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Abstract. Polar sea ice is a critical component of Earth’s climate system. As a material, it is a multiscale composite of pure

ice with temperature dependent millimeter-scale brine inclusions, and centimeter-scale polycrystalline microstructure which is

largely determined by how the ice was formed. The surface layer of the polar oceans can be viewed as a granular composite of

ice floes in a sea water host, with floe sizes ranging from centimeters to tens of kilometers. A principal challenge in modeling sea

ice and its role in climate is how to use information on smaller scale structure to find the effective or homogenized properties on5

larger scales relevant to process studies and coarse-grained climate models. That is, how do you predict macroscopic behavior

from microscopic laws, like in statistical mechanics and solid state physics? Also of great interest in climate science is the

inverse problem of recovering parameters controlling small scale processes from large scale observations. Motivated by sea ice

remote sensing, the analytic continuation method for obtaining rigorous bounds on the homogenized coefficients of two phase

composites was applied to the complex permittivity of sea ice, which is a Stieltjes function of the ratio of the permittivities of10

ice and brine. Integral representations for the effective parameters distill the complexities of the composite microgeometry into

the spectral properties of a self-adjoint operator like the Hamiltonian in quantum physics. These techniques have been extended

to polycrystalline materials, advection diffusion processes, and ocean waves in the sea ice cover. Here we discuss this powerful

approach in homogenization, highlighting the spectral representations and resolvent structure of the fields that are shared by

the two component theory and its extensions. Spectral analysis of sea ice structures leads to a random matrix theory picture15

of percolation processes in composites, establishing parallels to Anderson localization and semiconductor physics, which then

provides new insights into the physics of sea ice.

1 Introduction

The precipitous loss of nearly half the extent of the summer Arctic sea ice cover over the past four decades or so, since satellite

observations started in 1979, is perhaps one of the most visible large-scale changes on Earth’s surface connected to planetary20

warming, with significant implications for the Arctic and beyond (Stroeve et al., 2007, 2012; Maslanik et al., 2007; Notz and

Community, 2020; Notz and Stroeve, 2016). While the response of the sea ice pack surrounding the Antarctic continent to the

changing climate has perhaps not been as clear as in the Arctic, this past year the summer sea ice extent set a record low (Turner

et al., 2022), followed by a new record low in February 2023. The emerging dynamics of Earth’s polar marine environments

are complex and highly variable. Yet they are increasingly important to understand and predict, as the sea ice packs form a25
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Figure 1. Sea ice as a multiscale composite material. From left to right: millimeter-scale brine inclusions that form the porous microstruc-

ture of sea ice (Golden et al., 2007); centimeter-scale polycrystalline structure of sea ice (Arcone et al., 1986); melt ponds on Arctic sea ice

in late spring and summer (D. Perovich) turn the surface into a two phase composite of ice and melt water; the sea ice pack as a granular

composite viewed from space (NASA), with “grains” ranging in horizontal extent from meters to tens of kilometers; the Arctic Ocean viewed

from space (NASA).

key component of the climate system, are indicators of our changing climate, and directly impact expanding human activities

in these regions. Sea ice has bearing on almost any study of the physics or biology of the polar marine system, as well as on

almost any maritime operations or logistics. Advancing our ability to analyze, model, and predict the behavior of sea ice is

critical to improving projections of climate change and the response of polar ecosystems, and in meeting the challenges of

increased human activities in the Arctic (Golden et al., 2020).30

One of the fascinating, yet challenging aspects of modeling sea ice and its role in global climate is the sheer range of relevant

length scales − over ten orders of magnitude, from the sub-millimeter scale to thousands of kilometers, as indicated in Fig. 1.

Modeling the macroscopic behavior of sea ice on scales appropriate for climate models or for process studies depends on

understanding the properties of sea ice on finer scales, down to individual floes and even the scale of the brine inclusions which

control so many of the distinct physical characteristics of sea ice as a material. Climate models challenge the most powerful35

supercomputers to their fullest capacity. However, even the largest computers still limit the resolution to tens of kilometers and

typically require clever approximations and parameterizations to incorporate the basic physics of sea ice (Golden et al., 2020;

Golden, 2015, 2009). One of the fundamental challenges in modeling sea ice—and a central theme in what follows—is how to

account for the influence of the microscale on macroscopic behavior, that is, how to rigorously use information about smaller

scales to predict effective behavior on larger scales. Here we consider three different homogenization problems in the physics40

of sea ice: the classic two phase problem of brine inclusions in an ice host, sea ice as a polycrystalline material, and advection

diffusion processes such as thermal conduction or nutrient diffusion in the presence of, e.g. convective brine flow. All of these

questions are also of particular interest in polar microbial ecology (Thomas and Dieckmann, 2003; Reimer et al., 2022).

We observe that this central problem of finding the effective properties of sea ice is analogous to the main focus of statistical

mechanics where knowledge of molecular interactions or microscopic laws is used to find collective or macroscopic behavior45

(Thompson, 1988; Christensen and Moloney, 2005). Moreover, it is essentially the same problem in several cases as the main

question in homogenization theory for partial differential equations in composites where larger scale effective properties are

calculated from knowledge of the microstructure (Milton, 2002; Torquato, 2002; Bensoussan et al., 1978; Papanicolaou and
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Varadhan, 1982; Kozlov, 1989). These fields of physics and applied mathematics provide a natural framework for treating sea

ice in predictive models of climate, and improving projections of how Earth’s polar ice packs may evolve in the future.50

The analytic continuation method (ACM) (Bergman, 1980; Milton, 1980; Golden and Papanicolaou, 1983; Golden, 1997b;

Milton, 2002), in particular, yields powerful integral representations for the effective or homogenized transport coefficients of

two component (Golden and Papanicolaou, 1983) or multicomponent (Golden and Papanicolaou, 1985; Golden, 1986) media.

The method exploits the properties of these coefficients as analytic functions of ratios of the constituent parameters for two

phase media, such as the ratio of the electrical or thermal conductivities, or the complex permittivities. The geometry of the55

composite microstructure is encoded into a self-adjoint operator G through the characteristic function which takes the values

1 in one component (brine) and 0 in the other (ice). The key step in obtaining the integral representation, say in the case of

electrical conductivity, is to derive a formula for the local electric field in terms of the resolvent of G, and then apply the spectral

theorem in an appropriate Hilbert space. This representation for the effective conductivity (or effective complex permittivity)

achieves a complete separation between the component parameters in the variable, and the geometry of the microstructure60

embedded in the spectral measure of G, the principal mathematical object in the integral. In a discrete model of a composite,

the operator G becomes a random matrix, whose eigenvalues and eigenvectors can be used to compute the spectral measure

(Murphy et al., 2015).

The Stieltjes or Herglotz structure of the effective parameters and their integral representations can be used to find rigorous

bounds on the homogenized transport coefficients (Bergman, 1980; Milton, 1980; Golden and Papanicolaou, 1983; Golden,65

1986; Baker and Graves-Morris, 1996; Milton, 2002), based on knowledge of the moments of the spectral measure, or the corre-

lation functions of the composite microstructure. Bounds on the complex permittivity of sea ice as a two phase composite were

first obtained in the context of remote sensing and the mathematical analysis of sea ice electromagnetic properties (Golden,

1995; Golden et al., 1998c, b). For example, the mass of the spectral measure is the brine volume fraction. If this is known, then

one can obtain elementary bounds in the complex case, which reduce to the classical arithmetic and harmonic mean bounds70

for real parameters. If the microgeometry is further assumed to be statistically isotropic, then tighter Hashin-Shtrikman bounds

can be obtained. Even tighter bounds can be obtained when the composite is assumed to have matrix-particle structure, such

as separated brine inclusions in a pure ice host (Bruno, 1991; Golden, 1997b), which leads to gaps in the spectrum of G, and

tighter constraints on the support of the spectral measure.

In remote sensing the inverse homogenization problem (Cherkaev and Golden, 1998; Cherkaev, 2001), where knowledge of75

bulk electromagnetic behavior, such as measurements of the effective complex permittivity, is inverted to obtain the spectral

measure (Cherkaev, 2001) or bounds on the microstructural characteristics such as the brine volume fraction and connectivity

(Cherkaev and Golden, 1998; Golden et al., 1998b; Gully et al., 2007; Orum et al., 2012; Cherkaev and Bonifasi-Lista, 2011),

and crystal orientation (Gully et al., 2015). The microscale structure, which determines the spectral measure and the homoge-

nized coefficient, is thus linked to the macroscopic behavior via the operator G and its spectral characteristics, and vice versa.80

In the multicomponent case with three or more constituents, the homogenized transport coefficients are analytic functions

of two or more complex variables, and a polydisc representation formula was found to obtain rigorous bounds (Golden and

Papanicolaou, 1985; Golden, 1986).
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The first area of application where the ACM was extended beyond the classical case of two component and multiphase com-

posites is diffusive transport in the presence of a flow field, which is widely encountered throughout science and engineering85

(McLaughlin et al., 1985; Biferale et al., 1995; Fannjiang and Papanicolaou, 1994, 1997; Pavliotis, 2002; Majda and Kramer,

1999; Majda and Souganidis, 1994; Xin, 2009). In addition to thermal, saline, and nutrient transport through the porous mi-

crostructure of sea ice, large scale transport of ice floes and heat are also advection diffusion processes. Avellaneda and Majda

(Avellaneda and Majda, 1989, 1991) found a Stieltjes integral representation for the effective diffusivity as a function of the

Péclet number for diffusion in an incompressible velocity field. Based on the approach in (Golden and Papanicolaou, 1983),90

they set up a Hilbert space framework and applied the spectral theorem to a resolvent representation involving analogues of G

and the electric field, where the spectral measure depends on the geometry of the velocity field, and knowledge of its moments

yields bounds on the effective diffusivity. In (Murphy et al., 2017b, 2020) we proved novel versions of the Stieltjes formulas,

developed a framework to numerically compute the spectral measures and a systematic method to find its moments − and thus

a hierarchy of bounds (Bergman, 1982; Golden, 1986), for both the time dependent and independent cases.95

In another extension of the ACM to a large class of media, a Stieltjes integral representation and rigorous bounds for the

effective complex permittivity of polycrystalline media were developed in (Gully et al., 2015), based on a resolvent formula

for the electric field, and earlier observations in (Milton, 1981; Bergman and Stroud, 1992; Milton, 2002). The bounds assume

knowledge of the average crystal orientation and the complex permittivity tensor of an individual crystal grain. In sea ice,

finding the complex permittivity tensor of an individual crystal involves homogenizing the smaller scale brine microstructure100

(Gully et al., 2015). The polycrystalline structure of sea ice, as characterized by the statistics of grain size, shape, and orien-

tation, is influenced by the conditions under which the ice was grown (Weeks and Ackley, 1982; Petrich and Eicken, 2009;

Untersteiner, 1986). For example, while sea ice grown in quiescent conditions tends to have rather large-grained columnar

structure, when grown in more turbulent or wavy conditions it typically has a fine-grained granular structure. These distinctly

different ice types have quite different fluid flow properties (Golden et al., 1998a, 2023). Also, when there is a well-defined105

current direction during formation, crystal orientations tend to be statistically anisotropic within the horizontal plane (Weeks

and Gow, 1980), which can significantly affect the sea ice radar signature, and measurements of sea ice thickness and properties

used to validate climate models (Golden and Ackley, 1981; McLean et al., 2023).

The interaction of ocean surface waves with polar sea ice is a critical process in Earth’s climate system; its accurate rep-

resentation is of great importance for developing efficient climate models. Ice-ocean interactions have become increasingly110

important in the Arctic with the precipitous declines of summer sea ice extent and increases in wave activity (Waseda et al.,

2018), while at the same time the marginal ice zone (MIZ), which is characterized by strong wave-ice and atmosphere-ice-

ocean interactions, has widened significantly (Strong and Rigor, 2013). These recent changes can have complex implications

for both sea ice formation and melting (Li et al., 2021). Indeed, the propagation of surface waves through Earth’s sea ice covers

is a complex phenomenon that drives their growth and decay. One of the main approaches to studying waves in sea ice which is115

valid when wavelengths are much greater than floe sizes, is to model the surface layer of the ice-covered ocean as a continuum

with effective properties (Bates and Shapiro, 1980; Keller, 1998; Wang and Shen, 2010; Mosig et al., 2015). Recently this

fundamental problem in sea ice physics was homogenized, with a Stieltjes integral representation for the effective complex
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viscoelasticity of the surface layer, based on a resolvent formula for the local strain field. The integral involves a spectral

measure of a self-adjoint operator which depends on the geometry of the floe configurations. The mass of the spectral measure120

is the area fraction of ocean covered by sea ice, which is a standard satellite data product known as the sea ice concentration

field. If the mass of the measure is known, then rigorous bounds on the complex viscoelasticity are obtained in (Sampson et al.,

2023). Previously this effective parameter had only been fitted to wave data.

Early on in our work in extending the ACM to the above problems in sea ice physics, it was clear that the classical approach

based on bounding effective parameters using the moments of the spectral measure would in many cases have limited effec-125

tiveness. Bounds with only a moment or two known can be quite wide, particularly for a high contrast in the properties of the

constituents, like in sea ice. We then developed a framework in the classic two phase case for computing the spectral measure

through discretization of the relevant microstructures and finding the eigenvalues and eigenvectors of the matrix representation

of G. By developing the mathematical foundation for these computations (Murphy et al., 2015) and studying the properties of

computed spectral measures for a broad range of sea ice and other microstructures, like human bone (Golden et al., 2011), we130

discovered that eigenvalue statistics displayed fascinating behavior depending on the connectedness of one of the phases.

The statistical behavior of the spectrum is related to the extent that the eigenfunctions overlap. A key example is the Anderson

theory of the metal-insulator transition (MIT) (Anderson, 1958; Evers and Mirlin, 2008), which provides a powerful theoretical

framework for understanding when a disordered medium allows electronic transport, and when it does not. Indeed, for large

enough disorder the electrons are localized in different places, with uncorrelated energy levels described by Poisson statistics135

(Shklovskii et al., 1993; Kravtsov and Muttalib, 1997). For small disorder, the wave functions are extended and overlap,

giving rise to correlated Wigner-Dyson (WD) statistics (Shklovskii et al., 1993; Kravtsov and Muttalib, 1997) with strong level

repulsion (Guhr et al., 1998). In work on the effective complex permittivity for electromagnetic wave propagation through two

phase composites in the long wavelength regime (or any other transport coefficient like thermal or electrical conductivity),

we found an Anderson transition in spectral characteristics as the microstructure developed long range order in the approach140

to a percolation threshold (Murphy et al., 2017a). We observed transitions in localization characteristics of the field vectors

and associated transitions in spectral behavior from uncorrelated Poissonian statistics to universal (repulsive) Wigner-Dyson

statistics, connected to the Gaussian Orthogonal Ensemble (GOE) in random matrix theory. Mobility edges appear, analogous

to Anderson localization where they mark the characteristic energies of the quantum MIT (Guhr et al., 1998). In (Morison et al.,

2022) a novel class of two phase media was introduced − twisted bilayer composites based on Moiré patterns, that display145

exotic effective properties and dramatic transitions in spectral behavior with very small changes in system parameters.

Over the past couple decades or so we have laid the groundwork for rigorous mathematical modeling of sea ice processes by

developing Stieltjes integral representations for homogenized parameters, in several contexts of importance in the physics of

sea ice and its role in the climate system, as well as in remote sensing applications (Murphy and Golden, 2012; Murphy et al.,

2015; Gully et al., 2015; Murphy et al., 2017a, b, 2020; Kraitzman et al.; Golden et al., 2020; Golden, 2015, 2009, 1997b;150

Golden et al., 1998c, b). We also mention a recent significant advance in obtaining a Stieltjes integral representation for the

fluid permeability of a porous medium (Bi et al., 2023), and an excellent, recent review of Stieltjes integrals in materials science

5



(Luger and Ou, 2022; Ou and Luger, 2022). The permeability result is relevant for sea ice modeling (Golden et al., 1998a, 2007;

Golden, 2009), and has eluded mathematical inquiry for quite some time.

We have focused here on the central role that the composite “microgeometry” plays − via the operator G and its spectral155

measure (and analogues) − in determining effective behavior on scales relevant to coarse-grained climate models and studies

of sea ice processes. The geometry represents different composite structures in different contexts. At the finest scales the

composite geometry is determined by the brine inclusion microstructure, which in turn determines the properties of individual

sea ice crystallites, whose size and orientation statistics determine the polycrystalline microgeometry. Convective fluid flow

fields help transport heat, salt, and nutrients, where the flow field geometry plays the role of the composite microstructure. Ponds160

on the surface of melting Arctic sea ice floes define the microgeometry of the surface composite of melt water and snow, while

the surface layer of the ocean is a composite of sea water and sea ice, whose microgeometry is defined by the concentration,

geometry, and arrangement of the ice floes. Large scale ice pack dynamics and transport are determined primarily by advective

and thermal forcing, from winds and currents as well as the evolution of the temperature field.

The homogenized material properties given by the Stieltjes integral representations can be used for a wide range of appli-165

cations in sea ice physics and ecology, as well as in large scale global climate and process models. Information on transport

parameters provided by the integral representations that depend on the brine and polycrystalline microstructures, such as

electrical and thermal conductivity, diffusion coefficient, and fluid permeability can be used directly as inputs into physical,

biogeochemical, and ecological models of sea ice processes on centimeter and meter scales, as well as in large scale nu-

merical models. The interplay between homogenization techniques like the analytic continuation method here and models of170

phase transitions in statistical physics (Banwell et al., 2023) is particularly interesting across the full range of scales. From

the millimeter-scale brine inclusions (Golden et al., 1998a, 2007), to meter-scale melt ponds (Ma et al., 2019) and the thermal

properties of the ice pack itself our Stieltjes representations provide rigorous theories of how effective parameters depend on

the constituent parameters and mixture geometries. For example, in a model on the scale of the Arctic Ocean for the dynamics

of the marginal ice zone, the transitional region between dense pack ice and open ocean, a key parameter is the homogenized175

thermal conductivity of the upper layer of the ocean as a two phase composite of ice floes and sea water (Strong et al., 2023),

with the theory provided by the ACM. Finally we note that in applications of the ACM to wave phenomena, such as the effec-

tive complex permittivity for electromagnetic waves propagating through the sea ice, viewed as a composite of pure ice with

brine inclusions, then the theory holds in the quasistatic regime where the wavelength in the medium is assumed to be much

longer than the microstructural scale. Typically, EM waves in the Megahertz and low Gigahertz frequency ranges satisfy this180

condition. For the effective complex viscoelasticity of the upper layer of the ocean, the Stieltjes representation holds again in

the quasistatic regime where the wavelength is larger than the typical floe size.

The analytic continuation method is a powerful approach in homogenization that provides a robust mathematical framework

for rigorously studying effective properties in the sea ice system. The body of work that is discussed here will advance our

sea ice modeling capabilities and how sea ice is represented in global climate models, which will improve projections of the185

fate of sea ice and the ecosystems it supports. Moreover, the functions we study here in the sea ice context share the same

mathematical properties as effective parameters in many other areas of science and engineering. So our work advances these
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other areas as well, as evidenced by, e.g., (Morison et al., 2022), which is closely related to both twisted bilayer graphene and

quasicrystals in the physics of materials, by (Golden et al., 2011), which concerns biomedical engineering of human bone, and

(Gully et al., 2015) which applies to general polycrystalline media in the geosciences and other fields.190

2 Percolation models.

Connectedness of one phase in a composite material is often the principal feature of the mixture geometry which determines

effective behavior. For example, if highly conducting inclusions are sparsely distributed, forming a disconnected phase within

a poorly conducting encompassing host, then the effective conductivity will be poor as well. However, if there are enough

conducting inclusions so that they form connected pathways through the medium, then the effective conductivity will be much195

closer to that of the inclusions. Percolation theory (Broadbent and Hammersley, 1957; Stauffer and Aharony, 1992; Grimmett,

1989; Bunde and Havlin, 1991) focuses on connectedness in disordered and inhomogeneous media, and has provided the

theoretical framework for describing the behavior of fluid flow through sea ice (Golden et al., 1998a, 2007; Golden, 2009).

Consider the d−dimensional integer lattice Zd, and the square or cubic network of bonds joining nearest neighbor lattice

sites. In the percolation model (Broadbent and Hammersley, 1957; Stauffer and Aharony, 1992; Grimmett, 1989; Bunde and200

Havlin, 1991), we assign to each bond a conductivity σ0 > 0 with probability p, meaning it is open (black), and with probability

1− p we assign σ0 = 0, meaning it is closed. Two examples of lattice configurations are shown in Fig. 2. with p= 1/3 in (a)

and p= 2/3 in (b). Groups of connected open bonds are called open clusters. In this model there is a critical probability pc,

0< pc < 1, the percolation threshold, at which the average cluster size diverges and an infinite cluster appears. For the d= 2

bond lattice pc = 1/2. For p < pc the infinite cluster density P∞(p) = 0, while for p > pc, P∞(p)> 0 and near the threshold,205

P∞(p)∼ (p− pc)
β as p→ p+c , where β is a universal critical exponent. It depends only on dimension and not on the details

of the lattice. Let x,y ∈ Zd and τ(x,y) be the probability that x and y belong to the same open cluster. Then for p < pc,

τ(x,y)∼ e−|x−y|/ξ(p), and the correlation length ξ(p)∼ (pc − p)−ν diverges with a universal critical exponent ν as p→ p−c .

as shown in Fig. 2 (c).

The effective conductivity σ∗(p) of the lattice, now viewed as a random resistor (or conductor) network, defined via Kir-210

choff’s laws, vanishes for p < pc like P∞(p) since there are no infinite pathways. as shown in Fig. 2 (e). For p > pc, σ∗(p)> 0,

and near pc, σ∗(p)∼ σ0(p− pc)
t, p→ p+c , where t is the conductivity critical exponent, with 1≤ t≤ 2 in d= 2,3 (Golden,

1990, 1992, 1997a), and numerical values t≈ 1.3 in d= 2 and t≈ 2.0 in d= 3 (Stauffer and Aharony, 1992). Consider a

random pipe network with fluid permeability k∗(p) exhibiting similar behavior k∗(p)∼ k0(p− pc)
e, where e is the perme-

ability critical exponent, with e= t (Chayes and Chayes, 1986; Sahimi, 1995; Golden, 1997a). Both t and e are believed to215

be universal – they depend only on dimension and not the lattice. Continuum models like the Swiss cheese model, can exhibit

nonuniversal behavior with exponents different from the lattice case and e ̸= t (Halperin et al., 1985; Feng et al., 1987; Stauffer

and Aharony, 1992; Sahimi, 1994; Kerstein, 1983).
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Figure 2. The two dimensional square lattice percolation model below its percolation threshold of pc = 1/2 in (a) and above it in (b). (c)

Divergence of the correlation length as p approaches pc. The infinite cluster density of the percolation model is shown in (d), and the effective

conductivity is shown in (e).

3 Analytic continuation for two phase composites.

We now describe the analytic continuation method (ACM) for studying the effective properties of composites (Bergman, 1980;220

Milton, 1980; Golden and Papanicolaou, 1983; Golden, 1997b). This method has been used to obtain rigorous bounds on

bulk transport coefficients of composite materials from partial knowledge of the microstructure, such as the volume fractions

of the phases. Examples of transport coefficients to which this approach applies include the complex permittivity, electrical

and thermal conductivity, diffusivity, magnetic permeability, and elasticity. In (Golden, 1995; Golden et al., 1998c, b; Golden,

1997b, 2015, 2009; Golden et al., 2020) rigorous bounds on the complex permittivity of sea ice were found.225

To set ideas we focus on the complex permittivity, keeping in mind the broad applicability of the ACM. Consider a two-phase

random medium with local permittivity tensor ϵ(x,ω), a spatially stationary random field in x ∈ Rd and ω ∈ Ω, where Ω is the

set of realizations of the medium. We consider a two-phase locally isotropic medium, where the components ϵjk, j,k = 1, ..,d,

of ϵ satisfy

ϵjk(x,ω) = ϵ(x,ω)δjk , (1)230

where d is dimension, δjk is the Kronecker delta and

ϵ(x,ω) = ϵ1χ1(x,ω)+ ϵ2χ2(x,ω) . (2)

Later, we will consider a polycrystalline medium where ϵ is a non-trivial symmetric matrix. Here χi(x,ω) is the characteristic

function of medium i= 1,2, equaling 1 for ω ∈ Ω with medium i at x, and 0 otherwise, with χ1+χ2 = 1. The random electric

and displacement fields E(x,ω) and D(x,ω) satisfy235

∇×E = 0 , ∇ ·D = 0 , D = ϵE . (3)

A variational problem establishes that E can be written as E = Ef +E0 satisfying

E = Ef +E0 , ∇×Ef = 0 , ⟨D ·Ef ⟩= 0 , ⟨E⟩= E0 . (4)
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This basically amounts to saying curl-free and divergence-free fields are orthogonal (Helmholtz’s theorem), but is rigorously

established via the Lax-Milgram theorem (Golden and Papanicolaou, 1983).240

The effective permittivity tensor ϵ∗ is defined as ⟨D⟩= ϵ∗⟨E⟩, where ⟨·⟩ is ensemble averaging over Ω or, by an ergodic

theorem, spatial average over all of Rd (Golden and Papanicolaou, 1983). We prescribe that E0 has direction ek, the kth

direction unit vector, and focus on the diagonal coefficient ϵ∗ = ϵ∗kk, with ϵ∗ = ⟨ϵE · ek⟩. The key step of the method is to

obtain the following Stieltjes integral representation for ϵ∗ (Bergman, 1978; Milton, 1980; Golden and Papanicolaou, 1983;

Milton, 2002),245

F (s) = 1− ϵ∗

ϵ2
=

1∫
0

dµ(λ)

s−λ
, s=

1

1− ϵ1/ϵ2
, (5)

where µ is a positive Stieltjes measure with support in [0,1], and F plays the role of a (negative) electric susceptibility

(Bergman, 1978). In the variable s= 1/(1−h), with h= ϵ1/ϵ2, F (s) is a Stieltjes function (Golden, 1997c; Cherkaev, 2001;

Murphy and Golden, 2012). This representation arises from a resolvent formula for the electric field (in medium 1) (Murphy

et al., 2015),250

χ1E = s(sI −G)−1χ1ek , G= χ1Γχ1, (6)

yielding F (s) = ⟨[(sI −G)−1χ1ek] · ek⟩, where Γ =−∇(−∆)−1∇· is a projection onto the range of the gradient operator ∇
and ek is the standard basis vector in the kth direction. Equation (5) is the spectral representation of the resolvent formula in

(6) and µ is a spectral measure of the self-adjoint operator G= χ1Γχ1 on L2(Ω,P ).

A critical feature of equation (5) is that the component parameters in s are separated from the geometrical information in µ.255

Information about the geometry enters through the moments

µn =

1∫
0

λndµ(λ) = ⟨Gnχ1ek ·χ1ek⟩. (7)

Then µ0 = ϕ, where ϕ is the volume or area fraction of phase 1, such as the brine volume fraction, the open water area

fraction or melt pond coverage and µ1 = ϕ(1−ϕ)/d if the material is statistically isotropic. In general, µn depends on the

(n+1)–point correlation function of the medium. This integral representation yields rigorous forward bounds for the effective260

parameters of composites, given partial information on the microgeometry via the µn (Bergman, 1980; Milton, 1980; Golden

and Papanicolaou, 1983; Bergman, 1982). One can also use the integral representations to obtain inverse bounds, allowing

one to use data about the electromagnetic response of a sample, for example, to bound its structural parameters, such as the

volume fraction of each of the components (McPhedran et al., 1982; McPhedran and Milton, 1990; Cherkaev and Golden,

1998; Cherkaev, 2001; Zhang and Cherkaev, 2009; Bonifasi-Lista and Cherkaev, 2009; Cherkaev and Bonifasi-Lista, 2011;265

Day and Thorpe, 1999; Golden et al., 2011), see Section 5 for more details.
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3.1 Spectral measure computations for two phase composites

Computing the spectral measure µ for a given 2D composite microstructure first involves discretizing a two phase image of

the composite into a square lattice filled with 1’s and 0’s corresponding to the two phases. On this square lattice the action of

the differential operators ∇ and ∇· are defined in terms of forward and backward difference operators (Golden, 1992; Murphy270

et al., 2015). Then the key operator χ1Γχ1, which depends on the geometry of the network via χ1, becomes a real-symmetric

matrix M (Murphy et al., 2015). Here Γ is a (non-random) projection matrix which depends only on the lattice topology

and boundary conditions, and χ1 is a diagonal (random) projection matrix which determines the geometry and component

connectivity of the composite medium (Murphy et al., 2015). Another spectral approach to finding effective properties based

on analytic continuation relies on computation of the electromagnetic eigenstates of individual inclusions (Bergman et al.,275

2020; Bergman, 2022).

The powerful integral representation in Equation (5) is formulated in a continuum setting. However, in order to actually

compute the spectral measures, we must discretize, for example, an image of the brine inclusions or ice floes onto a lattice,

and represent the operator G as a matrix. The following theorem provides a rigorous mathematical formulation of integral

representations for the effective parameters for finite lattice approximations of two component media, and tells how to compute280

the spectral measures. The electric field decomposition in this theorem is established using the fundamental theorem of linear

algebra and orthogonality properties of the ranges and kernels of matrix representations for ∇, ∇×, and ∇· (Huang et al.,

2019) and will be published elsewhere. The integral representation in equation (8) is established in Theorem 2.1 of (Murphy

et al., 2015).

Theorem 1. For each ω ∈ Ω, let M(ω) =W (ω)Λ(ω)W (ω) be the eigenvalue decomposition of the real-symmetric matrix285

M(ω) = χ1(ω)Γχ1(ω). Here, the columns of the matrix W (ω) consist of the orthonormal eigenvectors wi(ω), i= 1, . . . ,N ,

of M(ω) and the diagonal matrix Λ(ω) = diag(λ1(ω), . . . ,λN (ω)) involves its eigenvalues λi(ω). Denote Qi = wi w T
i the

projection matrix onto the eigen-space spanned by wi and denote δλi
(dλ) the Dirac δ-measure centered at λi. The electric

field E(ω) satisfies E(ω) = E0 +Ef (ω), with E0 = ⟨E(ω)⟩, ΓE(ω) = Ef (ω), and χ1E satisfies the resolvent formula in

equation (6). The effective complex permittivity tensor ϵ∗ has components ϵ∗jk, j,k = 1, . . . ,d, which satisfy290

ϵ∗jk = ϵ2(δjk −Fjk(s)), Fjk(s) =

1∫
0

dµjk(λ)

s−λ
, dµjk(λ) =

N∑
i=1

⟨δλi
(dλ) χ1Qiêj · êk⟩ . (8)

From Theorem 1, the integral and χ1E in equations (5) and (6) have explicit representations in terms of the eigenvalues λi

and eigenvectors wi of M (Murphy et al., 2015, 2017a),

χ1E = s
∑
i

mi

s−λi
wi , F (s) =

∑
i

〈
m2

i

s−λi

〉
, mi = χ1wi · êk, (9)

where êk plays the role of a standard basis vector on the lattice. To compute µ a non-standard generalization of the spectral295

theorem for matrices is required, due to the projective nature of the matrices χ1 and Γ (Murphy et al., 2015). We developed

a projection method that shows the spectral measure µ in (8) depends only on the eigenvalues and eigenvectors of random
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Figure 3. Electric fields and spectral measures for sea ice brine microstructure. (a) Electric field values in log10 scale for X-ray CT images

of 2D vertical cross sections of sea ice brine microstructure, with increasing connectivity from left to right. (b) Corresponding spectral

functions µ(λ) (histogram representations) of the spectral measure µ in (c) and (d), which display spectral weights m2
i versus the associated

eigenvalues λi of the matrix G and index i, respectively. The vertical bars in (d) delineate the δ-functions at the spectral endpoints λ= 0,1

seen in (c) from the rest of the spectrum, where λi ≲ 10−14 and 1−λi ≲ 10−14. As the percentage of brine increases, the fluid phase

becomes increasingly connected, resulting in a substantial increase in the strength of the electric field, with "hot spots" forming in geometric

bottlenecks. Macroscopic connectivity of the brine phase is characterized by the mass of the δ-function at λ= 0 switching from numerically-

zero, with the m2
i ≲ 10−30, to m2

i ∼ 1, giving rise to the "hot spots" in E via equation (9). The electrical permittivity is taken to be

ε1 = 63.3+ i1930 for brine and ε2 = 3.06 for ice (Backstrom and Eicken, 2006). E0 is taken to be vertically oriented.11



Figure 4. Temperature gradient fields and spectral functions for sea ice melt pond microstructure. (a) Temperature gradient field values

in log10 scale for melt pond microstructure atop Arctic sea ice, with increasing connectivity from left to right (images courtesy of Don

Perovich), with corresponding spectral functions µ(λ) displayed below in (b). Here the gradient of temperature T , −∇T , plays the role of

Ef in equations (3) and (4) (Milton, 2002) (Ef =−∇φ for some electrical potential φ), the component thermal conductivities κi, i= 1,2,

play the role of the complex electrical permittivities ϵi, and the heat current Q plays the role of the displacement field D. Analogous to

Fig. 3, as the fluid phase becomes increasingly connected on macroscopic length scales, a buildup of spectral measure mass at λ= 0 shown

in (b) leads to the formation of a δ-function at λ= 0, with corresponding switching in the values of the mi from numerically-zero, with

the mi ≲ 10−30 for the left an middle figure panels, to mi ∼ 1 for the rightmost panel. The δ-function at λ= 1 is also analogous to that in

Fig. 3. Like E0 in Fig. 3, we take the average thermal gradient to be vertically oriented. The thermal conductivity is taken to be κ1 = 0.5606

Wm−1K−1 for melt ponds and κ2 = 0.3073 Wm−1K−1 for the surrounding snow (Yen, 1981).
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Figure 5. Temperature gradient fields and spectral functions for Arctic pack ice microstructure. (a) Temperature gradient field values in

log10 scale for Arctic pack ice microstructure, with increasing connectivity from left to right (images courtesy of Don Perovich), with

corresponding spectral functions µ(λ) displayed below in (b). Analogous to Fig. 3, as the fluid phase becomes increasingly connected on

macroscopic length scales, a buildup of spectral measure mass at λ= 0 shown in (b) leads to the formation of a δ-function at λ= 0, with

corresponding switching in the values of the mi from numerically-zero, with the mi ≲ 10−30 for the left an middle figure panels, to mi ∼ 1

for the rightmost panel. The δ-function at λ= 1 is also analogous to that in Fig. 3. Like E0 in Fig. 3, we take the average thermal gradient

to be vertically oriented. Thermal conductivity is taken to be κ1 = 0.57 Wm−1K−1 for ocean and κ2 = 2.11 Wm−1K−1 for ice floes

(Pringle et al., 2006).
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sub-matrices of Γ of size N1 ≈ ϕN corresponding to diagonal components [χ1]ii = 1, as the spectral weights mi (Christoffel

numbers) associated with eigenvectors satisfying χ1wi = 0 are themselves zero, mi = 0 (Murphy et al., 2015). Fortunately,

since these submatrices are much smaller for low volume fractions, this method greatly improves the efficiency and accuracy300

of numerical computations of µ.

The measure µ exhibits fascinating transitional behavior as a function of system connectivity. For example, in the case of a

RRN with a low volume fraction p of open bonds, as shown in Fig. 2a, there are spectrum-free regions at the spectral endpoints

λ= 0,1 (Murphy and Golden, 2012; Murphy et al., 2015). However, as p approaches the percolation threshold pc (Stauffer

and Aharony, 1992; Torquato, 2002) and the system becomes increasingly connected, these spectral gaps shrink and then305

vanish (Murphy and Golden, 2012; Jonckheere and Luck, 1998), leading to the formation of δ-components of µ at the spectral

endpoints, precisely (Murphy and Golden, 2012) when p= pc (and p= 1−pc in d= 3). This leads to critical behavior of σ∗ for

insulating/conducting and conducting/superconducting systems (Murphy and Golden, 2012). This gap behavior of µ has led

(Golden, 1997c; Murphy and Golden, 2012) to a detailed description of these critical transitions in σ∗, which is analogous to the

Lee–Yang–Ruelle–Baker description (Baker, 1990; Golden, 1997c) of the Ising model phase transition in the magnetization310

M . Moreover, using this gap behavior, all of the classical critical exponent scaling relations were recovered (Murphy and

Golden, 2012; Golden, 1997c) without heuristic scaling forms (Efros and Shklovskii, 1976) but instead by using the rigorous

integral representation for σ∗ involving µ.

This spectral behavior emerges in all the systems mentioned above, such as the brine microstructure of sea ice (Golden

et al., 1998a, 2007; Golden, 2009) as shown in Fig. 3, melt ponds on the surface of Arctic sea ice (Hohenegger et al., 2012) as315

shown in Fig. 4, and the sea ice pack itself (Murphy et al., 2017a) in Figure 5. This also gives rise to critical behavior of the

electric field as shown in Fig. 3 for 2D cross sections of 3D brine microstructure, with E0 taken to be in the vertical direction.

Disconnected and weakly connected examples of brine microstructure have small values of the electric field, while strongly

connected brine microstructures are characterized by a substantial increase in the strength of the electric field, with "hot spots"

forming in geometric bottlenecks. A similar behavior is exhibited by the temperature gradient ∇T associated with the Stieltjes320

integral for the effective horizontal thermal conductivity κ∗, as shown for melt ponds atop Arctic sea ice in Fig. 4 and for Arctic

pack ice in Fig. 4.

3.2 Generalization to rank deficient setting

In the periodic setting, for example, the matrix Laplacian is singular so the matrix representation of (−∆)−1 in Γ is not defined.

We now extend the mathematical framework developed in (Murphy et al., 2015) to this setting. To make the connection to325

the abstract Hilbert space (Golden and Papanicolaou, 1983) and full rank matrix (Murphy et al., 2015) settings, we first give

relevant details for these cases. Equation (6) for the abstract Hilbert space setting follows by applying the operator −∇(−∆)−1

to the formula ∇ ·D = 0, yielding ΓD = 0. Equation (6) then follows by using ΓEf = Ef and ΓE0 = 0 (Murphy et al.,

2015), since Ef is in the range of Γ and E0 is constant (Murphy et al., 2020, 2017b, 2015). The matrix form of ∇ ·D = 0 is

−∇TD = 0, where ∇ now represents the finite difference matrix representation of the gradient operator and −∇T is the finite330

difference representation of the divergence operator, with negative matrix Laplacian given by ∇T∇ (Murphy et al., 2015).
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As before, in (Murphy et al., 2015) we applied the matrix ∇(∇T∇)−1 to the formula −∇TD = 0, yielding ΓD = 0, where

Γ =∇(∇T∇)−1∇T , and equation (6) follows the same way as before.

Now consider the singular value decomposition of the matrix gradient (Murphy et al., 2020) of size m×n, say, ∇= UΣV T .

Here U is a m×n matrix satisfying UTU = In, Σ is a n×n diagonal matrix with diagonal entries consisting of the singular335

values of ∇, and V is a n×n orthogonal matrix satisfying V TV = V V T = In, where In is the identity matrix of size n. When

the matrix gradient is full rank it has n strictly positive singular values, so Σ is an invertible matrix and the matrix representation

of Γ is given by Γ = UUT . On the other hand, when the matrix gradient is singular we have Σ= diag(Σ1,0, . . . ,0), where the

diagonal matrix Σ1 contains the n1 strictly positive singular values of Σ and the rest of the singular values have value 0.

Denoting U1 and V1 to be the columns of U and V corresponding to the diagonal entries of Σ1, we have ∇= U1Σ1V
T
1 , where340

Σ1 is invertable and UT
1 U1 = V T

1 V1 = In1 . This enables us to write −∇TD = 0 as −V1Σ1U
T
1 D = 0, hence UT

1 D = 0 and

U1U
T
1 D = 0. Noting that the columns of U1 span the range of the matrix gradient ∇, the matrix U1U

T
1 is a projection onto the

range of ∇ (Murphy et al., 2020). Defining Γ = U1U
T
1 , equation (6) follows the same way as before. This clearly generalizes

the full rank setting. More details will be published elsewhere.

4 Analytic continuation for polycrystalline media345

Sea ice is a composite material with polycrystalline microstructure on the millimeter to centimeter scale. When sea water

freezes under turbulent forcing, granular sea ice forms, having small crystals with isotropic orientation angles. Columnar sea

ice forms in quiescent conditions, with large crystals more strongly oriented in the vertical direction. Examples of granular and

columnar sea ice polycrystal microgeometry are displayed in Fig. 6 (a).

Our analysis of the transport properties of random, uniaxial polycrystalline media (Barabash and Stroud, 1999) in (Gully350

et al., 2015), and a somewhat new formulation presented below, shows the underlying mathematical framework is a direct

analogue of that for two-phase random media discussed in Sec. 3. For simplicity, we discuss electrical permittivity ϵ, keeping

in mind the broader applicability to thermal conductivity κ, electric conductivity σ, etc. Polycrystalline materials, are composed

of many crystallites (single crystals of varying size, shape, and orientation) that can have different local conductivities along

different crystal axes. In contrast to equation (1), the local permittivity matrix of such media is given by (Milton, 2002; Barabash355

and Stroud, 1999)

ϵ(x,ω) =RT ΦR, Φ= diag(ϵ1, . . . , ϵd) , (10)

where R(x,ω) is a random rotation matrix satisfying RT =R−1. For example, for d= 2 we have

ϵ=RT

 ϵ1 0

0 ϵ2

R, R=

 cosθ −sinθ

sinθ cosθ

 , (11)

where θ = θ(x,ω) is the orientation angle, measured from the direction e1, of the polycrystallite which has an interior contain-360

ing x ∈ Rd for ω ∈ Ω. In higher dimensions, d≥ 3, the rotation matrix R is a composition of “basic” rotation matrices Ri, e.g.
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R=
∏d

j=1Rj , where the matrix Rj(x,ω) rotates vectors in Rd by an angle θj = θj(x,ω) about the ej axis. For example, in

three dimensions

R1 =


1 0 0

0 cosθ1 −sinθ1

0 sinθ1 cosθ1

 , R2 =


cosθ2 0 sinθ2

0 1 0

−sinθ2 0 cosθ2

 , R3 =


cosθ3 −sinθ3 0

sinθ3 cosθ3 0

0 0 1

 . (12)

In the case of uniaxial polycrystalline media, the local permittivity along one of the crystal axes has the value ϵ1, while the365

permittivity along all the other crystal axes has the value ϵ2, so Φ= diag(ϵ1, ϵ2) for 2D (which is the general setting for 2D) and

Φ= diag(ϵ1, ϵ2, ϵ2) for 3D. Equation (10) can be written in a more suggestive form in terms of the matrix C = diag(1,0, . . . ,0)

ϵ(x,ω) = ϵ1X1(x,ω)+ ϵ2X2(x,ω), (13)

which is an analogue of equation (2). Here X1 =RTCR and X2 =RT (I −C)R, where I is the identity matrix on Rd. Since

RT =R−1 and C is a diagonal projection matrix satisfying C 2 = C, it is clear that the Xi, i= 1,2, are mutually orthogonal370

projection matrices satisfying

X T
j =Xj , XjXk =Xjδjk, X1 +X2 = I, (14)

which are also properties of the characteristic functions χj in Sec. 3.

Equations (3) and (4) are also satisfied in this polycrystalline setting (Golden and Papanicolaou, 1983). Similar to the

derivation of equation (6) in Sec. 3, a resolvent representation for X1E follows by applying the operator −∇(−∆)−1 to the375

formula ∇·D = 0, yielding ΓD = 0. Then, using ΓEf = Ef and ΓE0 = 0 (Murphy et al., 2015) yields the following analogue

of equation (6)

X1E = s(sI −G)−1X1ek , G=X1ΓX1, (15)

yielding the integral representation in equation (5) for F (s) = ⟨[(sI −G)−1X1ek] · ek⟩. As in the two component setting, a

critical feature of equation (5) is that the component parameters in s are separated from the geometrical information in µ.380

Information about the geometry enters through the moments in equation (7) with G given in (15) and χ1 replaced by X1. The

mass µ0 of the measure µjk is given by

µ0
jk = ⟨X1ej · ek⟩, µ0

kk = ⟨|X1ek|2⟩, (16)

where the second equality follows from the fact that X1 is a real-symmetric projection matrix. The statistical average ⟨|X1ek|2⟩
in (16) can be thought of as the “mean orientation,” or as the percentage of crystallites oriented in the kth direction. For example,385

in the case of two-dimensional polycrystalline media, d= 2, equation (11) implies that

µ0
11 = ⟨cos2 θ⟩, µ0

22 = ⟨sin2 θ⟩, µ0
12 = ⟨sinθ cosθ⟩. (17)

Generalizing equation (12), with R=
∏d

j=1Rj , to dimensions d≥ 3 shows that µ0
jk is a linear combination of averages of the

form ⟨
∏

i cos
ni θi sin

mi θi⟩, where ni,mi = 0,1,2, . . ..
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Figure 6. Spectral analysis of polycrystalline media. (a) Cross sections of polycrystalline microstructure for granular and columnar sea ice.

(b) Discrete checkerboard polycrystal microstructure with isotropic crystallite orientations within the horizontal plane, with small (top) and

large (bottom) crystallite size. Cool and warm colors correspond to low and high displacement field values. (c) The spectral function, a

histogram representation of the spectral measure µ(λ) shown along with it’s theoretical prediction for such isotropic media (Milton, 2002).

(d) An example value of the complex effective permittivity of isotropic polycrystalline media captured by first and second order bounds

(Gully et al., 2015).

The integral representation (5) for this polycrystalline setting yields rigorous forward bounds for the effective parameters of390

composites, given partial information on the microgeometry via the µn (Gully et al., 2015; Milton, 2002), as shown in Fig. 6d

below. One can also use the integral representations to obtain inverse bounds, allowing one to use data about the electromagnetic

response of a sample, for example, to bound its structural parameters, such as the average crystallite orientation (Gully et al.,

2015; Milton, 2002), see Section 5 for more details.

4.1 Spectral measure computations for uniaxial polycrystalline materials395

Computing the spectral measure µ for a given polycrystalline microgeometry first involves discretizing the composite into a

square lattice with vertex values in the range [0,2π] corresponding to the crystallite orientation angles at each vertex location.
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On this square lattice the action of the differential operators ∇ and ∇· are defined in terms of forward and backward difference

operators (Golden, 1992; Murphy et al., 2015). Then the key operator X1ΓX1, which depends on the geometry of the network

via X1, becomes a real-symmetric matrix M . Here Γ is as in Sec. 3.1 and X1 is a banded (random) projection matrix which400

determines the geometry of the polycrystalline medium. In this setting, the integral and X1E in equations (5) and (6) have

explicit representations in terms of the eigenvalues λi and eigenvectors wi of M (Murphy et al., 2015) given by equation (9),

and similarly the spectral measure is given by equation (8), with χ1 replaced by X1.

The following theorem provides a rigorous mathematical formulation of integral representations for the effective parameters

for finite lattice approximations of random uniaxial polycrystaline media, similarly to Theorem 1 above except for the poly-405

crystal problem. This theorem, which holds for both of the settings where the matrix gradient is full rank or rank deficient, is a

direct analogue of Theorem 1, whose proof will be published elsewhere.

Theorem 2. For each ω ∈ Ω, let M(ω) =W (ω)Λ(ω)W (ω) be the eigenvalue decomposition of the real-symmetric matrix

M(ω) =X1(ω)ΓX1(ω). Here, the columns of the matrix W (ω) consist of the orthonormal eigenvectors wi(ω), i= 1, . . . ,N ,

of M(ω) and the diagonal matrix Λ(ω) = diag(λ1(ω), . . . ,λN (ω)) involves its eigenvalues λi(ω). Denote Qi = wi w T
i the410

projection matrix onto the eigen-space spanned by wi. The electric field E(ω) satisfies E(ω) = E0+Ef (ω), with E0 = ⟨E(ω)⟩
and ΓE(ω) = Ef (ω), and the effective complex permittivity tensor ϵ∗ has components ϵ∗jk, j,k = 1, . . . ,d, which satisfy

ϵ∗jk = ϵ2(δjk −Fjk(s)), Fjk(s) =

1∫
0

dµjk(λ)

s−λ
, dµjk(λ) =

N∑
i=1

⟨δλi(dλ)X1Qiêj · êk⟩ . (18)

To numerically compute µ a non-standard generalization of the spectral theorem for matrices is required, due to the projec-

tive nature of the matrices X1 and Γ (Murphy et al., 2015). In particular, a projection method analogous to that in (Murphy415

et al., 2015) shows the spectral measure µ in (18) depends only on the eigenvalues and eigenvectors of the upper left N1 ×N1

block of the matrix RΓRT , where N1 =N/d. These submatrices are smaller by a factor of d, which improves the efficiency

and numerical computations of µ by a factor of d3. In Fig. 6 computations of the displacement field D are displayed for 2D

polycrystaline media for small and large crystal sizes, along side cross sections of polycrystalline microstructure for granular

and columnar sea ice. When the effective permittivity tensor ϵ∗ is diagonal, such as the setting of isotropically oriented crystal-420

lites, the spectral measure for an infinite system is known in closed form (Milton, 2002) to be dµ(λ) = (
√
(1−λ)/λ)(dλ/π),

as shown in Fig. 6 (c). This measure has a singularity at λ= 0, which indicates that the material is electrically conductive, on

macroscopic length scales (Murphy et al., 2015; Murphy and Golden, 2012). When the polycrystalline material has isotropic

oriented crystallite angles, both the mass and first moment of the measure µ are known, which enables two nested bounds for

ϵ to be computed (Gully et al., 2015), as shown in Fig. 6 (d).425

5 Inverse homogenization: Inverse problem of recovery information about the structure of composites

Developed originally for the effective complex permittivity ϵ∗, the integral representation (5) yields rigorous forward bounds

for the effective permittivity ϵ∗ of two-component composites formed of materials with permittivity ϵ1 and ϵ2, given partial
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information on the microgeometry via the moments µn (Bergman, 1980; Milton, 1980; Bergman, 1982; Golden and Papani-

colaou, 1983). One can also use the integral representation to recover information about the structure of composite material,430

this is the problem of inverse homogenization. For the inverse homogenization, it is important that the representation (5) sep-

arates information about the properties of the phases contained in the parameter s from information about the microgeometry

contained in the measure µ and its moments µn = ⟨Gnχ1ek ·χ1ek⟩ (7) via higher-order correlation functions of the geometry

function χ1.

Spectral measure µ and its moments µn contain, in principle, all the geometrical information about the composite. For435

example, the mass µ0 is the volume fraction ϕ of the first component in the composite,

µ0 =

1∫
0

dµ(z) = ⟨χ1⟩= ϕ, (19)

and the fraction of the second phase is 1−ϕ. Connectivity information is also embedded in the spectral measure.

The basis for inverse homogenization is provided by the uniqueness theorem (Cherkaev, 2001) which formulates the con-

ditions under which the measure µ in the representation (5) can be uniquely reconstructed from measured data. For instance,440

electromagnetic data measured for a range of frequency of the applied electromagnetic field, are sufficient to uniquely recover

the measure µ in (5). Such data are also sufficient for unique reconstruction of the moments µn (Cherkaev and Ou, 2008), pro-

vided the permittivity of one of the phases is frequency dependent. Two major approaches to the inverse homogenization are

the reconstruction of the measure µ (Cherkaev, 2001; Cherkaev and Ou, 2008; Day and Thorpe, 1996; Zhang and Cherkaev,

2009; Bonifasi-Lista and Cherkaev, 2009; Bonifasi-Lista et al., 2009; Cherkaev and Bonifasi-Lista, 2011; Day and Thorpe,445

1999; Day et al., 2000; Golden et al., 2011; Cherkaev, 2020) (and then calculating its moments) and inverse bounds for the

structural parameters, such as, for example, the volume fraction of each of the components (McPhedran et al., 1982; McPhe-

dran and Milton, 1990; Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998; Cherkaev, 2001; Cherkaev and Ou, 2008),

orientation of the crystals (Gully et al., 2015) or connectedness (Orum et al., 2012) of the structure.

When only a few data points are available, though the uniqueness theorem (Cherkaev, 2001) is not immediately applicable,450

one can outline a set of measures consistent with the measurements,

M= {µ : Fµ(s) = 1− ϵ∗/ϵ2}, (20)

and determine an interval confining the first moment of the measure µ providing, for instance, an interval of uncertainty for

the volume fraction of one material. For several data points corresponding to the same structure of the composite, such as for

example, measurements at a few different frequencies, the bounds for the volume fraction are given by an intersection of all455

admissible intervals (Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998; Tripp et al., 1998). When the requirements for the

measurements needed to uniquely reconstruct the spectral measure µ established by the uniqueness theorem are satisfied, the

set M is reduced to one point. But the map from the set of measures to the set of the microgeometries is not unique, and there

is a variety of microstructures generating the same response under the applied field. Different microgeometries corresponding

to the same sequence of moments µ0,µ1, ... are the S−equivalent structures (Cherkaev, 2001) that are not distinguishable by460

homogenized measurements.
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An equivalent representation for function F (s) in (5) using a logarithmic potential of the measure µ on the complex plane

of variable s is (Cherkaev, 2001):

F (s) =
d

ds

∫
ln |s− z| dµ(z), d/ds= (∂/∂x− i ∂/∂y) , s=

1

1− ϵ1/ϵ2
. (21)

The solution to the inverse problem of recovering the measure µ is constructed solving the minimization problem:465

minµ ||Aµ−F ||2 , F (s) = 1− ϵ∗(s)/ϵ2 (22)

where A is the integral operator in (21) or in (5), the norm is the L2−norm, F = F (s), s ∈ C, is the given function of the

measured data, and C is a curve on the complex plane corresponding to the frequencies of the applied field. The solution of the

minimization problem does not depend continuously on the data. Unboundedness of the operator A−1 leads to arbitrarily large

variations in the solution, and the problem requires regularization to design a stable numerical algorithm (Cherkaev, 2001).470

Regularized inversion schemes and stable reconstruction algorithms to recover µ and its moments from data on the effective

complex permittivity were developed in (Cherkaev, 2001, 2004; Cherkaev and Ou, 2008; Bonifasi-Lista and Cherkaev, 2009;

Cherkaev and Bonifasi-Lista, 2011) based on L2, TV , and non-negativity constraints, and constrained Pade approximation of

the measure µ (Zhang and Cherkaev, 2009). In application to imaging of bone structure, spectral measures µ computed with the

regularization algorithms based on L2 constrained minimization, from electromagnetic (Bonifasi-Lista and Cherkaev, 2009;475

Cherkaev and Bonifasi-Lista, 2011; Golden et al., 2011) and viscoelastic (Bonifasi-Lista and Cherkaev, 2008; Bonifasi-Lista

et al., 2009; Cherkaev and Bonifasi-Lista, 2011) data allow to distinguish the samples of healthy and osteoporotic bone via the

different microstructures and the connectivity of the trabecular architecture.

The first application of Stieltjes representations to the elastic properties of two phase composites can be found in (Kantor

and Bergman, 1982, 1984). With hydrostatic and deviatoric projections Λh and Λs onto the orthogonal subspaces of the second480

order tensors comprised of tensors proportional to the identity tensor and trace-free tensors, the Stieljtes integral represen-

tation was generalized in (Cherkaev and Bonifasi-Lista, 2011) to the effective viscoelastic modulus and to two-dimensional

viscoelastic polycrystalline materials (Cherkaev, 2019) under the assumption that the constituents have the same elastic bulk

and different (elastic and viscoelastic) shear moduli. This representation was also used in inverse homogenization (Bonifasi-

Lista and Cherkaev, 2008; Cherkaev and Bonifasi-Lista, 2011; Cherkaev, 2020) for successful recovering the porosity of a485

composite from known viscoelastic shear modulus.

Other approaches to the volume fraction bounds include (Engström, 2005; Milton, 2012; Thaler and Milton, 2014) based on

estimates for higher order moments and on variational bounds, as well as direct inversion of known formulas or mixing rules

(Bergman and Stroud, 1992; Levy and Cherkaev, 2013) for effective properties of composites with specific structure, however,

an advantage of the methods discussed here, is their applicability without a priori assumption about the microgeometry.490

Spectral coupling of various properties of composites. An important application of inverse homogenization is for indi-

rect evaluating properties of materials through cross-coupling (Milton, 2002). Different properties of composites are coupled

through their microgeometry; this phenomenon has been known for a long time and used for estimating difficult to measure

directly properties, from available data. The conventional approaches are based on empirical and semi-empirical relations, such
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as for instance, Kozeny-Carman or Katz-Tompson. These relations estimate permeability of a porous material characterizing495

the microstructure by a ”formation factor” F which relates properties of one phase in the composite to the effective properties

of the material (Sahimi, 1995; Torquato, 2002; Wong et al., 1984; Wong, 1988).

In the spectral coupling method (Cherkaev, 2001) based on properties of the Stieltjes representation (5), the spectral mea-

sure µ is associated with the geometric structural function as this is the function that couples various properties of the same

material. The method of spectral coupling (Cherkaev, 2001, 2004; Cherkaev and Zhang, 2003; Cherkaev and Bonifasi-Lista,500

2011) for two component composites based on this coupling of different properties of the composite through the spectral mea-

sure allows us to recover various transport properties of sea ice from the spectral measures computed using other measured

properties. In particular, this approach results in an indirect method of calculation of the thermal conductivity (Cherkaev and

Zhang, 2003) and hydraulic conductivity of polycrystalline sea ice, difficult to measure over large scales, from the effective

complex permittivity data (recovered from radar measurements). The spectral coupling was extended to evaluating viscoelastic505

properties of two component composite in (Cherkaev and Bonifasi-Lista, 2011) in application to characterizing bone properties

and microarchitecture.

Inverse homogenization for recovering microstructural parameters from effective property measurements is applicable to

problems in remote sensing, medical imaging, non-destructive testing of materials, and allows for example, to use Synthetic

Aperture Radar (SAR) remote sensing for assessing the structure and transport properties of sea ice.510

5.1 Bounds for the moments of the spectral measure

The second approach to the inverse homogenization problem is calculating inverse bounds for the structural parameters, such

as, for example, the volume fraction of each of the components (McPhedran et al., 1982; McPhedran and Milton, 1990;

Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998; Cherkaev, 2001), orientation of the crystals (Gully et al., 2015) or

connectedness (Orum et al., 2012) of the structure. An analytical approach to estimating the volume fractions of materials in a515

composite (Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998; Tripp et al., 1998) gives explicit analytic formulas for the

first order inverse bounds on the volume fractions of the constituents in a general composite and second order inverse bounds

on the fractions of the phases in an isotropic composite (Cherkaev and Golden, 1998).

The inverse bounds are derived using analyticity of the effective complex permittivity of the composite. The first order

bounds p(1)l and p
(1)
u for the volume fraction ϕ give the lower and upper bounds for the zero moment µ0 of the measure µ or520

its mass in (19) (Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998):

p
(1)
l ≤ ϕ≤ p(1)u , p

(1)
l = |f |2 Im(s̄)

Im(f)
, p(1)u = 1− |g|2 Im(t̄)

Im(g)
. (23)

Here t= 1− s, f is the known value of F (s), and g is the known value of G(t) = 1− ϵ∗/ϵ1.

First and second order forward and inverse bounds are illustrated in Fig. 7(a) (Cherkaev and Golden, 1998) where first

order bounds for the effective complex permittivity of all anisotropic composites that could be formed from two materials525

of permittivity ϵ1 and ϵ2 are presented in the left panel, while the second order isotropic bounds are shown in right panel.

The small lens shaped domains each contain the anisotropic (left) and isotropic (right) mixtures corresponding to the volume
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Figure 7. Forward and Inverse bounds. (a) Illustration of bounds on the volume fraction of one component in the mixture derived from first

order anisotropic bounds (left panel), and from the second order isotropic bounds (right panel) for the effective permittivity (Cherkaev and

Golden, 1998). The small lens shaped domains each contain ϵ∗ of the anisotropic (left) and isotropic (right) composites corresponding to the

volume fractions of the first component pl and pu which give the lower and upper bounds for the fraction of the first material. (b) Lower

bounds on separation parameter qmin versus temperature (Orum et al., 2012), calculated using data of the effective complex permittivity. The

inverted data clearly indicate that as the ice warms, the separations of the brine inclusions decrease. Stars and squares indicate different sea

ice slabs. (c) Polycrystalline bounds (Gully et al., 2015) for the permittivity sea ice (left) together with the measured effective permittivity

of sea ice in (Arcone et al., 1986). Comparison of the polycrystalline bounds with the two-component bounds (right) shows a dramatic

improvement over the classic two-component bounds as the new bounds include additional information about single crystal orientations.

(Notice very different scales on the axes.)
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fractions ϕ of the first component equal to p
(q)
l and p

(q)
u , q = 1,2. The points p

(q)
l and p

(q)
u give the lower and upper bounds

for the volume fraction of the first material in the composite. Superscripts q = 1 and q = 2 indicate the first and second order

bounds. For a set of data points ϵ∗(k), k = 1, ...,N , corresponding to the same structure the bounds for the fraction ϕ of one530

phase in the composite are given by an intersection of all admissible intervals p
(q)
l (k)≤ ϕ≤ p

(q)
u (k) (Cherkaev and Tripp,

1996):

P
(q)
l =max

k
p
(q)
l (k) ≤ ϕ ≤ min

k
p(q)u (k) = P (q)

u , q = 1,2. (24)

Here p
(q)
l (k) and p

(q)
u (k) are, respectively, lower and upper bounds for the volume fraction ϕ calculated using the effective

complex permittivity ϵ∗(k), and q is the order of the bounds, q = 1 for a general mixture, q = 2 for an isotropic composite.535

In (Cherkaev and Golden, 1998) this method was applied to estimating brine volume in sea ice from two data sets of 4.75

GHz measurements of the complex permittivity ϵ∗ of sea ice (Arcone et al., 1986) at −6◦C and −11◦C with fractions of brine

ϕ= 0.036 and ϕ= 0.0205. Sea ice was considered as a composite of three components: pure ice, brine, and air; the effective

complex permittivity of the mixture of ice and air was calculated with the Maxwell Garnett formula. The first order bounds

estimate the brine volume fraction as 0.0213≤ ϕ≤ 0.0664 and 0.0119≤ ϕ≤ 0.0320, for the data set 1 and 2, respectively. The540

second order inverse bounds derived with the assumption of 2D isotropy in the horizontal plane give the following estimates for

the brine volume fraction: 0.0333≤ ϕ≤ 0.0422 for the first data set with brine volume ϕ= 0.036, and 0.0189≤ ϕ≤ 0.0213

for the second data set with volume fraction of brine ϕ= 0.0205.

First order bounds are further extended to polycrystalline materials and allow to estimate the mean crystal orientation (Gully

et al., 2015).545

5.2 Matrix particle forward and inverse bounds

Another parameter important in characterizing the structure of composite material consisting of inclusions within a host matrix,

is separation between the inclusions. Inclusion separation is an indicator of connectedness of phases – a key feature in critical

behavior and phase transitions; the separation parameter may be used to estimate closeness to the percolation phase transition.

Composites with non-touching inclusions of one material embedded in a host matrix of different material are called ma-550

trix particle composites. For a matrix particle composite with separated inclusions tighter bounds on the effective complex

permittivity may be obtained. In (Orum et al., 2012) sea-ice is considered as a matrix particle composite in which the brine

phase contained in separated, circular discs of radii rb randomly located on a horizontal plane, is surrounded by a “corona” of

ice, with outer radius ri. Such a material is called a q-material, where q = rb/ri. The minimal separation of brine inclusions

is 2(ri − rb) = 2ri(1− q). In this case, as it is shown in (Bruno, 1991), the support of µ in (5) lies in an interval [sm,sM ],555

0< sm < sM < 1 such that sm = 1
2 (1− q2),sM = 1

2 (1+ q2). The further the separation of the inclusions, the smaller the in-

terval [sm,sM ], and the tighter the bounds. Smaller q values indicate well separated brine (and colder temperatures as in Fig.

7), and q = 1 corresponds to no restriction on the separation, with sm = 0 and sM = 1.

Two parameters characterizing the structure of the sea ice composite are volume fraction p of the brine inclusions and a

separation parameter q that quantifies how close the inclusions are to each other. Using observed values of effective complex560
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permittivity, and inverting the forward matrix particle bounds, information about these two parameters is obtained in (Orum

et al., 2012) by solving exactly a reduced inverse spectral problem and bounding the volume fraction of the constituents, an

inclusion separation parameter and the spectral gap of a self-adjoint operator that depends on the geometry of the composite.

Inverse bounds for inclusion separation are shown in Fig. 7 (Orum et al., 2012), where the lower bound qmin is displayed versus

temperature of the sea ice slab. The inverted data clearly indicate that as the ice warms, the separations of the brine inclusions565

decrease. It is remarkable that this important phenomenon is characterized from electromagnetic measurements through an

inversion scheme.

5.3 Extension to polycrystalline composites

The method of inverse bounds (Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998; Tripp et al., 1998) for structural

parameters of a composite from measured effective properties was extended to polycrystalline materials in (Gully et al., 2015).570

In the case of uniaxial polycrystalline composite, (Gully et al., 2015) develops bounds for the mean orientation of crystals in the

sea ice from measured values of ice permittivity. As columnar and granular microstructures have different mean single crystal

orientations (Weeks and Ackley, 1982) this inverse approach is useful for determining ice type when using remote sensing

techniques.

The structures of different types of ice formed under different environmental conditions vary tremendously. For instance,575

for congelation ice frozen under calm conditions, the crystals are vertically elongated columns, and each crystal itself is a

composite of pure ice platelets separating layers brine inclusions. The orientation of each individual crystallite is determined

by the direction that its c-axis points, which is perpendicular to its platelets or lamellae of pure ice. Finding the bounds for the

crystal orientations we can electromagnetically distinguish columnar ice from granular ice. This is a critical problem in sea

ice physics and biology, as these different structures have vastly different fluid flow properties (with 5% vs. 10% brine volume580

fraction at the percolation threshold) which affects melt pond evolution, nutrient replenishment, brine convection, and other

mesoscale processes in the ice cover.

Bounds for the effective permittivity of polycrystalline composites are much tighter than those bounding the permittivity of

a general two-component material and statistically isotropic two-component material for sea ice. Such polycrystalline bounds

constructed in (Gully et al., 2015) are shown in two right panes of Fig. 7(c). Polycrystalline bounds for the permittivity sea ice585

(left) (Gully et al., 2015) (with the measured data on permittivity of sea ice (Arcone et al., 1986)) provide a much tighter bound

than general two-component material and statistically isotropic two-component material for sea ice given on the right (notice

a different scale). This dramatic improvement over the classic two-component bounds is due to additional information about

single crystal orientations included in the new bounds.

As was discussed in the polycrystal section, the zero moment µ0
kk in (16) of the measure µ in the integral representation590

of the effective properties of a uniaxial polycrystalline material is µ0
kk = ⟨|X1ek|2⟩. The statistical average ⟨|X1ek|2⟩ can be

viewed as the “mean crystal orientation” related to the percentage of crystallites oriented in the kth direction.

Extending the inverse bounds method (Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998; Tripp et al., 1998) to poly-

crystalline materials, the inverse polycrystalline bounds (Gully et al., 2015) estimate the mean crystal orientation by bounding
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the zero moment µ0
kk of the measure µ using measured data on the ice permittivity. This procedure gives an analytic estimate595

(the first order inverse bounds) for the range of values of the mean crystal orientation similar to (23):

⟨eTkX1ek⟩l ≤ ⟨eTkX1ek⟩ ≤ ⟨eTkX1ek⟩u ,

⟨eTkX1ek⟩l = |f |2 Im(s)

Im(f)
, ⟨eTkX1ek⟩u = 1− |g|2 Im(t)

Im(g)
, (25)

Here X1 is defined in the polycrystalline section as X1 =RTCR, f is the known value of F (s) and g is the known value of

G(t) = 1− ϵ∗/ϵ1 with t= 1− s.600

Inverse polycrystalline bounds computed in (Gully et al., 2015) for different types of sea ice, granular and columnar ice, show

that the method allows revealing the type of ice based on electromagnetic data. For statistically isotropic granular ice shown in

Fig. 6(a)-top, the inverse mean crystal orientation bounds (Gully et al., 2015) estimate the deviation angle as π/2± .02 (with

the true value π/2). The inverse mean crystal orientation bounds (Gully et al., 2015) for columnar ice (see Fig. 6(a)-bottom),

estimate the angle of deviation of the crystal’s axis from the vertical as 20o ± 8o. These results demonstrate a significant605

difference in the reconstructed mean orientations of crystals in columnar and in granular ice and provide a foundation for

distinguishing the types of ice using electromagnetic measurements.

Generalization of these polycrystalline bounds to the case when c-axis has a Gaussian distribution with known mean angle

and the variance in the horizontal plane is developed in (McLean et al., 2023) as a method for obtaining bounds on effective

permittivity of columnar sea ice that has a preferred direction in the horizontal plane due to a prevailing ocean current.610

6 Analytic continuation for advection diffusion processes.

The enhancement of diffusive transport of passive scalars by complex fluid flow plays a key role in many important processes

in the global climate system (Washington and Parkinson, 1986) and Earth’s ecosystems (Di Lorenzo et al., 2013). Advection

of geophysical fluids intensifies the dispersion and large scale transport of heat (Moffatt, 1983), pollutants (Csanady, 1963;

Beychok, 1994; Samson, 1988), and nutrients (Di Lorenzo et al., 2013; Hofmann and Murphy, 2004) diffusing in their en-615

vironment. In sea ice dynamics, where the ice cover couples the atmosphere to the polar oceans (Washington and Parkinson,

1986), the transport of sea ice can also be enhanced by eddy fluxes and large scale coherent structures in the ocean (Watanabe

and Hasumi, 2009; Lukovich et al., 2015; Dinh et al., 2023). In sea ice thermodynamics, the temperature field of the atmosphere

is coupled to the temperature field of the ocean through sea ice, a composite of pure ice with brine inclusions whose volume

fraction and connectedness depend strongly on temperature (Thomas and Dieckmann, 2003; Golden et al., 2007; Golden,620

2009). Convective brine flow through the porous microstructure can enhance thermal transport through the sea ice layer (Lytle

and Ackley, 1996; Worster and Jones, 2015; Kraitzman et al.).

Over the years a broad range of mathematical techniques have been developed that reduce the analysis of complex composite

materials, with rapidly varying structures in space, to solving averaged, or homogenized equations that do not have rapidly

varying data, and involve an effective parameter. Here the basic idea is that a particle diffusing in a velocity field with regular625

geometry, such as stationary random, periodic or quasiperiodic variations, displays large scale, long time behavior that is akin to
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Brownian motion with an effective diffusion tensor that depends on the geometry of the velocity field and the local diffusivity.

In (Taylor, 1921) it was first shown that the long time, large scale dispersion of passive scalars can be described by an effective

diffusivity tensor D∗. Motivated by (Papanicolaou and Varadhan, 1982), the effective parameter problem was extended to

complex velocity fields, with rapidly varying structures in both space and time, providing a rigorous mathematical foundation630

for calculating effective (eddy) viscosity and the effective (eddy) diffusivity tensors (McLaughlin et al., 1985). The effective

parameter problem of (anomalous) super–diffusion and sub–diffusion is given in (Biferale et al., 1995; Fannjiang, 2000).

Based on (McLaughlin et al., 1985), Avellaneda and Majda (Avellaneda and Majda, 1989, 1991) adapted the ACM (Golden

and Papanicolaou, 1983) to the advection diffusion equation and obtained a Stieltjes integral representation of the effective

diffusivity tensor D∗, for flows with zero mean drift, involving the Péclet number ξ of the flow. This representation encapsulates635

the geometric complexity of the flow in a spectral measure associated with a random Hermitian operator (or matrix). Mimicking

methods developed for composite media (Milton, 2002), they obtained rigorous bounds on the components of D∗. Moreover,

in direct analogue of methods developed for composites (Milton, 2002), they also found velocity fields which realize these

bounds, such as the famous confocal sphere configurations which realize the Hashin–Shtrikman bounds of composites (Hashin

and Shtrikman, 1962; Avellaneda and Majda, 1991). Remarkably, this method has also been extended to time dependent flows640

(Avellaneda and Vergassola, 1995; Murphy et al., 2017b), flows with incompressible nonzero effective drift (Pavliotis, 2002;

Fannjiang and Papanicolaou, 1994), flows where particles diffuse according to linear collisions (Pavliotis, 2010), and solute

transport in porous media (Bhattacharya, 1999), which has a direct application to diffusive brine advection in sea ice. All yield

Stieltjes integral representations of the symmetric and, when appropriate, the antisymmetric part of D∗.

We now briefly describe our recent results on this framework (Kraitzman et al.; Murphy et al., 2017b, 2020). It is an645

important example of how Stieltjes integral representations can provide a rigorous basis for analysis of problems for sea

ice involving advection diffusion processes. The dispersion of a cloud of passive scalars with density ϕ(t,x) diffusing with

molecular diffusivity ε and being advected by a incompressible velocity field u(t,x) satisfying ∇·u= 0 is described by the

advection-diffusion equation

∂ϕ

∂t
= u · ∇ϕ + ϵ∆ϕ, ϕ(0,x) = ϕ0(x). (26)650

Here, the initial density ϕ0(x) and the fluid velocity field u are assumed to be given. In equation (26), the molecular diffusion

constant ε > 0, and ∆=∇·∇=∇2 is the Laplacian. This equation also models the transport of heat advected by the fluid

velocity field u and diffused with molecular diffusion coefficient ε. To simplify our presentation, we assume that the velocity

field u in equation (26) is temporally and spatially periodic. Non-dimensionalization (Murphy et al., 2020) and homogenization

(McLaughlin et al., 1985) of equation (26) shows that long time, large volume (or area) macroscopic thermal transport is655

described by a diffusion equation involving an averaged scalar density ϕ̄ and a symmetric, constant (Pavliotis, 2002) effective

diffusivity tensor κ∗ (McLaughlin et al., 1985),

∂ϕ̄(t,x)

∂t
=∇ · [κ∗∇ϕ̄(t,x)], ϕ̄(0,x) = ϕ0(x). (27)
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For simplicity, we consider a diagonal coefficient κ∗
kk, k = 1, . . . ,d, of κ∗, set κ∗ = (κ∗)kk, and write u= u0v, where u0 is660

the (constant) strength of u and v is a non-dimensional velocity field containing the geometric and dynamic information about

u. In these non-dimensional variables the Péclet number ξ and molecular diffusivity ε are related by ξ = 1/ε (Murphy et al.,

2017b, 2020).

Using a mathematical framework that is strikingly similar to that in Section 3, the effective diffusivity has the following

Stieltjes integral representation (McLaughlin et al., 1985; Avellaneda and Majda, 1991; Murphy et al., 2017b, 2020)665

κ∗ = ε(1+ ⟨|∇wk|2⟩), ⟨|∇wk|2⟩=
∞∫

−∞

dν(λ)

ε2 +λ2
, (28)

where ⟨·⟩ denotes averaging over the space-time period cell for periodic flows (Murphy et al., 2017b, 2020) or statistical

average for random flows (Avellaneda and Majda, 1989; Avellaneda and Vergassola, 1995) and wk is the solution to a cell

problem (McLaughlin et al., 1985; Murphy et al., 2017b). An equivalent statement which emphasizes the connection to the

two component composites setting in equation (5) is670

F (ε) = 1− κ∗

ε
=

∞∫
−∞

dν(λ)

ε2 +λ2
. (29)

Remarkably, the vector field E(t,x) =∇wk(t,x)+ ek satisfies equation (3) for two-component composite materials, with

D = ϵE, ϵ= εI +S, S = (−∆)−1∂t +H , and ϵ plays the role of the medium’s electrical permittivity tensor (Murphy et al.,

2017b, 2020). Here, ∂t denotes partial differentiaion with respect to time and H(t,x) is the stream matrix, given in terms

of the incompressible velocity field v =∇ ·H and satisfies HT =−H (Avellaneda and Majda, 1991, 1989). When the flow675

is time-independent, v = v(x), then wk = wk(x) and S =H(x). Moreover κ∗ = ϵ∗, with ϵ∗ = (ϵ∗)kk defined above (Murphy

et al., 2017b). The integral representation for κ∗ in Equation (28) follows from the resolvent formula

∇wk = (εI +ΓSΓ)−1gk, gk =−ΓHek (30)

which is an analogue of Equation (6). The operator ΓSΓ is antisymmetric due to the asymmetry of both the operators ∂t and

H , so iΓSΓ is a self-adjoint operator (Murphy et al., 2017b), where i=
√
−1 is the imaginary unit and Γ =−∇(−∆)−1∇·680

is the same projection operator arising in the setting of two-component composites. Equation (28) shows that brine advection

enhances the thermal diffusivity since κ∗ ≥ ε.

Analytical calculations of the spectral measure ν are extremely difficult except for simple flows like shear flow (Avellaneda

and Majda, 1991). However, Padé approximents [L/M ] provide rigorous, converging upper and lower bounds (Baker and

Graves-Morris, 1996) for the Stieltjes function f(z) = ⟨|∇wk|2⟩/z = F/z in Equations (28) and (29), with z = ε−2, using the685

moments νn of ν, [M − 1/M ]≤ f(z)≤ [M/M ], f(z) =
∑∞

n=0(−1)n ν2n z
n. However, the lack of a method to calculate the

moments νn of ν has impeded progress on obtaining explicit bounds for specific flows using this procedure (Avellaneda and

Majda, 1991, 1989) since 1991! We have recently developed a mathematical framework (Murphy et al., 2023) that can be

used to compute, in principle, all of the moments νn associated with a spatially or space-time periodic velocity field v, hence
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Figure 8. Spectral measures for effective diffusivities. (a) Streamlines for BC-flow with fluid velocity field v = (C cosy,B cosx) with

B = 1, C = 1− p, and increasing values of p from left to right. BC-cell-flow with closed streamlines arises for B = C = 1. As the value of

C decreases from 1, the streamlines elongate in the y-direction giving rise to large scale thermal transport even in the absence of molecular

diffusivity, when ε= 0. BC-shear flow is attained when B = 1 and C = 0, for which the spectral measure is known to be a δ-function at the

origin λ= 0 (Avellaneda and Majda, 1991), as shown in the rightmost panel of (a). (b) Corresponding spectral functions ν22(λ) (histogram

representations) for the spectral measures ν22 in (c), which display the spectral measure weights m2
i vs eigenvalues λi of the matrix G=

iΓHΓ. Since the streamlines do not become elongated in the x-direction, the spectral functions for the measure ν11 are qualitatively similar

to that of ν22 for BC-shear flow, for all p. The spectral functions in (b) are ensemble averaged for B = 1 and C = 1− ζ with ζ ∼ U([0,p]),

with p= 0.01, 0.5, 0.7, and 1, from left to right. The zoomed in insets in (c) with −5× 10−4 ≤ λi ≤ 5× 10−4 show the density of the

measure near the spectral origin λ= 0 increasing as BC-cell flow transitions to BC-shear flow.
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Padé approximant bounds. We have utilized these results to provide rigorous bounds for the enhancement of sea ice thermal690

conductivity by brine fluid velocity fields (Kraitzman et al.).

6.1 Spectral measure computations for advection diffusion processes.

We have extended our numerical methods discussed for two component media in Section 3.1 to compute the spectral measure

ν for spatially periodic flows (Murphy et al., 2020) and developed Fourier methods for computing ν for space-time periodic

flows (Murphy et al., 2017b). For simplicity, we focus our discussion to the setting of spatially periodic flows. Computing the695

spectral measure ν for a given flow involves discretizing the spatially dependent stream matrix H(x), which becomes a banded

antisymmetric matrix satisfying HT =−H . The projection matrix Γ is given by that in Section 3.1 and the key self-adjoint

operator is given by G= iΓHΓ, which becomes a Hermitian matrix. In this case, the integral in (28) and the resolvent in (30)

are given in terms of the eigenvalues λi and eigenvectors wi of the matrix G

∇wk =
∑
i

mi

ε+ iλi
wi , ⟨|∇wk|2⟩=

∑
i

〈
|mi|2

ε2 +λ2
i

〉
, mi = wi · gi , (31)700

which is analogous to equation (9). We have also developed Fourier methods for computing the spectral measure ν for space-

time periodic flows (Murphy et al., 2017b).

The computations in (Murphy et al., 2017b, 2020) and those displayed in Fig. 8 show that the spectral origin λ= 0 for

advection diffusion plays the role of the spectral endpoints λ= 0,1 for two-component and polycrystalline composite materials,

with an increase in spectral mass at λ= 0 increasing the advection-driven enhancement of effective diffusivity above the bare705

molecular diffusivity ε in the advection dominated regime where ε≪ 1 (or Péclet number ξ ≫ 1). For example, the closed

streamlines shown in the leftmost panel of Fig. 8(a) for BC-cell-flow, with fluid velocity field v = (C cosy,B cosx) and B =

C = 1, transport tracers in a short range periodic motion so long range transport is only possible due to molecular diffusion.

Consequently, in the advection dominated regime the effective diffusivity scales as κ∗ ∼ ε1/2 (Fannjiang and Papanicolaou,

1994, 1997; Murphy et al., 2020), vanishing as ε→ 0. As shown in Fig. 8(b) and (c), and also in (Murphy et al., 2017b), this is710

reflected in the spectral measure ν by the lack of adequate mass near λ= 0 for the singular integrand 1/(ε2+λ2) to overcome

the multiplicative factor of ε for κ∗ = ε(1+ ⟨|∇wk|2⟩) in (28).

On the other hand, when B ̸= C the streamlines elongate and connect to neighboring cells which gives rise to long range

advection of tracers, even in the absence of molecular diffusion. This is reflected in the spectral measure by a buildup of

adequate mass near λ= 0 for the singular integrand 1/(ε2 +λ2) to overcome the multiplicative factor of ε for κ∗ = ε(1+715

⟨|∇wk|2⟩) in (28), leading to a non-zero value of κ∗ in the limit ε→ 0. This is a key example of how the behavior of the

spectral measure ν governs the behavior of the bulk transport coefficient κ∗.

7 Random matrix theory for sea ice physics.

In random matrix theory (RMT) (Guhr et al., 1998; Bohigas and Giannoni, 1984; Deift and Gioev, 2009), long and short range

correlations of the bulk eigenvalues away from the spectral edge (Canali, 1996; Guhr et al., 1998) for random matrices are720
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Figure 9. Eigenvalue spacing statistics for the sea ice melt ponds (a) and long range eigenvalue statistics for brine structures in sea ice (b).

(a): Eigenvalue spacing distributions (ESD) P (z) for melt ponds shown in Fig. 4 corresponding to melt water area fractions 9%, 27%, and

57%. (b): Spectral statistics for brine structures shown in Fig. 3 corresponding to area fractions of water 12%, 51%, and 70%. We see the

transition to universal Wigner-Dyson statistics as ocean phases and brine phases become connected over the scale of the sample.

measured using various eigenvalue statistics (Guhr et al., 1998; Bohigas and Giannoni, 1984), such as the eigenvalue spacing

distribution (ESD), spectral rigidity ∆3 and number variance Σ2. To observe statistical fluctuations of these bulk eigenvalues

about the mean density, the eigenvalues must be unfolded (Bohigas and Giannoni, 1984; Guhr et al., 1998; Canali, 1996; Plerou

et al., 2002). The localization properties of the eigenvectors are measured in terms of quantities such as the inverse participation

ratio (IPR) (Plerou et al., 2002; Evers and Mirlin, 2008).725

In (Murphy et al., 2017a), we found that as a percolation threshold is approached and long range order develops, the behavior

of the ESD transitions from weakly-correlated Poissonian toward obeying universal Wigner-Dyson (WD) statistics of the

Gaussian Orthogonal Ensemble (GOE). The eigenvectors de-localize, and mobility edges appear (Murphy et al., 2017a),

similar to the metal/insulator transition in solid state physics. We explored the transition in the 2D and 3D RRN, as well as in

sea ice microstructures such as in 2D discretizations of the brine microstructure of sea ice (Golden et al., 1998a, 2007; Golden,730

2009), melt ponds on Arctic sea ice (Hohenegger et al., 2012), the sea ice pack itself, and porous human bone (Golden et al.,
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Figure 10. Anderson localization transition for electric fields in sea ice brine microstructure. Examples of (a) localized and (b) extended

electric fields for sea ice brine microstructure with increasing connectedness from left to right. The values of s are taken to satisfy Im(s) =

0.001 with 0≤ Re(s)≤ 1. The electric fields are displayed for values of Re(s) which (a) maximize and (b) minimize IPR[E](s), which

correspond to the values of such s associated with (a) most localized and (b) most extended electric fields. (c) Corresponding IPR for

eigenvectors uj plotted versus eigenvalue index j. The vertical lines define the δ-components of µ, where the eigenvalues satisfy λi ≲ 10−14

and 1−λi ≲ 10−14. The horizontal lines mark the IPR value IGOE = 3/N1 for the Gaussian orthogonal ensemble (GOE) with matrix size

N1 ≈ ϕN , where N = Ldd.
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2011; Kabel et al., 1999; Bonifasi-Lista and Cherkaev, 2009; Cherkaev and Bonifasi-Lista, 2011). We extended these results

to two-component composite media with quasiperiodic microgeometry in (Morison et al., 2022).

For highly correlated WD spectra exhibited by, for example, real-symmetric matrices of the GOE, the nearest neighbor ESD

P (z) is accurately approximated by P (z)≈ (πz/2)exp(−πz2/2), which illustrates eigenvalue repulsion, vanishing linearly735

as spacings z → 0 (Guhr et al., 1998; Stone et al., 1991; Canali, 1996). In contrast, the ESD for uncorrelated Poisson spectra,

P (z) = exp(−z), allows for significant level degeneracy (Guhr et al., 1998). In Fig. 9(a) we display the ESDs for Poisson

(blue) and WD (green) spectra, along with the behavior of the ESDs for the matrix M = χ1Γχ1, corresponding to the arctic

sea ice melt ponds in Fig. 4 with fluid area fraction ϕ. It shows that for sparsely connected systems, the behavior of the

ESDs is well described by weakly correlated Poisson-like statistics (Canali, 1996). With increasing connectedness, the ESDs740

transition toward highly correlated WD statistics with strong level repulsion. This behavior of the ESD reveals a mechanism

for the collapse in the spectral gaps of µ. For sparsely connected systems, the weak level repulsion allows for significant level

degeneracy and resonances in µ as shown in (Murphy et al., 2015) for the 2D percolation model and in Fig. 4 (a) for arctic melt

pond microstructure. As the system becomes increasingly connected, the level repulsion increases causing the eigenvalues

to spread out which, in turn, causes the gaps in the measure near the spectral edges to collapse and subsequently form δ-745

components of the measure at the spectral endpoints λ= 0,1, as shown in the figures in Section 3.1. Our computations of ∆3

and Σ2 are are shown in Fig. 9(b) for the brine microstructure in Fig. 3, with a transition toward that of the GOE, as the system

becomes increasingly connected, indicating an increase in the long range correlations of the eigenvalues.

The eigenvectors uj of M = χ1Γχ1, associated with the N1 ×N1 sub-matrices of Γ, also exhibit a connectedness driven

transition in their localization properties. The IPR is defined as Ij =
∑

i |ui
j |4, i, j = 1, . . . ,N1, where ui

j is the ith component750

of uj . Eigenvectors of matrices in the GOE are known to be highly extended (Deift and Gioev, 2009), with asymptotic value of

the IPR given by IGOE = 3/N1 (Plerou et al., 2002). In (Murphy et al., 2017a), we found for the 2D and 3D percolation models

that as p surpasses pc and long range order is established in a RRN “mobility edges” form in the eigenvector IPR with a sudden

increase in the number of extended eigenvectors, which is analogous to Anderson localization, where mobility edges mark the

characteristic energies of the metal-insulator transition (MIT) (Guhr et al., 1998). Remarkably, the mobility edges for RRN are755

due to very extended eigenstates associated with δ-components that form at the spectral endpoints precisely at the percolation

threshold pc (and 1− pc for 3D) (Murphy and Golden, 2012), which control critical behavior in insulator/conductor and

conductor/superconductor systems (Murphy and Golden, 2012; Clerc et al., 1990; Bergman and Stroud, 1992). This and other

eigenvector phenomena was observed for two-component composite media with quasiperiodic microgeometry in (Morison

et al., 2022).760

The IPR phenomena for the eigenvectors of the matrix G= χ1Γχ1 is shown for sea ice brine microstructure in Fig. 10 (c).

The electric field E within sea ice brine microstructure exhibits a frequency dependent Anderson localization transition, as

shown in Fig. 10 (a) and (b). To generate these figures the IPR of the electric field, IPR[E](s) in the brine phase χ1E was

calculated as a function of s via equation (9) for Ims= 0.001 and 0≤ Res≤ 1 then normalized to have unit length. The values

of s were then selected where IPR[E](s) attains its maximum and minimum, corresponding to the most localized and most765

extended E, respectively. For those values of s, the electric fields for brine microstructure are shown in Fig. 10 (a) and (b). The
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localized electric fields in (a) are characterized by high intensity "hot spots" at the brine-ice interfaces, while extended electric

fields have high intensities spread out more evenly across the connected and near-connected brine components.

8 Conclusions

We have given a tour through various problems of sea ice physics concerned with homogenization and how they can be770

rigorously addressed with the powerful analytic continuation method and its extensions. The effective complex permittivity

of sea ice treated as a two phase composite of pure ice with brine inclusions, or treated as a polycrystalline material, and

the effective diffusivity for advection diffusion problems, are all Stieltjes functions of their variables. We showed how these

functions have integral representations involving spectral measures which distill the mixture or velocity field geometries into

the spectral properties of a self adjoint operator like the Hamiltonian in quantum physics. These spectral representations have775

been used to obtain rigorous forward and inverse bounds on effective transport coefficients for sea ice, and to develop a random

matrix theory picture which uncovers parallels with Anderson localization and quantum transport in disordered media.
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