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Abstract 17 

Disentangling the effects of internal variability and anthropogenic forcing on regional climate 18 

trends remains a key challenge with far-reaching implications.  Due to its largely unpredictable 19 

nature on timescales longer than a decade, internal climate variability limits the accuracy of climate 20 

model projections, introduces challenges in attributing past climate changes, and complicates 21 

climate model evaluation.  Here, we highlight recent advances in climate modeling and physical 22 

understanding that have led to novel insights on these key issues.  In particular, we synthesize new 23 

findings from Large Ensemble simulations with Earth System Models, Observational Large 24 

Ensembles, and “dynamical adjustment” methodologies, with a focus on European climate.  25 

 26 

1.  Introduction 27 

a. Internal variability and forced climate change 28 

The climate system is highly variable in both space and time.  This variability originates from 29 

processes within the coupled ocean-atmosphere-cryosphere-land-biosphere system, as well as 30 

from external influences such as solar and orbital cycles, volcanic eruptions, and anthropogenic 31 

emissions of greenhouse gases and sulfate aerosols. A primary source of internally-generated 32 

variability is the atmospheric general circulation, which produces familiar day-to-day and week-33 

to-week weather fluctuations. The non-linear nature of atmospheric dynamics limits predictability 34 

to less than a few weeks; beyond this time scale, atmospheric motions may be considered as 35 

random stochastic processes, often termed “weather noise” (e.g., Lorenz, 1963; Leith, 1973; James 36 

and James, 1992).  It is important to note that such “weather noise” imparts variability on a 37 

continuum of time scales, from sub-monthly to decadal and longer (e.g., Madden, 1975; Deser et 38 

al. 2012; Thompson et al. 2015).  39 
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 40 

Another important source of internally-generated variability is the coupling between the ocean and 41 

atmosphere. Large-scale air-sea interactions give rise to distinctive patterns (or “modes”) of 42 

variability on interannual and longer time scales, including phenomena such as “El Niño – 43 

Southern Oscillation” (ENSO; Wang et al. 2017), “Pacific Decadal Variability” (PDV; Newman 44 

et al. 2016) and “Atlantic Multi-decadal Variability” (AMV; Zhang et al. 2019). Like the 45 

atmospheric general circulation, these coupled modes are governed by non-linear dynamical 46 

processes which limit their predictability.  For example, forecast skill is generally limited to 1-2 47 

years for ENSO (Jin et al., 2008; DiNezio et al. 2017; Wu et al. 2021), 5 years for PDV (Teng and 48 

Branstator, 2010; Meehl et al., 2016; Gordon and Barnes, 2022) and 10 years for AMV (Griffies 49 

and Bryan, 1997; Trenary and DelSole, 2016; Yeager et al., 2018). Beyond these predictability 50 

time horizons, internally-generated variability can be thought of as a “roll of the dice”, introducing 51 

unavoidable uncertainty to climate model projections especially at local and regional scales (e.g., 52 

Deser et al. 2012, 2014 and 2020a).   53 

 54 

Not only does unpredictable internal variability cause irreducible uncertainty in future climate 55 

projections, it also confounds interpretation of the historical climate record. For example, internal 56 

variability may partially obscure the regional climate response to external forcings including 57 

industrial greenhouse gas emissions, stratospheric ozone depletion and volcanic eruptions 58 

(Wallace et al., 2013; Schneider et al. 2015; Lehner et al. 2016; McGraw et al. 2016).  In some 59 

areas, climate trends driven by internal processes may even outweigh those due to anthropogenic 60 

influences over the past 30-60 years (Deser et al., 2012, 2016 and 2017; Wallace et al., 2013; Swart 61 

et al. 2015; Lehner et al. 2017).  It is important to note that such internally-generated multi-decadal 62 
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trends need not originate from slow processes within the ocean or coupled ocean-atmosphere 63 

system: indeed, random fluctuations of the atmospheric circulation independent of oceanic 64 

influences have been shown to drive a large fraction of long-term precipitation and temperature 65 

trends over North America and Eurasia (Deser et al. 2012; McKinnon and Deser, 2018). The co-66 

existence of internal and anthropogenic factors necessitates a probabilistic approach to detection 67 

and attribution of the human contribution to extreme weather events.   68 

 69 

The prevalence of internal climate variability also complicates model evaluation efforts, since the 70 

simulated temporal sequence of (unpredictable) internal variability need not match observations 71 

even if the model’s physics are realistic. Further, the brevity of the instrumental record provides 72 

only a limited sampling of internal variability, hindering robust model evaluation. Thus, climate 73 

models may show an apparent bias with respect to observations, but this could be entirely 74 

attributable to sampling issues rather than indicative of a true bias due to incorrect model physics. 75 

Apparent model bias due to sampling uncertainty must be kept in mind when assessing fidelity of 76 

simulated modes of internal variability (e.g., Wittenberg et al. 2009; Deser et al. 2017; Capotondi 77 

et al. 2020; Fasullo et al. 2021; McKenna and Maycock, 2021), transient climate sensitivity (Dong 78 

et al. 2021; Andrews et al. 2022), and “signal-to-noise” properties of initial-value predictions and 79 

forced responses (e.g., Scaife and Smith, 2018; Smith et al., 2020; Klavans et al. 2021). In 80 

particular, even with 100 years of data, sampling uncertainty is a limiting factor for evaluating 81 

ENSO properties in climate models, including its global atmospheric teleconnections and 82 

associated climate impacts (Deser et al. 2017 and 2018; Capotondi et al. 2020) and forced changes 83 

thereof (Stevenson et al. 2012; Maher et al. 2018; Maher et al. 2022; O’Brien and Deser, 2022). 84 

This issue is particularly acute for model assessment of modes of decadal variability such as PDV 85 
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and AMV due to the paucity of samples in the short instrumental record (Deser and Phillips 2021; 86 

Fasullo et al. 2021).  87 

 88 

b. Initial-condition Large Ensemble Simulations with Earth System Models 89 

To overcome the issue of sampling uncertainty, a recent thrust in climate modeling is to run a large 90 

number of simulations (30-100) with the same coupled model and the same radiative forcing 91 

protocol (historical and/or future scenario) but vary the initial conditions.  The initial-condition 92 

variation can be accomplished by introducing a random perturbation to the atmosphere on the order 93 

of the model’s numerical round-off error (e.g., 10-14 K in the case of atmospheric temperatures; 94 

Kay et al. 2015) or it can be done by selecting a different ocean state from a long control run of 95 

the coupled model, or a combination of the two (Deser et al. 2020a and Rodgers et al. 2021).  96 

Regardless of the method used, the initial-condition perturbation serves to create ensemble spread 97 

once the memory of the initial state is lost, typically within a month for the atmosphere and a few 98 

years to a couple of decades for the ocean (Yeager et al., 2018). The ensuing ensemble spread is 99 

thus solely attributable to random internal variability (e.g., the “butterfly effect” in chaos theory); 100 

see Lorenz (1963) and Tel et al. (2019). Because the temporal sequences of internal variability 101 

unfold differently in the various ensemble members once the memory of the initial conditions is 102 

lost, one can estimate the forced component at each time step (at each location) by averaging the 103 

members together, provided the ensemble size is sufficiently large. The internal component in each 104 

ensemble member is then obtained as a residual from the ensemble-mean. Note that a larger 105 

ensemble may be needed for some aspects of the forced response than others, depending on the 106 

relative magnitudes of the forced response and internal variability (Milinski et al., 2020).  For 107 

example, forced changes in ocean heat content may be readily detected with just a few members 108 
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(Fasullo and Nerem, 2018), while forced changes in atmospheric circulation (Deser et al., 2012) 109 

or precipitation and temperature extremes (Tebaldi et al. 2021) may require 20-30 members. 110 

Detecting forced changes in the characteristics of internal variability itself, such as its amplitude, 111 

spatial pattern and remote teleconnections, may necessitate even larger ensembles (Milinski et al., 112 

2020; Bódai et al., 2020; Bódai et al., 2022; O’Brien and Deser, 2023).   113 

 114 

Initial-condition Large Ensembles (LEs for short) have proven enormously useful for separating 115 

internal variability and forced climate change on regional scales in models, and for providing 116 

robust sampling of models’ internal variability by pooling together all of the ensemble members 117 

(e.g., Deser et al., 2012; Kay et al., 2015; Maher et al., 2019; Deser et al. 2020a; Lehner et al., 118 

2020). They have also been used to assess externally-forced changes in the characteristics of 119 

simulated internal variability, including extreme events for which large sample sizes are crucial 120 

(e.g., Tebaldi et al., 2021; O’Brien and Deser, 2023). Additionally, they have served as 121 

methodological testbeds for evaluating approaches to detection and attribution of anthropogenic 122 

climate change in the (single) observational record (e.g., Deser et al., 2016; Barnes et al., 2019; 123 

Sippel et al., 2019 and 2021; Santer et al. 2019; Bonfils et al., 2019; Wills et al., 2020). Until the 124 

advent of LEs, it was problematic to identify the sources of model differences in the Coupled 125 

Model Intercomparison Project (CMIP) archives due to the limited number of simulations 126 

(generally < 3) for each model (i.e., structural uncertainty was confounded with uncertainty due to 127 

internal variability).  This concern has been largely alleviated thanks to the recent availability of 128 

LEs with multiple earth system models (e.g., Deser et al. 2020a; Lehner et al., 2020).   129 

 130 

c.  Observationally-based Large Ensemble  131 
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Just as in a model LE, the sequence of internal variability in the real world could have unfolded 132 

differently. That is, the observational record traces only one of many possible climate histories that 133 

could have happened under the same external radiative forcing. For example, El Niño and La Niña 134 

events could have occurred in a different set of years, and positive or negative regimes of PDV 135 

and AMV could have taken place in different decades. This concept of alternate chronologies, 136 

sometimes referred to as the “Theory of Parallel Climate Realizations” (Tel et al., 2019) or the 137 

notion of “Contingency” (Gould, 1989), has major implications that call for a reframing of 138 

perspective.  For example, it means that a single model simulation of the historical period need not 139 

match the observed record, even if the model is “perfect” in its physical representation of the real 140 

world’s climate. However, the statistical characteristics of the model’s internal variability must 141 

agree with those of the real world, taking into account sampling uncertainty (uncertainty due to 142 

limited sampling in the short observational record). Thus, while a single ensemble member need 143 

not match observations, the ensemble as a whole should encompass the instrumental data, provided 144 

there are enough members to adequately span the range of possible sequences of internal variability 145 

(Suarez-Guttierez et al. 2021).   146 

 147 

Another implication of the concept of “parallel climate realizations” is that the climate trends we 148 

have experienced are not the only ones that could have occurred under the same radiative forcing 149 

conditions. In analogy with a model LE, the observational record is just one “member” of a larger 150 

set of possible “members”, each with a different (and largely unpredictable) chronology of internal 151 

variability. Although one cannot replay the “tape of history”, one can construct an “Observational 152 

LE” by generating alternate synthetic sequences of internal variability from the instrumental data.  153 

Conceptually, this involves removing an estimate of the forced component from the data and then 154 
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randomizing the residual (internal) variability in time. Importantly, the randomization procedure 155 

must be done in a way that preserves the statistical properties of the observed variability including 156 

its variance, temporal autocorrelation, and spatial patterns.  The resulting synthetic sequences of 157 

internal variability derived from the observational record can then be added back to the time-158 

evolving forced response obtained from a climate model LE.   159 

 160 

The development of statistically-based Observational LEs is just beginning, with recent efforts 161 

targeting surface climate fields (McKinnon et al., 2017; McKinnon and Deser, 2018 and 2021) and 162 

carbon dioxide fluxes across the air-sea interface (Olivarez et al. 2022).  Here, we focus on the 163 

work of McKinnon and Deser (2018 and 2021) who constructed an Observational LE for global 164 

sea level pressure (SLP) and terrestrial precipitation and temperature based on ~100 years of 165 

monthly gridded instrumental data. To test the skill of their method, they applied it independently 166 

to each member of a climate model LE and then compared the results to the “true” statistical 167 

properties of the model’s internal variability based on the full set of ensemble members. According 168 

to this test, their approach was found to be accurate to within 10-20% at most locations. They then 169 

constructed a large (1000 member) ensemble of plausible “parallel worlds” of what the 170 

observational record might have looked like had a different sequence of internal variability 171 

unfolded by chance. Their Observational LE has been used for many applications, including 172 

evaluation of internal variability in climate model LEs, assessment of uncertainty in observed 50-173 

year climate trends, and quantification of extreme precipitation risk over the Upper Colorado River 174 

basin, a critical water resource for the western US (McKinnon and Deser 2018 and 2021).   175 

 176 

d. Dynamical Adjustment  177 
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Determining the forced contribution to observed changes in climate remains an ongoing challenge. 178 

Most “Detection and Attribution” methods rely on climate models to provide a set of spatial and 179 

temporal “fingerprints” of forced climate change that are distinct from patterns of internal 180 

variability (Hegerl et al. 2007; Santer et al. 2019; Sippel et al. 2019). These model-based 181 

“fingerprints” are then used to assess the proportion of observed climate change that is due to 182 

external forcing. However, model shortcomings may limit the accuracy of such methods.  Thus, it 183 

is also desirable to develop complementary approaches to attribution that do not rely on climate 184 

model information.  Two such methods, Linear Inverse Modeling (Newman, 2007) and Low-185 

Frequency Pattern Analysis (Wills et al. 2020), leverage the assumption that forced climate change 186 

evolves slowly compared to the time scales of internal variability. However, decadal shifts in 187 

regional anthropogenic aerosol emissions (Deser et al. 2020b; Persad et al. 2018), in addition to 188 

decadal changes in solar and volcanic activity and the rate of greenhouse gas rise, present 189 

challenges to this assumption and may complicate interpretation of the results.  190 

 191 

A complementary, physically-based approach to isolating the externally-forced response in 192 

observations without reliance on climate model information is the technique of “Dynamical 193 

Adjustment”.  This method aims to remove the influence of atmospheric circulation variability 194 

from observed temperature and precipitation data, thereby revealing the thermodynamically-195 

induced component of observed climate change (Wallace et al. 2013; Smoliak et al. 2015; Deser 196 

et al. 2016; Guo et al. 2019).  According to the current generation of coupled climate models, the 197 

forced component of extra-tropical atmospheric circulation changes is small relative to internal 198 

variability (Deser et al. 2012; Shepherd, 2014).  If models are correct in this regard, then dynamical 199 

adjustment can be used to parse the relative contributions of internal dynamics and forced 200 
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thermodynamics to observed climate changes at middle and high latitudes (Wallace et al. 2013; 201 

Deser et al. 2016). A variety of dynamical adjustment algorithms have been developed and tested 202 

within the framework of a model LE  (Deser et al., 2016; Lehner et al., 2017 and 2018; Smoliak 203 

et al., 2015; Guo et al. 2019; Merrifield et al., 2017; Terray 2021; Sippel et al. 2019). These 204 

protocols are all based on statistical associations between patterns of SLP and temperature or 205 

precipitation deduced from long observational records. Generally, the data are high-pass filtered 206 

or detrended so as to avoid aliasing any potential forced component onto the statistical 207 

relationships. These procedures generally work best for large-amplitude SLP anomaly patterns, 208 

and are more effective for temperature than precipitation due to higher levels of noise in the latter 209 

(Guo et al. 2019). 210 

 211 

2.  Data and Methods 212 

We make use of a state-of-the-art 100-member LE conducted with the National Center for 213 

Atmospheric Research (NCAR) Community Earth System Model version 2 (CESM2), described 214 

in Rodgers et al. (2021).  This publicly available LE resource is unprecedented for its combination 215 

of large ensemble size, high spatial resolution (approximately 1° in both latitude and longitude), 216 

and length of simulation (1850-2100).  Each ensemble member is driven by the same radiative 217 

forcing scenario (historical from 1850-2014, and SSP3-7.0 from 2015-2100), but begins from a 218 

different state on 1 January 1850, taken from a long pre-industrial control simulation.  We analyze 219 

linear trends in air temperature, precipitation and sea level pressure over the past 50 years (1972-220 

2021) and projected for the next 50 years (2022-2071).  It should be noted that memory of the 221 

initial state is negligible by the middle of the 20th century for the quantities we analyze; thus, 222 
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diversity in trends amongst the individual ensemble members is solely due to different random 223 

samples of internal variability, which are superimposed upon a common forced response.   224 

 225 

For consistency with the 100-member CESM2 LE, we make use of the first 100 members of the 226 

Observational LE (OBS LE) constructed by McKinnon and Deser (2018) to illustrate the diversity 227 

of past 50-year trends consistent with the statistical spatio-temporal properties of internal 228 

variability in the observational record. For the purpose of comparing directly to the CESM2 LE, 229 

we have added the model’s forced trend to the internal trend of each OBS LE member.  The OBS 230 

LE is based on the Berkeley Earth Surface Temperature (BEST) dataset (Rohde et al. 2013), the 231 

Global Precipitation Climatology Centre (GPCC) dataset (Schneider et al. 2008), and the 232 

Twentieth Century Reanalysis version 2c (20CR) sea level pressure (SLP) dataset (Compo et al. 233 

2011). 234 

 235 

We apply the dynamical adjustment methodology of Deser et al. (2016) based on SLP “constructed 236 

circulation analogues” to monthly temperature and precipitation during 1900-2021, using the same 237 

observational data sets as in the OBS LE.  The reader is referred to Deser et al. (2016) for details 238 

of the methodology, and to Lehner et al. (2017 and 2018), Guo et al. (2019) and Terray (2021) for 239 

additional applications.  240 

 241 

For each ensemble member of the CESM2 and OBS LEs, we form monthly anomalies by 242 

subtracting the long-term means for each month individually, and then form seasonal averages 243 

(December-February) of the monthly anomalies. We compute 50-year trends of the wintertime 244 
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anomalies using linear least-squares regression analysis.  All results shown in this study are 245 

original findings. 246 

 247 

3.  European climate trends 248 

We begin by illustrating the diversity of winter temperature and precipitation trends over Europe 249 

during the past 50 years (1972-2021) in the CESM2 and OBS LEs (Sections 3a and b) and 250 

projected for the next 50 years (2022-2071) in the CESM2 LE (Section 3c). We then provide a 251 

more quantitative view of the relative contributions of forced climate change and internal 252 

variability to past and future climate trends using a variety of signal-to-noise metrics, with 253 

comparison between the CESM2 and OBS LEs (Section 3d). We summarize the CESM2 LE 254 

results by showing the “expected range” of trend outcomes in Section 3e. Finally, we apply the 255 

technique of “dynamical adjustment” to estimate the forced component of observed temperature 256 

trends (Section 3f), and then use this estimate in conjunction with the OBS LE to produce a purely 257 

observational estimate of the plausible range of temperature trend outcomes over the past 60 years 258 

(Section 3g).  259 

 260 

a.  Past trends (1972-2021) in the CESM2 LE 261 

The CESM2 model simulates a wide range of wintertime temperature trend patterns for the past 262 

50 years due to the combined effects of internal variability and forced response, as illustrated by 263 

the first 28 members of the LE (Fig. 1).  Recall that the only reason that these trend maps are not 264 

identical is because of random differences in internal variability between the members. While 265 

moderate warming is seen over most of the European continent in the majority of cases, as 266 

expected, some members show regions of considerably greater temperature increase (in excess of 267 
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1°C per decade for example members 1, 10 and 18), while others exhibit weak cooling in some 268 

locations (for example, members 17, 23 and 26; Fig. 1).  The relative contributions of internal 269 

variability and forced response can be readily discerned by comparing the individual member 270 

trends with the ensemble-mean trend (see “EM” panel in Fig. 1).  The observed trend (“OBS” 271 

panel in Fig. 1) bears a close resemblance to the model’s forced trend in both amplitude and spatial 272 

pattern. This correspondence may be coincidental, as individual members of the CESM2 LE also 273 

resemble the forced response (for example, members 6 and 21), or it may suggest that the model 274 

overestimates the amplitude of internally-generated 50-year trends relative to forced trends. The 275 

OBS LE results shown below will shed some light on these two possibilities. 276 
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 277 

Figure 1. Winter air temperature trends (°C per decade) for the period 1972-2021 as simulated by 278 
the first 28 members of the CESM2 Large Ensemble (number in the lower left of each panel 279 
denotes the ensemble member) and the 100-member ensemble-mean (panel labeled “EM”). 280 
Observed trends are shown in the lower right (panel labeled “OBS”). 281 
 282 
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 283 

Figure 2.  As in Fig. 1 but for precipitation (mm d-1 per decade).  284 
 285 

Like temperature, precipitation trends also vary considerably across ensemble members (Fig. 2). 286 

While the ensemble-mean trend shows modest increases in precipitation throughout Europe 287 

(except for the southernmost fringes), internal variability can evidently overwhelm the forced 288 

response in individual simulations.  For example, some members show drying over large parts of 289 
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the continent, while others depict enhanced wetting in the same regions (compare, for example, 290 

members 22 and 28, which show nearly opposite patterns).  Observed precipitation trends are 291 

generally positive, except over Spain, Portugal, southern France and other parts of the western 292 

Mediterranean (Fig. 2).  The observed precipitation increases, while of the same sign as the 293 

model’s forced response, are approximately twice as large in many areas.  Again, the interpretation 294 

of the observed trends is ambiguous, since there are individual members that resemble 295 

observations (for example, member 1).   296 

 297 

b.  Past trends (1972-2021) in the OBS LE 298 

The individual members of the OBS LE show a qualitatively similar diversity of 50-year 299 

temperature trends as the CESM2 LE (Fig. 3).  Like CESM2, some members show weak cooling 300 

in some areas while others show widespread moderate or strong warming.  This suggests that the 301 

resemblance between the observed trend and the model’s forced response may be purely 302 

coincidental.  Precipitation trends in the OBS LE also display large contrasts between members, 303 

similar to CESM2 (Fig. 4).  For example, nearly opposite patterns are found between members 6 304 

and 11 (or 8 and 9).  Trend amplitudes also vary considerably across the OBS LE, with larger 305 

magnitudes in some members (for example, members 3 and 20) compared to others (e.g., members 306 

21 and 13).  While no single member of the 28 OBS LE samples shown matches the model’s forced 307 

trend, member 21 with its relatively muted trends comes close.   308 
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 309 

Figure 3. As in Fig. 1, but for the Observational Large Ensemble of McKinnon and Deser (2018) 310 
with the ensemble-mean from the 100-member CESM2 Large Ensemble. See text for details. 311 
 312 
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 313 

Figure 4. As in Fig. 2, but for the Observational Large Ensemble of McKinnon and Deser (2018) 314 
with the ensemble-mean from the 100-member CESM2 Large Ensemble. See text for details. 315 
  316 
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c. Future Trends (2022-2071) in the CESM2 LE 317 

As expected, temperature trends projected for the next 50 years show larger amplitudes than those 318 

for the past 50 years in the CESM2 LE (Fig. 5).  This is due to the fact that the forced (ensemble-319 

mean) component of warming increases as greenhouse gas emissions accelerate. In most regions, 320 

the forced warming trend increases by approximately 0.2°C per decade in the future compared to 321 

the past.  Notable exceptions are Iceland and the British Isles, which show less warming in the 322 

future due to a circulation-induced forced cooling trend (see Section 3e). Despite a larger forced 323 

component, temperature trends projected for the next 50 years still show a wide range of 324 

amplitudes across individual members of the CESM2 LE.  For example, member 13 is striking for 325 

its muted warming (generally < 0.5°C per decade) across Europe (and absolute cooling over the 326 

UK and Iceland), while member 28 shows highly amplified warming, with values exceeding 1.3 327 

°C per decade over western Russia.  328 

 329 

Forced trends in precipitation are projected to amplify over the next 50 years, with greater wetting 330 

over northern Europe and drying over southern Europe and the Mediterranean (Fig. 6).  In addition, 331 

the region with a forced drying trend is projected to expand northward into Spain, Italy and the 332 

Balkan Republics. While the forced pattern of future drying in the south and wetting in the north 333 

is generally evident in most of the simulations shown, there are notable differences in amplitude 334 

across the members. For example, member 28 shows precipitation trends in excess of 0.1 mm d-1 335 

per decade over most of northern Europe, while member 11 shows positive precipitation trends of 336 

less than half this amount. Members 27 and 28 illustrate that the mid-section of the European 337 

continent may get wetter or drier depending on the unpredictable sequence of internal variability 338 
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that unfolds. Thus, internal variability can still make a sizeable contribution to the projected 339 

patterns and amplitudes of winter precipitation trends over the next 50 years. 340 

 341 

 342 

Figure 5.  As in Fig. 1, but for the period 2022-2071. 343 
 344 
  345 
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 346 
 347 
Figure 6.  As in Fig. 2, but for the period 2022-2071.  348 
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d. Signal-to-noise metrics and model evaluation.  349 

In the previous section, we conveyed a qualitative impression of the possible range of 50-year 350 

trends due to the superposition of internal variability and forced climate change in the CESM2 and 351 

OBS LEs.  Here, we provide a more quantitative view, beginning with a comparison of the standard 352 

deviation (s) of trends over the period 1972-2021 computed across the ensemble members of each 353 

LE.  In the CESM2 LE, the ensemble s of temperature trends increases from southwest to 354 

northeast, with minimum values (0.05-0.10 K per decade) over Spain and northern Africa, and 355 

maximum values (0.30-0.35 0.5°C per decade) over northwestern Russia (Fig. 7a).  A similar 356 

pattern is found in OBS LE, with some regional differences in amplitude (Fig. 7b).  In particular, 357 

the ensemble s values are significantly smaller (20-40%) over Scandinavia, Germany and Poland, 358 

and significantly larger (20-40%) in areas near the Mediterranean and Black Seas, in the OBS LE 359 

compared to the CESM2 LE (Fig. 7c).  For precipitation trends, the two LEs show similar patterns 360 

of ensemble s, with largest amplitudes generally along the west coasts (0.10 - 0.25 mm d-1 per 361 

decade) and over southwestern Europe (values 0.05 – 0.10 mm d-1 per decade: Figs. 7d and e).  362 

However, CESM2 LE significantly underestimates the OBS LE by more than 40% along the 363 

Mediterranean and Black Seas and parts of Russia, and significantly overestimates the OBS LE by 364 

20-40% in many areas of western Europe (Fig. 7f).  365 
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 366 

Figure 7. Standard deviation of 50-year trends (1972-2021) across 100 members of the CESM2 367 
Large Ensemble (a,d) and 100 members of the Observational Large Ensemble (b,e), and their 368 
difference (c,f) for winter air temperature (top; °C per decade) and precipitation (bottom; mm d-1 369 
per decade).  Stippling in panels c and f indicates that the differences are statistically significant at 370 
the 95% confidence level according to an f-test.   371 
 372 

Next, we assess the relative magnitude of the forced and internal components of trends by 373 

computing a “signal-to-noise” ratio defined as the CESM2 ensemble-mean trend divided by the s 374 

of trends across the 100 members of each LE.  This “signal-to-noise” ratio provides a metric of the 375 

likelihood that the ensemble-mean (e.g., forced) trend might be overwhelmed by the internally-376 

generated trend in any given ensemble member (and by extension, the real world).  Assuming that 377 

the 100-member set of 50-year trends follows a normal distribution (not shown, but see related 378 

results in Deser et al. 2012; Thompson et al. 2015; Deser et al. 2020a), a signal-to-noise ratio 379 

greater than one (two) indicates that the magnitude of the ensemble-mean (forced) trend is larger 380 

than (more than twice as large as) that of a typical (e.g., one standard deviation) internal trend, and 381 
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a signal-to-noise ratio less than one indicates that the amplitude of a typical internal trend exceeds 382 

the magnitude of the forced trend.  In the CESM2 LE, the signal-to-noise of forced temperature 383 

trends over the past 50 years generally ranges from 1.5 - 2 over central and northern Europe, and 384 

from 2-3 over southern Europe (Fig. 8a).  Forced precipitation trends over the past 50 years exhibit 385 

much lower signal-to-noise ratios than temperature, with values generally < 1 and nearly always 386 

< 1.5 (Fig. 8d).   387 

 388 

 389 

Figure 8.  Signal-to-noise of forced trends in winter (top) air temperature and (bottom) 390 
precipitation based on the 100-member CESM2 Large Ensemble during 1972-2021 (a,d), the 391 
Observational Large Ensemble during 1972-2021 (b,e), and the CESM2 Large Ensemble during 392 
2022-2071 (c,f).  See text for details. 393 
 394 

How much do model biases in ensemble s shown previously affect the signal-to-noise of the 395 

model’s forced trends?  We address this question by using the OBS LE s values in place of the 396 



 25 

model’s s values in the signal-to-noise calculation (note that the “signal” in the two LEs is identical 397 

by construction). This substitution results in an enhancement of signal-to-noise of past forced 398 

temperature trends over southern Europe and a reduction in signal-to-noise over Scandinavia, 399 

Germany and Poland, with a net increase from 38% to 60% in the area with values > 2 (Fig. 8b). 400 

The impact of model biases in ensemble trend s is much less pronounced for precipitation than 401 

temperature, with signal-to-noise values in all locations remaining below 2 (Fig. 8e).   402 

 403 

As expected, signal-to-noise values are higher for forced trends in the future than in the past. 404 

Ninety-seven percent of the area of the continent (excluding Iceland and Greenland) shows a 405 

signal-to-noise value > 2 for forced temperature trends during 2022-2071 (Fig. 8c), compared with 406 

38% for trends during 1972-2021. Forced precipitation trends in the future remain uncertain, with 407 

only 2% of the land area showing a signal-to-noise value > 2 (Fig. 8f).   408 

 409 

Another way to view the relative impacts of internal variability and external forcing on trends is 410 

by computing the fraction of ensemble members at each location that show a positive trend (e.g., 411 

warming or wetting). This metric conveys the likelihood of having a positive (or negative) trend 412 

in any single ensemble member, which is analogous to the single “realization” of the real world.  413 

At nearly all locations, more than 95% of ensemble members in the CESM2 LE show warming in 414 

both the past and future periods, with slightly lower percentages (85-95%) over western 415 

Scandinavia and parts of Great Britain (and < 75% over Ireland, Scotland and Iceland in the 416 

future); (Figs. 9a and c).  Similar percentages are obtained when the internal component of past 417 

temperature trends in the OBS LE is used in place of the model’s internal trends, with some 418 

reduction (75-95%) over Scandinavia, northern Russia, Germany and Poland (Fig. 9b).   419 
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 420 

Figure 9. The percentage of ensemble members with a positive trend in winter (top) air 421 
temperature and (bottom) precipitation trends based on (a,d) the 100-member CESM2 Large 422 
Ensemble during 1972-2021, (b,e) the 100-member Observational Large Ensemble during 1972-423 
2021, and (c,f) the 100-member CESM2 Large Ensemble during 2022-2071.   424 
 425 

The sign of the trend in any given ensemble member is more uncertain for precipitation than for 426 

temperature. The highest chances (> 85%) of a positive precipitation trend are found over the 427 

northernmost third of the continent excluding Norway, both in the past and future (Figs. 9d and f).  428 

Similarly high chances of a negative precipitation trend (equivalent to < 15% of a positive trend) 429 

occur in areas near the Mediterranean Sea, but only in the future. The central portion of the 430 

continent shows roughly equal chances of having a positive or negative trend, both in the past and 431 

future.  The area with a > 85% chance of a positive precipitation trend in the past 50 years expands 432 

southward into northern France, Germany and areas bordering the Baltic Sea when internal 433 

variability is derived from the OBS LE compared to the CESM2 LE (Fig. 9e).   434 

 435 
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Taken together, the results shown in Fig. 9 indicate that warming is virtually guaranteed at nearly 436 

all locations, both in the past 50 years and the next 50 years, according to the CESM2 LE.  437 

However, the sign of the precipitation trend (past and future) is robust only over the northern tier 438 

of the continent, and only in the future over the Mediterranean region. The model results for past 439 

trends are found to be generally credible as measured against the OBS LE, with some 440 

overestimation in north-central Europe.   441 

 442 

e. Range of outcomes and the role of the atmospheric circulation 443 

As the saying goes, “climate is what we expect, weather is what we get”.  This adage is also 444 

applicable to climate change, where “human-induced climate change is what we expect, internal 445 

variability plus human-induced climate change is what we get” (Deser 2020).  Here, we illustrate 446 

“what we expect” and the range of “what we get” for past and future 50-year trends in the CESM2 447 

LE, using the ensemble-mean for “what we expect” and two contrasting ensemble members for 448 

the range of “what we get”. We select the contrasting members from the bottom and top 5th 449 

percentiles of the distribution of 100-member trends averaged over the European continent for 450 

each period separately. This selection criterion is somewhat arbitrary and does not necessarily 451 

capture the wide range of trend amplitudes that may occur at a single location or sub-region, nor 452 

does it portray the full range of spatial patterns that occur within the ensemble.   453 

 454 

There is a large range in temperature trend outcomes (“what we get”) for both the past 50 years 455 

and the next 50 years as depicted by the “warm” and “cool” end-members (Fig. 10).  For past 456 

trends, the “warm” end-member shows temperature increases of 0.9-1.1 °C per decade over the 457 

eastern portion of the continent (Fig. 10b), while the “cool” end-member displays muted warming  458 
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 459 

Figure 10.  A Range of Outcomes. Trends in winter air temperature (color shading; °C per 460 
decade) and sea-level pressure (SLP) (contours; contour interval of 0.25 hPa per decade, negative 461 
values dashed) for the period (top) 1972-2021 and (bottom) 2022-2071. Panel (a) shows observed 462 
trends (1972-2021) and remaining panels show simulated trends from the 100-member CESM2 463 
Large Ensemble: (c,g) ensemble-mean; (b,f) “warm” end-member; (d,h): “cool” end-member. See 464 
text for details.  Note that panels (a) and (c) are identical to the “OBS” and “EM” panels in Fig. 1, 465 
respectively. Panel (e): Distribution of European-average trends for 1972-2021 (blue) and 2022-466 
2071 (green) from the CESM2 Large Ensemble (box outlines 25th-to-75th percentile range, 467 
whiskers mark the 5th-to-95th percentile range, the horizontal white line denotes the median value, 468 
and the black circle marks the observed value).   469 
 470 
(< 0.3 °C per decade) and even slight cooling through the midsection of the continent (Fig. 10d).  471 

Clearly, the forced trend (“what we expect”), which depicts moderate warming (0.2-0.6°C per 472 

decade) across the continent does not tell the whole story (Fig. 10c).  Analogous results are found 473 

for trends projected over the next 50 years: the “warm” member shows temperature increases of 474 

1.0-1.5 °C per decade over west-central Russia (Fig. 10f) while the “cool” member depicts < 0.2°C 475 

per decade warming over most of the continent (Fig. 10h), in marked contrast to the forced trend 476 

which ranges from 0.3-0.6°C per decade (Fig. 10g). As discussed previously, the observed 477 

temperature trend map resembles the model’s ensemble-mean, but this could be by chance (Fig. 478 
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10a).  In terms of European averages, the observed trend (0.36 °C per decade) is nearly coincident 479 

with the median value of the model’s trend distribution, which has a 5th-to-95th percentile range of 480 

0.13-0.60 °C per decade for past 50-year trends (Fig. 10e).  Curiously, the model’s median trend 481 

value for Europe as a whole increases only slightly in the future compared to the past, while the 482 

5th-to-95th and 25th-to-75th percentile ranges narrow (Fig. 10e).  Further work is needed to 483 

understand why this is the case.   484 

 485 

As mentioned in Section 1d, previous work has shown that internal variability of the large-scale 486 

atmospheric circulation causes much of the member-to-member differences in temperature trends 487 

in model LEs. Here, we provide a qualitative indication of the circulation influence by 488 

superimposing SLP trends upon the maps in Fig. 10.  In the case of past trends, the “warm” member 489 

shows a positive North Atlantic Oscillation (NAO)-like pattern (Hurrell et al. 2003), with negative 490 

SLP trends centered near Iceland and positive SLP trends centered over the Mediterranean (Fig. 491 

10b). This SLP pattern is indicative of stronger westerly/southwesterly flow, which brings 492 

relatively warm maritime air over the continent.  The “cool” member shows a largely opposite 493 

flow configuration (albeit with longitudinal shifts in the SLP centers-of-action), which advects 494 

relatively cold air from the east over the continent (Fig. 10d).  In comparison, the forced response 495 

shows negligible atmospheric circulation change (Fig. 10c). Striking contrasts in circulation are 496 

also found for the future period, with a large positive NAO-like trend pattern in the “warm” 497 

member and a blocking continental “High” in the “cool” member (Figs. 10f and h).  Future trends 498 

in SLP also contain a modest forced component indicative of enhanced westerlies over the 499 

continent (Fig. 10g).   500 

 501 
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The “wet” and “dry” end-members also show striking regional contrasts in both precipitation and 502 

circulation (Fig. 11). For example, for past trends, the “wet” member shows precipitation increases 503 

of 0.2-0.3 mm d-1 per decade over France, southern Germany, Portugal and the UK, and 504 

precipitation declines over northern Norway and along the Mediterranean Sea (Fig. 11b).  A nearly 505 

opposite pattern is found for the “dry” member (Fig. 11d). These contrasting precipitation trends 506 

can be understood in the context of the overlying atmospheric circulation changes, with wetter 507 

areas coinciding with anomalous westerly/southwesterly flow and drier areas located under 508 

blocking anticyclones.  Analogous patterns are found for future trends, with pronounced increases 509 

in precipitation over western Europe associated with the low pressure trend centered over the 510 

British Isles in the “wet” member (Fig. 11f), and generally reduced precipitation in the “dry” 511 

member associated with the blocking High centered over southern Europe (Fig. 11h).   512 

 513 

 514 

Figure 11.  As in Fig. 10 but for precipitation (mm d-1 per decade). Note that panels (a) and (c) 515 
are identical to the “OBS” and “EM” panels in Fig. 2, respectively. 516 
  517 
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 518 

f. Unmasking forced climate change in observations via “Dynamical Adjustment”  519 

The empirical method of “dynamical adjustment” introduced in Section 1d can be used to estimate 520 

the circulation-induced component of observed temperature anomalies; this dynamically-induced 521 

contribution can then be subtracted from the original anomaly to obtain the thermodynamically-522 

induced component as a residual. Since this method uses no information from climate models, it 523 

provides an independent estimate of the thermodynamic component of observed temperature 524 

trends, which can be compared with the forced response simulated by climate model LEs.   525 

 526 

Figure 12 shows the decomposition of observed DJF temperature trends into their dynamical and 527 

residual thermodynamic contributions. For this example, we have used the 60-year period 1962-528 

2021 when observed SLP trends are more than twice as large as those during 1972-2021 on a per 529 

decade basis (compare SLP contours in Figs. 10a and 12a). Observed SLP trends during the past 530 

60 years show a pronounced positive NAO-like pattern, with maximum negative values of -1.25 531 

hPa per decade near Iceland and maximum positive values of +0.75 hPa per decade west of Spain 532 

(Fig. 12a).  Enhanced westerly/southwesterly flow associated with this pattern advects warm air, 533 

raising surface temperatures by 0.1- 0.3°C per decade (with maximum warming over northern 534 

Europe) according to the dynamical adjustment algorithm (Fig. 12b). Removing this dynamically-535 

induced component from the total trend reveals the residual thermodynamic contribution to the 536 

observed warming trend (Fig. 12c). This observed thermodynamic trend is much closer in 537 

amplitude (and arguably pattern) to the model’s forced response, given by the CESM2 LE 538 

ensemble-mean trend (Fig. 12d), than is the total observed trend.  Further, the lack of an 539 

appreciable forced SLP trend in CESM2 indicates that the model’s forced temperature trend is 540 
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thermodynamically-driven. The level of agreement between the observed thermodynamic 541 

temperature trend and the model’s forced thermodynamic trend leads to two powerful conclusions: 542 

1) the model’s forced temperature trend is realistic; and 2) removing the circulation-induced 543 

component from the observed trends can effectively reveal the influence of anthropogenic forcing. 544 

Analogous results have been found for North America (Deser et al. 2016).   545 

 546 

 547 

Figure 12.  Decomposition of (a) observed winter air temperature trends (1962-2021; °C per 548 
decade) into (b) dynamical and (c) residual thermodynamic contributions using the “dynamical 549 
adjustment” procedure of Deser et al. (2018) based on constructed circulation analogues (see text 550 
for details).  Contours in (a) show observed sea-level pressure (SLP) trends (contour interval of 551 
0.25 hPa per decade, negative values dashed); contours in (b) show the observed SLP trends 552 
estimated from the constructed circulation analogues; contours in (c) based on the difference 553 
between (a) and (b) are near-zero and not shown.  Panel (d) shows the ensemble-mean temperature 554 
and SLP trends from the 100-member CESM2 Large Ensemble (note that only the zero contour 555 
shows up in panel d).   556 
 557 

Precipitation is an inherently noisier field than temperature in both time and space, making it 558 

challenging to extract the forced signal via “dynamical adjustment”; indeed, only one previous 559 

study has attempted dynamical adjustment of observed precipitation trends (Guo et al. 2019).  560 

Keeping in mind that the estimate of the circulation-induced component of precipitation trends 561 

may be less robust than for temperature, we present the results as a proof-of-concept.  Observed 562 

precipitation trends during 1962-2021 are mainly driven by changes in atmospheric circulation, 563 
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with a small thermodynamic residual component (Fig. 13). This residual component bears some 564 

resemblance to the forced response in CESM2, particularly in terms of amplitude (~ 0.05 mm d-1 565 

per decade; Fig. 13d).  Notable areas of agreement in the sign of the trends include drying over 566 

much of southern Europe and wetting over parts of northern Europe; central Europe shows less 567 

agreement in polarity, unsurprisingly since this region was found to have lower signal-to-noise 568 

than other areas.   569 

 570 

 571 

Figure 13.  As in Fig. 12 but for precipitation (mm d-1 per decade). 572 
 573 

g. Toward an observationally-based “range of outcomes”  574 

We conclude by bringing together the results of the Observational LE and “dynamical adjustment” 575 

to produce a fully observationally-based estimate of the range of past 60-year trends in temperature 576 

and precipitation.  To the best of our knowledge, this is first time that these two approaches have 577 

been combined. Specifically, we add the internal component of trends from each member of the 578 

OBS LE to the thermodynamic-residual trend (the estimated observed forced response) obtained 579 

from dynamical adjustment. As before, we select two contrasting ensemble members from the tails 580 

of the distribution based on European-wide averages to illustrate the range of trend outcomes.  The 581 

“warm” end-member shows pronounced temperature increases over the northern two-thirds of the 582 



 34 

continent, with maximum values in excess of 0.9 °C per decade, while the “cool” end-member 583 

warms less than 0.2 °C per decade in most areas and even cools slightly over Ukraine and 584 

neighboring countries (Figs. 14 b and d, respectively). These divergent temperature trends are 585 

associated with contrasting SLP trends, with a positive NAO-like pattern in the “warm” member 586 

a negative (and eastward-shifted) NAO pattern in the “cool” member (Figs. 14 b and d). 587 

Qualitatively, this range of trend outcomes for both temperature and SLP is remarkably similar to 588 

that obtained directly from the CESM2 LE, with some regional differences in the location of 589 

cooling in the “cool” end-member (Figs. 14 e and g). There is no guarantee that the patterns and 590 

amplitudes of trends sampled in our selected end-members will agree between the model and 591 

observationally-based results, since there are many configurations that produce extremes in 592 

European-wide averages (not shown).  That there is a strong qualitative resemblance between them 593 

is a testament to both the realism of the model’s forced response and internal variability, and the 594 

efficacy of the OBS LE and dynamical adjustment approaches. 595 

 596 
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 597 

Figure 14.  As in Fig. 10 but for the period 1962-2021. The top row is based on the Observational 598 
Large Ensemble combined with the residual thermodynamic component of observed trends.  The 599 
bottom row is based on the 100-member CESM2 Large Ensemble.  See text for details. 600 
 601 
Precipitation trends in the “wet” and “dry” end-members are also similar between the model and 602 

observationally-based results (Fig. 15). The “wet” members show widespread increases in 603 

precipitation over southern and central Europe (maximum values of 0.2-0.4 mm d-1 per decade) 604 

and drying over the northern UK and parts of Scandinavia (Figs. 15 b and e). Largely opposite 605 

patterns prevail in the “dry” members (Figs. 15 d and g). The contrasting precipitation trends in 606 

the “wet” and “dry” end-members are associated with opposite flow configurations, with regions 607 

of drying corresponding to high pressure and vice versa.  608 
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 609 

Figure 15.  As in Fig. 14 but for precipitation (mm d-1 per decade). 610 
 611 

4. Summary and open questions  612 

Disentangling the effects of internal variability and anthropogenic forcing on regional climate 613 

trends remains a long-standing issue in climate sciences. Recent advances in climate modeling and 614 

physical understanding have led to new insights on this topic and provided an improved source of 615 

information on the future risks of weather extremes associated with human-induced climate 616 

change. Here, we have highlighted new findings for European winter climate based on the 617 

following complementary tools: Earth System Model Large Ensemble simulations; an 618 

observationally-based Large Ensemble; and an empirical approach for removing the influence of 619 

atmospheric circulation variability from observed temperature and precipitation data, termed 620 

“dynamical adjustment”.  621 

 622 
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The new 100-member CESM2 Large Ensemble shows that internal climate variability imparts 623 

considerably uncertainty to past and future 50-year trends in winter temperature and precipitation 624 

over Europe. Such uncertainty is irreducible due to the lack of predictability of the simulated 625 

internal variability on decadal time scales. A novel synthetic Large Ensemble constructed from the 626 

statistical characteristics of internal variability in the observational record exhibits quantitatively 627 

similar levels of uncertainty in past 50-year trends as the CESM2 LE, reinforcing the credibility 628 

of the model’s internally-generated trends. Additionally, the results of our “dynamical adjustment” 629 

procedure applied to observations shows good agreement between the observed thermodynamic-630 

residual trend component and the model’s forced thermodynamic trend, further underscoring the 631 

realism of CESM2. Finally, we have combined internal variability of trends from an Observational 632 

Large Ensemble with an observational estimate of the forced trend (the thermodynamic-residual 633 

component obtained from “dynamical adjustment”) to show what the observed range of past trends 634 

in European temperature and precipitation could have been.  Because it does not rely on climate 635 

model information, this observationally-based range of trend outcomes provides a powerful test of 636 

the range of simulated trends in a model Large Ensemble. To the best of our knowledge, this is the 637 

first time that such a synthesis of the two purely observational methods has been undertaken.  638 

 639 

Many outstanding questions remain regarding the relative influences of internal climate variability 640 

and anthropogenic forcing on regional climate change in models and the real world.  Fortunately, 641 

promising new tools are being developed to help address these challenges. For example, innovative 642 

machine learning methods may be able to improve upon existing techniques for constructing 643 

Observational Large Ensembles. Such methods have shown good results as statistical emulators 644 

of model-based LEs, but their application to the observational record remains to be pursued 645 
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(Beusch et al. 2019). Similarly, neural network approaches to dynamical adjustment may offer 646 

increased skill compared to conventional methods (Davenport and Diffenbaugh, 2021), but have 647 

yet to be applied with the aim of separating forced and internal components of observed trends.  648 

Complementary physically-based approaches such as Linear Inverse Modeling and Low-649 

Frequency Pattern Analysis mentioned in Section 1d also offer promise for estimating the forced 650 

response in observations without reliance on climate models and should be pursued more widely. 651 

 652 

We have relied on the fact that the CESM2 LE (like other models of its class; see Deser et al. 653 

2020a and references therein) simulates a negligible forced atmospheric circulation trend over the 654 

past 50-60 years to interpret our observed dynamical adjustment results (i.e, we have equated the 655 

observed dynamically-induced trend with the internal component, and the observed 656 

thermodynamic-residual trend with the forced component). If the model is erroneous in this regard, 657 

then our interpretation of our decomposition of observed trends into “internal dynamical” and 658 

“forced thermodynamic” components is flawed.  Indeed, recent work suggests that climate models 659 

may be less predictable on seasonal-to-decadal timescales than the real world, particularly in terms 660 

of the large-scale extra-tropical atmospheric circulation (the so-called “signal-to-noise” paradox, 661 

e.g., Scaife et al. 2014; Eade et al. 2014; Scaife and Smith, 2018).  But whether the results from 662 

such initial-value predictability studies carry over to models’ forced atmospheric circulation 663 

responses to anthropogenic emissions remains an open question. Finally, a recent study by 664 

Strommen et al. (2002) finds that inclusion of stochastic parameterizations amplifies the simulated 665 

atmospheric circulation response to sea surface temperature and Arctic sea ice anomalies. Such 666 

stochastic parameterizations may represent unresolved air-sea coupling processes in “coarse-667 

resolution” climate models such as CESM2. Emerging efforts to develop mesoscale-eddy-668 
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resolving global coupled climate models may provide more definitive answers to this elusive 669 

challenge in the near future. 670 

 671 

Data and code availability statement  672 

All data used in this study are publicly available as follows:  673 

CESM2 Large Ensemble: https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2le.output.html 674 

GPCC precipitation: https://www.dwd.de/EN/ourservices/gpcc/gpcc.html 675 

BEST temperature: http://berkeleyearth.org/data/ 676 

and ERA5 SLP: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 677 

Code used to create the Observational Large Ensemble and Dynamical Adjustment results are 678 

publicly available at: 679 

https://github.com/karenamckinnon/observational_large_ensemble/ and 680 

https://github.com/terrayl/Dynamico, respectively. 681 

 682 

Author contributions 683 

CD led the overall effort and wrote the manuscript. ASP performed some of the calculations and 684 

prepared the figures. 685 

 686 

Competing interests 687 

The contact author has declared that none of the authors has any competing interests. 688 

 689 

Acknowledgements 690 



 40 

We acknowledge the efforts of all those who contributed to producing the model simulations and 691 

observational data sets used in this study. We thank the Reviewers for their constructive comments 692 

and suggestions, Dr. Laurent Terray for providing the dynamical adjustment results and Dr. Karen 693 

McKinnon for providing the observational large ensemble results. The National Center for 694 

Atmospheric Research is sponsored by the National Science Foundation. 695 

  696 



 41 

References 697 

Andrews, T., Bodas-Salcedo, A., Gregory, J. M., Dong, Y., Armour, K. C., Paynter, D., Lin, P., 698 

Modak, A., Mauritsen, T., Cole, J. N. S., Medeiros, B., Benedict, J. J., Douville, H., 699 

Roehrig, R., Koshiro, T., Kawai, H., Ogura, T., Dufresne, J. -L., Allan, R. P., and Liu, C.: 700 

On the effect of historical SST patterns on radiative feedback, J. Geophys. Res.-Atmos., 701 

127, e2022JD036675, https://doi.org/10.1029/2022JD036675, 2022. 702 

Barnes, E. A., Hurrell, J. W., and Uphoff, I. E.: Viewing forced climate patterns through an AI 703 

lens, Geophys. Res. Lett., 46, 13389–13398, https://doi.org/10.1029/2019GL084944, 2019. 704 

Beusch, L., Gudmundsson, L., and Seneviratne, S. I.: Emulating Earth System Model 705 

temperatures: from global mean temperature trajectories to grid-point level realizations on 706 

land, Earth Syst. Dyn. Discuss., https://doi.org/10.5194/esd-2019-34, 2019. 707 

Bódai, T., G. Drótos, M. Herein, F. Lunkeit, and V. Lucarini: The Forced Response of the 708 

El Niño–Southern Oscillation–Indian Monsoon Teleconnection in Ensembles of Earth 709 

System Models. J. Climate, 33, 2163–2182, https://doi.org/10.1175/JCLI-D-19-0341.1, 710 

2020. 711 

Bódai, T., J.-Y. Lee, and A. Sundaresan: Sources of Nonergodicity for Teleconnections as Cross-712 

Correlations, Geophys. Res. Lett., 49, 8, e2021GL096587, doi: 10.1029/2021GL096587, 713 

2022. 714 

Bonfils, C. J. W., Santer, B. D., Fyfe, J. C., Marvel, K., Phillips, T. J., and Zimmerman, S. R. H.: 715 

Human influence on joint changes in temperature, rainfall and continental aridity. Nat. 716 

Clim. Change, 10, 726-731, https://doi.org/10.1038/s41558-020-0821-1, 2020. 717 

Branstator, G. and Teng, H.: Two limits of initial-value decadal predictability in a CGCM, J. 718 

Climate, 23, 6292-6311, https://doi.org/10.1175/2010JCLI3678.1, 2010.  719 



 42 

Capotondi, A., Deser, C., Phillips, A., Okumura, Y. and Larson, S.: ENSO and Pacific 720 

DecadalVvariability in the Community Earth System Model Version 2, J. Adv. Model. 721 

Earth Sy., 12, e2019MS002022, https://doi.org/10.1029/2019MS002022, 2020. 722 

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, 723 

B.E., Vose, R.S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, 724 

R.I., Grant, A.N., Groisman, P.Y., Jones, P.D., Kruk, M.C., Kruger, A.C., Marshall, G.J., 725 

Maugeri, M., Mok, H.Y., Nordli, Ø., Ross, T.F., Trigo, R.M., Wang, X.L., Woodruff, S.D. 726 

and Worley, S.J.: The twentieth century reanalysis project, Q. J. Roy. Meteor. Soc., 137, 1–727 

28, https://doi.org/10.1002/qj.776, 2011. 728 

Davenport, F. V. and Diffenbaugh, N. S.: Using machine learning to analyze physical causes of 729 

climate change: A case study of U.S. Midwest extreme precipitation, Geophys. Res. 730 

Lett., 48, e2021GL093787. https://doi.org/10.1029/2021GL093787, 2021. 731 

Deser, C., Phillips, A., Bourdette, V., and Teng, H. Y.: Uncertainty in climate change 732 

projections: The role of internal variability, Clim. Dynam., 38, 527–546. 733 

https://doi.org/10.1007/s00382-010-0977-x, 2012. 734 

Deser, C., Phillips, A., Alexander, M. A., and Smoliak, B. V.: Projecting North American 735 

climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 2271–736 

2296, https://doi.org/10.1175/JCLI-D-13-00451.1, 2014. 737 

Deser, C., Terray, L., and Phillips, A. S.: Forced and internal components of winter air 738 

temperature trends over North America during the past 50 years: Mechanisms and 739 

implications, J. Climate, 29, 2237–2258. https://doi.org/10.1175/JCLI-D-15-0304.1, 2016. 740 

Deser, C., Simpson, I. R., McKinnon K. A., and Phillips, A. S.: The Northern Hemisphere extra-741 

tropical atmospheric circulation response to ENSO: How well do we know it and how do 742 



 43 

we evaluate models accordingly? J. Climate, 30, 5059-5082, https://doi.org/10.1175/JCLI-743 

D-16-0844.1, 2017. 744 

Deser, C., Hurrell, J. W., and Phillips, A.S.: The role of the North Atlantic Oscillation in 745 

European Climate Projections, Clim. Dynam., 49, 3141–3157, 746 

https://doi.org/10.1007/s00382-016-3502-z, 2017. 747 

Deser, C., Simpson, I. R., Phillips, A. S., and McKinnon, K.A.: How well do we know ENSO's 748 

climate impacts over North America, and how do we evaluate models accordingly? J. 749 

Climate, 30, 4991-5014, https://doi.org/10.1175/JCLI-D-17-0783.1, 2018. 750 

Deser, C.: Certain uncertainty: The role of internal climate variability in projections of regional 751 

climate change and risk management. Earths Future, 8, e2020EF001854, 752 

https://doi.org/10.1029/2020EF001854, 2020. 753 

Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L.,  DiNezio, P. N., Fiore, A., 754 

Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S.,  755 

Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J. A, Simpson, I. R.,  756 

and Ting, M.: Insights from earth system model initial-condition large ensembles and 757 

future prospects. Nat. Clim. Change, 10, 277-286, https://doi.org/10.1038/s41558-020-758 

0731-2, 2020a. 759 

Deser, C., Phillips, A. S., Simpson, I. R., Rosenbloom, N., Coleman, D., Lehner, F., Pendergrass, 760 

A., DiNezio, P., and Stevenson, S.: Isolating the Evolving Contributions of Anthropogenic 761 

Aerosols and Greenhouse Gases: A New CESM1 Large Ensemble Community Resource. J. 762 

Climate, 33, 7835-7858, https://doi.org/10.1175/JCLI-D-20-0123.1, 2020b. 763 



 44 

Deser, C. and Phillips, A.S.: Defining the internal component of Atlantic Multidecadal 764 

Variability in a changing climate. Geophys. Res. Lett., 48, e2021GL095023, 765 

https://doi.org/10.1029/2021GL095023, 2021. 766 

DiNezio, P. N., Deser, C., Okumura, Y., and Karspeck, A.: Predictability of 2-year La Niña 767 

events in a coupled general circulation model, Clim. Dyn. 49, 4237–4261, 2017. 768 

Dong, Y, Armour, K.C.,  Zelinka, M., Proistosescu, C., Battisti, D., Zhou, C., and Andrews, T.: 769 

Inter-model spread in the pattern effect and its contribution to climate sensitivity in CMIP5 770 

and CMIP6 models, J. Climate, https://doi.org/10.1175/JCLI-D-19-1011.1, 2020. 771 

Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L., and Robinson, N.: Do 772 

seasonal-to-decadal climate predictions underestimate the predictability of the real 773 

world?, Geophys. Res. Lett., 41, 5620– 5628, https://doi.org/10.1002/2014GL061146, 774 

2014. 775 

Fasullo, J. T. and R.S. Nerem: “Altimeter-era emergence of the patterns of forced sea-level rise 776 

in climate models and implications for the future. Proc. Natl Acad. Sci. 777 

https://doi.org/10.1073/pnas.1813233115, 2018. 778 

Fasullo, J., Phillips, A. S., and Deser, C.: Evaluation of leading modes of climate variability in 779 

the CMIP Archives, J. Climate, 33, 5527–5545, https://doi.org/10.1175/JCLI-D-19-1024.1, 780 

2020. 781 

Gordon, E. M. and Barnes, E.A.: Incorporating uncertainty into a regression neural network 782 

enables identification of decadal state-dependent predictability, Geophys. Res. Lett., 783 

e2022GL098635, https://doi.org/10.1029/2022GL098635, 2022. 784 

Gould, S. J.: Wonderful Life: The burgess shale and the nature of history, W. W. Norton & Co., 785 

978-0-393-30700-9, 1989. 786 



 45 

Griffies, S. M. and Bryan, K.: Predictability of North Atlantic multidecadal climate 787 

variability, Science, 275, 181–184, https://doi.org/10.1126/science.275.5297.181, 1997. 788 

Guo, R. X., Deser, C., Terray, L., and Lehner, F.: Human influence on terrestrial precipitation 789 

trends revealed by dynamical adjustment, Geophys. Res. Lett., 46, 3426-3434, 790 

https://doi.org/10.1029/2018GL081316, 2019. 791 

Hegerl, G.C., Zwiers, F. W. , Braconnot, P., Gillett, N. P., Luo, Y., Marengo Orsini, J. A.,  792 

Nicholls, N., Penner, J. E., and Stott, P. A.: Understanding and attributing climate change. 793 

In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to 794 

the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 795 

Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. 796 

Miller (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, 797 

NY, USA, 2007. 798 

Hurrell J. W., Kushnir, Y., Ottersen G., and Visbeck M. (eds): The North Atlantic Oscillation: 799 

climate significance and environmental impact, Geophys. Monogr. Ser, 134, AGU, 800 

Washington, D. C, 2003. 801 

James, I. N. and James, P. M.: Spatial structure of ultra-low-frequency variability of the flow in a 802 

simple atmospheric circulation model. Quart. J. Roy. Meteor. Soc., 118, 1211-1233, 803 

https://doi.org/10.1002/qj.49711850810, 1992. 804 

Jin, E.K., Kinter, J.L., and Wang, B: Current status of ENSO prediction skill in coupled ocean–805 

atmosphere models, Clim. Dynam. 31, 647–664, https://doi.org/10.1007/s00382-008-0397-806 

3, 2008. 807 

Kay, J., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., 808 

Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J. -F., Lawrence, D., 809 



 46 

Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L. and Vertenstein, 810 

M.: The Community Earth System Model (CESM) Large Ensemble Project: A community 811 

resource for studying climate change in the presence of internal climate variability, B. Am. 812 

Meteorol. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015. 813 

Klavans, J.M., Cane, M.A., Clement, A.C., and Murphy, L. N.: NAO predictability from external 814 

forcing in the late 20th century, Npj Clim. Atmos. Sci., 4, 22 (2021), 815 

https://doi.org/10.1038/s41612-021-00177-8, 2021. 816 

Lehner, F., Schurer, A. P., Hegerl, G. C., Deser, C., and Frölicher, T. L.: The importance of 817 

ENSO phase during volcanic eruptions for detection and attribution, Geophys. Res. Lett. 818 

43, 2851–2858, https://doi.org/10.1002/2016GL067935, 2016. 819 

Lehner, F., Deser, C., and Terray, L.: Towards a new estimate of “time of emergence” of 820 

anthropogenic warming: insights from dynamical adjustment and a large initial-condition 821 

model ensemble. J. Climate, 30, 7739-7756, http://doi.org/10.1175/JCLI-D-16-0792.1,  822 

2017. 823 

Lehner, F., Deser, C., Simpson, I. R., and Terray, L.: Attributing the US Southwest's recent shift 824 

into drier conditions, Geophys. Res. Lett., 45, 6251–6261, 825 

https://doi.org/10.1029/2018GL078312, 2018. 826 

Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E., Brunner, L., Knutti, R. and Hawkins, 827 

E.: Partitioning climate projection uncertainty with multiple large ensembles and 828 

CMIP5/6. Earth Syst. Dynam. Discuss., Special Issue on Large Ensembles, 11, 491–508, 829 

https://doi.org/10.5194/esd-11-491-2020, 2020. 830 



 47 

Leith, C. E.: The standard error of time-average estimates of climatic means, J. Appl. Meteorol. 831 

Clim., 12(6), 1066-1069, https://doi.org/10.1175/1520-832 

0450(1973)012%3C1066:TSEOTA%3E2.0.CO;2, 1973. 833 

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 834 

https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2, 1963. 835 

Madden, R. A.: Estimates of the natural variability of time-averaged sea-level pressure, Mon. 836 

Weather. Rev., 104, 942-952,  https://doi.org/10.1175/1520-837 

0493(1976)104%3C0942:EOTNVO%3E2.0.CO;2, 1975. 838 

Maher, N., Matei, D., Milinski, S., and Marotzke, J.: ENSO change in climate projections: 839 

Forced response or internal variability?, Geophys. Res. Lett., 45, 11390–11398, 840 

https://doi.org/10.1029/2018GL079764, 2018. 841 

Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., Kröger, 842 

J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, D. Putrasahan, 843 

D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and 844 

Marotzke, J.: The Max Planck Institute Grand Ensemble: Enabling the exploration of 845 

climate system variability, J. Adv. Model. Earth Sy., 11, 2050–2069, 846 

https://doi.org/10.1029/2019MS001639, 2019. 847 

McGraw, M. C., Barnes, E. A., and Deser, C.: Reconciling the observed and modeled southern 848 

hemisphere circulation response to volcanic eruptions, Geophys. Res. Lett., 43, 7259–7266, 849 

https://doi.org/10.1002/2016GL069835, 2016. 850 

McKenna, C. M., and Maycock, A. C.: Sources of uncertainty in multimodel large ensemble 851 

projections of the winter North Atlantic Oscillation, Geophys. Res. Lett., 48, 852 

e2021GL093258, https://doi.org/10.1029/2021GL093258, 2021. 853 



 48 

McKinnon, K. A and Deser, C.: Internal variability and regional climate trends in an 854 

Observational Large Ensemble, J. Climate, 31, 6783–6802, https://doi.org/10.1175/JCLI-855 

D-17-0901.1,  2018. 856 

McKinnon, K. A. and Deser, C.: The inherent uncertainty of precipitation variability, trends, and 857 

extremes due to internal variability, with implications for Western US water resources, J. 858 

Climate, 34, 9605-9622, https://doi.org/10.1175/JCLI-D-21-0251.1, 2021. 859 

Meehl, G., Hu, A. and Teng, H: Initialized decadal prediction for transition to positive phase of 860 

the Interdecadal Pacific Oscillation, Nat. Commun., 7, 11718 (2016), 861 

https://doi.org/10.1038/ncomms11718, 2016. 862 

Meehl, G.A., J.H. Richter, Teng, H., Capotondi, A., Cobb, K., Doblas-Reyes, F., Donat, M. G., 863 

England, M. H., Fyfe, J. C., Han, W., Kim, H., Kirtman, B. P., Kushnir, Y., Lovenduski, N. 864 

S., Mann, M. E., Merryfield, W. J., Nieves, V., Pegion, K., Rosenbloom, N., Sanchez, S. 865 

C., Scaife, A. A., Smith, D., Subramanian, A. C., Sun, L., Thompson, D., Ummenhofer, C. 866 

C., and Xie, S. -P.: Initialized Earth system prediction from subseasonal to decadal 867 

timescales, Nat. Rev. Earth Environ., 2, 340–357 (2021), https://doi.org/10.1038/s43017-868 

021-00155-x, 2021. 869 

Merrifield, A., Lehner, F., Xie, S. -P., and Deser, C.: Removing circulation effects to assess 870 

Central US land-atmosphere interactions in the CESM Large Ensemble, Geophys. Res. 871 

Lett., 44, 9938-9946, https://doi.org/10.1002/2017GL074831, 2017.  872 

Milinski, S., Maher, N., and Olonscheck, D.: How large does a large ensemble need to be?, Earth 873 

Syst. Dyn. Discuss., 11, 885-901, https://doi.org/10.5194/esd-11-885-2020, 2019. 874 

Newman, M.: Interannual to decadal predictability of tropical and North Pacific sea surface 875 

temperatures, J. Climate, 20, 2333–2356, https://doi.org/10.1175/JCLI4165.1, 2007. 876 



 49 

Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., Mantua, N. 877 

J., Miller, A. J., Minobe, S., Nakamura, H., Schneider, N., Vimont, D. J., Phillips, A. S., 878 

Scott, J. D., and Smith, C. A.: The Pacific decadal oscillation, revisited, J. Climate, 29, 879 

4399–4427, https://doi.org/10.1175/ JCLI-D-15-0508.1, 2016. 880 

O’Brien, J. P. and Deser, C.: Quantifying and understanding forced changes to unforced modes 881 

of atmospheric circulation variability over the North Pacific in a coupled model large 882 

ensemble, J. Climate, 36, 17-35, doi:  https://doi.org/10.1175/JCLI-D-22-0101.1, 2023.  883 

Olivarez, H. C., Lovenduski, N. S., Brady, R. X., Fay, A. R., Gehlen, M., Gregor, L.,  884 

Landschützer, P., McKinley, G. A., McKinnon, K. A., and Munro, D. R.: Alternate 885 

histories: Synthetic large ensembles of sea-air CO2 flux, Global Biogeochem. Cy., 36, 886 

e2021GB007174, https://doi.org/10.1029/2021GB007174, 2022. 887 

Persad, G. G., and Caldeira, K.: Divergent global-scale temperature effects from identical 888 

aerosols emitted in different regions. Nat. Commun., 9, 3289, 889 

https://doi.org/10.1038/s41467- 018-05838-6, 2018. 890 

Rodgers, K. B., Lee, S. -S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., 891 

Edwards, J., Kim, J. -E., Simpson, I., Stein, K., Stuecker, M. F., Yamaguchi, R., Bodai, T., 892 

Chung, E. -S., Huang, L., Kim, W., Lamarque, J. -F., Lombardozzi, D., Wieder, W. R., and 893 

Yeager, S. G.: Ubiquity of human-induced changes in climate variability. Earth Sys. 894 

Dyn., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, 2021. 895 

Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., Rosenfeld, A., Wurtele, J., Curry, J., 896 

Wickham, C., and Mosher, S.: Berkeley Earth temperature averaging process, Geoinf. 897 

Geostat. Overview, 1:2, https://doi.org/10.4172/2327-4581.1000103, 2013. 898 



 50 

Santer, B., Fyfe, J. C., Solomon, S., Painter, J. F., Bonfils, C., Pallotta, G., and Zelinka, M. D.: 899 

Quantifying stochastic uncertainty in detection time of human-caused climate signals, Proc. 900 

Natl. Acad. Sci., 116, 19821–19827, https://doi.org/10.1073/pnas.1904586116, 2019. 901 

Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T., Dunstone, N., Eade, R., 902 

Fereday, D., Folland, C. K., Gordon, M., Hermanson, L., Knight, J. R., Lea, D. J., 903 

MacLachlan, C., Maidens, A., Martin, M., Peterson, A. K., Smith, D., Vellinga, M., 904 

Wallace, E., Waters, J. and Williams, A: Skillful long-range prediction of European and 905 

North American winters, Geophys. Res. Lett., 41, 2514–2519, 906 

https://doi.org/10.1002/2014GL059637, 2014. 907 

Scaife, A. A. and Smith, D.: A signal-to-noise paradox in climate science. Npj Clim. Atmos. 908 

Sci., 1, 28 (2018),  https://doi.org/10.1038/s41612-018-0038-4, 2018. 909 

Schneider, D. P., Deser, C., and Fan, T.: Comparing the impacts of tropical SST variability and 910 

polar stratospheric ozone loss on the Southern Ocean westerly winds, J. Climate, 28, 9350-911 

9372, https://doi.org/10.1175/JCLI-D-15-0090.1, 2015. 912 

Schneider, U., Fuchs, T., Meyer-Christoffer, A., and Rudolf, B.: Global precipitation analysis 913 

products of the GPCC. Global Precipitation Climatology Centre (GPCC), DWD, Internet 914 

Publikation, 1-12. 915 

Shepherd, T.: Atmospheric circulation as a source of uncertainty in climate change 916 

projections, Nature Geosci., 7, 703–708 (2014), https://doi.org/10.1038/ngeo2253, 2014. 917 

Sippel, S. Meinshausen, N., Merrifield, A., Lehner, F., Pendergrass, A. G., Fischer, E., and 918 

Knutti, R.: Uncovering the forced climate response from a single ensemble member using 919 

statistical learning, J. Climate, 32, 5677-5699, https://doi.org/10.1175/JCLI-D-18-0882.1, 920 

2019. 921 



 51 

Smith, D., Eade, R., Scaife, A. A., Caron, L. -P., Danabasoglu, G., DelSole, T. M., Delworth, T., 922 

Doblas-Reyes, F. J., Dunstone, N. J., Hermanson, L., Kharin, V., Kimoto, M., Merryfield, 923 

W. J., Mochizuki, T., Müller, W. A., Pohlmann, H., Yeager, S., and Yang, X: Robust skill 924 

of decadal climate predictions, Npj Clim. Atmos. Sci., 2, 13 (2019), 925 

https://doi.org/10.1038/s41612-019-0071-y,  2019. 926 

Smith, D. M. et al. North Atlantic Climate far more predictable than models imply, Nature, 583, 927 

796–800,  2020. 928 

Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., Bilbao, R., 929 

Borchert,  L. F., Caron, L.P., Counillon, F., Danabasoglu, G., Delworth, T., Doblas-Reyes, 930 

F. J., Dunstone, N.J., Estella-Perez, V., Flavoni, S., Hermanson, L., Keenlyside, N., Kharin, 931 

V., Kimoto, M., Merryfield, W. J., Mignot, J., Mochizuki, T., Modali, K., Monerie, P. A., 932 

Müller, W. A., Nicolí, D., Ortega, P., Pankatz, K., Pohlmann, H., Robson, J., Ruggieri, P., 933 

Sospedra-Alfonso, R., Swingedouw, D., Wang, Y., Wild, S., Yeager, S., Yang, X., and  934 

Zhang, L.: North Atlantic climate far more predictable than models imply, Nature, 583, 935 

796-800, https://doi.org/10.1038/s41586-020-2525-0, 2020. 936 

Smoliak, B. V., Wallace, J. M., Lin, P., and Fu, Q.: Dynamical adjustment of the Northern 937 

Hemisphere surface air temperature field: Methodology and application to observations, J. 938 

Climate, 28, 1613–1629. https://doi.org/10.1175/JCLI-D-14-00111.1, 2015. 939 

Stevenson, S., Fox-Kemper, B., Jochum, M., Neale, R.,  Deser, C., and Meehl, G.: Will there be 940 

a significant change to El Nino in the 21st Century?, J. Climate, 25, 2129-2145, 941 

https://doi.org/10.1175/JCLI-D-11-00252.1, 2012. 942 



 52 

Strommen, K., Juricke, S., and Cooper, F.: Improved teleconnection between Arctic sea ice and 943 

the North Atlantic Oscillation through stochastic process representation, Weather Clim. 944 

Dynam., 3, 951–975, https://doi.org/10.5194/wcd-3-951-2022, 2022. 945 

Suarez-Gutierrez, L., Milinski, S., and Maher, N.: Exploiting large ensembles for a better yet 946 

simpler climate model evaluation, Clim. Dynam., 57, 2557–2580 (2021), 947 

https://doi.org/10.1007/s00382-021-05821-w, 2021. 948 

Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., and Jahn A.: Influence of internal variability on 949 

Arctic sea-ice trends. Nat. Clim. Change, 5, 86–89, https://doi.org/10.1038/nclimate2483, 950 

2015. 951 

Tebaldi, C., Dorheim, K.,  Wehner, M., Leung, R.: Extreme metrics from large ensembles: 952 

investigating the effects of ensemble size on their estimates,  Earth Syst. Dynam., 12 (4), 953 

1427-1501, https://doi.org/10.5194/esd-12-1427-2021, 2021. 954 

Tél, T., Bódai, T., Drótos, G., Haszpra, T., Herein, M., Kaszás, B., and Vincze, M.: The theory 955 

of parallel climate realizations,  J. Stat, Phys., 179, 1496–1530, 956 

https://doi.org/10.1007/s10955-019-02445-7, 2020. 957 

Terray, L.: A dynamical adjustment perspective on extreme event attribution, Weather Clim. 958 

Dynam., 2, 971–989, https://doi.org/10.5194/wcd-2-971-2021, 2021. 959 

Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W. E., and Phillips, A. S.: Quantifying the 960 

role of internal climate variability in future climate trends, J. Climate, 28, 6443–6456, 961 

https://doi.org/10.1175/JCLI-D-14-00830.1, 2015. 962 

Trenary, L. and DelSole, T.: Does the Atlantic Multidecadal Oscillation Get Its Predictability 963 

from the Atlantic Meridional Overturning Circulation?, J. Climate, 29, 5267-5280, 964 

https://doi.org/10.1175/JCLI-D-16-0030.1, 2016. 965 



 53 

Wallace, J.M., Deser, C.,  Smoliak, B. V., and Phillips, A. S.: Attribution of climate change in 966 

the presence of internal variability, In Climate Change: Multidecadal and Beyond (Eds: 967 

C.P. Chang, M. Ghil, M. Latif, and J. M. Wallace), World Scientific Series on Asia-Pacific 968 

Weather and Climate, 6, 1-29, https://doi.org/10.1142/9789814579933_0001, 2013.  969 

Wang, C., Deser, C., Yu, J. -Y., DiNezio, P., and Clement, A.: El Nino and Southern Oscillation 970 

(ENSO): A Review. Coral Reefs of the Eastern Pacific, P. Glymn, D. Manzello and I. 971 

Enochs, Eds., Springer Science Publisher, 4, 85-106, https://doi.org/10.1007/978-94-017-972 

7499-4_4, 2017. 973 

Wills, R. C. J., Battisti, D. S., Armour, K. C., Schneider, T., and Deser, C.: Pattern recognition 974 

methods to separate forced responses from internal variability in climate model ensembles 975 

and observations, J. Climate, 33, 8693-8719, https://doi.org/10.1175/JCLI-D-19-0855.1, 976 

2020.  977 

Wittenberg, A. T.: Are historical records sufficient to constrain ENSO simulations?, Geophys. 978 

Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710, 2009. 979 

Wu, X., Okumura, Y. M., Deser, C., and DiNezio, P. N.: Two-year dynamical predictions of 980 

ENSO event duration during 1954–2015, J. Climate, 34(10), 4069-4087,  981 

https://doi.org/10.1175/JCLI-D-20-0619.1, 2021. 982 

Yeager, S. Danabasoglu, D., Rosenbloom, N. A., Strand, W., Bates, S. C., Meehl, G. A., 983 

Karspeck, A. R., Lindsay, K., Long, M. C., Teng, H., and Lovenduski, N. S.: Predicting 984 

near-term changes in the Earth System: A large ensemble of initialized decadal prediction 985 

simulations using the Community Earth System Model, Bull. Am. Meteorol. Soc. 99, 1867–986 

1886, https://doi.org/10.1175/BAMS-D-17-0098.1, 2018. 987 



 54 

Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y.-O., Marsh, R., Yeager, S. G., Amrhein, D. E., 988 

and Little, C. M.: A review of the role of the Atlantic Meridional Overturning Circulation 989 

in Atlantic Multidecadal Variability and associated climate impacts, Rev. Geophys., 57, 990 

316–375, https://doi.org/10.1029/2019RG000644, 2019. 991 


