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Abstract. Polar sea ice is a critical component of Earth’s climate system. As a material it is a multiscale composite with

temperature dependent millimeter-scale brine microstructure, and centimeter-scale polycrystalline microstructure which is

largely determined by how the ice was formed. The surface layer of the polar oceans can be viewed as a granular composite of

ice floes in a sea water host, with floe sizes ranging from centimeters to tens of kilometers. A principal challenge in modeling sea

ice and its role in climate is how to use information on smaller scale structure to find the effective or homogenized properties on5

larger scales relevant to process studies and coarse-grained climate models. That is, how do you predict macroscopic behavior

from microscopic laws, like in statistical mechanics and solid state physics? Also of great interest in climate science is the

inverse problem of recovering parameters controlling small scale processes from large scale observations. Motivated by sea ice

remote sensing, the analytic continuation method for obtaining rigorous bounds on the homogenized coefficients of two phase

composites was applied to the complex permittivity of sea ice, which is a Stieltjes function of the ratio of the permittivities of10

ice and brine. Integral representations for the effective parameters distill the complexities of the composite microgeometry into

the spectral properties of a self-adjoint operator like the Hamiltonian in quantum physics. These techniques have been extended

to polycrystalline materials, advection diffusion processes, and ocean waves in the sea ice cover. Here we discuss this powerful

approach in homogenization, highlighting the spectral representations and resolvent structure of the fields that are shared by

the two component theory and its extensions. Spectral analysis of sea ice structures leads to a random matrix theory picture15

of percolation processes in composites, establishing parallels to Anderson localization and semiconductor physics, which then

provides new insights into the physics of sea ice.

1 Introduction

The precipitous loss of nearly half the extent of the summer Arctic sea ice cover over the past four decades or so, since satellite

observations started in 1979, is perhaps one of the most visible large-scale changes on Earth’s surface connected to planetary20

warming, with significant implications for the Arctic and beyond Stroeve et al. (2007, 2012); Maslanik et al. (2007); Notz

and Community (2020); Notz and Stroeve (2016). While the response of the sea ice pack surrounding the Antarctic continent

to the changing climate has perhaps not been as clear as in the Arctic, this past year the summer sea ice extent set a record

low Turner et al. (2022). The emerging dynamics of Earth’s polar marine environments are complex and highly variable. Yet

they are increasingly important to understand and predict, as the sea ice packs form a key component of the climate system,25
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Figure 1. Sea ice as a multiscale composite material. From left to right: millimeter-scale brine inclusions that form the porous microstruc-

ture of sea ice Golden et al. (2007); centimeter-scale polycrystalline structure of sea ice Arcone et al. (1986); melt ponds on Arctic sea ice

in late spring and summer (D. Perovich) turn the surface into a two phase composite of ice and melt water; the sea ice pack as a granular

composite viewed from space (NASA), with “grains” ranging in horizontal extent from meters to tens of kilometers; the Arctic Ocean viewed

from space (NASA).

are indicators of our changing climate, and directly impact expanding human activities in these regions. Sea ice has bearing

on almost any study of the physics or biology of the polar marine system, as well as on almost any maritime operations or

logistics. Advancing our ability to analyze, model, and predict the behavior of sea ice is critical to improving projections of

climate change and the response of polar ecosystems, and in meeting the challenges of increased human activities in the Arctic

Golden et al. (2020).30

One of the fascinating, yet challenging aspects of modeling sea ice and its role in global climate is the sheer range of relevant

length scales − over ten orders of magnitude, from the sub-millimeter scale to thousands of kilometers, as indicated in Figure

1. Modeling the macroscopic behavior of sea ice on scales appropriate for climate models or for process studies depends on

understanding the properties of sea ice on finer scales, down to individual floes and even the scale of the brine inclusions which

control so many of the distinct physical characteristics of sea ice as a material. Climate models challenge the most powerful35

supercomputers to their fullest capacity. However, even the largest computers still limit the resolution to tens of kilometers and

typically require clever approximations and parameterizations to incorporate the basic physics of sea ice Golden et al. (2020);

Golden (2015, 2009). One of the fundamental challenges in modeling sea ice—and a central theme in what follows—is how to

account for the influence of the microscale on macroscopic behavior, that is, how to rigorously use information about smaller

scales to predict effective behavior on larger scales. Here we consider three different homogenization problems in the physics40

of sea ice: the classic two phase problem of brine inclusions in an ice host, sea ice as a polycrystalline material, and advection

diffusion processes such as thermal conduction or nutrient diffusion in the presence of, e.g. convective brine flow. All of these

questions are also of particular interest in polar microbial ecology Thomas and Dieckmann (2003); Reimer et al. (2022).

We observe that this central problem of studying the effective properties of sea ice is analogous to the main focus of statistical

mechanics where knowledge of molecular interactions or microscopic laws is used to find collective or macroscopic behavior45

Thompson (1988); Christensen and Moloney (2005). Moreover, it also shares fundamental similarities with homogenization

theory for composites where larger scale effective properties are calculated from knowledge of the microstructure Milton

(2002); Torquato (2002); Bensoussan et al. (1978); Papanicolaou and Varadhan (1982); Kozlov (1989). These fields of physics
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and applied mathematics provide a natural framework for treating sea ice in predictive models of climate, and improving

projections of how Earth’s polar ice packs may evolve in the future.50

The analytic continuation method (ACM) Bergman (1980); Milton (1980); Golden and Papanicolaou (1983); Golden (1997b);

Milton (2002) in particular, yields powerful integral representations for the effective or homogenized transport coefficients of

two component Golden and Papanicolaou (1983) or multicomponent Golden and Papanicolaou (1985); Golden (1986) media.

The method exploits the properties of these coefficients as analytic functions of ratios of the constituent parameters for two

phase media, such as the ratio of the electrical or thermal conductivities, or the complex permittivities. The geometry of the55

composite microstructure is encoded into a self-adjoint operator G through the characteristic function which takes the values 1

in one component (brine) and 0 in the other (ice). The key step in obtaining the integral representation, say in the case of elec-

trical conductivity, is to derive a formula for the local electric field in terms of the resolvent of G, and then apply the spectral

theorem in an appropriate Hilbert space. This representation for the effective conductivity (or effective complex permittivity)

achieves a complete separation between the component parameters in the variable, and the geometry of the microstructure60

embedded in the spectral measure of G, the principal mathematical object in the integral. In a discrete model of a composite,

the operator G becomes a random matrix, whose eigenvalues and eigenvectors can be used to compute the spectral measure

Murphy et al. (2015).

The Stieltjes or Herglotz structure of the effective parameters and their integral representations can be exploited to use the

moments of the spectral measure, or the correlation functions of the composite microstructure, to find rigorous bounds on the65

homogenized transport coefficients Bergman (1980); Milton (1980); Golden and Papanicolaou (1983); Golden (1986); Baker

and Graves-Morris (1996); Milton (2002). Bounds on the complex permittivity of sea ice as a two phase composite were first

obtained in the context of remote sensing and the mathematical analysis of sea ice electromagnetic properties Golden (1995);

Golden et al. (1998c, b). For example, the mass of the spectral measure is the brine volume fraction. If this is known, then one

can obtain elementary bounds in the complex case, which reduce to the classical arithmetic and harmonic mean bounds for real70

parameters. If the material is further assumed to be statistically isotropic, then tighter Hashin-Shtrikman bounds can be ob-

tained. Even tighter bounds can be obtained when the composite is assumed to have matrix-particle structure, such as separated

brine inclusions in a pure ice host Bruno (1991); Golden (1997b), which leads to gaps in the spectrum of G, and tighter con-

straints on the support of the spectral measure. In remote sensing the inverse homogenization problem, Cherkaev and Golden

(1998); Cherkaev (2001), where knowledge of bulk electromagnetic behavior, such as measurements of the effective complex75

permittivity, is inverted to obtain the spectral measure Cherkaev (2001) or bounds on the microstructural characteristics such as

the brine volume fraction Cherkaev and Golden (1998); Golden et al. (1998b); Gully et al. (2007); Cherkaev and Bonifasi-Lista

(2011), crystal orientation Gully et al. (2015), and connectivity Orum et al. (2012). The microscale structure, which determines

the spectral measure and the homogenized coefficient, is thus linked to the macroscopic behavior via the operator G and its

spectral characteristics, and vice versa. In the multicomponent case with three or more constituents, the homogenized transport80

coefficients are analytic functions of two or more complex variables, and a polydisc representation formula was exploited to

obtain bounds Golden and Papanicolaou (1985); Golden (1986).
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The first area of application where the ACM was extended beyond the classical case of two component and multiphase com-

posites is diffusive transport in the presence of a flow field, which is widely encountered throughout science and engineering

McLaughlin et al. (1985); Biferale et al. (1995); Fannjiang and Papanicolaou (1994, 1997); Pavliotis (2002); Majda and Kramer85

(1999); Majda and Souganidis (1994); Xin (2009). In addition to thermal, saline, and nutrient transport through the porous mi-

crostructure of sea ice, large scale transport of ice floes and heat are also advection diffusion processes. Avellaneda and Majda

Avellaneda and Majda (1989, 1991) found a Stieltjes integral representation for the effective diffusivity as a function of the

Péclet number for diffusion in an incompressible velocity field. Based on the approach in Golden and Papanicolaou (1983),

they set up a Hilbert space framework and applied the spectral theorem to a resolvent representation involving analogues of G90

and the electric field, where the spectral measure depends on the geometry of the velocity field, and knowledge of its moments

yields bounds on the effective diffusivity. In Murphy et al. (2017b, 2020) we proved novel versions of the Stieltjes formulas,

developed a framework to numerically compute the spectral measures and a systematic method to find its moments − and thus

a hierarchy of bounds, for both the time dependent and independent cases.

In another extension of the ACM to a large class of media, a Stieltjes integral representation and rigorous bounds for the95

effective complex permittivity of polycrystalline media were developed in Gully et al. (2015), based on a resolvent formula for

the electric field, and earlier observations in Milton (1981); Bergman and Stroud (1992); Milton (2002). The bounds assume

knowledge of the average crystal orientation and the complex permittivity tensor of an individual crystal grain. In sea ice, find-

ing the complex permittivity tensor of an individual crystal involves homogenizing the smaller scale brine microstructure Gully

et al. (2015). The polycrystalline structure of sea ice, as characterized by the statistics of grain size, shape, and orientation, is100

influenced by the conditions under which the ice was grown Weeks and Ackley (1982); Petrich and Eicken (2009); Untersteiner

(1986). For example, while sea ice grown in quiescent conditions tends to have rather large-grained columnar structure, when

grown in more turbulent or wavy conditions it typically has a fine-grained granular structure. These distinctly different ice

types have quite different fluid flow properties Golden et al. (1998a, 2022). Also, when there is a well-defined current direction

during formation, crystal orientations tend to be statistically anisotropic within the horizontal plane Weeks and Gow (1980),105

which can significantly affect the sea ice radar signature, and measurements of sea ice thickness and properties used to validate

climate models Golden and Ackley (1981); McLean et al. (2022).

The interaction of ocean surface waves with polar sea ice is a critical process in Earth’s climate system; its accurate rep-

resentation is of great importance for developing efficient climate models. Ice-ocean interactions have become increasingly

important in the Arctic with the precipitous declines of summer sea ice extent and increases in wave activity Waseda et al.110

(2018), while at the same time the marginal ice zone (MIZ), which is characterized by strong wave-ice and atmosphere-ice-

ocean interactions, has widened significantly Strong and Rigor (2013). These recent changes can have complex implications

for both sea ice formation and melting Li et al. (2021). Indeed, the propagation of surface waves through Earth’s sea ice covers

is a complex phenomenon that drives their growth and decay. One of the main approaches to studying waves in sea ice which is

valid when wavelengths are much greater than floe sizes, is to model the surface layer of the ice-covered ocean as a continuum115

with effective properties Bates and Shapiro (1980); Keller (1998); Wang and Shen (2010); Mosig et al. (2015). Recently this

fundamental problem in sea ice physics was homogenized, with a Stieltjes representation for the effective complex viscoelas-
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ticity of the surface layer, based on a resolvent formula for the local strain field. The integral involves a spectral measure of

a self-adjoint operator depending on the geometry of the floe configurations. If its mass, or ice concentration, is known then

rigorous bounds on the complex viscoelasticity are obtained in Sampson et al. (2022). Previously this effective parameter had120

only been fitted to wave data. We will leave any detailed discussion of waves in sea ice to other publications.

Early on in our work in extending the ACM to the above problems in sea ice physics, it was clear that the classical approach

based on bounding effective parameters using the moments of the spectral measure would in many cases have limited effec-

tiveness. Bounds with only a moment or two known can be quite wide, particularly for a high contrast in the properties of the

constituents, like in sea ice. We then developed a framework in the classic two phase case for computing the spectral measure125

through discretization of the relevant microstructures and finding the eigenvalues and eigenvectors of the matrix representation

of G. By developing the mathematical foundation for these computations Murphy et al. (2015) and studying the properties of

computed spectral measures for a broad range of sea ice and other microstructures, like human bone Golden et al. (2011), we

discovered that the statistics of the eigenvalues displayed fascinating behavior depending on the connectedness of one of the

phases.130

The statistical behavior of the spectrum is related to the extent that the eigenfunctions overlap. A key example is the Anderson

theory of the metal-insulator transition (MIT) Anderson (1958); Evers and Mirlin (2008), which provides a powerful theoretical

framework for understanding when a disordered medium allows electronic transport, and when it does not. Indeed, for large

enough disorder the electrons are localized in different places, with uncorrelated energy levels described by Poisson statistics

Shklovskii et al. (1993); Kravtsov and Muttalib (1997). For small disorder, the wave functions are extended and overlap,135

giving rise to correlated Wigner-Dyson (WD) statistics Shklovskii et al. (1993); Kravtsov and Muttalib (1997) with strong

level repulsion Guhr et al. (1998). In work on the effective complex permittivity for electromagnetic wave propagation through

two phase composites in the long wavelength regime (or any other transport coefficient like thermal or electrical conductivity),

we found an Anderson transition in spectral characteristics as the microstructure developed long range order in the approach

to a percolation threshold Murphy et al. (2017a). We observe transitions in localization characteristics of the field vectors140

and associated transitions in spectral behavior from uncorrelated Poissonian statistics to universal (repulsive) Wigner-Dyson

statistics, connected to the Gaussian Orthogonal Ensemble (GOE) in random matrix theory. Mobility edges appear, analogous

to Anderson localization where they mark the characteristic energies of the quantum MIT Guhr et al. (1998). In Morison et al.

(2022) a novel class of two phase composites was introduced, based on Moiré patterns, that display exotic effective properties,

and dramatic transitions in spectral behavior with very small changes in system parameters.145

Over the past decade or so we have laid the groundwork for significant advances in the mathematical modeling of sea ice

processes by developing Stieltjes integral representations for homogenized parameters in several new contexts of importance

in the physics of sea ice and its role in climate. We focus on the central role that the spectral measure plays in determining

effective behavior. The analytic continuation method is a powerful approach in homogenization that provides a robust mathe-

matical framework for rigorously studying effective properties in the sea ice system. The body of work that is discussed here150

will advance our sea ice modeling capabilities and how sea ice is represented in global climate models, which will improve

projections of the fate of sea ice and the ecosystems it supports. Moreover, the functions we study here in the sea ice context
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share the same mathematical properties as effective parameters in many other areas of science and engineering, so our work

will advance knowledge of these other materials as well, as evidenced for example by Morison et al. (2022), Golden et al.

(2011) and Gully et al. (2015).155

2 Percolation models.

Connectedness of one phase in a composite material is often the principal feature of the mixture geometry which determines

effective behavior. For example, if highly conducting inclusions are sparsely distributed, forming a disconnected phase within

a poorly conducting encompassing host, then the effective conductivity will be poor as well. However, if there are enough

conducting inclusions so that they form connected pathways through the medium, then the effective conductivity will be much160

closer to that of the inclusions. Percolation theory Broadbent and Hammersley (1957); Stauffer and Aharony (1992); Grimmett

(1989); Bunde and Havlin (1991) focuses on connectedness in disordered and inhomogeneous media, and has provided the

theoretical framework for describing the behavior of fluid flow through sea ice Golden et al. (1998a, 2007); Golden (2009).

Consider the d−dimensional integer lattice Zd, and the square or cubic network of bonds joining nearest neighbor lattice

sites. In the percolation model Broadbent and Hammersley (1957); Stauffer and Aharony (1992); Grimmett (1989); Bunde165

and Havlin (1991), we assign to each bond a conductivity σ0 > 0 with probability p, meaning it is open (black), and with

probability 1− p we assign σ0 = 0, meaning it is closed. Two examples of lattice configurations are shown in Fig. 2. with

p= 1/3 in (a) and p= 2/3 in (b). Groups of connected open bonds are called open clusters. In this model there is a critical

probability pc, 0< pc < 1, the percolation threshold, at which the average cluster size diverges and an infinite cluster appears.

For the d= 2 bond lattice pc = 1/2. For p < pc the infinite cluster density P∞(p) = 0, while for p > pc, P∞(p)> 0 and near170

the threshold, P∞(p)∼ (p− pc)β as p→ p+
c , where β is a universal critical exponent. It depends only on dimension and not

on the details of the lattice. Let x,y ∈ Zd and τ(x,y) be the probability that x and y belong to the same open cluster. Then for

p < pc, τ(x,y)∼ e−|x−y|/ξ(p), and the correlation length ξ(p)∼ (pc− p)−ν diverges with a universal critical exponent ν as

p→ p−c . as shown in Fig. 2 (c).

The effective conductivity σ∗(p) of the lattice, now viewed as a random resistor (or conductor) network, defined via Kir-175

choff’s laws, vanishes for p < pc like P∞(p) since there are no infinite pathways. as shown in Fig. 2 (e). For p > pc, σ∗(p)> 0,

and near pc, σ∗(p)∼ σ0(p− pc)t, p→ p+
c , where t is the conductivity critical exponent, with 1≤ t≤ 2 in d= 2,3 Golden

(1990, 1992, 1997a), and numerical values t≈ 1.3 in d= 2 and t≈ 2.0 in d= 3 Stauffer and Aharony (1992). Consider a

random pipe network with fluid permeability k∗(p) exhibiting similar behavior k∗(p)∼ k0(p− pc)e, where e is the perme-

ability critical exponent, with e= t Chayes and Chayes (1986); Sahimi (1995); Golden (1997a). Both t and e are believed to180

be universal – they depend only on dimension and not the lattice. Continuum models like the Swiss cheese model, can ex-

hibit nonuniversal behavior with exponents different from the lattice case and e ̸= t Halperin et al. (1985); Feng et al. (1987);

Stauffer and Aharony (1992); Sahimi (1994); Kerstein (1983).
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Figure 2. The two dimensional square lattice percolation model below its percolation threshold of pc = 1/2 in (a) and above it in (b). (c)

Divergence of the correlation length as p approaches pc. The infinite cluster density of the percolation model is shown in (d), and the effective

conductivity is shown in (e).

3 Analytic continuation for two phase composites.

We now describe the analytic continuation method (ACM) for studying the effective properties of composites Bergman (1980);185

Milton (1980); Golden and Papanicolaou (1983); Golden (1997b). This method has been used to obtain rigorous bounds on

bulk transport coefficients of composite materials from partial knowledge of the microstructure, such as the volume fractions

of the phases. Examples of transport coefficients to which this approach applies include the complex permittivity, electrical

and thermal conductivity, diffusivity, magnetic permeability, and elasticity. In Golden (1995); Golden et al. (1998c, b); Golden

(1997b, 2015, 2009); Golden et al. (2020) rigorous bounds on the complex permittivity of sea ice were found.190

To set ideas we focus on complex permittivity. Consider a two-phase random medium with local permittivity tensor ϵ(x,ω),

a spatially stationary random field in x ∈ Rd and ω ∈ Ω, where Ω is the set of realizations of the medium. We consider a

two-phase locally isotropic medium, where the components ϵjk, j,k = 1, ..,d, of ϵ satisfy

ϵjk(x,ω) = ϵ(x,ω)δjk , (1)

where d is dimension, δjk is the Kronecker delta and195

ϵ(x,ω) = ϵ1χ1(x,ω) + ϵ2χ2(x,ω) . (2)

Later, we will consider a polycrystalline medium where ϵ is a non-trivial symmetric matrix. Here χi(x,ω) is the characteristic

function of medium i= 1,2, equaling 1 for ω ∈ Ω with medium i at x, and 0 otherwise, with χ1 +χ2 = 1. The random electric

and displacement fields E(x,ω) and D(x,ω) satisfy

∇×E = 0 , ∇ ·D = 0 , D = ϵE . (3)200

A variational problem establishes that E can be written as E = Ef +E0 satisfying

E = Ef +E0 , ∇×Ef = 0 , ⟨D ·Ef ⟩= 0 , ⟨E⟩= E0 , (4)

This basically amounts to saying curl-free and divergence-free fields are orthogonal (Helmholtz’s theorem), but is rigorously

established via the Lax-Milgram theorem Golden and Papanicolaou (1983).
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The effective permittivity tensor ϵ∗ is defined as ⟨D⟩= ϵ∗⟨E⟩, where ⟨·⟩ is ensemble averaging over Ω or, by an ergodic205

theorem, spatial average over all of Rd Golden and Papanicolaou (1983). We prescribe that E0 has direction ek, the kth

direction unit vector, and focus on the diagonal coefficient ϵ∗ = ϵ∗kk, with ϵ∗ = ⟨ϵE · ek⟩. The key step of the method is to

obtain the following Stieltjes integral representation for ϵ∗ Bergman (1978); Milton (1980); Golden and Papanicolaou (1983);

Milton (2002),

F (s) = 1− ϵ∗

ϵ2
=

1∫

0

dµ(λ)
s−λ , s=

1
1− ϵ1/ϵ2

, (5)210

where µ is a positive Stieltjes measure on [0,1]. In the variable h= ϵ1/ϵ2, F (s) is a Stieltjes function Golden (1997c); Cherkaev

(2001); Murphy and Golden (2012). This formula arises from a resolvent formula for the electric field (in medium 1) Murphy

et al. (2015),

χ1E = s(sI −G)−1χ1ek , G= χ1Γχ1, (6)

yielding F (s) = ⟨[(sI −G)−1χ1ek] · ek⟩, where Γ =−∇(−∆)−1∇· is a projection onto the range of the gradient operator ∇215

and ek is the standard basis vector in the kth direction. Formula (5) is the spectral representation of the resolvent and µ is the

spectral measure of the self-adjoint operator G= χ1Γχ1 on L2(Ω,P ).

A critical feature of equation (5) is that the component parameters in s are separated from the geometrical information in µ.

Information about the geometry enters through the moments

µn =

1∫

0

λndµ(λ) = ⟨Gnχ1ek ·χ1ek⟩. (7)220

Then µ0 = ϕ, where ϕ is the volume or area fraction of phase 1, such as the brine volume fraction, the open water area

fraction or melt pond coverage and µ1 = ϕ(1−ϕ)/d if the material is statistically isotropic. In general, µn depends on the

(n+1)–point correlation function of the medium. This integral representation yields rigorous forward bounds for the effective

parameters of composites, given partial information on the microgeometry via the µn Bergman (1980); Milton (1980); Golden

and Papanicolaou (1983); Bergman (1982). One can also use the integral representations to obtain inverse bounds, allowing one225

to use data about the electromagnetic response of a sample, for example, to bound its structural parameters, such as the volume

fraction of each of the components McPhedran et al. (1982); McPhedran and Milton (1990); Cherkaev and Golden (1998);

Cherkaev (2001); Zhang and Cherkaev (2009); Bonifasi-Lista and Cherkaev (2009); Cherkaev and Bonifasi-Lista (2011); Day

and Thorpe (1999); Golden et al. (2011), see Section 5 for more details.

3.1 Spectral measure computations for two phase composites230

Computing the spectral measure µ for a given 2D composite microstructure geometry first involves discretizing a two phase

image of the composite into a square lattice filled with 1’s and 0’s corresponding to the two phases. On this square lattice the

action of the differential operators∇ and∇· are defined in terms of forward and backward difference operators Golden (1992).
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Then the key operator χ1Γχ1, which depends on the geometry of the network via χ1, becomes a real-symmetric matrix M

Murphy et al. (2015). Here Γ is a (non-random) projection matrix which depends only on the lattice topology and boundary235

conditions, and χ1 is a diagonal (random) projection matrix which determines the geometry and component connectivity of

the composite medium Murphy et al. (2015).

The following theorem provides a rigorous mathematical formulation of integral representations for the effective parame-

ters for finite lattice approximations of two component composite media. The electric field decomposition in this theorem is

established in Theorem 4 of Appendix A below and the integral representation in equation (8) is established in Theorem 2.1 of240

Murphy et al. (2015).

Theorem 1. For each ω ∈ Ω, let M(ω) =W (ω)Λ(ω)W (ω) be the eigenvalue decomposition of the real-symmetric matrix

M(ω) = χ1(ω)Γχ1(ω). Here, the columns of the matrix W (ω) consist of the orthonormal eigenvectors wi(ω), i= 1, . . . ,N ,

of M(ω) and the diagonal matrix Λ(ω) = diag(λ1(ω), . . . ,λN (ω)) involves its eigenvalues λi(ω). Denote Qi = wi w T
i the

projection matrix onto the eigen-space spanned by wi and denote δλi(dλ) the Dirac δ-measure centered at λi. The electric245

fieldE(ω) satisfiesE(ω) = E0+Ef (ω), withE0 = ⟨E(ω)⟩ and ΓE(ω) = Ef (ω), and the effective complex permittivity tensor

ϵ∗ has components ϵ∗jk, j,k = 1, . . . ,d, which satisfy

ϵ∗jk = ϵ2(δjk −Fjk(s)), Fjk(s) =

1∫

0

dµjk(λ)
s−λ , dµjk(λ) =

N∑

i=1

⟨δλi(dλ) χ1Qiêj · êk⟩ . (8)

From Theorem 1, the integral and χ1E in equations (5) and (6) have explicit representations in terms of the eigenvalues λi

and eigenvectors ui of M Murphy et al. (2015),250

χ1E = s
∑

i

√
mi

s−λi
ui , F (s) =

∑

i

〈
mi

s−λi

〉
, mi = |χ1ui · êk|2, (9)

where êk plays the role of a standard basis vector on the lattice. To compute µ a non-standard generalization of the spectral

theorem for matrices is required, due to the projective nature of the matrices χ1 and Γ Murphy et al. (2015). We developed

a projection method that shows the spectral measure µ in (8) depends only on the eigenvalues and eigenvectors of random255

sub-matrices of Γ of size N1 ≈ ϕN corresponding to diagonal components [χ1]ii = 1, as the spectral weights mi (Christoffel

numbers) associated with eigenvectors satisfying χ1ui = 0 are themselves zero, mi = 0 Murphy et al. (2015). Fortunately,

since these submatrices are much smaller for low volume fractions, this method greatly improves the efficiency and accuracy

of numerical computations of µ.

The measure µ exhibits fascinating transitional behavior as a function of system connectivity. For example, in the case260

of a RRN with a low volume fraction p of open bonds, as shown in Fig. 2a, there are spectrum-free regions at the spectral

endpoints λ= 0,1 Murphy and Golden (2012). However, as p approaches the percolation threshold pc Stauffer and Aharony

(1992); Torquato (2002) and the system becomes increasingly connected, these spectral gaps shrink and then vanish Murphy

and Golden (2012); Jonckheere and Luck (1998), leading to the formation of δ-components of µ at the spectral endpoints,

precisely Murphy and Golden (2012) when p= pc (and p= 1− pc in d= 3). This leads to critical behavior of σ∗ for insulat-265

ing/conducting and conducting/superconducting systems Murphy and Golden (2012). This gap behavior of µ has led Golden
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Figure 3. Electric field and spectral function for sea ice brine microstructure. Electric fields for X-ray CT images of 2D cross sections of

3D brine structures in sea ice (top) and corresponding spectral measures (bottom). As the brine fraction increases the fluid phase becomes

increasingly connected and a delta function singularity in the spectral functions µ(λ) develops at λ = 0. This provides an electrical signature

of brine connectivity, with a substantial increase in the strength of the electric field as the system attains global connectivity. Here, E0 is

taken to be vertically oriented.

(1997c); Murphy and Golden (2012) to a detailed description of these critical transitions in σ∗, which is analogous to the Lee–

Yang–Ruelle–Baker description Baker (1990); Golden (1997c) of the Ising model phase transition in the magnetization M .

Moreover, using this gap behavior, all of the classical critical exponent scaling relations were recovered Murphy and Golden

(2012); Golden (1997c) without heuristic scaling forms Efros and Shklovskii (1976) but instead by using the rigorous integral270

representation for σ∗ involving µ.

This spectral behavior emerges in all the systems mentioned above, such as the brine microstructure of sea ice Golden et al.

(1998a, 2007); Golden (2009) as shown in Fig. 3, melt ponds on the surface of Arctic sea ice Hohenegger et al. (2012) as

shown in Fig. 4, and the sea ice pack itself Murphy et al. (2017a). This also gives rise to critical behavior of the electric field

as shown in Fig. 3 for 2D cross sections of 3D brine microstructure, with E0 taken to be in the vertical direction. Disconnected275

and weakly connected examples of brine microstructure have small values of the electric field, while strongly connected
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Figure 4. Sea ice melt ponds. Melt ponds on the surface of the sea ice (top) (images courtesy of Don Perovich) and corresponding spectral

functions (bottom). As the melt pond area fraction increases the ice/water composites become increasingly connected and a delta function

singularity in the spectral functions µ(λ) develops at λ = 0.

brine microstructures are characterized by a substantial increase in the strength of the electric field. A similar behavior of the

temperature gradient∇T associated with the Stieltjes integral for the horizontal thermal conductivity of melt ponds atop Arctic

sea ice is shown in Fig. 4.

3.2 Generalization to rank deficient setting280

In the periodic setting, for example, the matrix Laplacian is singular so the matrix representation of (−∆)−1 in Γ is not

defined. We now extend the mathematical framework developed in Murphy et al. (2015) to this setting. To make the con-

nection to the abstract Hilbert space Golden and Papanicolaou (1983) and full rank matrix Murphy et al. (2015) settings, we

first give relevant details for these cases. Equation (6) for the abstract Hilbert space setting follows by applying the operator

−∇(−∆)−1 to the formula ∇·D = 0, yielding ΓD = 0. Equation (6) then follows by using ΓEf = Ef and ΓE0 = 0 Murphy285

et al. (2015), since Ef is in the range of Γ and E0 is constant Murphy et al. (2020, 2017b, 2015). The matrix form of∇·D = 0

is −∇TD = 0, where ∇ now represents the finite difference matrix representation of the gradient operator and −∇T is the
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finite difference representation of the divergence operator, with negative matrix Laplacian given by∇T∇Murphy et al. (2015).

As before, in Murphy et al. (2015) we applied the matrix ∇(∇T∇)−1 to the formula −∇TD = 0, yielding ΓD = 0, where

Γ =∇(∇T∇)−1∇T , and equation (6) follows the same way as before.290

Now consider the singular value decomposition of the matrix gradient Murphy et al. (2020) of size m×n, say,∇= UΣV T .

Here U is a m×n matrix satisfying UTU = In, Σ is a n×n diagonal matrix with diagonal entries consisting of the singular

values of∇, and V is a n×n orthogonal matrix satisfying V TV = V V T = In, where In is the identity matrix of size n. When

the matrix gradient is full rank it has n strictly positive singular values, so Σ is an invertible matrix and the matrix representation

of Γ is given by Γ = UUT . On the other hand, when the matrix gradient is singular we have Σ = diag(Σ1,0, . . . ,0), where the295

diagonal matrix Σ1 contains the n1 strictly positive singular values of Σ and the rest of the singular values have value 0.

Denoting U1 and V1 to be the columns of U and V corresponding to the diagonal entries of Σ1, we have∇= U1Σ1V
T
1 , where

Σ1 is invertable and UT
1 U1 = V T

1 V1 = In1 . This enables us to write −∇TD = 0 as −V1Σ1U
T
1 D = 0, hence UT

1 D = 0 and

U1U
T
1 D = 0. Noting that the columns of U1 span the range of the matrix gradient ∇, the matrix U1U

T
1 is a projection onto the

range of ∇ Murphy et al. (2020). Defining Γ = U1U
T
1 , equation (6) follows the same way as before. This clearly generalizes300

the full rank setting. More details are given in the appendix in Section A.

4 Analytic continuation for polycrystalline media

Sea ice is a composite material with polycrystalline microstructure on the millimeter to centimeter scale. When sea water

freezes under turbulent forcing, granular sea ice forms, having small crystals with isotropic orientation angles. Columnar sea

ice forms in quiescent conditions, with large crystals more strongly oriented in the vertical direction. Examples of granular and305

columnar sea ice polycrystal microgeometry are displayed in Fig. 5 (a) and (d).

Our analysis of the transport properties of random, uniaxial polycrystalline media Barabash and Stroud (1999) in Gully et al.

(2015), and a somewhat new formulation presented below, shows the underlying mathematical framework is a direct analogue

of that for two-phase random media discussed in Sec. 3. For simplicity, we discuss electrical permittivity ϵ, keeping in mind the

broader applicability to thermal conductivity κ, electric conductivity σ, etc. Polycrystalline materials, are composed of many310

crystallites (single crystals of varying size, shape, and orientation) that can have different local conductivities along different

crystal axes. In contrast to equation (1), the local permittivity matrix of such media is given by Milton (2002); Barabash and

Stroud (1999)

ϵ(x,ω) =RT ΦR, Φ = diag(ϵ1, . . . , ϵd) , (10)

where R(x,ω) is a random rotation matrix satisfying RT =R−1. For example, for d= 2 we have315

ϵ=RT


 ϵ1 0

0 ϵ2


R, R=


 cosθ −sinθ

sinθ cosθ


 , (11)

where θ = θ(x,ω) is the orientation angle, measured from the direction e1, of the polycrystallite which has an interior contain-

ing x ∈ Rd for ω ∈ Ω. In higher dimensions, d≥ 3, the rotation matrix R is a composition of “basic” rotation matrices Ri, e.g.
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R=
∏d

j=1Rj , where the matrix Rj(x,ω) rotates vectors in Rd by an angle θj = θj(x,ω) about the ej axis. For example, in

three dimensions320

R1 =




1 0 0

0 cosθ1 −sinθ1

0 sinθ1 cosθ1


 , R2 =




cosθ2 0 sinθ2

0 1 0

−sinθ2 0 cosθ2


 , R3 =




cosθ3 −sinθ3 0

sinθ3 cosθ3 0

0 0 1


 . (12)

In the case of uniaxial polycrystalline media, the local permittivity along one of the crystal axes has the value ϵ1, while the

permittivity along all the other crystal axes has the value ϵ2, so Φ = diag(ϵ1, ϵ2) for 2D (which is the general setting for 2D) and

Φ = diag(ϵ1, ϵ2, ϵ2) for 3D. Equation (10) can be written in a more suggestive form in terms of the matrix C = diag(1,0, . . . ,0)

ϵ(x,ω) = ϵ1X1(x,ω) + ϵ2X2(x,ω), (13)325

which is an analogue of equation (2). Here X1 =RTCR and X2 =RT (I −C)R, where I is the identity matrix on Rd. Since

RT =R−1 and C is a diagonal projection matrix satisfying C 2 = C, it is clear that the Xi, i= 1,2, are mutually orthogonal

projection matrices satisfying

X T
j =Xj , XjXk =Xjδjk, X1 +X2 = I, (14)

which are also properties of the characteristic functions χj in Sec. 3.330

Equations (3) and (4) are also satisfied in this polycrystalline setting Golden and Papanicolaou (1983). Similar to the deriva-

tion of equation (6) in Sec. 3, a resolvent representation for X1E follows by applying the operator −∇(−∆)−1 to the formula

∇ ·D = 0, yielding ΓD = 0. Then, using ΓEf = Ef and ΓE0 = 0 Murphy et al. (2015) yields the following analogue of

equation (6)

X1E = s(sI −G)−1X1ek , G=X1ΓX1, (15)335

yielding the integral representation in equation (5) for F (s) = ⟨[(sI −G)−1X1ek] · ek⟩. As in the two component setting, a

critical feature of equation (5) is that the component parameters in s are separated from the geometrical information in µ.

Information about the geometry enters through the moments in equation (7) with G given in (15) and χ1 replaced by X1. The

mass µ0 of the measure µjk is given by

µ0
jk = ⟨X1ej · ek⟩, µ0

kk = ⟨|X1ek|2⟩, (16)340

where the second equality follows from the fact thatX1 is a real-symmetric projection matrix. The statistical average ⟨|X1ek|2⟩
in (16) can be thought of as the “mean orientation,” or as the percentage of crystallites oriented in the kth direction. For example,

in the case of two-dimensional polycrystalline media, d= 2, equation (11) implies that

µ0
11 = ⟨cos2 θ⟩, µ0

22 = ⟨sin2 θ⟩, µ0
12 = ⟨sinθ cosθ⟩. (17)

Generalizing equation (12), with R=
∏d

j=1Rj , to dimensions d≥ 3 shows that µ0
jk is a linear combination of averages of the345

form ⟨∏i cosni θi sinmi θi⟩, where ni,mi = 0,1,2, . . ..
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Figure 5. Spectral analysis of polycrystalline media. (a) Cross sections of polycrystalline microstructure for granular and columnar sea ice.

(b) Discrete checkerboard polycrystal microstructure with isotropic crystallite orientations within the horizontal plane, with small (top) and

large (bottom) crystallite size. Cool and warm colors correspond to low and high displacement fields. (c) The spectral function, a histogram

representation of the spectral measure µ shown along with it’s theoretical prediction for such isotropic media Milton (2002). (d) An example

value of the complex effective permittivity of isotropic polycrystalline media captured by first and second order bounds Gully et al. (2015).

The integral representation (5) for this polycrystalline setting yields rigorous forward bounds for the effective parameters of

composites, given partial information on the microgeometry via the µn Gully et al. (2015); Milton (2002), as shown in Fig. 5d

below. One can also use the integral representations to obtain inverse bounds, allowing one to use data about the electromagnetic

response of a sample, for example, to bound its structural parameters, such as the average crystallite orientation Gully et al.350

(2015); Milton (2002), see Section 5 for more details.

4.1 Spectral measure computations for uniaxial polycrystalline materials

Computing the spectral measure µ for a given polycrystalline microgeometry first involves discretizing the composite into a

square lattice with vertex values in the range [0,2π] corresponding to the crystallite orientation angles at each vertex location.
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On this square lattice the action of the differential operators∇ and∇· are defined in terms of forward and backward difference355

operators Golden (1992). Then the key operator X1ΓX1, which depends on the geometry of the network via X1, becomes a

real-symmetric matrix M . Here Γ is as in Sec. 3.1 and X1 is a banded (random) projection matrix which determines the geom-

etry of the polycrystalline medium. In this setting, the integral and X1E in equations (5) and (6) have explicit representations

in terms of the eigenvalues λi and eigenvectors ui of M Murphy et al. (2015) given by equation (9), and similarly the spectral

measure is given by equation (8), with χ1 replaced by X1.360

The following theorem provides a rigorous mathematical formulation of integral representations for the effective parameters

for finite lattice approximations of random uniaxial polycrystaline media.

Theorem 2. For each ω ∈ Ω, let M(ω) =W (ω)Λ(ω)W (ω) be the eigenvalue decomposition of the real-symmetric matrix

M(ω) =X1(ω)ΓX1(ω). Here, the columns of the matrix W (ω) consist of the orthonormal eigenvectors wi(ω), i= 1, . . . ,N ,

of M(ω) and the diagonal matrix Λ(ω) = diag(λ1(ω), . . . ,λN (ω)) involves its eigenvalues λi(ω). Denote Qi = wi w T
i the365

projection matrix onto the eigen-space spanned by wi. The electric fieldE(ω) satisfiesE(ω) = E0+Ef (ω), withE0 = ⟨E(ω)⟩
and ΓE(ω) = Ef (ω), and the effective complex permittivity tensor ϵ∗ has components ϵ∗jk, j,k = 1, . . . ,d, which satisfy

ϵ∗jk = ϵ2(δjk −Fjk(s)), Fjk(s) =

1∫

0

dµjk(λ)
s−λ , dµjk(λ) =

N∑

i=1

⟨δλi
(dλ)X1Qiêj · êk⟩ . (18)

We defer the proof of Theorem 2 to Section B, which holds for both of the settings where the matrix gradient is full rank or

rank deficient. To numerically compute µ a non-standard generalization of the spectral theorem for matrices is required, due370

to the projective nature of the matrices X1 and Γ Murphy et al. (2015). In particular, in Section B we develop a projection

method that shows the spectral measure µ in (18) depends only on the eigenvalues and eigenvectors of the upper left N1×N1

block of the matrix RΓRT , where N1 =N/d. These submatrices are smaller by a factor of d, which improves the efficiency

and numerical computations of µ by a factor of d3.

In Fig. 5 computations of the displacement fieldD are displayed for 2D polycrystaline media for small and large crystal sizes,375

along side cross sections of polycrystalline microstructure for granular and columnar sea ice. When the effective permittivity

tensor ϵ∗ is diagonal, such as the setting of isotropically oriented crystallites, the spectral measure for an infinite system

is known in closed form Milton (2002) to be dµ(λ) = (
√

(1−λ)/λ)(dλ/π), as shown in Fig. 5 (c). This measure has a

singularity at λ= 0, which indicates that the material is electrically conductive, on macroscopic length scales Murphy et al.

(2015); Murphy and Golden (2012). When the polycrystalline material has isotropic oriented crystallite angles, both the mass380

and first moment of the measure µ are known, which enables two nested bounds for ϵ to be computed Gully et al. (2015), as

shown in Fig. 5 (d).

5 Inverse homogenization: Inverse problem of recovery information about the structure of composites

Developed originally for the effective complex permittivity ϵ∗, the integral representation (5) yields rigorous forward bounds

for the effective permittivity ϵ∗ of two-component composites formed of materials with permittivity ϵ1 and ϵ2, given partial385
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information on the microgeometry via the moments µn Bergman (1980); Milton (1980); Bergman (1982); Golden and Papan-

icolaou (1983). One can also use the integral representation to recover information about the structure of composite material,

this is the problem of inverse homogenization. For the inverse homogenization, it is important that the representation (5) sep-

arates information about the properties of the phases contained in the parameter s from information about the microgeometry

contained in the measure µ and its moments µn = ⟨Gnχ1ek ·χ1ek⟩ (7) via higher-order correlation functions of the geometry390

function χ1.

Spectral measure µ and its moments µn contain, in principle, all the geometrical information about the composite. For

example, the mass µ0 is the volume fraction ϕ of the first component in the composite,

µ0 =

1∫

0

dµ(z) = ⟨χ1⟩= ϕ, (19)

and the fraction of the second phase is 1−ϕ. Connectivity information is also embedded in the spectral measure.395

The basis for inverse homogenization is provided by the uniqueness theorem Cherkaev (2001) which formulates the con-

ditions under which the measure µ in the representation (5) can be uniquely reconstructed from measured data. For instance,

electromagnetic data measured for a range of frequency of the applied electromagnetic field, are sufficient to uniquely recover

the measure µ in (5). Such data are also sufficient for unique reconstruction of the moments µn Cherkaev and Ou (2008),

provided the permittivity of one of the phases is frequency dependent. Two major approaches to the inverse homogenization400

are the reconstruction of the measure µ Cherkaev (2001); Cherkaev and Ou (2008); Day and Thorpe (1996); Zhang and

Cherkaev (2009); Bonifasi-Lista and Cherkaev (2009); Bonifasi-Lista et al. (2009); Cherkaev and Bonifasi-Lista (2011); Day

and Thorpe (1999); Day et al. (2000); Golden et al. (2011); Cherkaev (2020) (and then calculating its moments) and inverse

bounds for the structural parameters, such as, for example, the volume fraction of each of the components McPhedran et al.

(1982); McPhedran and Milton (1990); Cherkaev and Tripp (1996); Cherkaev and Golden (1998); Cherkaev (2001); Cherkaev405

and Ou (2008), orientation of the crystals Gully et al. (2015) or connectedness Orum et al. (2012) of the structure.

When only a few data points are available, though the uniqueness theorem Cherkaev (2001) is not immediately applicable,

one can outline a set of measures consistent with the measurements,

M= {µ : Fµ(s) = 1− ϵ∗/ϵ2}, (20)

and determine an interval confining the first moment of the measure µ providing, for instance, an interval of uncertainty for410

the volume fraction of one material. For several data points corresponding to the same structure of the composite, such as for

example, measurements at a few different frequencies, the bounds for the volume fraction are given by an intersection of all

admissible intervals Cherkaev and Tripp (1996); Cherkaev and Golden (1998); Tripp et al. (1998). When the requirements for

the measurements needed to uniquely reconstruct the spectral measure µ established by the uniqueness theorem are satisfied,

the setM is reduced to one point. But the map from the set of measures to the set of the microgeometries is not unique, and there415

is a variety of microstructures generating the same response under the applied field. Different microgeometries corresponding

to the same sequence of moments µ0,µ1, ... are the S−equivalent structures Cherkaev (2001) that are not distinguishable by

homogenized measurements.
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An equivalent representation for function F (s) in (5) using a logarithmic potential of the measure µ on the complex plane

of variable s is Cherkaev (2001):420

F (s) =
∂

∂s

∫
ln |s− z| dµ(z), ∂/∂s= (∂/∂x− i ∂/∂y) , s=

1
1− ϵ1/ϵ2

. (21)

The solution to the inverse problem of recovering the measure µ is constructed solving the minimization problem:

minµ ||Aµ−F ||2 , F (s) = 1− ϵ∗(s)/ϵ2 (22)

where A is the integral operator in (21) or in (5), the norm is the L2−norm, F = F (s), s ∈ C, is the given function of the

measured data, and C is a curve on the complex plane corresponding to the frequencies of the applied field. The solution of the425

minimization problem does not depend continuously on the data. Unboundedness of the operator A−1 leads to arbitrarily large

variations in the solution, and the problem requires regularization to design a stable numerical algorithm Cherkaev (2001).

Regularized inversion schemes and stable reconstruction algorithms to recover µ and its moments from data on the effective

complex permittivity were developed in Cherkaev (2001, 2004); Cherkaev and Ou (2008); Bonifasi-Lista and Cherkaev (2009);

Cherkaev and Bonifasi-Lista (2011) based on L2,TV , and non-negativity constraints, and constrained Pade approximation of430

the measure µ Zhang and Cherkaev (2009). In application to imaging of bone structure, spectral measures µ computed with the

regularization algorithms based on L2 constrained minimization, from electromagnetic Bonifasi-Lista and Cherkaev (2009);

Cherkaev and Bonifasi-Lista (2011); Golden et al. (2011) and viscoelastic Bonifasi-Lista and Cherkaev (2008); Bonifasi-Lista

et al. (2009); Cherkaev and Bonifasi-Lista (2011) data allow to distinguish the samples of healthy and osteoporotic bone via

the different microstructures and the connectivity of the trabecular architecture.435

With hydrostatic and deviatoric projections Λh and Λs onto the orthogonal subspaces of the second order tensors comprised

of tensors proportional to the identity tensor and trace-free tensors, the Stieljtes integral representation was generalized in

Cherkaev and Bonifasi-Lista (2011) to the effective viscoelastic modulus and to two-dimensional viscoelastic polycrystalline

materials Cherkaev (2019) under the assumption that the constituents have the same elastic bulk and different (elastic and

viscoelastic) shear moduli. This representation was also used in inverse homogenization Bonifasi-Lista and Cherkaev (2008);440

Cherkaev and Bonifasi-Lista (2011); Cherkaev (2020) for successful recovering the porosity of a composite from known

viscoelastic shear modulus.

Other approaches to the volume fraction bounds include Engström (2005); Milton (2012); Thaler and Milton (2014) based

on estimates for higher order moments and on variational bounds, as well as direct inversion of known formulas or mixing rules

Bergman and Stroud (1992); Levy and Cherkaev (2013) for effective properties of composites with specific structure, however,445

an advantage of the methods discussed here, is their applicability without a priori assumption about the microgeometry.

Spectral coupling of various properties of composites. An important application of inverse homogenization is for indi-

rect evaluating properties of materials through cross-coupling Milton (2002). Different properties of composites are coupled

through their microgeometry; this phenomenon has been known for a long time and used for estimating difficult to measure

directly properties, from available data. The conventional approaches are based on empirical and semi-empirical relations, such450

as for instance, Kozeny-Carman or Katz-Tompson. These relations estimate permeability of a porous material characterizing
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the microstructure by a ”formation factor” F which relates properties of one phase in the composite to the effective properties

of the material.

In the spectral coupling method Cherkaev (2001) based on properties of the Stieltjes representation (5), the spectral mea-

sure µ is associated with the geometric structural function as this is the function that couples various properties of the same455

material. The method of spectral coupling Cherkaev (2001, 2004); Cherkaev and Zhang (2003); Cherkaev and Bonifasi-Lista

(2011) for two component composites based on this coupling of different properties of the composite through the spectral

measure allows us to recover various transport properties of sea ice from the spectral measures computed using other measured

properties. In particular, this approach results in an indirect method of calculation of the thermal conductivity Cherkaev and

Zhang (2003) and hydraulic conductivity of polycrystalline sea ice, difficult to measure over large scales, from the effective460

complex permittivity data (recovered from radar measurements). The spectral coupling was extended to evaluating viscoelastic

properties of two component composite in Cherkaev and Bonifasi-Lista (2011) in application to characterizing bone properties

and microarchitecture.

Inverse homogenization for recovering microstructural parameters from effective property measurements is applicable to

problems in remote sensing, medical imaging, non-destructive testing of materials, and allows for example, to use Synthetic465

Aperture Radar (SAR) remote sensing for assessing the structure and transport properties of sea ice.

5.1 Bounds for the moments of the spectral measure

The second approach to the inverse homogenization problem is calculating inverse bounds for the structural parameters, such

as, for example, the volume fraction of each of the components McPhedran et al. (1982); McPhedran and Milton (1990);

Cherkaev and Tripp (1996); Cherkaev and Golden (1998); Cherkaev (2001), orientation of the crystals Gully et al. (2015) or470

connectedness Orum et al. (2012) of the structure. An analytical approach to estimating the volume fractions of materials in a

composite Cherkaev and Tripp (1996); Cherkaev and Golden (1998); Tripp et al. (1998) gives explicit analytic formulas for the

first order inverse bounds on the volume fractions of the constituents in a general composite and second order inverse bounds

on the fractions of the phases in an isotropic composite Cherkaev and Golden (1998).

The inverse bounds are derived using analyticity of the effective complex permittivity of the composite. The first order475

bounds p(1)
l and p(1)

u for the volume fraction ϕ give the lower and upper bounds for the zero moment µ0 of the measure µ or

its mass in (19) Cherkaev and Tripp (1996); Cherkaev and Golden (1998):

p
(1)
l ≤ ϕ≤ p(1)

u , p
(1)
l = |f |2 Im(s̄)

Im(f)
, p(1)

u = 1− |g|2 Im(t̄)
Im(g)

. (23)

Here t= 1− s, f is the known value of F (s), and g is the known value of G(t) = 1− ϵ∗/ϵ1.

First and second order forward and inverse bounds are illustrated in Fig. 6(a) Cherkaev and Golden (1998) where first480

order bounds for the effective complex permittivity of all anisotropic composites that could be formed from two materials

of permittivity ϵ1 and ϵ2 are presented in the left panel, while the second order isotropic bounds are shown in right panel.

The small lens shaped domains each contain the anisotropic (left) and isotropic (right) mixtures corresponding to the volume

fractions ϕ of the first component equal to p(q)
l and p(q)

u , q = 1,2. The points p(q)
l and p(q)

u give the lower and upper bounds
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Figure 6. Forward and Inverse bounds. (a). Illustration of bounds on the volume fraction of one component in the mixture derived from

first order anisotropic bounds (left panel), and from the second order isotropic bounds (right panel) for the effective permittivity Cherkaev

and Golden (1998). The small lens shaped domains each contain ϵ∗ of the anisotropic (left) and isotropic (right) composites corresponding

to the volume fractions of the first component pl and pu which give the lower and upper bounds for the fraction of the first material. (b).

Center figure shows lower bounds on separation parameter qmin versus temperature Orum et al. (2012), calculated using data of the effective

complex permittivity. The inverted data clearly indicate that as the ice warms, the separations of the brine inclusions decrease. Stars and

squares indicate different sea ice slabs. (c). Polycrystalline bounds Gully et al. (2015) for the permittivity sea ice (left) together with the

measured effective permittivity of sea ice in Arcone et al. (1986). Comparison of the polycrystalline bounds with the two-component bounds

(right) shows a dramatic improvement over the classic two-component bounds as the new bounds include additional information about single

crystal orientations. (Notice very different scales on the axes.)

for the volume fraction of the first material in the composite. Superscripts q = 1 and q = 2 indicate the first and second order485

bounds.

For a set of data points ϵ∗(k), k = 1, ...,N , corresponding to the same structure the bounds for the fraction ϕ of the first

phase in the composite are given by an intersection of all admissible intervals p(q)
l (k)≤ ϕ≤ p

(q)
u (k):

P
(q)
l = max

k
p
(q)
l (k) ≤ ϕ ≤ min

k
p(q)

u (k) = P (q)
u , q = 1,2. (24)

Here p(q)
l (k) and p(q)

u (k) are, respectively, lower and upper bounds for the volume fraction ϕ calculated using the effective490

complex permittivity ϵ∗(k), and q is the order of the bounds, q = 1 for a general mixture, q = 2 for an isotropic composite.

In Cherkaev and Golden (1998) this method was applied to estimating brine volume in sea ice from two data sets of 4.75

GHz measurements of the complex permittivity ϵ∗ of sea ice Arcone et al. (1986) at −6◦C and −11◦C with fractions of brine

ϕ= 0.036 and ϕ= 0.0205. Sea ice was considered as a composite of three components: pure ice, brine, and air; the effective

complex permittivity of the mixture of ice and air was calculated with the Maxwell Garnett formula. The first order bounds495

estimate the brine volume fraction as 0.0213≤ ϕ≤ 0.0664 and 0.0119≤ ϕ≤ 0.0320, for the data set 1 and 2, respectively. The

second order inverse bounds derived with the assumption of 2D isotropy in the horizontal plane give the following estimates for

the brine volume fraction: 0.0333≤ ϕ≤ 0.0422 for the first data set with brine volume ϕ= 0.036, and 0.0189≤ ϕ≤ 0.0213

for the second data set with volume fraction of brine ϕ= 0.0205.

First order bounds are further extended to polycrystalline materials and allow to estimate the mean crystal orientation Gully500

et al. (2015).
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5.2 Matrix particle forward and inverse bounds

Another parameter important in characterizing the structure of composite material consisting of inclusions within a host matrix,

is separation between the inclusions. Inclusion separation is an indicator of connectedness of phases – a key feature in critical

behavior and phase transitions; the separation parameter may be used to estimate closeness to the percolation phase transition.505

Composites with non-touching inclusions of one material embedded in a host matrix of different material are called ma-

trix particle composites. For a matrix particle composite with separated inclusions tighter bounds on the effective complex

permittivity may be obtained. In Orum et al. (2012) sea-ice is considered as a matrix particle composite in which the brine

phase contained in separated, circular discs of radii rb randomly located on a horizontal plane, is surrounded by a “corona” of

ice, with outer radius ri. Such a material is called a q-material, where q = rb/ri. The minimal separation of brine inclusions510

is 2(ri− rb) = 2ri(1− q). In this case, as it is shown in Bruno (1991), the support of µ in (5) lies in an interval [sm,sM ],

0< sm < sM < 1 such that sm = 1
2 (1− q2),sM = 1

2 (1 + q2). The further the separation of the inclusions, the smaller the in-

terval [sm,sM ], and the tighter the bounds. Smaller q values indicate well separated brine (and colder temperatures as in Fig.

6), and q = 1 corresponds to no restriction on the separation, with sm = 0 and sM = 1.

Two parameters characterizing the structure of the sea ice composite are volume fraction p of the brine inclusions and a515

separation parameter q that quantifies how close the inclusions are to each other. Using observed values of effective complex

permittivity, and inverting the forward matrix particle bounds, information about these two parameters is obtained in Orum

et al. (2012) by solving exactly a reduced inverse spectral problem and bounding the volume fraction of the constituents, an

inclusion separation parameter and the spectral gap of a self-adjoint operator that depends on the geometry of the composite.

Inverse bounds for inclusion separation are shown in Fig. 6 Orum et al. (2012), where the lower bound qmin is displayed versus520

temperature of the sea ice slab. The inverted data clearly indicate that as the ice warms, the separations of the brine inclusions

decrease. It is remarkable that this important phenomenon is characterized from electromagnetic measurements through an

inversion scheme.

5.3 Extension to polycrystalline composites

The method of inverse bounds Cherkaev and Tripp (1996); Cherkaev and Golden (1998); Tripp et al. (1998) for structural525

parameters of a composite from measured effective properties was extended to polycrystalline materials in Gully et al. (2015).

In the case of uniaxial polycrystalline composite, Gully et al. (2015) develops bounds for the mean orientation of crystals in the

sea ice from measured values of ice permittivity. As columnar and granular microstructures have different mean single crystal

orientations Weeks and Ackley (1982) this inverse approach is useful for determining ice type when using remote sensing

techniques.530

The structures of different types of ice formed under different environmental conditions vary tremendously. For instance, for

congelation ice frozen under calm conditions, the crystals are vertically elongated columns, and each crystal itself is a compos-

ite of pure ice platelets separating layers brine inclusions. The orientation of each crystal is determined by the direction that the

c-axis points, which is perpendicular to the platelets. Finding the bounds for the crystals orientation we can electromagnetically
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distinguish columnar ice from granular ice. This is a critical problem in sea ice physics and biology, as these different structures535

have vastly different fluid flow properties (with 5% vs. 10% brine volume fraction at the percolation threshold) which affects

melt pond evolution, nutrient replenishment, brine convection, and other mesoscale processes in the ice cover.

Bounds for the effective permittivity of polycrystalline composites are much tighter than those bounding the permittivity of

a general two-component material and statistically isotropic two-component material for sea ice. Such polycrystalline bounds

constructed in Gully et al. (2015) are shown in two right panes of Fig. 6(c). Polycrystalline bounds for the permittivity sea ice540

(left) Gully et al. (2015) (with the measured data on permittivity of sea ice Arcone et al. (1986)) provide a much tighter bound

than general two-component material and statistically isotropic two-component material for sea ice given on the right (notice

a different scale). This dramatic improvement over the classic two-component bounds is due to additional information about

single crystal orientations included in the new bounds.

As was discussed in the polycrystal section, the zero moment µ0
kk in (16) of the measure µ in the integral representation545

of the effective properties of a uniaxial polycrystalline material is µ0
kk = ⟨|X1ek|2⟩. The statistical average ⟨|X1ek|2⟩ can be

viewed as the “mean crystal orientation” related to the percentage of crystallites oriented in the kth direction.

Extending the inverse bounds method Cherkaev and Tripp (1996); Cherkaev and Golden (1998); Tripp et al. (1998) to poly-

crystalline materials, the inverse polycrystalline bounds Gully et al. (2015) estimate the mean crystal orientation by bounding

the zero moment µ0
kk of the measure µ using measured data on the ice permittivity. This procedure gives an analytic estimate550

(the first order inverse bounds) for the range of values of the mean crystal orientation similar to (23):

⟨eT
kX1ek⟩l ≤ ⟨eT

kX1ek⟩ ≤ ⟨eT
kX1ek⟩u ,

⟨eT
kX1ek⟩l = |f |2 Im(s)

Im(f)
, ⟨eT

kX1ek⟩u = 1− |g|2 Im(t)
Im(g)

, (25)

Here X1 is defined in the polycrystalline section as X1 =RTCR, f is the known value of F (s) and g is the known value of

G(t) = 1− ϵ∗/ϵ1 with t= 1− s.555

Inverse polycrystalline bounds computed in Gully et al. (2015) for different types of sea ice, granular and columnar ice, show

that the method allows revealing the type of ice based on electromagnetic data. For statistically isotropic granular ice shown in

Fig. 5(a)-top, the inverse mean crystal orientation bounds Gully et al. (2015) estimate the deviation angle as π/2± .02 (with

the true value π/2). The inverse mean crystal orientation bounds Gully et al. (2015) for columnar ice (see Fig. 5(a)-bottom),

estimate the angle of deviation of the crystal’s axis from the vertical as 20o± 8o. These results demonstrate a significant560

difference in the reconstructed mean orientations of crystals in columnar and in granular ice and provide a foundation for

distinguishing the types of ice using electromagnetic measurements.

Generalization of these polycrystalline bounds to the case when c-axis has a Gaussian distribution with known mean angle

and the variance in the horizontal plane is developed in McLean et al. (2022) as a method for obtaining bounds on effective

permittivity of columnar sea ice that has a preferred direction in the horizontal plane due to a prevailing ocean current.565
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6 Analytic continuation for advection diffusion processes.

The enhancement of diffusive transport of passive scalars by complex fluid flow plays a key role in many important processes

in the global climate system Washington and Parkinson (1986) and Earth’s ecosystems Di Lorenzo et al. (2013). Advection

of geophysical fluids intensifies the dispersion and large scale transport of heat Moffatt (1983), pollutants Csanady (1963);

Beychok (1994); Samson (1988), and nutrients Di Lorenzo et al. (2013); Hofmann and Murphy (2004) diffusing in their en-570

vironment. In sea ice dynamics, where the ice cover couples the atmosphere to the polar oceans Washington and Parkinson

(1986), the transport of sea ice can also be enhanced by eddy fluxes and large scale coherent structures in the ocean Watanabe

and Hasumi (2009); Lukovich et al. (2015); Dinh et al. (2022). In sea ice thermodynamics, the temperature field of the atmo-

sphere is coupled to the temperature field of the ocean through sea ice, a composite of pure ice with brine inclusions whose

volume fraction and connectedness depend strongly on temperature Thomas and Dieckmann (2003); Golden et al. (2007);575

Golden (2009). Convective brine flow through the porous microstructure can enhance thermal transport through the sea ice

layer Lytle and Ackley (1996); Worster and Jones (2015); Kraitzman et al..

Over the years a broad range of mathematical techniques have been developed that reduce the analysis of complex composite

materials, with rapidly varying structures in space, to solving averaged, or homogenized equations that do not have rapidly

varying data, and involve an effective parameter. Motivated by Papanicolaou and Varadhan (1982), the effective parameter580

problem was extended to complex velocity fields, with rapidly varying structures in both space and time, yielding the effective

(eddy) viscosity and the effective (eddy) diffusivity tensors McLaughlin et al. (1985). The effective parameter problem of

(anomalous) super–diffusion and sub–diffusion is given in Biferale et al. (1995); Fannjiang (2000). Based on McLaughlin et al.

(1985), Avellaneda and Majda Avellaneda and Majda (1989, 1991) adapted the ACM Golden and Papanicolaou (1983) to the

advection diffusion equation and obtained a Stieltjes integral representation of the effective diffusivity tensor D∗, for flows585

with zero mean drift, involving the Péclet number ξ of the flow. This representation encapsulates the geometric complexity

of the flow in a spectral measure associated with a random Hermitian operator (or matrix). Mimicking methods developed

for composite media Milton (2002), they obtained rigorous bounds on the components of D∗. Moreover, in direct analogue

of methods developed for composites Milton (2002), they also found velocity fields which realize these bounds, such as the

famous confocal sphere configurations which realize the Hashin–Shtrikman bounds of composites Hashin and Shtrikman590

(1962); Avellaneda and Majda (1991). Remarkably, this method has also been extended to time dependent flows Avellaneda

and Vergassola (1995), flows with incompressible nonzero effective drift Pavliotis (2002); Fannjiang and Papanicolaou (1994),

flows where particles diffuse according to linear collisions Pavliotis (2010), and solute transport in porous media Bhattacharya

(1999), which has a direct application to diffusive brine advection in sea ice. All yield Stieltjes integral representations of the

symmetric and, when appropriate, the antisymmetric part of D∗.595

We now briefly describe our recent results on this framework Kraitzman et al.; Murphy et al. (2017b, 2020). It is an important

example of how Stieltjes integral representations can provide a rigorous basis for analysis of problems for sea ice involving

advection diffusion processes. The dispersion of a cloud of passive scalars with density ϕ(t,x) diffusing with molecular diffu-

sivity ε and being advected by a incompressible velocity field u(t,x) satisfying∇·u= 0 is described by the advection-diffusion
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equation600

∂ϕ

∂t
= u · ∇ϕ + ϵ∆ϕ, ϕ(0,x) = ϕ0(x). (26)

Here, the initial density ϕ0(x) and the fluid velocity field u are assumed to be given. In equation (26), the molecular diffusion

constant ε > 0, d is the spatial dimension of the system, ∂t denotes partial differentiation with respect to time t, and ∆ =

∇·∇=∇2 is the Laplacian. Moreover, ψ·φ=ψTφ, ψT denotes transposition of the vector ψ, and φ denotes component-

wise complex conjugation, with ψ·ψ = |ψ|2. Later, we will use this form of the dot product over complex fields, with built in605

complex conjugation. However, we emphasize that all quantities considered in this section are real-valued. The random paths

of the tracer particles are determined Fannjiang and Papanicolaou (1997) by the stochastic differential equation

dx(t) = u(t,x(t))dt+
√

2ε dW (t), x(0) = x0, (27)

with the initial tracked tracer particle location x0 given and W (t) is standard Brownian motion (the Wiener process). Non-

dimensionalizing and homogenizing (26) shows McLaughlin et al. (1985) that the effective behavior of thermal transport in610

sea ice is described by a diffusion equation involving an averaged scalar density ϕ̄ and a symmetric, constant Pavliotis (2002)

effective diffusivity tensor κ∗ Taylor (1921),

∂T̄ (t,x)
∂t

=∇ · [κ∗∇T̄ (t,x)], T̄ (0,x) = T0(x). (28)

For simplicity, we focus on a diagonal coefficient κ∗kk, k = 1, . . . ,d, of κ∗, set κ∗ = (κ∗)kk, and write u= u0v involving the

non-dimensional velocity field v. In these non-dimensional variables the Péclet number ξ and molecular diffusivity ε are related615

by ξ = 1/ε Murphy et al. (2017b).

Using a mathematical framework that is strikingly similar to that in Section 3, the effective diffusivity has the following

Stieltjes integral representation McLaughlin et al. (1985); Avellaneda and Majda (1991); Murphy et al. (2017b, 2020)

κ∗ = ε(1 + ⟨|∇wk|2⟩), ⟨|∇wk|2⟩=

∞∫

−∞

dν(λ)
ε2 +λ2

, (29)

where ⟨·⟩ denotes averaging over the space-time period cell for periodic flows Murphy et al. (2017b, 2020) or statistical average620

for random flows Avellaneda and Majda (1989); Avellaneda and Vergassola (1995). An equivalent statement which emphasizes

the connection to the two component composites setting in equation (5) is

F (ε) = 1− κ∗

ε
=

∞∫

−∞

dν(λ)
ε2 +λ2

. (30)

Remarkably, the vector field E(t,x) =∇wk(t,x) + ek satisfies equation (3) for two-component composite materials, with

D = ϵE, ϵ= εI +S, S = (−∆)−1∂t +H , and ϵ plays the role of the medium’s electrical permittivity tensor Murphy et al.625

(2017b, 2020). Here, H(t,x) is the stream matrix, given in terms of the incompressible velocity field v =∇ ·H and satisfies

HT =−H Avellaneda and Majda (1991, 1989). When the flow is time-independent, v = v(x), then wk = wk(x) and S =
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Figure 7. Spectral behavior of homogenized diffusivities. (a) Streamlines for BC-flow with velocity field v = (C cosy,B cosx) and

B = C = 1. (b) Padé approximant upper κ∗[M/M ] and lower κ∗[M − 1/M ] bounds for κ∗, for various values of M , calculated for BC-

flow with C = B, as a function of the flow strength B. (c) The spectral function (spectral masses mj versus eigenvalues λj) computed via

analogues of equations (9) and (18) Murphy et al. (2017b).

H(x). Moreover κ∗ = ϵ∗, with ϵ∗ = (ϵ∗)kk defined above Murphy et al. (2017b). The integral representation for κ∗ in Equation

(29) follows from the resolvent formula

∇wk = (εI + iΓSΓ)−1gk, gk =−ΓHek (31)630

which is an analogue of Equation (6). The self-adjoint operator iΓSΓ, where i=
√
−1 is the imaginary unit, involves the same

projection operator Γ =−∇(−∆)−1∇· as the setting of two-component composites. Equation (29) shows that brine advection

enhances the thermal diffusivity (and the thermal conductivity) of sea ice, since κ∗ ≥ ε.

Analytical calculations of the spectral measure ν are extremely difficult except for simple flows like shear flow Avellaneda

and Majda (1991). However, Padé approximents [L/M ] provide rigorous, converging upper and lower bounds Baker and635

Graves-Morris (1996) for the Stieltjes function f(z) = ⟨|∇wk|2⟩/z = F/z in Equations (29) and (30), with z = ε−2, using the

moments νn of ν, [M − 1/M ]≤ f(z)≤ [M/M ], f(z) =
∑∞

n=0(−1)n ν2n z
n. However, the lack of a method to calculate the

moments νn of ν has impeded progress on obtaining explicit bounds for specific flows using this procedure Avellaneda and

Majda (1991, 1989) since 1991! We have recently developed a mathematical framework Murphy et al. (2022) that can be used

to compute, in principle, all of the moments νn associated with a spatially or space-time periodic brine velocity field v, hence640

Padé approximant bounds. Results for BC-flow, with v = (C cosy,B cosx) and B = C are shown in Figure 7(c).

6.1 Spectral measure computations for advection diffusion processes.

We have extended our numerical methods discussed for the two component media to compute the spectral measure ν for

spatially periodic flows Murphy et al. (2017b). Computing the spectral measure µ for a given flow involves discretizing the

spatially dependent stream matrix H(x), which becomes a banded antisymmetric matrix satisfying HT =−H . The projection645

matrix Γ is given by that in Section 3.1 and the key self-adjoint operator is given by G= iΓHΓ, which becomes a Hermitian

matrix. In this case, the integral in (29) and the resolvent in (31) are given in terms of the eigenvalues and eigenvectors of the
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matrix

∇wk =
∑

i

√
mi

ε−λi
ui , ⟨|∇wk|2⟩=

∑

i

〈
mi

ε2 +λ2
i

〉
, mi = |ui · gi|2 , (32)

which is analogous to equation (9). We have also developed Fourier methods for computing the spectral measure ν for space-650

time periodic flows Murphy et al. (2017b).

These computations show that the origin in the space of the spectral parameter λ for advection diffusion plays the role of

the spectral endpoints 0 and 1 for composite materials, with an increase in spectral mass giving rise to an advection-driven

enhancement of effective diffusivity above the bare molecular diffusivity ε. For example, the closed streamlines of BC-cell-

flow with fluid velocity field v = (C cosy,B cosx) and B = C = 1 transport tracers in a short range periodic motion so long655

range transport is only possible due to molecular diffusion. Consequently, in the advection dominated regime with ε≪ 1 (or

Péclet number ξ≫ 1) the effective diffusivity scales as κ∗ ∼ ε1/2 Fannjiang and Papanicolaou (1994, 1997); Murphy et al.

(2020), vanishing as ε→ 0. As shown in Fig. 7(a), this is reflected in the spectral measure ν by the lack of adequate mass near

λ= 0 for the singular integrand 1/(ε2 +λ2) to overcome the multiplicative factor of ε for κ∗ = ε(1 + ⟨|∇wk|2⟩) in (29).

On the other hand, when B ̸= C the streamlines elongate and connect to neighboring cells which gives rise to long range660

advection of tracers, even in the absence of molecular diffusion. This is reflected in the spectral measure by a buildup of

adequate mass near λ= 0 for the singular integrand 1/(ε2 +λ2) to overcome the multiplicative factor of ε for κ∗ = ε(1 +

⟨|∇wk|2⟩) in (29), leading to a non-zero value of κ∗ in the limit ε→ 0. This is a key example of how the behavior of the

spectral measure ν governs the behavior of the bulk transport coefficient κ∗.

7 Random matrix theory for sea ice physics.665

In random matrix theory (RMT) Guhr et al. (1998); Bohigas and Giannoni (1984); Deift and Gioev (2009), long and short

range correlations of the bulk eigenvalues away from the spectral edge Canali (1996); Guhr et al. (1998) for random matrices

are measured using various eigenvalue statistics Guhr et al. (1998); Bohigas and Giannoni (1984), such as the eigenvalue

spacing distribution (ESD) and the spectral rigidity ∆3 and number variance Σ2. To observe statistical fluctuations of these

bulk eigenvalues about the mean density, the eigenvalues must be unfolded Bohigas and Giannoni (1984); Guhr et al. (1998);670

Canali (1996); Plerou et al. (2002). The localization properties of the eigenvectors are measured in terms of quantities such as

the inverse participation ratio (IPR) Plerou et al. (2002); Evers and Mirlin (2008).

In Murphy et al. (2017a), we found that as a percolation threshold is approached and long range order develops, the behavior

of the ESD transitions from uncorrelated Poissonian toward obeying universal Wigner-Dyson (WD) statistics of the Gaussian

Orthogonal Ensemble (GOE). The eigenvectors de-localize, and mobility edges appear Murphy et al. (2017a), similar to the675

metal/insulator transition in solid state physics. We explored the transition in the 2D and 3D RRN, as well as in sea ice

microstructures such as in 2D discretizations of the brine microstructure of sea ice Golden et al. (1998a, 2007); Golden (2009),

melt ponds on Arctic sea ice Hohenegger et al. (2012), the sea ice pack itself, and porous human bone Golden et al. (2011);

Kabel et al. (1999); Bonifasi-Lista and Cherkaev (2009); Cherkaev and Bonifasi-Lista (2011).
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Figure 8. Eigenvalue spacing statistics for the sea ice melt ponds (a) and long range eigenvalue statistics for brine structures in sea ice (b).

(a): Eigenvalue spacing distributions (ESD) P (z) for melt ponds shown in Figure 4 corresponding to melt water area fractions 9%, 27%, and

57%. (b): Spectral statistics for brine structures shown in Figure 3 corresponding to area fractions of water 12%, 51%, and 70%. We see the

transition to universal Wigner-Dyson statistics as ocean phases and brine phases become connected over the scale of the sample.

For highly correlated WD spectra exhibited by, for example, real-symmetric matrices of the GOE, the nearest neighbor ESD680

P (z) is accurately approximated by P (z)≈ (πz/2)exp(−πz2/2), which illustrates eigenvalue repulsion, vanishing linearly

as spacings z→ 0 Guhr et al. (1998); Stone et al. (1991); Canali (1996). In contrast, the ESD for uncorrelated Poisson spectra,

P (z) = exp(−z), allows for significant level degeneracy Guhr et al. (1998). In Fig. 8(a) we display the ESDs for Poisson

(blue) and WD (green) spectra, along with the behavior of the ESDs for the matrix M = χ1Γχ1, corresponding to the arctic

sea ice melt ponds in Fig. 4 with fluid area fraction ϕ. It shows that for sparsely connected systems, the behavior of the685

ESDs is well described by weakly correlated Poisson-like statistics Canali (1996). With increasing connectedness, the ESDs

transition toward highly correlated WD statistics with strong level repulsion. This behavior of the ESD reveals a mechanism

for the collapse in the spectral gaps of µ. For sparsely connected systems, the weak level repulsion allows for significant level

degeneracy and resonances in µ as shown in Murphy et al. (2015) for the 2D percolation model an in Fig. 4 for arctic melt pond

microstructure. As the system becomes increasingly connected, the level repulsion increases causing the eigenvalues to spread690
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Figure 9. Eigenvector localization for Arctic melt pond microstructure. The IPR’s of eigenvectors uj associated with the melt pond mi-

crostructure shown above plotted versus eigenvalue index j and increasing connectedness from left to right. The vertical lines define the

δ-components of µ while the horizontal lines mark the IPR value IGOE = 3/N1 for the Gaussian orthogonal ensemble (GOE) with matrix

size N1 ≈ ϕN , where N = Ldd.

out which, in turn, causes the gaps in the measure near the spectral edges to collapse and subsequently form δ-components

of the measure at the spectral endpoints λ= 0,1. Our computations of ∆3 and Σ2 are are shown in Fig. 8(b) for the brine

microstructure in Fig. 3, with a transition toward that of the GOE, as the system becomes increasingly connected, indicating an

increase in the long range correlations of the eigenvalues.

The eigenvectors uj of M = χ1Γχ1, associated with the N1×N1 sub-matrices of Γ, also exhibit a connectedness driven695

transition in their localization properties. The IPR is defined as Ij =
∑

i |ui
j |4, i, j = 1, . . . ,N1, where ui

j is the ith component

of uj . Eigenvectors of matrices in the GOE are known to be highly extended Deift and Gioev (2009), with asymptotic value of

the IPR given by IGOE = 3/N1 Plerou et al. (2002). In Murphy et al. (2017a), we found for the 2D and 3D percolation models

that as p surpasses pc and long range order is established in a RRN “mobility edges” form in the eigenvector IPR with a sudden

increase in the number of extended eigenvectors, which is analogous to Anderson localization, where mobility edges mark the700

characteristic energies of the MIT Guhr et al. (1998). Remarkably, the mobility edges for RRN are due to very extended

eigenstates associated with δ-components that form at the spectral endpoints precisely at the percolation threshold pc (and

1−pc for 3D) Murphy and Golden (2012), which control critical behavior in insulator/conductor and conductor/superconductor

systems Murphy and Golden (2012); Clerc et al. (1990); Bergman and Stroud (1992). This phenomenon is shown for arctic

melt pond microstructure in Fig. 9.705
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8 Conclusions

We have given a tour through various problems of sea ice physics concerned with homogenization and how they can be

rigorously addressed with the powerful analytic continuation method and its extensions. The effective complex permittivity

of sea ice treated as a two phase composite of pure ice with brine inclusions, or treated as a polycrystalline material, and

the effective diffusivity for advection diffusion problems, are all Stieltjes functions of their variables. We showed how these710

functions have integral representations involving spectral measures which distill the mixture or velocity field geometries into

the spectral properties of a self adjoint opeartor like the Hamiltonian in quantum physics. These spectral representations have

been used to obtain rigorous forward and inverse bounds on effective transport coefficients for sea ice, and to develop a random

matrix theory picture which uncovers parallels with Anderson localization and quantum transport in disordered media.

Appendix A: Existence of field decompositions715

In this section, for the discrete setting in Sections 3.1 and 4.1, we prove that there exists an electric field E satisfying discrete

versions of equations (3) and (4). Towards this goal, we follow Huang et al. (2019) and consider the finite difference repre-

sentations of the partial differential operators ∂i → Ci, i= 1 . . . ,d, where d denotes dimension. The matrices Ci depend on

boundary conditions which, without loss of generality, we take to be periodic boundary conditions. Denote the matrix represen-

tation of the gradient operator (using Matlab vertical block notation) by∇= [C1; . . . ;Cd]. The discretization of the divergence720

operator is given by −∇T and the discrete curl operator is given by Huang et al. (2019)

C =




O −C3 C2

C3 O −C1

−C2 C1 O


 for 3D, (A1)

C = [−C2,C1] for 2D.

The operators Ci, i= 1,2,3, in (A8) are normal and commute with each other Huang et al. (2019),

CT
i Cj = CjC

T
i and CiCj = CjCi, for i, j = 1,2,3. (A2)725

Consequently, the discrete form of equations (3) and (4), which we’ll establish in this section, is

CE = 0, −∇TJ = 0, J = ϵE, E = Ef +E0 , CEf = 0 , ⟨J ·Ef ⟩= 0 , ⟨Ef ⟩= 0 , (A3)

where in this finite size discrete setting, ⟨·⟩ denotes volume average followed by ensemble average Murphy et al. (2015, 2020).

To set notation, denote by Ran(B) and Ker(B) the range and kernel (null space) of the matrixB, respectively Horn and Johnson

(1990). Therefore, we seek to prove there exists a vectorE satisfyingE ∈ Ker(C) such thatE = Ef +E0, whereEf ∈ Ker(C)730

and ⟨Ef ⟩= 0 so ⟨E⟩= E0. Moreover, we seek to find a vector J ∈ Ker(∇T ) satisfying J = ϵE and ⟨J ·Ef ⟩= 0.
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We now summarize some useful identities relating the discrete representations of the gradient, divergence, and curl operators

which follow from these properties of the matrices Ci Huang et al. (2019),

∆ =∇ ·∇→−∇T∇ , (A4)

∆ = diag(∆, . . . ,∆)→ Id⊗ (∇T∇) ,735

∇×∇×→ CTC ,

∇×∇×=∇(∇·)−∆→−∇∇T + Id⊗ (∇T∇) ,

∇ · (∇×)→−∇TCT = 0 ,

∇×∇→ C∇= 0 ,

where ⊗ denotes the Kronecker product. The last two identities ∇TCT = 0 and C∇= 0 in equation (A4) indicate that740

Ran(CT )⊆ Ker(∇T ) , Ran(∇)⊆ Ker(C) (A5)

We can now restate our goal in (A3) as, find "potentials" φ and ψ such that the vectors E and J in equation (A3) satisfy

E = Ef +E0 withEf =∇φ andE0 ∈ Ker(∇), and J = CTψ+J0, where J0 ∈ Ker(CT ). The last two identities (A4) provide

a relationship between rank and kernel of the operators C, ∇, and their transposes. The fundamental theorem of linear algebra

provides a relationship between the range of a matrix A and the kernel of it’s transpose AT , which will be useful later in this745

section.

Theorem 3 (Fundamental theorem of linear algebra). Let A be a real valued matrix of size m×n then

Rm = Ran(A)⊕Ker(AT ) , Rn = Ran(AT )⊕Ker(A) , (A6)

where ⊕ indicates Ran(A) is orthogonal to Ker(AT ), i.e., Ran(A)⊥ Ker(AT ), for example.

Applying Theorem 3 to the matrices ∇ and CT indicates that Rm = Ran(∇)⊕Ker(∇T ) and Rm = Ran(CT )⊕Ker(C).750

Therefore, from equation (A5) we have that divergence-free fields are orthogonal to gradients (curl-free fields) and curl-free

fields are orthogonal to Ran(CT ) (divergence-free fields). This is a discrete version of the Helmholz Theorem, which states

that curl-free and divergence-free fields (or, in other words, the gradient and cycle spaces) are mutually orthogonal. This also

establishes the important relationship

Ran(CT )⊥ Ran(∇) . (A7)755

Orthogonal bases can be given for each of the mutually orthogonal spaces in equation (A6) through the singular value

decomposition (SVD) Horn and Johnson (1990) of the matrix A= UΣV T , which also provides important information relating

the matrices C, ∇, etc. Here U and V are orthogonal matrices of size m×m and n×n satisfying UTU = UUT = Im and

V TV = V V T = In, where Im is the identity matrix of size m. Moreover, Σ is a diagonal matrix of size m×n with diagonal
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components consisting of the positive singular values νi, i= 1, . . . ,n, of the matrix A satisfying ν1 ≥ ν2 ≥ ·· · ≥ νρ > 0 and760

νρ+1 = νρ+2 = · · ·= νn = 0, where ρ is the rank of A. Writing the matrix Σ in block form we have

Σ =




Σ1 O1

OT
1 O2

O3 O4


 , (A8)

where Σ1 is a diagonal matrix of size ρ× ρ with diagonal consisting of the strictly positive singular values, O1 and O2, are

matrices of zeros of size ρ× (n− ρ) and (n− ρ)× (n− ρ), and the bottom block of zeros [O3,O4] is of size (m−n)×n.

Write the matrices U and V in block form as U = [U1,U0,U2] and V = [V1,V0], where U1 and V1 are the columns of U and765

V corresponding to the strictly positive singular values in Σ1, U0 and V0 correspond to the the singular values with value zero,

νi = 0, and U2 corresponds to the bottom block of zeros [O3,O4] in Σ. Taking in account all the blocks of zeros in Σ, we can

write A= U1Σ1V
T
1 . We now state a well known fact about the SVD of the matrix A Horn and Johnson (1990).

Range(A) = Col(U1), Ker(A) = Col(V0), Range(AT ) = Col(V1), Ker(AT ) = Col([U0,U2]), (A9)

where Col(B) denotes the column space of the matrix B, i.e., the space spanned by the columns of B.770

Applying the SVD to the matrices ∇= U×Σ×[V ×]T and CT = U•Σ•[V •]T and using the orthogonality of the columns of

the matrices U1 and V1 and the invertability of Σ1, from C∇= 0 in (A4) we have [U•]TU× = 0, and similarly ∇TCT = 0

implies [U×]TU• = 0. The formula [U•]TU× = 0 is a restatement of equation (A7). Writing U× = [U×1 ,U
×
0 ,U

×
2 ] and U• =

[U•1 ,U
•
0 ,U

•
2 ] we have established the Ran(∇) = Col(U×1 ), Ran(CT )⊆ Ker(∇T ) = Col([U×0 ,U

×
2 ]). Also, since Ran(CT ) =

Col(U•1 ) and Ran(CT )⊥ Ran(∇), we can write775

U× = [U×1 ,U
×•
0 ,U•1 ] , U• = [U•1 ,U

×•
0 ,U×1 ] , (A10)

where the columns of U×•0 are orthogonal to both the Ran(CT ) and the Ran(∇). Since U×[U×]T = Im we have the resolution

of the identity

Γ×+ Γ0 + Γ• = Im, Γ× = U×1 [U×1 ]T , Γ• = U•1 [U•1 ]T , Γ0 = U×•0 [U×•0 ]T , (A11)

where Γ×, Γ•, and Γ0, are mutually orthogonal projection matrices onto Ran(∇), Ran(CT ) and the orthogonal complement780

of Ran(∇)∪Ran(CT ). We are now ready to state the main result of this section as the following theorem.

Theorem 4. Let the electric and current fields E and J satisfy

CE = 0, −∇TJ = 0, J = ϵE. (A12)

Then, there exists a "potential" φ and vector E0 such that E = Ef +E0, where Ef =∇φ, Id⊗ (∇T∇))E0 = 0, CEf = 0,

⟨J ·Ef ⟩= 0, and ⟨Ef ⟩= 0.785

Proof. From the resolution of the identity in equation (A11) we have E = (Γ×+ Γ0 + Γ•)E. Since Γ• projects onto the

Ran(CT ), Rm = Ran(CT )⊕Ker(C), andE ∈ Ker(C) we have Γ•E = 0. Denoting byEf = Γ×E, since U×1 =∇V ×1 [Σ×1 ]−1,
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we can writeEf =∇φ, where φ= V ×1 [Σ×1 ]−1[U×1 ]TE. DenoteE0 = Γ0E. Since Γ×E0 = 0, Γ× is a projection onto Ran(∇),

and Rm = Ran(∇)⊕Ker(∇T ), we have E0 ∈ Ker(∇T ). Similarly, since Γ•E0 = 0, Γ• is a projection onto Ran(CT ), and

Rm = Ran(CT )⊕Ker(C), we have E0 ∈ Ker(C). Since E0 ∈ Ker(C)∩Ker(∇T ) we have from (A4) that790

0 = CTCE0 = (−∇∇T + Id⊗ (∇T∇))E0 = Id⊗ (∇T∇))E0. (A13)

From Ran(∇)⊆ Ker(C) in equation (A5) andEf =∇φwe haveCEf = C∇φ= 0. We also have from∇TJ = 0 that J ·Ef =

J · ∇φ=∇TJ ·φ= 0. Finally, the volume average of ∇φ is a telescoping sum, so ⟨Ef ⟩= 0. This concludes our proof of the

theorem.

Corollary 1. Let the electric and current fields E and J satisfy795

CE = 0, −∇TJ = 0, J = σE. (A14)

Then, there exists a "potential" ψ and vector J0 such that J = Jf + J0, where Jf = CTψ, Id⊗ (∇T∇))J0 = 0, ∇TJf = 0,

⟨Jf ·E⟩= 0, and ⟨Jf ⟩= 0.

Proof. From the resolution of the identity in equation (A11) we have J = (Γ×+Γ0+Γ•)J . Since Γ× projects onto the Ran(∇),

Rm = Ran(∇)⊕Ker(∇T ), and J ∈ Ker∇T we have Γ×J = 0. Denoting by Jf = Γ•J , since U•1 = CTV •1 [Σ•1]
−1, we can800

write Jf = CTψ, where ψ = V •1 [Σ•1]
−1[U•1 ]TJ . Denote J0 = Γ0J . Exactly the same as in the proof of Theorem 4, we have

J0 = Id⊗ (∇T∇))J0. From Ran(CT )⊆ Ker(∇T ) in equation (A5) and Jf = CTψ we have ∇TJf =∇TCTψ = 0. Exactly

the same as in the proof of Theorem 4, we also have Jf ·E = 0 and ⟨Jf ⟩= 0. This concludes our proof of the theorem.

We end this section by noting that in the full rank setting, where Σ has all strictly positive singular values, so Σ1 = Σ, then

Γ× =∇(∇T∇)−1∇T , Γ• = CT (CCT )−1C .805

The original formulations of this mathematical framework was given in terms of these projection matrices, or continuum

generalizations Golden and Papanicolaou (1983); Murphy et al. (2015). The formulation given in this section generalizes the

discrete setting to cases where the matrix gradient is rank deficient, such as the case of periodic boundary conditions. This is

necessary

Appendix B: Proof of Theorem 2810

In this section we provide the proof for Theorem 2 and a projection method for a numerically efficient projection method for

computation of spectral measures and effective parameters for uniaxial polycrystalline media. We will use the results from

Section A but for notational simplicity we will use Γ instead of Γ×. Corollary 2 below follows immediately from the proof of

Theorem 2 and the results of Section A, which provides an integral representation for the effective resistivity ρ∗ involving the

matrix X2Γ•X2 and is analogous to the representation of ρ∗ for the two-component composite setting in Murphy et al. (2015).815
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From the close analogues of this polycrystalline setting with the two-component setting discussed in Sec. 3, the proof of

this theorem is analogous to Theorem 2.1 in Murphy et al. (2015). To shorten the theorem proof here, we will refer to Murphy

et al. (2015) for some of the technical details. From Section A and the paragraph in Murphy et al. (2015) containing equations

2.39 and 2.40, with χ1 replaced by X1, we just need to prove that the functional Fjk(s) = ⟨(sI−X1ΓX1)−1X1êj · êk⟩ has the

integral representation displayed in equation (18). In the process, we will also establish a projection method for the numerically820

efficient, rigorous computation of µjk. This projection method is summarized by equations (C1)–(C3) below.

In equation (14) we defined the real-symmetric mutually orthogonal projection matricesXi, i= 1,2, in terms of the spatially

dependent rotation matrix R and C = diag(1,0, . . . ,0), all matrices of size d× d. The paragraph in Murphy et al. (2015)

containing equations 2.28–2.30 describes how to bijectively map these d×d matrices to N ×N matrices that are not spatially

dependent, where N = Ldd. Under this mapping, R becomes a banded rotation matrix satisfying RT =R−1 and C becomes825

C = diag(I1,01, . . . ,01), where I1 and 01 are the identity and null matrices of size N1 = Ld, and the vector e1 is mapped to

ê1 = (1,1, . . . ,1,0,0, . . . ,0), with Ld ones in the first components and zeros in the rest of the components. Writing X1ΓX1 =

RT (CRΓRTC)R we have

X1ΓX1 =RT


 Γ1 012

021 022


R=RT


 W1Λ1W

T
1 012

021 022


R

=RT


 W1 012

021 I2





 Λ1 012

021 022





 W T

1 012

021 I2


R, (B1)830

where I2 is the identity matrix of sizeN2×N2, withN2 =N−N1 = Ld(d−1), and 0ab denotes a matrix of zeros of sizeNa×
Nb, a,b= 1,2. Moreover, Γ1 is the N1×N1 upper left principal sub-matrix of RΓRT and Γ1 =W1Λ1W

T
1 is its eigenvalue

decomposition. As Γ1 is a real-symmetric matrix, W1 is an orthogonal matrix Horn and Johnson (1990). Also, since RΓRT is

a similarity transformation of a projection matrix and C is a projection matrix, Λ1 is a diagonal matrix with entries λ1
i ∈ [0,1],

i= 1, . . . ,N1, along its diagonal Horn and Johnson (1990); Demmel (1997).835

Consequently, equation (B1) implies that the eigenvalue decomposition of the matrix X1ΓX1 is given by

X1ΓX1 =WΛW T , W =RT


 W1 012

021 I2


 , Λ =


 Λ1 012

021 022


 . (B2)

Here, W is an orthogonal matrix satisfying WTW =WWT = I , I is the identity matrix on RN , and Λ is a diagonal matrix

with entries λi ∈ [0,1], i= 1, . . . ,N , along its diagonal.

The eigenvalue decomposition of the matrix X1ΓX1 in equation (B2) demonstrates that its resolvent (sI −X1ΓX1)−1 is840

well defined for all s ∈ C\[0,1]. In particular, by the orthogonality of the matrix W , it has the following useful representation

(sI−X1ΓX1)−1 =W (sI−Λ)−1WT , where (sI−Λ)−1 is a diagonal matrix with entries 1/(s−λi) along its diagonal. This,

in turn, implies that the functional Fjk(s) = ⟨(sI −X1ΓX1)−1X1êj · êk⟩ can be written as

Fjk(s) = ⟨(sI −Λ)−1 [X1W ]T êj ·WT êk⟩. (B3)
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Since RT =R−1 and X1 =RTCR, equation (B2) implies that845

X1W =RT


 W1 012

021 022


 =⇒ X1wi =





wi, for i= 1, . . . ,N1,

0, otherwise.
(B4)

This and the formula for W in (B2) imply that

[X1W ]T êj ·WT êk = [X1W ]T êj · [X1W ]T êk. (B5)

We are ready to provide the integral representation displayed in (18) for the functional Fjk(s) in equation (B3). Denote

by Qi = wi w T
i , i= 1, . . . ,N , the symmetric, mutually orthogonal projection matrices, QℓQm =Qℓ δℓm, onto the eigen-850

spaces spanned by the orthonormal eigenvectors wi. Equation (B4) implies that X1Qi =QiX1 =X1QiX1, as X1Qi =Qi

for i= 1, . . . ,N1, X1Qi = 0 otherwise, and X1 is a symmetric matrix. These properties allow us to write the quadratic form

[X1W ]T êj · [X1W ]T êk as

[X1W ]T êj · [X1W ]T êk =WT êj ·WT êk =
N∑

i=1

(wi · êj)(wi · êk) =
N∑

i=1

Qiêj · êk =
N∑

i=1

X1Qiêj · êk . (B6)

This and equations (B3) and (B5) yield855

Fjk(s) =

1∫

0

dµjk(λ)
s−λ , dµjk(λ) =

N∑

i=1

⟨δλi
(dλ)X1Qiêj · êk⟩ . (B7)

This concludes our proof of Theorem 2

Corollary 2. For each ω ∈ Ω, let M(ω) =W (ω)Λ(ω)W (ω) be the eigenvalue decomposition of the real-symmetric matrix

M(ω) =X2(ω)Γ•X2(ω). Here, the columns of the matrixW (ω) consist of the orthonormal eigenvectors wi(ω), i= 1, . . . ,N ,

of M(ω) and the diagonal matrix Λ(ω) = diag(λ1(ω), . . . ,λN (ω)) involves its eigenvalues λi(ω). Denote Qi = wi w T
i the860

projection matrix onto the eigen-space spanned by wi. The curent field J(ω) satisfies J(ω) = J0 + Jf (ω), with J0 = ⟨J(ω)⟩
and Γ•J(ω) = Jf (ω), and the effective complex resistivity tensor ρ∗ has components ρ∗jk, j,k = 1, . . . ,d, which satisfy

ρ∗jk = σ−1
1 (δjk −Ejk(s)), Ejk(s) =

1∫

0

dηjk(λ)
s−λ , dηjk(λ) =

N∑

i=1

⟨δλi
(dλ)X2Qiêj · êk⟩ . (B8)

Appendix C: Projection method

In this section we provide a formulation for a numerically efficient projection method for computation of spectral measures865

and effective parameters for uniaxial polycrystalline media. Note that the sum inequation (B7) runs only over the index set

i= 1, . . . ,N1, as equation (B4) implies that the masses X1Qiêj · êk of the measure µjk are zero for i=N1 +1, . . . ,N . Denote

by λ1
i and w1

i , i= 1, . . . ,N1, the eigenvalues and eigenvectors of theN1×N1 matrix Γ1 =W1Λ1W
T

1 , defined in equation (B1).
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Now, write

Rêj =


 êr1

j

êr2
j


 , (C1)870

where êr1
j ∈ RN1 and êr2

j ∈ RN2 . Therefore, writing the matrix X1W in equation (B4) in block diagonal form, X1W =

RT diag(W1,022), we have that

[X1W ]T êj · [X1W ]T êk = [diag(WT
1 ,022)Rêj ] · [diag(WT

1 ,022)Rêk] = [WT
1 ê

r1
j ] · [WT

1 ê
r1
k ]. (C2)

Denote by Q1
i = w1

i [w1
i ] T , i= 1, . . . ,N1, the mutually orthogonal projection matrices, Q1

ℓ Q
1
m =Q1

ℓ δℓm, onto the eigen-

spaces spanned by the orthonormal eigenvectors w1
i . Equations (B3), (B5), and (C2) then yield875

Fjk(s) = ⟨(sI1−Λ1)−1[WT
1 ê

r1
j ] · [WT

1 ê
r1
k ]⟩=

〈
N1∑

i=1

Q1
i ê

r1
j · êr1

k

s−λ1
i

〉
. (C3)

Equation (C3) demonstrates that only the spectral information of the matrices W1 and Λ1 contribute to the functional

representation for Fjk(s) in (B3) and its integral representation in (18). From a computational standpoint, this means that only

the eigenvalues and eigenvectors of the N1×N1 matrix Γ1 need to be computed in order to compute the spectral measures

underlying the integral representations of the effective parameters for finite lattice systems. This is extremely cost effective as880

the numerical cost of finding all the eigenvalues and eigenvectors of a real-symmetricN×N matrix isO(N3) Demmel (1997),

so N1 =N/d implies the computational cost of the projection method is reduced by a factor of d3.
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