:::::::::
attributable

::
to

::
a

::::
given

:::::
point Ωp isn’t constant.

:::::::::
necessarily

:::
the
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::::
same

:::
for

:::::
other

:::::
points.

::
It
::::::
should

::::
also

::
be

:::::
noted

::::
that

:::
we

::::
treat

::::
areas

::::
near

:::
the

:::::
poles

:::::::::
consisting

::
of

:::::::::::::
time-dependent

:::
sea

:::
ice

::::::
simply

::
as

:::::
points

:::::
within

:::
the

::::::
ocean. The actual area encompassed by a given point was found by simply using MATLAB’s built in function

areaquad(). The MAE in the forecast across the map at the ith day is then given by Equation 8, where k is the number of points165

on the map that lie in the ocean (k ≈ 0.71 ∗n ∗m).

MAEi =
1∑k

p=1Ωp

k∑
p=1

ep,iΩp (8)

Similarly, the RMSE on the ith day is then given by Equation 9:

RMSEi =

√√√√ 1∑k
p=1Ωp

k∑
p=1

e2p,iΩp (9)

Finally, the maximum error is simply the largest error in the forecast across all points on the ith day. To observe the effect170

of the randomly selected input and middle weights on the performance of the RCs, the model was ran
:::::
These

::::
error

::::::
values

:::
are

:::::
found

:::
for

::::
each

::
of

:::
the

:
15 times all with the same metaparameters as described in Table 1, to collect data for the examination

of the error
::::::
models

:::::
every

:::
day

::
in

:::
the

::::::::::
forecasting

::::::
period,

:::
and

::::
then

:::::::::::
subsequently

:::::::
average

:::::
values

::::
and

:::::::
standard

:::::::::
deviations

:::::::
between

::::::
models

:::
are

:::::
found

::
to

:::::::
observe

:::
the

:::::
effect

::
of

::::::::::
randomness.

5.1 Daily Forecasts175

Daily forecasting operates by continually inserting the previous days actual SST
::::
actual

::::
SST

:::
of

:::
the

:::::::
previous

::::
day Xi into the

reservoirs and then reading out what the model predicts will be the SST at the next day Y i+1, and then
:::::::::::
subsequently repeating

this procedure over the course of the validation time frame. The time series for the forecasted SST at the eight
::
10

:
different

points are provided below in Fig. 4 and is also matched with the actual SST each day in Fig. 5.
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Figure 4. One day forecasts of the sea surface temperatures
::::::::
temperature

:
at various points in the ocean. The

::::::
average forecasted

:::
SST and the

true SST is represented by the red and the blue line respectively. The following locations are depicted in each figure: (
::::
About

:::
the

::::::
average

::::
there

:
is
:
a ) Cook Strait, (b)

:::::
shaded

:::::
outline

::::::::::
representing

:::
±1

::::::
standard

:::::::
deviation

::
in
:
the Gulf of Mexico near Key West FL

::::::
forecast

:::::::
between

:::::
models,

(c) the Coast of Gabon, (d) the Southern Ocean near Heard Island, (e) the East Coast of Japan, (f) Mozambique Channel, (g) the Pacific

Ocean near Tuvalu, and (h) the Coast of Ecuador
:::::
though

::
it

:
is
:::
not

::::::
entirely

::::::
evident

:::
due

::
to

::
all

::::::
models

:::::::
ultimately

::::::::
predicting

:::::
similar

:::::
values.

Figure 5. The true SST compared to the
:::::
average

:
predicted SST

:
, for the model predicting one day at a time. The blue

::
red line indicates the

resulting linear fitto the data, while the black
:::
blue line is the ideal place where the forecasted SSTs would match the true SST.The following

locations are depicted in each figure: (a) Cook Strait, (b) the Gulf of Mexico near Key West FL, (c) the Coast of Gabon, (d) the Southern

Ocean near Heard Island, (e) the East Coast of Japan, (f) Mozambique Channel, (g) the Pacific Ocean near Tuvalu, and (h) the Coast of

Ecuador.
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The corresponding regression statistics for the plots in Fig. 5 are described below in Table 3. Note that ideally, the slope m180

would be equal to one, the intercept b would be equal to zero, and the correlation coefficient r would be one.
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Table 3. Regression Statistics for the Daily Forecasts.
::::
Note

:::
that

:::::
ideally,

:::
the

::::
slope

::
m

:::::
would

::
be

:::::
equal

:
to
::::
one,

:::
the

::::::
intercept

::
b

::::
would

:::
be

::::
equal

::
to

::::
zero,

:::
and

::
the

::::::::
correlation

::::::::
coefficient

::
r
:::::
would

::
be

:::
one.

:::::::
Standard

:::::
errors

:::
are

::::::
provided

:::
for

::::
both

::
m

:::
and

:
b.

Location
Slope m Intercept b Correlation

Coefficient

r

Cook

Strait
:
a

0.82
::::::::::
1.09± 0.06 51.76

::::::::::::
−27.62± 16.1

0.85

::::
0.95

Gulf of

Mexico

near Key

West, FL

:
b
:

1.02
:::::::::
1.00± 0.03 5.97

::::::::::
0.36± 8.81 0.96

::::
0.98

Coast of

Gabon
:
c

0.98
:::::::::
1.21± 0.09 6.99

::::::::::::
−63.96± 25.9

0.79

::::
0.91

Southern

Ocean

near

Heard

Island
:
d
:

0.81
:::::::::
0.93± 0.06 53.17

::::::::::
19.94± 17.8

0.86
:::
0.89

East

Coast of

Japan
:
e

0.92
:::::::::
0.99± 0.03 23.20

:::::::::
3.92± 10.3

0.96
:::
0.98

Mozambique

Channel

:
f

0.89
:::::::::
1.01± 0.04 32.73

:::::::::::
−3.86± 11.5

0.89

::::
0.97

Pacific

Ocean

near

Tuvalu
:
g

0.62
:::::::::
0.80± 0.07 115.17

::::::::::
59.17± 21.2

0.78

::::
0.88

Coast of

Ecuador

:
h
:

0.97
:::::::::
1.06± 0.05 8.45

::::::::::::
−17.51± 14.4

0.87
:::
0.95

:
i

:::::::::
0.94± 0.05

: ::::::::::
16.90± 15.0

: ::::
0.94

:
j

:::::::::
1.10± 0.04

: ::::::::::::
−29.89± 14.6

::::
0.96
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For the daily forecasts, the
::
Via

::::
Fig.

:
4
::
it

::
is

:::::::
apparent

:::
that

:::
the

:::::::::
forecasted

::::
SST

::::::
closely

::::::
follows

:::
the

::::::
actual

:::
SST

::::
over

:::
the

:::::::::
validation

::::
time

:::::
frame

:::
for

:::::
almost

:::
all

::::::::
locations.

::::
The

:::::
model

::
is
::::
seen

::
to
::::
pick

:::
up

::
on

:::
the

:::::::
changes

::
in
::::
SST

::
at
::::::::
locations

:::::
where

:::::
there

::
is

:::
not

:
a
:::::
clear

::::
trend

::::
and

:::
the

::::::
change

::
in

::::
SST

::
is
:::::::::
seemingly

:::::::
chaotic,

::::
such

::
as
::::::::

locations
::
h,
::

i,
::::
and

:
j,
::::::
though

:::::
there

:::
are

:::::
some

::::::::::
inaccuracies

:::::
with

:::
the

::::::
forecast

::
at
:::::::
location

::
g.

:::::
There

::
is

::::
also

::::
very

::::
little

::::::::
deviation

:::::::
between

:::::::
models,

::::::::
indicating

::::
that

:::
the

:::::
effect

::
of

::::::::::
randomness

::
on

:::
the

::::::
model185

:
is
:::::::::
practically

::::::::
negligent

::::
with

::::::
regard

::
to

::::::::::
forecasting

::::
daily

::::
SST.

::::
The

:
correlation coefficients for the chosen sites are all 0.78

::::
0.88

or greater, indicating a general relation
:::
and

:::
the

:::::
value

::
of

::
m

::
is

::::
close

::
to
::::
one

::::
(and

::::
with

:::::::
minimal

:::::::
standard

:::::
error)

:::
for

:::::
most

::::::::
locations,

:::::::
therefore

:::::::::
indicating

:
a
:::::
strong

::::::::::
relationship

:
between the model’s forecast and the true valuesat specific sites. The

:::::
actual

::::::
values.

:::
To

:::::::
quantify

:::
how

:::
the

::::::
model

:::::::
performs

::::
over

:::
the

:::::
entire

:::::
globe

:::
the MAE, RMSE, and maximum error each daily forecast

::
the

:::::::::
maximum

::::
error

:::
for

:::
the

::::
daily

::::::::
forecasts are described below in Fig. 6-??.190

Figure 6. The mean absolute
:::::::
evolution

::
of

:::
the error for the one

:
1
:
day

:::::::
forecasts.

:::
The

::::
mean

:::::::
absolute

::::
error

:
in
:::

the
:
forecast

:::
over

:::
the

::::
entire

:::::
ocean

:
is
:::::::
depicted

::
in

:::
(a),

::
the

::::
root

::::
mean

:::::
square

::
in

:::
(b),

:::
and

:::
the

::::::::
maximum

::::
error

::
in

::
(c).

:::
The

:::::
model

::::::
average

:
is
:::::::::
represented

:::
via

:
a
::::
dark

:::
blue

::::
line

:::
and

:::
one

::::::
standard

:::::::
deviation

::
is

:::::::::
represented

::
by

:
a
::::::
shaded

:::::
outline

:::::
above

:::
and

:::::
below

::
the

:::::::
average.

The root mean square error for the one day forecast.

The maximum error for the one day forecast.

The MAE and the RMSE are initially 0.25 K and 0.35 K respectively, with all models experiencing a period of fluctuation

in the error in their forecast between weeks 2 to 4, before settling down at the end of the forecast to a MAE and a RMSE
:::::
From

:::
Fig.

::
6

:::
we

:::
see

:::
that

:::
for

::::
each

:::::
daily

::::::::
prediction

:::
the

:::::::
average

:::::
MAE

:::::::
between

:::::::
models

:::::::
typically

::::::::
fluctuates

::::::::
between

::::::::::::
0.13− 0.15K,

:::
the195

:::::
RMSE

::::::::
between

::::::::::::
0.18− 0.24K,

:::
and

:::
the

:::::::::
maximum

::::
error

:::::::
between

::::::::
1− 8K.

::
By

::::::::::
calculating

:::
the

:::::
mean

::
of

:::
the

:::::
model

::::::::
averages

::::
over

::
the

::::::
course

::
of

:::
the

::
6
:::::
week

:::::::::
forecasting

::::::
period

:::
we

::::
find

:::
that

:::
for

:
a
::
1
:::
day

:::::::::
prediction

:::::::
horizon,

:::
the

::::::
model

:::
has

::
as

:::
an

::::::
average

:::::
MAE

:
of

0.15 K and 0.22 K respectively. It is an interesting feature that the error in the forecast decreases between the first and last day

of forecasting , which is likely attributable to the reservoir state becoming enumerated with a greater number of previous SST

values, hence gaining more knowledge about the previous states of the system.
:::::::
0.136K,

:::
an

::::::
average

::::::
RMSE

:::
of

:::::::
0.197K,

:::
and

:::
an200

::::::
average

:::::::::
maximum

::::
error

::
of

:::::::
3.308K.

:::
For

:::::::
context,

:::
for

:
a
::
1

:::
day

::::::::
prediction

:::::::
horizon

::::
Xiao

::
et

::
al.

:::::::::::::::::
(Xiao et al., 2019b)

:::::::
reported

:
a
::::::
RMSE

::
of

::::::
0.35K

::
for

:::::
their

::::::
forecast

::::
over

:::
the

::::
East

:::::
China

::::
Sea

::::
with

:::
the

:::
use

::
of

::
a

::::
deep

:::::::
learning

:::::
model

::::::::::
constructed

::::
from

::::::::::::
ConvLSTM’s,

::::
and
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:::
Shi

::
et.

::
al

::::::::::::::
(Shi et al., 2022)

:::::::
reported

:
a
::::::
RMSE

::
of

:::::::
0.241K

:::
for

::::
their

:::::
cyclic

:::::::::::
evolutionary

:::::::
network

:::::
model

::::::::::
forecasting

::::
over

:::
the

:::::
South

:::::
China

::::
Sea.

:
It
::::::
should

::::
also

::
be

:::::
noted

::::
that

:::
our

::::
error

::::::
values

:::::::
typically

:::::
don’t

:::::::
decrease

::::
over

:::
the

::::::::::
forecasting

::::::
period,

::::::::
indicating

::::
that

:::
the

::::::
chosen

:::::::
warm-up

::::
time

:::
of

::
35

::::
days

::
is
:::::::::
sufficient,

::
as

::::
there

::::::
would

::
be

::
a
::::::
decline

::
in

:::
the

:::::
error

::::
over

::::
time

:
if
:::
the

::::::::
reservoir

::::
was

::::::::
gradually205

::::::::
benefiting

:::::
from

:::::
more

::::::::
provided

::::::::::
information.

:

5.2 6 Week Forecast

Meanwhile for the 6 week forecast, the forecasted sea surface temperatures Y i+1 are inputted back into the reservoir on the

next day, therefore taking the place of the actual SST Xi+1. This effectively allows the model to run autonomously over the

validation time time frame for a total of 42 days. The eight
::
10 time series for the forecasted SST are provided below in Fig.210

7and the data same data is also depicted on a day-wise basis in Fig. ??.
:
.

Figure 7. Forecasted sea surface temperatures at various points in the ocean with the model running autonomously. The
::::::
average forecasted

and the actual SST is represented by the red and the blue line respectively. The following locations are depicted in each figure: (a) Cook

Strait, (b)
:::
with

:
a
::::::
shaded

:::::
outline

:::::::::
surrounding

:
the Gulf of Mexico near Key West FL, (c)

:::::
average

::::::::
forecasted

::::
SST

:::::::::
representing

:::
±1

:::::::
standard

:::::::
deviation

::
in the Coast of Gabon, (d)

::::::
forecast

::::::
between

:
the Southern Ocean near Heard Island, (e) the East Coast of Japan, (f) Mozambique

Channel, (g) the Pacific Ocean near Tuvalu, and (h) the Coast of Ecuador
:::::
models.

The actual SST compared to the predicted SST for the model running autonomously. The blue line indicates the resulting

linear fit to the data, while the black line is the ideal place where the forecasted SSTs would match the actual SST. The following

locations are depicted in each figure: (a) Cook Strait, (b) the Gulf of Mexico near Key West FL, (c) the Coast of Gabon, (d) the

Southern Ocean near Heard Island, (e) the East Coast of Japan, (f) Mozambique Channel, (g) the Pacific Ocean near Tuvalu,215

and (h) the Coast of Ecuador.

The corresponding regression statistics for the plots in Fig. ?? are now described below in Table ??.
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Regression Statistics for the 6 Week Forecast. Location Slope m Intercept b Correlation Coefficient rCook Strait 0.63

108.83 0.40 Gulf of Mexico near Key West, FL 1.76−226.62 0.91 Coast of Gabon 0.199241.45 0.15 Southern Ocean near

Heard Island −0.93529.44−0.52East Coast of Japan 0.9612.22 0.96Mozambique Channel 0.8254.69 0.79 Pacific Ocean near220

Tuvalu 0.25225.87 0.31 Coast of Ecuador 0.47155.84 0.40

For the autonomous 6 week forecast,
:::::
From

::::
Fig.

:
7
::
it

::
is

:::::::
apparent

::::
that

:::
the

:::::
model

::::::::
typically

:::::::
predicts

:::
the

::::::
general

:::::::
change

::
in

:::
the

:::
SST

:::
for

::::::::
locations

::
a,

::
b,

::
c,
::
g,

::
h,
::::
and

:
j.
::::

We
:::
find

::
it
:::::::::
especially

:::::::::
impressive

:::
that

:::
the

::::::
model

::
is

::::
able

::
to

::::::
predict

:::
the

::::::
cooling

:::
of

:::
the

::::
SST

:::::
found

::
at

:
g

:::
and

:
j
:::
and

:::
the

::::::::
warming

::
at

::
h.

::::::::::
Meanwhile,

:::
the

::::::
results

:::
for

::::::::
locations

:
d
:
,
:
e
:
,
:::
and

:
f
::
are

:::::
very

::::
poor

:::::
given

:::
that

:::
the

:::::::
change

::
in

:::
SST

::
is
:::::
fairly

:::::
linear

::
in

:::
the

::::
time

:::::::
leading

::
up

::
to
:::
the

::::::::::
forecasting

:::::
period

::::
and

::::::
during

::
it.

:::
The

::::::
results

::
at

:::::::
location

:
i

::
are

::::
also

:::::
poor,

::
as

:::
the225

:::::
model

::
is

::::::
unable

::
to

::::::::
anticipate

:::
the

::::
rise

::
in

::::
SST

:::
that

::::::
began

::::::
around

:::
the

:::::::::::::
commencement

::
of

:::
the

::::::::::
forecasting

::::::
period.

:::::
These

::::::::
forecasts

:::
also

::::::
depict

:::
how

:::
the

:::::::
intrinsic

::::::::::
randomness

::
of

:
the correlation coefficients vary from -0.52 to 0.96, indicating that the model has an

easier time predicting some locations than others. The
:::::
model

::::
does

::::
play

:
a
:::::
slight

::::
role

::
in

:::
the

:::::
model

::::::
output

::
as

::::
time

:::::::
evolves,

:::
but

::
it

:
is
:::
an

:::::::::
interesting

::::::
feature

:::
that

:::
the

:::::::
standard

::::::::
deviation

:::::::
between

:::::::
models

::::::
appears

::
to

:::::
reach

:
a
:::::
limit

::::
after

::::::
several

::::
days

::
of

::::::::::
forecasting

::
as

::::
seen

::
in

:::
Fig.

::
7
:::
(d),

:::
(e),

:::
(g)

:
,
:::
(h),

:::
(i)

:::
and

::
(j)

:
,
:::
and

:::
the

::::::::
standard

::::::::
deviation

:::::::
between

::::::
models

::::
even

::::::::
decreases

::
in
::::

Fig.
::
7

::
(c)

:
.
:::
To

:::::::
quantify230

:::
how

::::
the

:::::
model

::::::::
performs

::::::::
globally,

:::
we

::::
now

::::
refer

::
to
::::

Fig.
::
8
::::::
which

::::::
depicts

:::
the

:::::
error

::
in

:::
the

::::
SST

:::::::
forecast

::::::
(which

::
is
:::

an
:::::::
average

:::::::
between

:::
the

::
15

:::::::
models)

::
as

::::
well

::
as

:::
the

:
MAE, RMSE, and maximum error in the forecast for each day the model is forecasting

are described below in
::::::::
described

:::
by Fig. 9-??.

Figure 8. The mean absolute
:::::::
evolution

::
of

::
the

:
error

:::::
across

:::
the

::::
globe for the 6 week forecast.

:::
The

::::
error

::
at

:::
each

:::::::
location

:
is
::::::
simply

::
the

::::::::
difference

::::::
between

:::
the

::::::
average

:::::::
forecasted

:::::
value

:::
and

::
the

:::::
actual

:::::
value.

15



Figure 9. The root mean square
:::::::
evolution

::
of

:::
the error for the 6 week forecast.

:::
The

::::::
average

:::::
model

::::
error

::::::
statistics

:::
are

::::::
plotted

:::
each

:::
day

::
as

::::
well

:
as
:::
±1

:::::::
standard

::::::::
deviation.

:::
The

::::
mean

:::::::
absolute

::::
error

::
in

::
the

::::::
forecast

::::
over

:::
the

::::
entire

:::::
ocean

::
is

::::::
depicted

::
in
:::
(a),

:::
the

:::
root

:::::
mean

:::::
square

::::
error

::
in

:::
(b),

:::
and

::
the

::::::::
maximum

::::
error

::
in

:::
(c).

The maximum error for the 6 week forecast.

The MAE
::
Via

::::
Fig.

::
8

:
it
::

is
::::::::
observed

::::
that

:::
the

:::::
model

::::::::
generally

::::::::
performs

:::
the

::::
best

::::
near

:::
the

:::::::
equator,

::::
with

:::::
some

:::::
slight

::::::::
difficulty235

::::::::
predicting

:::
the

:::::::
general

:::::::
warming

::
of

:::
the

::::::
ocean

::
in

:::
the

:::::::
Southern

:::::::::::
Hemisphere

:::
and

:::::::
cooling

::
in

:::
the

:::::::
Northern

:::::::::::
Hemisphere

:::::
during

::::
this

::::
time

:::::
frame.

::::
The

:::::::
average

:::::
MAE

:::
and

::::::
RMSE

::::
rise

::
to

::::::
0.32K

:::
and

::::::
0.45K

::::::::::
respectively

:::
on

:::
the

:::
7th

::::
day

::
of

::::::::::
forecasting,

:::::::::::
subsequently

::::::::
increasing

:::
to

::::::
0.73K and the RMSE rises to 0.6 K and 0.8 K within the first week, which further increases as the model

progresses. The maximum error in the forecast for all models is beneath 12 K for the first
:::::
0.99K

::::::::::
respectively

:::
by

:::
the

:::
end

::
of

:
4

:::::
weeks.

::::
For

:::::::
context,

:::
for

:
a
:::::::::
prediction

:::::::
horizon

::
of

:
1
:::::

week
:::::
Xiao

::
et.

::
al
:::::::::::::::::
(Xiao et al., 2019b)

::::::
reports

:
a
::::::
RMSE

::
of

::::::
0.85K

::::
and

:::
Shi

:::
et.240

:
al
:::::::::::::::
(Shi et al., 2022)

:::::
reports

::
a
::::::
RMSE

::
of

:::::::
0.687K

:::
for

::::
their

:::::::::
respective

::::::
models

:::::::::
mentioned

:::::::::
previously.

::::::::::
Meanwhile

:::
for

:
a
:::::::::
prediction

::::::
horizon

::
of

::
4 weeks, and then the values begin to diverge depending on the model starting on the 32nd day. The general coherence

in the relation between the error and
::::
Yang

::
et

::
al.

::::::::::::::::
(Yang et al., 2018)

::::::
reports

:
a
::::::
RMSE

::
of
:::::::
0.726K

:::
for

:::::
their

:::::::::::
CFCC-LSTM

::::::
model

:::::::::
forecasting

::::
over

:::
the

:::::
Bohai

:::
Sea

::::
and

:
a
::::::
RMSE

::
of

:::::::
1.070K

:::
for

:::
the

:::::
China

::::::
Ocean.

::::::
Similar

::
to

:
the forecasting period is indicative that

the randomness in the input and middle weights does slightly effect the model performance, but not drastically
::::
daily

::::::::
forecasts,245

:
it
::
is

::::
also

::::::::
apparent

:::
that

:::::
there

::
is

::::
little

::::::::
deviation

:::
in

:::
the

::::::
RMSE

:::
and

:::::
MAE

::::::
across

:::
the

:::
15

:::::::
models,

::::
once

:::::
again

:::::::::
indicating

::::
that

:::
the

::::::
models

:::::::
typically

:::::::
perform

::::::::
similarly

::::::::
regardless

:::
of

:::
the

::::::
random

:::::::
weights

:::::
which

::::
they

:::
are

::::::::::
constructed

::::
from.

6 Conclusions

With the use of coupled reservoir computers, and specifically a collection of patches that represent local regions and designed to

accommodate coastal-land interface variations, we were able to model for excellent forecasting the spatiotemporally complex250

dynamics of the global sea surface temperature over several weeks. The relative simplicity of the network architecture and the

minimal training time is striking relative to other machine learning concepts. Even though our model is intended to describe
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the dynamics of the entire ocean, it is still able to predict SST at specific locations. In the future, it is of interest to explore the

use of Next-Generation Reservoir Computers (NG-RC) in the task of predicting SST, as NG-RCs provide the added benefit

of less metaparameters to tune compared to a traditional RC (Jaeger and Haas, 2004; Bollt, 2021b, a; Gauthier et al., 2021)255

::::::::::::::::::::::::::::::::::::::::::::::::
(Jaeger and Haas, 2004; Bollt, 2021b; Gauthier et al., 2021). It is also of interest to input other variables into the reservoir

besides the SST, such as the surrounding air temperature (Jahanbakht et al., 2021) to observe if the results can be further

improved.
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