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Abstract. Polar sea ice is a critical component of Earth’s climate system. As a material it is a multiscale composite with
temperature dependent millimeter-scale brine microstructure, and centimeter-scale polycrystalline microstructure which is
largely determined by how the ice was formed. The surface layer of the polar oceans can be viewed as a granular composite of
ice floes in a sea water host, with floe sizes ranging from centimeters to tens of kilometers. A principal challenge in modeling sea
ice and its role in climate is how to use information on smaller scale structure to find the effective or homogenized properties on
larger scales relevant to process studies and coarse-grained climate models. That is, how do you predict macroscopic behavior
from microscopic laws, like in statistical mechanics and solid state physics? Also of great interest in climate science is the
inverse problem of recovering parameters controlling small scale processes from large scale observations. Motivated by sea ice
remote sensing, the analytic continuation method for obtaining rigorous bounds on the homogenized coefficients of two phase
composites was applied to the complex permittivity of sea ice, which is a Stieltjes function of the ratio of the permittivities of
ice and brine. Integral representations for the effective parameters distill the complexities of the composite microgeometry into
the spectral properties of a self-adjoint operator like the Hamiltonian in quantum physics. These techniques have been extended
to polycrystalline materials, advection diffusion processes, and ocean waves in the sea ice cover. Here we discuss this powerful
approach in homogenization, highlighting the spectral representations and resolvent structure of the fields that are shared by
the two component theory and its extensions. Spectral analysis of sea ice structures leads to a random matrix theory picture
of percolation processes in composites, establishing parallels to Anderson localization and semiconductor physics, which then

provides new insights into the physics of sea ice.

1 Introduction

The precipitous loss of nearly half the extent of the summer Arctic sea ice cover over the past four decades or so, since satellite
observations started in 1979, is perhaps one of the most visible large-scale changes on Earth’s surface connected to planetary
warming, with significant implications for the Arctic and beyond Stroeve et al. (2007, 2012); Maslanik et al. (2007); Notz
and Community (2020); Notz and Stroeve (2016). While the response of the sea ice pack surrounding the Antarctic continent
to the changing climate has perhaps not been as clear as in the Arctic, this past year the summer sea ice extent set a record
low Turner et al. (2022). The emerging dynamics of Earth’s polar marine environments are complex and highly variable. Yet

they are increasingly important to understand and predict, as the sea ice packs form a key component of the climate system,
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Figure 1. Sea ice as a multiscale composite material. From left to right: millimeter-scale brine inclusions that form the porous microstruc-
ture of sea ice Golden et al. (2007); centimeter-scale polycrystalline structure of sea ice Arcone et al. (1986); melt ponds on Arctic sea ice
in late spring and summer (D. Perovich) turn the surface into a two phase composite of ice and melt water; the sea ice pack as a granular
composite viewed from space (NASA), with “grains” ranging in horizontal extent from meters to tens of kilometers; the Arctic Ocean viewed

from space (NASA).

are indicators of our changing climate, and directly impact expanding human activities in these regions. Sea ice has bearing
on almost any study of the physics or biology of the polar marine system, as well as on almost any maritime operations or
logistics. Advancing our ability to analyze, model, and predict the behavior of sea ice is critical to improving projections of
climate change and the response of polar ecosystems, and in meeting the challenges of increased human activities in the Arctic
Golden et al. (2020).

One of the fascinating, yet challenging aspects of modeling sea ice and its role in global climate is the sheer range of relevant
length scales — over ten orders of magnitude, from the sub-millimeter scale to thousands of kilometers, as indicated in Figure
1. Modeling the macroscopic behavior of sea ice on scales appropriate for climate models or for process studies depends on
understanding the properties of sea ice on finer scales, down to individual floes and even the scale of the brine inclusions which
control so many of the distinct physical characteristics of sea ice as a material. Climate models challenge the most powerful
supercomputers to their fullest capacity. However, even the largest computers still limit the resolution to tens of kilometers and
typically require clever approximations and parameterizations to incorporate the basic physics of sea ice Golden et al. (2020);
Golden (2015, 2009). One of the fundamental challenges in modeling sea ice—and a central theme in what follows—is how to
account for the influence of the microscale on macroscopic behavior, that is, how to rigorously use information about smaller
scales to predict effective behavior on larger scales. Here we consider three different homogenization problems in the physics
of sea ice: the classic two phase problem of brine inclusions in an ice host, sea ice as a polycrystalline material, and advection
diffusion processes such as thermal conduction or nutrient diffusion in the presence of, e.g. convective brine flow. All of these
questions are also of particular interest in polar microbial ecology Thomas and Dieckmann (2003); Reimer et al. (2022).

We observe that this central problem of studying the effective properties of sea ice is analogous to the main focus of statistical
mechanics where knowledge of molecular interactions or microscopic laws is used to find collective or macroscopic behavior
Thompson (1988); Christensen and Moloney (2005). Moreover, it also shares fundamental similarities with homogenization
theory for composites where larger scale effective properties are calculated from knowledge of the microstructure Milton

(2002); Torquato (2002); Bensoussan et al. (1978); Papanicolaou and Varadhan (1982); Kozlov (1989). These fields of physics
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and applied mathematics provide a natural framework for treating sea ice in predictive models of climate, and improving
projections of how Earth’s polar ice packs may evolve in the future.

The analytic continuation method (ACM) Bergman (1980); Milton (1980); Golden and Papanicolaou (1983); Golden (1997b);
Milton (2002) in particular, yields powerful integral representations for the effective or homogenized transport coefficients of
two component Golden and Papanicolaou (1983) or multicomponent Golden and Papanicolaou (1985); Golden (1986) media.
The method exploits the properties of these coefficients as analytic functions of ratios of the constituent parameters for two
phase media, such as the ratio of the electrical or thermal conductivities, or the complex permittivities. The geometry of the
composite microstructure is encoded into a self-adjoint operator G through the characteristic function which takes the values 1
in one component (brine) and O in the other (ice). The key step in obtaining the integral representation, say in the case of elec-
trical conductivity, is to derive a formula for the local electric field in terms of the resolvent of G, and then apply the spectral
theorem in an appropriate Hilbert space. This representation for the effective conductivity (or effective complex permittivity)
achieves a complete separation between the component parameters in the variable, and the geometry of the microstructure
embedded in the spectral measure of G, the principal mathematical object in the integral. In a discrete model of a composite,
the operator G becomes a random matrix, whose eigenvalues and eigenvectors can be used to compute the spectral measure
Murphy et al. (2015).

The Stieltjes or Herglotz structure of the effective parameters and their integral representations can be exploited to use the
moments of the spectral measure, or the correlation functions of the composite microstructure, to find rigorous bounds on the
homogenized transport coefficients Bergman (1980); Milton (1980); Golden and Papanicolaou (1983); Golden (1986); Baker
and Graves-Morris (1996); Milton (2002). Bounds on the complex permittivity of sea ice as a two phase composite were first
obtained in the context of remote sensing and the mathematical analysis of sea ice electromagnetic properties Golden (1995);
Golden et al. (1998c¢, b). For example, the mass of the spectral measure is the brine volume fraction. If this is known, then one
can obtain elementary bounds in the complex case, which reduce to the classical arithmetic and harmonic mean bounds for real
parameters. If the material is further assumed to be statistically isotropic, then tighter Hashin-Shtrikman bounds can be ob-
tained. Even tighter bounds can be obtained when the composite is assumed to have matrix-particle structure, such as separated
brine inclusions in a pure ice host Bruno (1991); Golden (1997b), which leads to gaps in the spectrum of G, and tighter con-
straints on the support of the spectral measure. In remote sensing the inverse homogenization problem, Cherkaev and Golden
(1998); Cherkaev (2001), where knowledge of bulk electromagnetic behavior, such as measurements of the effective complex
permittivity, is inverted to obtain the spectral measure Cherkaev (2001) or bounds on the microstructural characteristics such as
the brine volume fraction Cherkaev and Golden (1998); Golden et al. (1998b); Gully et al. (2007); Cherkaev and Bonifasi-Lista
(2011), crystal orientation Gully et al. (2015), and connectivity Orum et al. (2012). The microscale structure, which determines
the spectral measure and the homogenized coefficient, is thus linked to the macroscopic behavior via the operator G' and its
spectral characteristics, and vice versa. In the multicomponent case with three or more constituents, the homogenized transport
coefficients are analytic functions of two or more complex variables, and a polydisc representation formula was exploited to
obtain bounds Golden and Papanicolaou (1985); Golden (1986).
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The first area of application where the ACM was extended beyond the classical case of two component and multiphase com-
posites is diffusive transport in the presence of a flow field, which is widely encountered throughout science and engineering
McLaughlin et al. (1985); Biferale et al. (1995); Fannjiang and Papanicolaou (1994, 1997); Pavliotis (2002); Majda and Kramer
(1999); Majda and Souganidis (1994); Xin (2009). In addition to thermal, saline, and nutrient transport through the porous mi-
crostructure of sea ice, large scale transport of ice floes and heat are also advection diffusion processes. Avellaneda and Majda
Avellaneda and Majda (1989, 1991) found a Stieltjes integral representation for the effective diffusivity as a function of the
Péclet number for diffusion in an incompressible velocity field. Based on the approach in Golden and Papanicolaou (1983),
they set up a Hilbert space framework and applied the spectral theorem to a resolvent representation involving analogues of G
and the electric field, where the spectral measure depends on the geometry of the velocity field, and knowledge of its moments
yields bounds on the effective diffusivity. In Murphy et al. (2017b, 2020) we proved novel versions of the Stieltjes formulas,
developed a framework to numerically compute the spectral measures and a systematic method to find its moments — and thus
a hierarchy of bounds, for both the time dependent and independent cases.

In another extension of the ACM to a large class of media, a Stieltjes integral representation and rigorous bounds for the
effective complex permittivity of polycrystalline media were developed in Gully et al. (2015), based on a resolvent formula for
the electric field, and earlier observations in Milton (1981); Bergman and Stroud (1992); Milton (2002). The bounds assume
knowledge of the average crystal orientation and the complex permittivity tensor of an individual crystal grain. In sea ice, find-
ing the complex permittivity tensor of an individual crystal involves homogenizing the smaller scale brine microstructure Gully
et al. (2015). The polycrystalline structure of sea ice, as characterized by the statistics of grain size, shape, and orientation, is
influenced by the conditions under which the ice was grown Weeks and Ackley (1982); Petrich and Eicken (2009); Untersteiner
(1986). For example, while sea ice grown in quiescent conditions tends to have rather large-grained columnar structure, when
grown in more turbulent or wavy conditions it typically has a fine-grained granular structure. These distinctly different ice
types have quite different fluid flow properties Golden et al. (1998a, 2022). Also, when there is a well-defined current direction
during formation, crystal orientations tend to be statistically anisotropic within the horizontal plane Weeks and Gow (1980),
which can significantly affect the sea ice radar signature, and measurements of sea ice thickness and properties used to validate
climate models Golden and Ackley (1981); McLean et al. (2022).

The interaction of ocean surface waves with polar sea ice is a critical process in Earth’s climate system; its accurate rep-
resentation is of great importance for developing efficient climate models. Ice-ocean interactions have become increasingly
important in the Arctic with the precipitous declines of summer sea ice extent and increases in wave activity Waseda et al.
(2018), while at the same time the marginal ice zone (MIZ), which is characterized by strong wave-ice and atmosphere-ice-
ocean interactions, has widened significantly Strong and Rigor (2013). These recent changes can have complex implications
for both sea ice formation and melting Li et al. (2021). Indeed, the propagation of surface waves through Earth’s sea ice covers
is a complex phenomenon that drives their growth and decay. One of the main approaches to studying waves in sea ice which is
valid when wavelengths are much greater than floe sizes, is to model the surface layer of the ice-covered ocean as a continuum
with effective properties Bates and Shapiro (1980); Keller (1998); Wang and Shen (2010); Mosig et al. (2015). Recently this

fundamental problem in sea ice physics was homogenized, with a Stieltjes representation for the effective complex viscoelas-
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ticity of the surface layer, based on a resolvent formula for the local strain field. The integral involves a spectral measure of
a self-adjoint operator depending on the geometry of the floe configurations. If its mass, or ice concentration, is known then
rigorous bounds on the complex viscoelasticity are obtained in Sampson et al. (2022). Previously this effective parameter had
only been fitted to wave data. We will leave any detailed discussion of waves in sea ice to other publications.

Early on in our work in extending the ACM to the above problems in sea ice physics, it was clear that the classical approach
based on bounding effective parameters using the moments of the spectral measure would in many cases have limited effec-
tiveness. Bounds with only a moment or two known can be quite wide, particularly for a high contrast in the properties of the
constituents, like in sea ice. We then developed a framework in the classic two phase case for computing the spectral measure
through discretization of the relevant microstructures and finding the eigenvalues and eigenvectors of the matrix representation
of G. By developing the mathematical foundation for these computations Murphy et al. (2015) and studying the properties of
computed spectral measures for a broad range of sea ice and other microstructures, like human bone Golden et al. (2011), we
discovered that the statistics of the eigenvalues displayed fascinating behavior depending on the connectedness of one of the
phases.

The statistical behavior of the spectrum is related to the extent that the eigenfunctions overlap. A key example is the Anderson
theory of the metal-insulator transition (MIT) Anderson (1958); Evers and Mirlin (2008), which provides a powerful theoretical
framework for understanding when a disordered medium allows electronic transport, and when it does not. Indeed, for large
enough disorder the electrons are localized in different places, with uncorrelated energy levels described by Poisson statistics
Shklovskii et al. (1993); Kravtsov and Muttalib (1997). For small disorder, the wave functions are extended and overlap,
giving rise to correlated Wigner-Dyson (WD) statistics Shklovskii et al. (1993); Kravtsov and Muttalib (1997) with strong
level repulsion Guhr et al. (1998). In work on the effective complex permittivity for electromagnetic wave propagation through
two phase composites in the long wavelength regime (or any other transport coefficient like thermal or electrical conductivity),
we found an Anderson transition in spectral characteristics as the microstructure developed long range order in the approach
to a percolation threshold Murphy et al. (2017a). We observe transitions in localization characteristics of the field vectors
and associated transitions in spectral behavior from uncorrelated Poissonian statistics to universal (repulsive) Wigner-Dyson
statistics, connected to the Gaussian Orthogonal Ensemble (GOE) in random matrix theory. Mobility edges appear, analogous
to Anderson localization where they mark the characteristic energies of the quantum MIT Gubhr et al. (1998). In Morison et al.
(2022) a novel class of two phase composites was introduced, based on Moiré patterns, that display exotic effective properties,
and dramatic transitions in spectral behavior with very small changes in system parameters.

Over the past decade or so we have laid the groundwork for significant advances in the mathematical modeling of sea ice
processes by developing Stieltjes integral representations for homogenized parameters in several new contexts of importance
in the physics of sea ice and its role in climate. We focus on the central role that the spectral measure plays in determining
effective behavior. The analytic continuation method is a powerful approach in homogenization that provides a robust mathe-
matical framework for rigorously studying effective properties in the sea ice system. The body of work that is discussed here
will advance our sea ice modeling capabilities and how sea ice is represented in global climate models, which will improve

projections of the fate of sea ice and the ecosystems it supports. Moreover, the functions we study here in the sea ice context
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share the same mathematical properties as effective parameters in many other areas of science and engineering, so our work
will advance knowledge of these other materials as well, as evidenced for example by Morison et al. (2022), Golden et al.
(2011) and Gully et al. (2015).

2 Percolation models.

Connectedness of one phase in a composite material is often the principal feature of the mixture geometry which determines
effective behavior. For example, if highly conducting inclusions are sparsely distributed, forming a disconnected phase within
a poorly conducting encompassing host, then the effective conductivity will be poor as well. However, if there are enough
conducting inclusions so that they form connected pathways through the medium, then the effective conductivity will be much
closer to that of the inclusions. Percolation theory Broadbent and Hammersley (1957); Stauffer and Aharony (1992); Grimmett
(1989); Bunde and Havlin (1991) focuses on connectedness in disordered and inhomogeneous media, and has provided the
theoretical framework for describing the behavior of fluid flow through sea ice Golden et al. (1998a, 2007); Golden (2009).

Consider the d—dimensional integer lattice Z%, and the square or cubic network of bonds joining nearest neighbor lattice
sites. In the percolation model Broadbent and Hammersley (1957); Stauffer and Aharony (1992); Grimmett (1989); Bunde
and Havlin (1991), we assign to each bond a conductivity oy > 0 with probability p, meaning it is open (black), and with
probability 1 —p we assign og = 0, meaning it is closed. Two examples of lattice configurations are shown in Fig. 2. with
p=1/31n (a) and p = 2/3 in (b). Groups of connected open bonds are called open clusters. In this model there is a critical
probability p., 0 < p. < 1, the percolation threshold, at which the average cluster size diverges and an infinite cluster appears.
For the d = 2 bond lattice p. = 1/2. For p < p, the infinite cluster density P, (p) = 0, while for p > p., P (p) > 0 and near
the threshold, P.(p) ~ (p — p.)? as p — pF, where 3 is a universal critical exponent. It depends only on dimension and not
on the details of the lattice. Let ,y € Z? and 7(x,y) be the probability that 2 and y belong to the same open cluster. Then for
P < per T(x,y) ~ e~ 1#=¥I/&(P) and the correlation length &(p) ~ (p. — p) ¥ diverges with a universal critical exponent v as
p — p_ . as shown in Fig. 2 (c).

The effective conductivity o*(p) of the lattice, now viewed as a random resistor (or conductor) network, defined via Kir-
choff’s laws, vanishes for p < p, like Py, (p) since there are no infinite pathways. as shown in Fig. 2 (e). For p > p,, c*(p) > 0,
and near p., o*(p) ~ ao(p — pe)t, p — pF, where t is the conductivity critical exponent, with 1 <¢ <2 in d = 2,3 Golden
(1990, 1992, 1997a), and numerical values ¢t = 1.3 in d =2 and ¢ ~ 2.0 in d = 3 Stauffer and Aharony (1992). Consider a
random pipe network with fluid permeability &*(p) exhibiting similar behavior k*(p) ~ ko(p — p.)¢, where e is the perme-
ability critical exponent, with e =t Chayes and Chayes (1986); Sahimi (1995); Golden (1997a). Both ¢ and e are believed to
be universal — they depend only on dimension and not the lattice. Continuum models like the Swiss cheese model, can ex-
hibit nonuniversal behavior with exponents different from the lattice case and e # ¢t Halperin et al. (1985); Feng et al. (1987);
Stauffer and Aharony (1992); Sahimi (1994); Kerstein (1983).
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Figure 2. The two dimensional square lattice percolation model below its percolation threshold of p. = 1/2 in (a) and above it in (b). (c)
Divergence of the correlation length as p approaches p.. The infinite cluster density of the percolation model is shown in (d), and the effective

conductivity is shown in (e).

3 Analytic continuation for two phase composites.

We now describe the analytic continuation method (ACM) for studying the effective properties of composites Bergman (1980);
Milton (1980); Golden and Papanicolaou (1983); Golden (1997b). This method has been used to obtain rigorous bounds on
bulk transport coefficients of composite materials from partial knowledge of the microstructure, such as the volume fractions
of the phases. Examples of transport coefficients to which this approach applies include the complex permittivity, electrical
and thermal conductivity, diffusivity, magnetic permeability, and elasticity. In Golden (1995); Golden et al. (1998c, b); Golden
(1997b, 2015, 2009); Golden et al. (2020) rigorous bounds on the complex permittivity of sea ice were found.

To set ideas we focus on complex permittivity. Consider a two-phase random medium with local permittivity tensor €(z,w),
a spatially stationary random field in x € R? and w € €2, where 2 is the set of realizations of the medium. We consider a

two-phase locally isotropic medium, where the components €, 7,k = 1,..,d, of € satisfy

€jk(z,w) = €e(x,w) ok, €))
where d is dimension, d;, is the Kronecker delta and

e(z,w) =e1 x1(x,w) + €2 x2(x,w). ()

Later, we will consider a polycrystalline medium where € is a non-trivial symmetric matrix. Here y;(x,w) is the characteristic
function of medium ¢ = 1,2, equaling 1 for w € ) with medium 7 at x, and 0 otherwise, with x1 + x2 = 1. The random electric

and displacement fields E(z,w) and D(z,w) satisfy

VxE=0, V-D=0, D=¢€E. 3)
A variational problem establishes that £’ can be written as F = Ey + Ej satisfying

E=F;+FEy, VxE;=0, (D-Ef)=0, (E)=Ey, 4)

This basically amounts to saying curl-free and divergence-free fields are orthogonal (Helmholtz’s theorem), but is rigorously

established via the Lax-Milgram theorem Golden and Papanicolaou (1983).
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The effective permittivity tensor €* is defined as (D) = €*(FE), where (-) is ensemble averaging over € or, by an ergodic
theorem, spatial average over all of R? Golden and Papanicolaou (1983). We prescribe that Ey has direction ey, the kth
direction unit vector, and focus on the diagonal coefficient ¢* = €}, with €* = (eE - ex). The key step of the method is to
obtain the following Stieltjes integral representation for €* Bergman (1978); Milton (1980); Golden and Papanicolaou (1983);
Milton (2002),

F(s>:1f§:/d“(” so— L 5)

€ s—X’ S l-e/e’

0

where p is a positive Stieltjes measure on [0, 1]. In the variable h = €1 /eo, F(s) is a Stieltjes function Golden (1997¢); Cherkaev
(2001); Murphy and Golden (2012). This formula arises from a resolvent formula for the electric field (in medium 1) Murphy
et al. (2015),

xiE=s(sI —G) 'xiex, G=x1Tx1, ©

yielding F'(s) = ([(s] — G)'x1ex] - ex), where ' = —V(—A) "1V is a projection onto the range of the gradient operator V
and ey, is the standard basis vector in the kth direction. Formula (5) is the spectral representation of the resolvent and p is the
spectral measure of the self-adjoint operator G = x1I'x1 on L%(£2, P).

A critical feature of equation (5) is that the component parameters in s are separated from the geometrical information in .

Information about the geometry enters through the moments

1
[in =/A”du(k) = (G"x1€k " X1€k)- (7)
0

Then po = ¢, where ¢ is the volume or area fraction of phase 1, such as the brine volume fraction, the open water area
fraction or melt pond coverage and p1 = ¢(1 — ¢)/d if the material is statistically isotropic. In general, x,, depends on the
(n+ 1)—point correlation function of the medium. This integral representation yields rigorous forward bounds for the effective
parameters of composites, given partial information on the microgeometry via the y,, Bergman (1980); Milton (1980); Golden
and Papanicolaou (1983); Bergman (1982). One can also use the integral representations to obtain inverse bounds, allowing one
to use data about the electromagnetic response of a sample, for example, to bound its structural parameters, such as the volume
fraction of each of the components McPhedran et al. (1982); McPhedran and Milton (1990); Cherkaev and Golden (1998);
Cherkaev (2001); Zhang and Cherkaev (2009); Bonifasi-Lista and Cherkaev (2009); Cherkaev and Bonifasi-Lista (2011); Day
and Thorpe (1999); Golden et al. (2011), see Section 5 for more details.

3.1 Spectral measure computations for two phase composites

Computing the spectral measure y for a given 2D composite microstructure geometry first involves discretizing a two phase
image of the composite into a square lattice filled with 1’s and 0’s corresponding to the two phases. On this square lattice the

action of the differential operators V and V- are defined in terms of forward and backward difference operators Golden (1992).
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Then the key operator x1I"x1, which depends on the geometry of the network via x;, becomes a real-symmetric matrix M
Murphy et al. (2015). Here I is a (non-random) projection matrix which depends only on the lattice topology and boundary
conditions, and Y is a diagonal (random) projection matrix which determines the geometry and component connectivity of
the composite medium Murphy et al. (2015).

The following theorem provides a rigorous mathematical formulation of integral representations for the effective parame-
ters for finite lattice approximations of two component composite media. The electric field decomposition in this theorem is
established in Theorem 4 of Appendix A below and the integral representation in equation (8) is established in Theorem 2.1 of
Murphy et al. (2015).

Theorem 1. For each w € Q, let M (w) = W (w)A(w) W (w) be the eigenvalue decomposition of the real-symmetric matrix
M(w) = x1(w) T x1(w). Here, the columns of the matrix W (w) consist of the orthonormal eigenvectors w;(w), i =1,...,N,
of M(w) and the diagonal matrix A(w) = diag(\1(w), ..., A\n(w)) involves its eigenvalues \;(w). Denote Q; =w;w] the
projection matrix onto the eigen-space spanned by w; and denote §y,(d\) the Dirac 6-measure centered at \;. The electric

field E(w) satisfies E(w) = Eg+Ef(w), with Eg = (E(w)) and T E(w) = Ef(w), and the effective complex permittivity tensor

€" has components €5y, j,k =1,...,d, which satisfy
[ i) u
&k = €2(0jk — Fji(s)), Fii(s) :/ /;jf 0 duje(A) = Y _(0x.(dA) x1 Qi; - éx,). ®)
A i=1

From Theorem 1, the integral and x; E' in equations (5) and (6) have explicit representations in terms of the eigenvalues \;

and eigenvectors u; of M Murphy et al. (2015),
_ vV m; _ my; _ A 192
XlE—SXi: \; Ui, F(S)—Xi: s—X /"’ m; = |x1u; - €k, ©)

s —

where éj, plays the role of a standard basis vector on the lattice. To compute p a non-standard generalization of the spectral
theorem for matrices is required, due to the projective nature of the matrices y; and I' Murphy et al. (2015). We developed
a projection method that shows the spectral measure p in (8) depends only on the eigenvalues and eigenvectors of random
sub-matrices of I" of size N1 = ¢N corresponding to diagonal components [x1]:; = 1, as the spectral weights m; (Christoffel
numbers) associated with eigenvectors satisfying xju; = 0 are themselves zero, m; = 0 Murphy et al. (2015). Fortunately,
since these submatrices are much smaller for low volume fractions, this method greatly improves the efficiency and accuracy
of numerical computations of .

The measure p exhibits fascinating transitional behavior as a function of system connectivity. For example, in the case
of a RRN with a low volume fraction p of open bonds, as shown in Fig.2a, there are spectrum-free regions at the spectral
endpoints A = 0,1 Murphy and Golden (2012). However, as p approaches the percolation threshold p. Stauffer and Aharony
(1992); Torquato (2002) and the system becomes increasingly connected, these spectral gaps shrink and then vanish Murphy
and Golden (2012); Jonckheere and Luck (1998), leading to the formation of d-components of y at the spectral endpoints,
precisely Murphy and Golden (2012) when p = p. (and p = 1 — p. in d = 3). This leads to critical behavior of o* for insulat-
ing/conducting and conducting/superconducting systems Murphy and Golden (2012). This gap behavior of 1 has led Golden
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Figure 3. Electric field and spectral function for sea ice brine microstructure. Electric fields for X-ray CT images of 2D cross sections of
3D brine structures in sea ice (top) and corresponding spectral measures (bottom). As the brine fraction increases the fluid phase becomes
increasingly connected and a delta function singularity in the spectral functions p(A) develops at A = 0. This provides an electrical signature
of brine connectivity, with a substantial increase in the strength of the electric field as the system attains global connectivity. Here, Ey is

taken to be vertically oriented.

(1997¢); Murphy and Golden (2012) to a detailed description of these critical transitions in o*, which is analogous to the Lee—
Yang—Ruelle-Baker description Baker (1990); Golden (1997¢) of the Ising model phase transition in the magnetization M.
Moreover, using this gap behavior, all of the classical critical exponent scaling relations were recovered Murphy and Golden
(2012); Golden (1997¢) without heuristic scaling forms Efros and Shklovskii (1976) but instead by using the rigorous integral
representation for o* involving .

This spectral behavior emerges in all the systems mentioned above, such as the brine microstructure of sea ice Golden et al.
(1998a, 2007); Golden (2009) as shown in Fig. 3, melt ponds on the surface of Arctic sea ice Hohenegger et al. (2012) as
shown in Fig. 4, and the sea ice pack itself Murphy et al. (2017a). This also gives rise to critical behavior of the electric field
as shown in Fig. 3 for 2D cross sections of 3D brine microstructure, with £y taken to be in the vertical direction. Disconnected

and weakly connected examples of brine microstructure have small values of the electric field, while strongly connected
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Figure 4. Sea ice melt ponds. Melt ponds on the surface of the sea ice (top) (images courtesy of Don Perovich) and corresponding spectral
functions (bottom). As the melt pond area fraction increases the ice/water composites become increasingly connected and a delta function

singularity in the spectral functions p() develops at A = 0.

brine microstructures are characterized by a substantial increase in the strength of the electric field. A similar behavior of the
temperature gradient VT associated with the Stieltjes integral for the horizontal thermal conductivity of melt ponds atop Arctic

sea ice is shown in Fig. 4.
3.2 Generalization to rank deficient setting

In the periodic setting, for example, the matrix Laplacian is singular so the matrix representation of (—A)~! in T is not
defined. We now extend the mathematical framework developed in Murphy et al. (2015) to this setting. To make the con-
nection to the abstract Hilbert space Golden and Papanicolaou (1983) and full rank matrix Murphy et al. (2015) settings, we
first give relevant details for these cases. Equation (6) for the abstract Hilbert space setting follows by applying the operator
—V(—=A)~! to the formula V - D = 0, yielding I' D = 0. Equation (6) then follows by using I'Ey = E and I'Ey = 0 Murphy
etal. (2015), since E'y is in the range of I" and Ej is constant Murphy et al. (2020, 2017b, 2015). The matrix form of V-D =0

is —VT D = 0, where V now represents the finite difference matrix representation of the gradient operator and —V7 is the

11
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finite difference representation of the divergence operator, with negative matrix Laplacian given by V7'V Murphy et al. (2015).
As before, in Murphy et al. (2015) we applied the matrix V(VTV)~! to the formula —V7' D = 0, yielding I'D = 0, where
I =V (VTV)~1VT, and equation (6) follows the same way as before.

Now consider the singular value decomposition of the matrix gradient Murphy et al. (2020) of size m x n, say, V.=UXV 7.
Here U is a m x n matrix satisfying UTU = I,, ¥ is a n x n diagonal matrix with diagonal entries consisting of the singular
values of V, and V is a n x n orthogonal matrix satisfying V'V = VV7T = I,,, where I,, is the identity matrix of size n. When
the matrix gradient is full rank it has n strictly positive singular values, so X is an invertible matrix and the matrix representation
of I'is given by I' = UUT'. On the other hand, when the matrix gradient is singular we have ¥ = diag(¥1,0,...,0), where the
diagonal matrix 3; contains the n; strictly positive singular values of 3 and the rest of the singular values have value 0.
Denoting U; and V; to be the columns of U and V' corresponding to the diagonal entries of 31, we have V = U; 21 V{T', where
Y1 is invertable and UlTUl = VlTV1 = I,,,. This enables us to write —VTD=0as —VlZlUlTD =0, hence UlTD =0 and
U,U{' D = 0. Noting that the columns of U; span the range of the matrix gradient V, the matrix U; U{ is a projection onto the
range of V Murphy et al. (2020). Defining I' = U; U{, equation (6) follows the same way as before. This clearly generalizes

the full rank setting. More details are given in the appendix in Section A.

4 Analytic continuation for polycrystalline media

Sea ice is a composite material with polycrystalline microstructure on the millimeter to centimeter scale. When sea water
freezes under turbulent forcing, granular sea ice forms, having small crystals with isotropic orientation angles. Columnar sea
ice forms in quiescent conditions, with large crystals more strongly oriented in the vertical direction. Examples of granular and
columnar sea ice polycrystal microgeometry are displayed in Fig. 5 (a) and (d).

Our analysis of the transport properties of random, uniaxial polycrystalline media Barabash and Stroud (1999) in Gully et al.
(2015), and a somewhat new formulation presented below, shows the underlying mathematical framework is a direct analogue
of that for two-phase random media discussed in Sec. 3. For simplicity, we discuss electrical permittivity €, keeping in mind the
broader applicability to thermal conductivity &, electric conductivity o, etc. Polycrystalline materials, are composed of many
crystallites (single crystals of varying size, shape, and orientation) that can have different local conductivities along different
crystal axes. In contrast to equation (1), the local permittivity matrix of such media is given by Milton (2002); Barabash and

Stroud (1999)
e(z,w)=RTO®R, & =diag(ey,...,eq), (10)
where R(x,w) is a random rotation matrix satisfying R” = R~!. For example, for d = 2 we have

r| e 0 cos —sinf
e=R R, R= , (11)
0 e sin@ cosf

where 6 = 6(z,w) is the orientation angle, measured from the direction e, of the polycrystallite which has an interior contain-

ingz € R4 for w € Q. In higher dimensions, d > 3, the rotation matrix R is a composition of “basic” rotation matrices R;, e.g.

12
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R= H?Zl R;, where the matrix R;(z,w) rotates vectors in R? by an angle 6; = 0, (x,w) about the e; axis. For example, in

three dimensions

1 0 0 cosfly 0 sinfs cosfl3 —sinfl3 0
Ri=|0 cosf; —sinb; |, Ra= 0 1 0 , Rs=| sinf; cosf; 0 |. (12)
0 sinf; cosf; —sinfy 0 cosfs 0 0 1

In the case of uniaxial polycrystalline media, the local permittivity along one of the crystal axes has the value €1, while the
permittivity along all the other crystal axes has the value €o, so ® = diag(e, €2) for 2D (which is the general setting for 2D) and

& = diag(e€q, €2, €2) for 3D. Equation (10) can be written in a more suggestive form in terms of the matrix C' = diag(1,0,...,0)
G(l',(U):61X1($,W)+62X2(JI,W), (13)

which is an analogue of equation (2). Here X; = RTCR and X, = RT (I — C)R, where [ is the identity matrix on R¢. Since
RT = R~1 and C is a diagonal projection matrix satisfying C2 = C, it is clear that the X;, i = 1,2, are mutually orthogonal

projection matrices satisfying
X' =X;, X;Xp=X;6n X1+Xo=I, (14)

which are also properties of the characteristic functions ; in Sec. 3.

Equations (3) and (4) are also satisfied in this polycrystalline setting Golden and Papanicolaou (1983). Similar to the deriva-
tion of equation (6) in Sec. 3, a resolvent representation for X E follows by applying the operator —V(—A)~! to the formula
V-D =0, yielding I'D = 0. Then, using I'E; = Ef and I'Ey = 0 Murphy et al. (2015) yields the following analogue of
equation (6)

X\E=s(sI —G) ' Xier, G=XT'Xy, (15)

yielding the integral representation in equation (5) for F(s) = ([(s] — G)~*Xjex] - ex). As in the two component setting, a
critical feature of equation (5) is that the component parameters in s are separated from the geometrical information in .
Information about the geometry enters through the moments in equation (7) with GG given in (15) and x; replaced by X;. The

mass (i of the measure i, is given by
0 — (Xqe:- 0 —_ (X 2 16
i = (X1ej-ex), = (| Xvex]), (16)

where the second equality follows from the fact that X is a real-symmetric projection matrix. The statistical average (| X ex|?)
in (16) can be thought of as the “mean orientation,” or as the percentage of crystallites oriented in the k" direction. For example,

in the case of two-dimensional polycrystalline media, d = 2, equation (11) implies that
1 = (cos?0), uS, = (sin?0), pYy = (sinfcosh). (17

Generalizing equation (12), with R = H?Zl R;, to dimensions d > 3 shows that u?k is a linear combination of averages of the

form ([ [, cos™ 6;sin™ 6;), where n;,m; =0,1,2,....

13



https://doi.org/10.5194/npg-2022-17
Preprint. Discussion started: 19 December 2022
(© Author(s) 2022. CC BY 4.0 License.

EGU

$$9900y uadQ

—— Isotropic
— — Theory

0 0.2 04 0.6 081

5 10 15 20 25 30

Figure 5. Spectral analysis of polycrystalline media. (a) Cross sections of polycrystalline microstructure for granular and columnar sea ice.
(b) Discrete checkerboard polycrystal microstructure with isotropic crystallite orientations within the horizontal plane, with small (top) and
large (bottom) crystallite size. Cool and warm colors correspond to low and high displacement fields. (c) The spectral function, a histogram
representation of the spectral measure p« shown along with it’s theoretical prediction for such isotropic media Milton (2002). (d) An example

value of the complex effective permittivity of isotropic polycrystalline media captured by first and second order bounds Gully et al. (2015).

The integral representation (5) for this polycrystalline setting yields rigorous forward bounds for the effective parameters of
composites, given partial information on the microgeometry via the y,, Gully et al. (2015); Milton (2002), as shown in Fig. 5d
below. One can also use the integral representations to obtain inverse bounds, allowing one to use data about the electromagnetic

350 response of a sample, for example, to bound its structural parameters, such as the average crystallite orientation Gully et al.
(2015); Milton (2002), see Section 5 for more details.

4.1 Spectral measure computations for uniaxial polycrystalline materials

Computing the spectral measure . for a given polycrystalline microgeometry first involves discretizing the composite into a

square lattice with vertex values in the range [0, 27| corresponding to the crystallite orientation angles at each vertex location.

14
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On this square lattice the action of the differential operators V and V- are defined in terms of forward and backward difference
operators Golden (1992). Then the key operator X;1" X, which depends on the geometry of the network via X7, becomes a
real-symmetric matrix M. Here I' is as in Sec. 3.1 and X is a banded (random) projection matrix which determines the geom-
etry of the polycrystalline medium. In this setting, the integral and X F in equations (5) and (6) have explicit representations
in terms of the eigenvalues \; and eigenvectors u; of M Murphy et al. (2015) given by equation (9), and similarly the spectral
measure is given by equation (8), with x; replaced by Xj.

The following theorem provides a rigorous mathematical formulation of integral representations for the effective parameters

for finite lattice approximations of random uniaxial polycrystaline media.

Theorem 2. For each w € Q, let M (w) =W (w)A(w) W(w) be the eigenvalue decomposition of the real-symmetric matrix
M (w) = X1(w)T X1 (w). Here, the columns of the matrix W (w) consist of the orthonormal eigenvectors w;(w), i = 1,...,N,
of M(w) and the diagonal matrix A(w) = diag(A\;(w), ..., An(w)) involves its eigenvalues \;(w). Denote Q; = w;w. the
projection matrix onto the eigen-space spanned by w;. The electric field E(w) satisfies E(w) = Eg+ Ef(w), with Eg = (E(w))
and TE(w) = E¢(w), and the effective complex permittivity tensor € has components € J,k=1,...,d, which satisfy
1 N
e = 2(8j5 — Fji(s)), Fir(s) = /%"f(ﬁ) e (N) =Y (0x, (AN) X1 Qié; - éx). (18)
s i=1

We defer the proof of Theorem 2 to Section B, which holds for both of the settings where the matrix gradient is full rank or
rank deficient. To numerically compute ; a non-standard generalization of the spectral theorem for matrices is required, due
to the projective nature of the matrices X; and I"' Murphy et al. (2015). In particular, in Section B we develop a projection
method that shows the spectral measure y in (18) depends only on the eigenvalues and eigenvectors of the upper left N7 x Ny
block of the matrix RT' R, where N; = N/d. These submatrices are smaller by a factor of d, which improves the efficiency
and numerical computations of x by a factor of d3.

In Fig. 5 computations of the displacement field D are displayed for 2D polycrystaline media for small and large crystal sizes,
along side cross sections of polycrystalline microstructure for granular and columnar sea ice. When the effective permittivity
tensor €* is diagonal, such as the setting of isotropically oriented crystallites, the spectral measure for an infinite system
is known in closed form Milton (2002) to be du(A) = (1/(1 —A)/A)(dA/7), as shown in Fig.5 (c). This measure has a
singularity at A = 0, which indicates that the material is electrically conductive, on macroscopic length scales Murphy et al.
(2015); Murphy and Golden (2012). When the polycrystalline material has isotropic oriented crystallite angles, both the mass
and first moment of the measure p are known, which enables two nested bounds for ¢ to be computed Gully et al. (2015), as
shown in Fig. 5 (d).

5 Inverse homogenization: Inverse problem of recovery information about the structure of composites

Developed originally for the effective complex permittivity €*, the integral representation (5) yields rigorous forward bounds

for the effective permittivity €* of two-component composites formed of materials with permittivity €; and es, given partial
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information on the microgeometry via the moments y,, Bergman (1980); Milton (1980); Bergman (1982); Golden and Papan-
icolaou (1983). One can also use the integral representation to recover information about the structure of composite material,
this is the problem of inverse homogenization. For the inverse homogenization, it is important that the representation (5) sep-
arates information about the properties of the phases contained in the parameter s from information about the microgeometry
contained in the measure x and its moments g, = (G™x1ex - x1€x) (7) via higher-order correlation functions of the geometry
function 1.

Spectral measure ;o and its moments i, contain, in principle, all the geometrical information about the composite. For

example, the mass (g is the volume fraction ¢ of the first component in the composite,

1
o = / dp(z) = (1) = 6, (19)
0

and the fraction of the second phase is 1 — ¢. Connectivity information is also embedded in the spectral measure.

The basis for inverse homogenization is provided by the uniqueness theorem Cherkaev (2001) which formulates the con-
ditions under which the measure p in the representation (5) can be uniquely reconstructed from measured data. For instance,
electromagnetic data measured for a range of frequency of the applied electromagnetic field, are sufficient to uniquely recover
the measure p in (5). Such data are also sufficient for unique reconstruction of the moments p.,, Cherkaev and Ou (2008),
provided the permittivity of one of the phases is frequency dependent. Two major approaches to the inverse homogenization
are the reconstruction of the measure p Cherkaev (2001); Cherkaev and Ou (2008); Day and Thorpe (1996); Zhang and
Cherkaev (2009); Bonifasi-Lista and Cherkaev (2009); Bonifasi-Lista et al. (2009); Cherkaev and Bonifasi-Lista (2011); Day
and Thorpe (1999); Day et al. (2000); Golden et al. (2011); Cherkaev (2020) (and then calculating its moments) and inverse
bounds for the structural parameters, such as, for example, the volume fraction of each of the components McPhedran et al.
(1982); McPhedran and Milton (1990); Cherkaev and Tripp (1996); Cherkaev and Golden (1998); Cherkaev (2001); Cherkaev
and Ou (2008), orientation of the crystals Gully et al. (2015) or connectedness Orum et al. (2012) of the structure.

When only a few data points are available, though the uniqueness theorem Cherkaev (2001) is not immediately applicable,

one can outline a set of measures consistent with the measurements,
M={p:F,(s)=1-€"/e}, (20)

and determine an interval confining the first moment of the measure p providing, for instance, an interval of uncertainty for
the volume fraction of one material. For several data points corresponding to the same structure of the composite, such as for
example, measurements at a few different frequencies, the bounds for the volume fraction are given by an intersection of all
admissible intervals Cherkaev and Tripp (1996); Cherkaev and Golden (1998); Tripp et al. (1998). When the requirements for
the measurements needed to uniquely reconstruct the spectral measure p established by the uniqueness theorem are satisfied,
the set M is reduced to one point. But the map from the set of measures to the set of the microgeometries is not unique, and there
is a variety of microstructures generating the same response under the applied field. Different microgeometries corresponding
to the same sequence of moments (i, 141, ... are the S—equivalent structures Cherkaev (2001) that are not distinguishable by

homogenized measurements.
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An equivalent representation for function F'(s) in (5) using a logarithmic potential of the measure x on the complex plane
of variable s is Cherkaev (2001):

1

0

F(s)= 2 /ln s—2ldu(z),  0/ds=(0/dx—i0/dy), s=— @1)
Os l—e1/e

The solution to the inverse problem of recovering the measure y is constructed solving the minimization problem:

min,, ||Ap— F|?, F(s)=1—¢€"(s)/ea (22)

where A is the integral operator in (21) or in (5), the norm is the L?>—norm, F' = F(s), s € C, is the given function of the
measured data, and C is a curve on the complex plane corresponding to the frequencies of the applied field. The solution of the
minimization problem does not depend continuously on the data. Unboundedness of the operator A~ leads to arbitrarily large
variations in the solution, and the problem requires regularization to design a stable numerical algorithm Cherkaev (2001).
Regularized inversion schemes and stable reconstruction algorithms to recover p and its moments from data on the effective
complex permittivity were developed in Cherkaev (2001, 2004); Cherkaev and Ou (2008); Bonifasi-Lista and Cherkaev (2009);
Cherkaev and Bonifasi-Lista (2011) based on L2?,T'V, and non-negativity constraints, and constrained Pade approximation of
the measure ;4 Zhang and Cherkaev (2009). In application to imaging of bone structure, spectral measures p computed with the
regularization algorithms based on L? constrained minimization, from electromagnetic Bonifasi-Lista and Cherkaev (2009);
Cherkaev and Bonifasi-Lista (2011); Golden et al. (2011) and viscoelastic Bonifasi-Lista and Cherkaev (2008); Bonifasi-Lista
et al. (2009); Cherkaev and Bonifasi-Lista (2011) data allow to distinguish the samples of healthy and osteoporotic bone via
the different microstructures and the connectivity of the trabecular architecture.

With hydrostatic and deviatoric projections Ay, and A, onto the orthogonal subspaces of the second order tensors comprised
of tensors proportional to the identity tensor and trace-free tensors, the Stieljtes integral representation was generalized in
Cherkaev and Bonifasi-Lista (2011) to the effective viscoelastic modulus and to two-dimensional viscoelastic polycrystalline
materials Cherkaev (2019) under the assumption that the constituents have the same elastic bulk and different (elastic and
viscoelastic) shear moduli. This representation was also used in inverse homogenization Bonifasi-Lista and Cherkaev (2008);
Cherkaev and Bonifasi-Lista (2011); Cherkaev (2020) for successful recovering the porosity of a composite from known
viscoelastic shear modulus.

Other approaches to the volume fraction bounds include Engstrom (2005); Milton (2012); Thaler and Milton (2014) based
on estimates for higher order moments and on variational bounds, as well as direct inversion of known formulas or mixing rules
Bergman and Stroud (1992); Levy and Cherkaev (2013) for effective properties of composites with specific structure, however,
an advantage of the methods discussed here, is their applicability without a priori assumption about the microgeometry.

Spectral coupling of various properties of composites. An important application of inverse homogenization is for indi-
rect evaluating properties of materials through cross-coupling Milton (2002). Different properties of composites are coupled
through their microgeometry; this phenomenon has been known for a long time and used for estimating difficult to measure
directly properties, from available data. The conventional approaches are based on empirical and semi-empirical relations, such

as for instance, Kozeny-Carman or Katz-Tompson. These relations estimate permeability of a porous material characterizing
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the microstructure by a “formation factor” F’ which relates properties of one phase in the composite to the effective properties
of the material.

In the spectral coupling method Cherkaev (2001) based on properties of the Stieltjes representation (5), the spectral mea-
sure 4 is associated with the geometric structural function as this is the function that couples various properties of the same
material. The method of spectral coupling Cherkaev (2001, 2004); Cherkaev and Zhang (2003); Cherkaev and Bonifasi-Lista
(2011) for two component composites based on this coupling of different properties of the composite through the spectral
measure allows us to recover various transport properties of sea ice from the spectral measures computed using other measured
properties. In particular, this approach results in an indirect method of calculation of the thermal conductivity Cherkaev and
Zha