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Abstract 17 

Disentangling the effects of internal variability and anthropogenic forcing on regional climate 18 

trends remains a key challenge with far-reaching implications.  Due to its largely unpredictable 19 

nature on long timescales, internal climate variability limits the accuracy of climate model 20 

projections, introduces challenges in attributing past climate trends, and complicates climate model 21 

evaluation.  Here, we highlight recent advances in climate modeling and physical understanding 22 

that have led to novel insights on these key issues.  In particular, we synthesize new findings from 23 

Earth System Model and Observationally-based Large Ensembles (LEs), along with empirical 24 

“dynamical adjustment” methodologies. Using the new 100-member Community Earth System 25 

Model version 2 (CESM2) LE, we show that  internal climate variability imparts considerable 26 

uncertainty to past and future 50-year trends in wintertime temperature and precipitation over 27 

Europe. Quantitatively similar levels of uncertainty in internally-generated 50-year trends are 28 

found for the Observational-LE. The observed thermodynamic-residual trends based on 29 

“dynamical adjustment” compare well with the CESM2-LE forced response, which is dominated 30 

by thermodynamic processes.  Combining the internal variability of trends from the Observational-31 

LE with the observed thermodynamic-residual trend yields a purely observationally-based range 32 

of trend outcomes, and provides a powerful test of the range of simulated trends in the CESM2-33 

LE. 34 

 35 

1.  Introduction 36 

a. Internal variability and forced climate change 37 

The climate system is highly variable in both space and time.  This variability originates from 38 

processes within the coupled ocean-atmosphere-cryosphere-land-biosphere system, as well as 39 
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from external influences such as solar and orbital cycles, volcanic eruptions, and anthropogenic 40 

emissions of greenhouse gases and sulfate aerosols. A primary source of internally-generated 41 

variability is the atmospheric general circulation, which produces familiar day-to-day and week-42 

to-week weather fluctuations. The non-linear nature of atmospheric dynamics limits predictability 43 

to less than a few weeks; beyond this time scale, atmospheric motions may be considered as 44 

random stochastic processes, often termed “weather noise” (e.g., Lorenz, 1963; Leith, 1973; James 45 

and James, 1992).  It is important to note that such “weather noise” imparts variability on a 46 

continuum of time scales, from sub-monthly to decadal and longer (e.g., Madden, 1975; Deser et 47 

al. 2012; Thompson et al. 2015).  48 

 49 

Another important source of internally-generated variability is the coupling between the ocean and 50 

atmosphere. Large-scale air-sea interactions give rise to distinctive patterns (or “modes”) of 51 

variability on interannual and longer time scales, including phenomena such as “El Niño – 52 

Southern Oscillation” (ENSO; Wang et al. 2017), “Pacific Decadal Variability” (PDV; Newman 53 

et al. 2016) and “Atlantic Multi-decadal Variability” (AMV; Zhang et al. 2019). Like the 54 

atmospheric general circulation, these coupled modes are governed by non-linear dynamical 55 

processes which limit their predictability.  For example, forecast skill is generally limited to 1-2 56 

years for ENSO (Jin et al., 2008; DiNezio et al. 2017; Wu et al. 2021), 5 years for PDV (Teng and 57 

Branstator, 2010; Meehl et al., 2016; Gordon and Barnes, 2022) and 10 years for AMV (Griffies 58 

and Bryan, 1997; Trenary and DelSole, 2016; Yeager et al., 2018). Beyond these predictability 59 

time horizons, internally-generated variability can be thought of as a “roll of the dice”, introducing 60 

unavoidable uncertainty to climate model projections especially at local and regional scales (e.g., 61 

Deser et al. 2012, 2014 and 2020a).   62 



 4 

 63 

Not only does unpredictable internal variability cause irreducible uncertainty in future climate 64 

projections, it also confounds interpretation of the historical climate record. For example, internal 65 

variability may partially obscure the regional climate response to external forcings including 66 

industrial greenhouse gas emissions, stratospheric ozone depletion and volcanic eruptions 67 

(Wallace et al., 2013; Schneider et al. 2015; Lehner et al. 2016; McGraw et al. 2016).  In some 68 

areas, climate trends driven by internal processes may even outweigh those due to anthropogenic 69 

influences over the past 30-60 years (Deser et al., 2012, 2016 and 2017; Wallace et al., 2013; Swart 70 

et al. 2015; Lehner et al. 2017).  It is important to note that such internally-generated multi-decadal 71 

trends need not originate from slow processes within the ocean or coupled ocean-atmosphere 72 

system: indeed, random fluctuations of the atmospheric circulation independent of oceanic 73 

influences have been shown to drive a large fraction of long-term precipitation and temperature 74 

trends over North America and Eurasia (Deser et al. 2012; McKinnon and Deser, 2018). The co-75 

existence of internal and anthropogenic factors necessitates a probabilistic approach to detection 76 

and attribution of the human contribution to extreme weather events.   77 

 78 

The prevalence of internal climate variability also complicates model evaluation efforts, since the 79 

simulated temporal sequence of (unpredictable) internal variability need not match observations 80 

even if the model’s physics are realistic. Further, the brevity of the instrumental record provides 81 

only a limited sampling of internal variability, hindering robust model evaluation. Thus, climate 82 

models may show an apparent bias with respect to observations, but this could be entirely 83 

attributable to sampling issues rather than indicative of a true bias due to incorrect model physics. 84 

Apparent model bias due to sampling uncertainty must be kept in mind when assessing fidelity of 85 
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simulated modes of internal variability (e.g., Wittenberg et al. 2009; Deser et al. 2017; Capotondi 86 

et al. 2020; Fasullo et al. 2021; McKenna and Maycock, 2021), transient climate sensitivity (Dong 87 

et al. 2021; Andrews et al. 2022), and “signal-to-noise” properties of initial-value predictions and 88 

forced responses (e.g., Scaife and Smith, 2018; Smith et al., 2020; Klavans et al. 2021). In 89 

particular, even with 100 years of data, sampling uncertainty is a limiting factor for evaluating 90 

ENSO properties in climate models, including its global atmospheric teleconnections and 91 

associated climate impacts (Deser et al. 2017 and 2018; Capotondi et al. 2020) and forced changes 92 

thereof (Stevenson et al. 2012; Maher et al. 2018; Maher et al. 2022; O’Brien and Deser, 2022). 93 

This issue is particularly acute for model assessment of modes of decadal variability such as PDV 94 

and AMV due to the paucity of samples in the short instrumental record (Deser and Phillips 2021; 95 

Fasullo et al. 2021).  96 

 97 

b. Initial-condition Large Ensemble Simulations with Earth System Models 98 

To overcome the issue of sampling uncertainty, a recent thrust in climate modeling is to run a large 99 

number of simulations (30-100) with the same coupled model and the same radiative forcing 100 

protocol (historical and/or future scenario) but vary the initial conditions.  The initial-condition 101 

variation can be accomplished by introducing a random perturbation to the atmosphere on the order 102 

of the model’s numerical round-off error (e.g., 10-14 K in the case of atmospheric temperatures; 103 

Kay et al. 2015) or it can be done by selecting a different ocean state from a long control run of 104 

the coupled model, or a combination of the two (Deser et al. 2020a and Rodgers et al. 2021).  105 

Regardless of the method used, the initial-condition perturbation serves to create ensemble spread 106 

once the memory of the initial state is lost, typically within a month for the atmosphere and a few 107 

years to a couple of decades for the ocean (Yeager et al., 2018). The ensuing ensemble spread is 108 
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thus solely attributable to random internal variability (e.g., the “butterfly effect” in chaos theory); 109 

see Lorenz (1963) and Tel et al. (2019). Because the temporal sequences of internal variability 110 

unfold differently in the various ensemble members once the memory of the initial conditions is 111 

lost, one can estimate the forced component at each time step (at each location) by averaging the 112 

members together, provided the ensemble size is sufficiently large. The internal component in each 113 

ensemble member is then obtained as a residual from the ensemble-mean. Note that a larger 114 

ensemble may be needed for some aspects of the forced response than others, depending on the 115 

relative magnitudes of the forced response and internal variability (Milinski et al., 2020).  For 116 

example, forced changes in ocean heat content may be readily detected with just a few members 117 

(Fasullo and Nerem, 2018), while forced changes in atmospheric circulation (Deser et al., 2012) 118 

or precipitation and temperature extremes (Tebaldi et al. 2021) may require 20-30 members. 119 

Detecting forced changes in the characteristics of internal variability itself, such as its amplitude, 120 

spatial pattern and remote teleconnections, may necessitate even larger ensembles (Milinski et al., 121 

2020; Bódai et al., 2020; Bódai et al., 2022; O’Brien and Deser, 2023).   122 

 123 

Initial-condition Large Ensembles (LEs for short) have proven enormously useful for separating 124 

internal variability and forced climate change on regional scales in models, and for providing 125 

robust sampling of models’ internal variability by pooling together all of the ensemble members 126 

(e.g., Deser et al., 2012; Kay et al., 2015; Maher et al., 2019; Deser et al. 2020a; Lehner et al., 127 

2020). They have also been used to assess externally-forced changes in the characteristics of 128 

simulated internal variability, including extreme events for which large sample sizes are crucial 129 

(e.g., Tebaldi et al., 2021; O’Brien and Deser, 2023). Additionally, they have served as 130 

methodological testbeds for evaluating approaches to detection and attribution of anthropogenic 131 
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climate change in the (single) observational record (e.g., Deser et al., 2016; Barnes et al., 2019; 132 

Sippel et al., 2019 and 2021; Santer et al. 2019; Bonfils et al., 2019; Wills et al., 2020). Until the 133 

advent of LEs, it was problematic to identify the sources of model differences in the Coupled 134 

Model Intercomparison Project (CMIP) archives due to the limited number of simulations 135 

(generally < 3) for each model (i.e., structural uncertainty was confounded with uncertainty due to 136 

internal variability).  This concern has been largely alleviated thanks to the recent availability of 137 

LEs with multiple earth system models (e.g., Deser et al. 2020a; Lehner et al., 2020).   138 

 139 

c.  Observationally-based Large Ensemble  140 

Just as in a model LE, the sequence of internal variability in the real world could have unfolded 141 

differently. That is, the observational record traces only one of many possible climate histories that 142 

could have happened under the same external radiative forcing. For example, El Niño and La Niña 143 

events could have occurred in a different set of years, and positive or negative regimes of PDV 144 

and AMV could have taken place in different decades. This concept of alternate chronologies, 145 

sometimes referred to as the “Theory of Parallel Climate Realizations” (Tel et al., 2019) or the 146 

notion of “Contingency” (Gould, 1989), has major implications that call for a reframing of 147 

perspective.  For example, it means that a single model simulation of the historical period need not 148 

match the observed record, even if the model is “perfect” in its physical representation of the real 149 

world’s climate. However, the statistical characteristics of the model’s internal variability must 150 

agree with those of the real world, taking into account sampling uncertainty (uncertainty due to 151 

limited sampling in the short observational record). Thus, while a single ensemble member need 152 

not match observations, the ensemble as a whole should encompass the instrumental data, provided 153 
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there are enough members to adequately span the range of possible sequences of internal variability 154 

(Suarez-Guttierez et al. 2021).   155 

 156 

Another implication of the concept of “parallel climate realizations” is that the climate trends we 157 

have experienced are not the only ones that could have occurred under the same radiative forcing 158 

conditions. In analogy with a model LE, the observational record is just one “member” of a larger 159 

set of possible “members”, each with a different (and largely unpredictable) chronology of internal 160 

variability. Although one cannot replay the “tape of history”, one can construct an “Observational 161 

LE” by generating alternate synthetic sequences of internal variability from the instrumental data.  162 

Conceptually, this involves removing an estimate of the forced component from the data and then 163 

randomizing the residual (internal) variability in time. Importantly, the randomization procedure 164 

must be done in a way that preserves the statistical properties of the observed variability including 165 

its variance, temporal autocorrelation, and spatial patterns.  The resulting synthetic sequences of 166 

internal variability derived from the observational record can then be added back to the time-167 

evolving forced response obtained from a climate model LE.   168 

 169 

The development of statistically-based Observational LEs is just beginning, with recent efforts 170 

targeting surface climate fields (McKinnon et al., 2017; McKinnon and Deser, 2018 and 2021) and 171 

carbon dioxide fluxes across the air-sea interface (Olivarez et al. 2022).  Here, we focus on the 172 

work of McKinnon and Deser (2018 and 2021) who constructed an Observational LE for global 173 

sea level pressure (SLP) and terrestrial precipitation and temperature based on ~100 years of 174 

monthly gridded instrumental data. To test the skill of their method, they applied it independently 175 

to each member of a climate model LE and then compared the results to the “true” statistical 176 
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properties of the model’s internal variability based on the full set of ensemble members. According 177 

to this test, their approach was found to be accurate to within 10-20% at most locations. They then 178 

constructed a large (1000 member) ensemble of plausible “parallel worlds” of what the 179 

observational record might have looked like had a different sequence of internal variability 180 

unfolded by chance. Their Observational LE has been used for many applications, including 181 

evaluation of internal variability in climate model LEs, assessment of uncertainty in observed 50-182 

year climate trends, and quantification of extreme precipitation risk over the Upper Colorado River 183 

basin, a critical water resource for the western US (McKinnon and Deser 2018 and 2021).   184 

 185 

d. Dynamical Adjustment  186 

Determining the forced contribution to observed changes in climate remains an ongoing challenge. 187 

Most “Detection and Attribution” methods rely on climate models to provide a set of spatial and 188 

temporal “fingerprints” of forced climate change that are distinct from patterns of internal 189 

variability (Hegerl et al. 2007; Santer et al. 2019; Sippel et al. 2019). These model-based 190 

“fingerprints” are then used to assess the proportion of observed climate change that is due to 191 

external forcing. However, model shortcomings may limit the accuracy of such methods.  Thus, it 192 

is also desirable to develop complementary approaches to attribution that do not rely on climate 193 

model information.  Two such methods,  Linear Inverse Modeling (Newman, 2007) and Low-194 

Frequency Pattern Analysis (Wills et al. 2020), leverage the assumption that forced climate change 195 

evolves slowly compared to the time scales of internal variability. However, decadal shifts in 196 

regional anthropogenic aerosol emissions (Deser et al. 2020b; Persad et al. 2018), in addition to 197 

decadal changes in solar and volcanic activity and the rate of greenhouse gas rise, present 198 

challenges to this assumption and may complicate interpretation of the results.  199 
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 200 

A complementary, physically-based approach to isolating the externally-forced response in 201 

observations without reliance on climate model information is the technique of “Dynamical 202 

Adjustment”.  This method aims to remove the influence of atmospheric circulation variability 203 

from observed temperature and precipitation data, thereby revealing the thermodynamically-204 

induced component of observed climate change (Wallace et al. 2013; Smoliak et al. 2015; Deser 205 

et al. 2016; Guo et al. 2019).  According to the current generation of coupled climate models, the 206 

forced component of extra-tropical atmospheric circulation changes is small relative to internal 207 

variability (Deser et al. 2012; Shepherd, 2014).  If models are correct in this regard, then dynamical 208 

adjustment can be used to parse the relative contributions of internal dynamics and forced 209 

thermodynamics to observed climate changes at middle and high latitudes (Wallace et al. 2013; 210 

Deser et al. 2016). A variety of dynamical adjustment algorithms have been developed and tested 211 

within the framework of a model LE  (Deser et al., 2016; Lehner et al., 2017 and 2018; Smoliak 212 

et al., 2015; Guo et al. 2019; Merrifield et al., 2017; Terray 2021; Sippel et al. 2019). These 213 

protocols are all based on statistical associations between patterns of SLP and temperature or 214 

precipitation deduced from long observational records. Generally, the data are high-pass filtered 215 

or detrended so as to avoid aliasing any potential forced component onto the statistical 216 

relationships. These procedures generally work best for large-amplitude SLP anomaly patterns, 217 

and are more effective for temperature than precipitation due to higher levels of noise in the latter 218 

(Guo et al. 2019). 219 

 220 

2.  Data and Methods 221 
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We make use of a state-of-the-art 100-member LE conducted with the National Center for 222 

Atmospheric Research (NCAR) Community Earth System Model version 2 (CESM2), described 223 

in Rodgers et al. (2021).  This publicly-available LE resource is unprecedented for its combination 224 

of large ensemble size, high spatial resolution (approximately 1° in both latitude and longitude), 225 

and length of simulation (1850-2100).  Each ensemble member is driven by the same radiative 226 

forcing scenario (historical from 1850-2014, and SSP3-7.0 from 2015-2100), but begins from a 227 

different state on 1 January 1850, taken from a long pre-industrial control simulation.  We analyze 228 

linear trends in air temperature, precipitation and sea level pressure over the past 50 years (1972-229 

2021) and projected for the next 50 years (2022-2071).  It should be noted that memory of the 230 

initial state is negligible by the middle of the 20th century for the quantities we analyze; thus, 231 

diversity in trends amongst the individual ensemble members is solely due to different random 232 

samples of internal variability, which are superimposed upon a common forced response.   233 

 234 

For consistency with the 100-member CESM2 LE, we make use of the first 100 members of the 235 

Observational LE (OBS LE) constructed by McKinnon and Deser (2018) to illustrate the diversity 236 

of past 50-year trends consistent with the statistical spatio-temporal properties of internal 237 

variability in the observational record. For the purpose of comparing directly to the CESM2 LE, 238 

we have added the model’s forced trend to the internal trend of each OBS LE member.  The OBS 239 

LE is based on the Berkeley Earth Surface Temperature (BEST) dataset (Rohde et al. 2013), the 240 

Global Precipitation Climatology Centre (GPCC) dataset (Schneider et al. 2008), and the 241 

Twentieth Century Reanalysis version 2c (20CR) sea level pressure (SLP) dataset (Compo et al. 242 

2011). 243 

 244 
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We apply the dynamical adjustment methodology of Deser et al. (2016) based on SLP “constructed 245 

circulation analogues” to monthly temperature and precipitation during 1900-2021, using the same 246 

observational data sets as in the OBS LE.  The reader is referred to Deser et al. (2016) for details 247 

of the methodology, and to Lehner et al. (2017 and 2018), Guo et al. (2019) and Terray (2021) for 248 

additional applications.  249 

 250 

For each ensemble member of the CESM2 and OBS LEs, we form monthly anomalies by 251 

subtracting the long-term means for each month individually, and then form seasonal averages 252 

(December-February) of the monthly anomalies. We compute 50-year trends of the wintertime 253 

anomalies using linear least-squares regression analysis.  All results shown in this study are 254 

original findings. 255 

 256 

3.  European climate trends 257 

We begin by illustrating the diversity of winter temperature and precipitation trends over Europe 258 

during the past 50 years (1972-2021) in the CESM2 and OBS LEs (Sections 3a and b), and 259 

projected for the next 50 years (2022-2071) in the CESM2 LE (Section 3c). We then provide a 260 

more quantitative view of the relative contributions of forced climate change and internal 261 

variability to past and future climate trends using a variety of signal-to-noise metrics, with 262 

comparison between the CESM2 and OBS LEs (Section 3d). We summarize the CESM2 LE 263 

results by showing the “expected range” of trend outcomes in Section 3e. Finally, we apply the 264 

technique of “dynamical adjustment” to estimate the forced component of observed temperature 265 

trends (Section 3f), and then use this estimate in conjunction with the OBS LE to produce a purely 266 
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observational estimate of the plausible range of temperature trend outcomes over the past 60 years 267 

(Section 3g).  268 

 269 

a.  Past trends (1972-2021) in the CESM2 LE 270 

The CESM2 model simulates a wide range of wintertime temperature trend patterns for the past 271 

50 years due to the combined effects of internal variability and forced response, as illustrated by 272 

the first 28 members of the LE (Fig. 1).  Recall that the only reason that these trend maps are not 273 

identical is because of random differences in internal variability between the members. While 274 

moderate warming is seen over most of the European continent in the majority of cases, as 275 

expected, some members show regions of considerably greater temperature increase (in excess of 276 

1°C per decade for example members 1, 10 and 18), while others exhibit weak cooling in some 277 

locations (for example, members 17, 23 and 26; Fig. 1).  The relative contributions of internal 278 

variability and forced response can be readily discerned by comparing the individual member 279 

trends with the ensemble-mean trend (see “EM” panel in Fig. 1).  The observed trend (“OBS” 280 

panel in Fig. 1) bears a close resemblance to the model’s forced trend in both amplitude and spatial 281 

pattern. This correspondence may be coincidental, as individual members of the CESM2 LE also 282 

resemble the forced response (for example, members 6 and 21), or it may suggest that the model 283 

overestimates the amplitude of internally-generated 50-year trends relative to forced trends. The 284 

OBS LE results shown below will shed some light on these two possibilities. 285 
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 286 

Figure 1. Winter air temperature trends (°C per decade) for the period 1972-2021 as simulated by 287 
the first 28 members of the CESM2 Large Ensemble (number in the lower left of each panel 288 
denotes the ensemble member) and the 100-member ensemble-mean (panel labeled “EM”). 289 
Observed trends are shown in the lower right (panel labeled “OBS”). 290 
 291 
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 292 

Figure 2.  As in Fig. 1 but for precipitation (mm d-1 per decade).  293 
 294 

Like temperature, precipitation trends also vary considerably across ensemble members (Fig. 2). 295 

While the ensemble-mean trend shows modest increases in precipitation throughout Europe 296 

(except for the southernmost fringes), internal variability can evidently overwhelm the forced 297 

response in individual simulations.  For example, some members show drying over large parts of 298 
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the continent, while others depict enhanced wetting in the same regions (compare, for example, 299 

members 22 and 28, which show nearly opposite patterns).  Observed precipitation trends are 300 

generally positive, except over Spain, Portugal, southern France and other parts of the western 301 

Mediterranean (Fig. 2).  The observed precipitation increases, while of the same sign as the 302 

model’s forced response, are approximately twice as large in many areas.  Again, the interpretation 303 

of the observed trends is ambiguous, since there are individual members that resemble 304 

observations (for example, member 1).   305 

 306 

b.  Past trends (1972-2021) in the OBS LE 307 

The individual members of the OBS LE show a qualitatively similar diversity of 50-year 308 

temperature trends as the CESM2 LE (Fig. 3).  Like CESM2, some members show weak cooling 309 

in some areas while others show widespread moderate or strong warming.  This suggests that the 310 

resemblance between the observed trend and the model’s forced response may be purely 311 

coincidental.  Precipitation trends in the OBS LE also display large contrasts between members, 312 

similar to CESM2 (Fig. 4).  For example, nearly opposite patterns are found between members 6 313 

and 11 (or 8 and 9).  Trend amplitudes also vary considerably across the OBS LE, with larger 314 

magnitudes in some members (for example, members 3 and 20) compared to others (e.g., members 315 

21 and 13).  While no single member of the 28 OBS LE samples shown matches the model’s forced 316 

trend, member 21 with its relatively muted trends comes close.   317 
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 318 

Figure 3. As in Fig. 1, but for the Observational Large Ensemble of McKinnon and Deser (2018) 319 
with the ensemble-mean from the 100-member CESM2 Large Ensemble. See text for details. 320 
 321 
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 322 

Figure 4. As in Fig. 2, but for the Observational Large Ensemble of McKinnon and Deser (2018) 323 
with the ensemble-mean from the 100-member CESM2 Large Ensemble. See text for details. 324 
  325 
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c. Future Trends (2022-2071) in the CESM2 LE 326 

As expected, temperature trends projected for the next 50 years show larger amplitudes than those 327 

for the past 50 years in the CESM2 LE (Fig. 5).  This is due to the fact that the forced (ensemble-328 

mean) component of warming increases as greenhouse gas emissions accelerate. In most regions, 329 

the forced warming trend increases by approximately 0.2°C per decade in the future compared to 330 

the past.  Notable exceptions are Iceland and the British Isles, which show less warming in the 331 

future due to a circulation-induced forced cooling trend (see Section 3e). Despite a larger forced 332 

component, temperature trends projected for the next 50 years still show a wide range of 333 

amplitudes across individual members of the CESM2 LE.  For example, member 13 is striking for 334 

its muted warming (generally < 0.5°C per decade) across Europe (and absolute cooling over the 335 

UK and Iceland), while member 28 shows highly amplified warming, with values exceeding 1.3 336 

°C per decade over western Russia.  337 

 338 

Forced trends in precipitation are projected to amplify over the next 50 years, with greater wetting 339 

over northern Europe and drying over southern Europe and the Mediterranean (Fig. 6).  In addition, 340 

the region with a forced drying trend is projected to expand northward into Spain, Italy and the 341 

Balkan Republics. While the forced pattern of future drying in the south and wetting in the north 342 

is generally evident in most of the simulations shown, there are notable differences in amplitude 343 

across the members. For example, member 28 shows precipitation trends in excess of 0.1 mm d-1 344 

per decade over most of northern Europe, while member 11 shows positive precipitation trends of 345 

less than half this amount. Members 27 and 28 illustrate that the mid-section of the European 346 

continent may get wetter or drier depending on the unpredictable sequence of internal variability 347 
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that unfolds. Thus, internal variability can still make a sizeable contribution to the projected 348 

patterns and amplitudes of winter precipitation trends over the next 50 years. 349 

 350 

 351 

Figure 5.  As in Fig. 1, but for the period 2022-2071. 352 
 353 
  354 
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 355 
 356 
Figure 6.  As in Fig. 2, but for the period 2022-2071.  357 
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d. Signal-to-noise metrics and model evaluation.  358 

In the previous section, we conveyed a qualitative impression of the possible range of 50-year 359 

trends due to the superposition of internal variability and forced climate change in the CESM2 and 360 

OBS LEs.  Here, we provide a more quantitative view, beginning with a comparison of the standard 361 

deviation (s) of trends over the period 1972-2021 computed across the ensemble members of each 362 

LE.  In the CESM2 LE, the ensemble s of temperature trends increases from southwest to 363 

northeast, with minimum values (0.05-0.10 K per decade) over Spain and northern Africa, and 364 

maximum values (0.30-0.35 0.5°C per decade) over northwestern Russia (Fig. 7a).  A similar 365 

pattern is found in OBS LE, with some regional differences in amplitude (Fig. 7b).  In particular, 366 

the ensemble s values are significantly smaller (20-40%) over Scandinavia, Germany and Poland, 367 

and significantly larger (20-40%) in areas near the Mediterranean and Black Seas, in the OBS LE 368 

compared to the CESM2 LE (Fig. 7c).  For precipitation trends, the two LEs show similar patterns 369 

of ensemble s, with largest amplitudes generally along the west coasts (0.10 - 0.25 mm d-1 per 370 

decade) and over southwestern Europe (values 0.05 – 0.10 mm d-1 per decade: Figs. 7d and e).  371 

However, CESM2 LE significantly underestimates the OBS LE by more than 40% along the 372 

Mediterranean and Black Seas and parts of Russia, and significantly overestimates the OBS LE by 373 

20-40% in many areas of western Europe (Fig. 7f).  374 



 23 

 375 

Figure 7. Standard deviation of 50-year trends (1972-2021) across 100 members of the CESM2 376 
Large Ensemble (a,d) and 100 members of the Observational Large Ensemble (b,e), and their 377 
difference (c,f) for winter air temperature (top; °C per decade) and precipitation (bottom; mm d-1 378 
per decade).  Stippling in panels c and f indicates that the differences are statistically significant at 379 
the 95% confidence level according to an f-test.   380 
 381 

Next, we assess the relative magnitude of the forced and internal components of trends by 382 

computing a “signal-to-noise” ratio defined as the CESM2 ensemble-mean trend divided by the s 383 

of trends across the 100 members of each LE.  This “signal-to-noise” ratio provides a metric of the 384 

likelihood that the ensemble-mean (e.g., forced) trend might be overwhelmed by the internally-385 

generated trend in any given ensemble member (and by extension, the real world).  Assuming that 386 

the 100-member set of 50-year trends follows a normal distribution (not shown, but see related 387 

results in Deser et al. 2012; Thompson et al. 2015; Deser et al. 2020a), a signal-to-noise ratio 388 

greater than one (two) indicates that the magnitude of the ensemble-mean (forced) trend is larger 389 

than (more than twice as large as) that of a typical (e.g., one standard deviation) internal trend, and 390 
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a signal-to-noise ratio less than one indicates that the amplitude of a typical internal trend exceeds 391 

the magnitude of the forced trend.  In the CESM2 LE, the signal-to-noise of forced temperature 392 

trends over the past 50 years generally ranges from 1.5 - 2 over central and northern Europe, and 393 

from 2-3 over southern Europe (Fig. 8a).  Forced precipitation trends over the past 50 years exhibit 394 

much lower signal-to-noise ratios than temperature, with values generally < 1 and nearly always 395 

< 1.5 (Fig. 8d).   396 

 397 

Figure 8.  Signal-to-noise of forced trends in winter (top) air temperature and (bottom) 398 
precipitation based on the 100-member CESM2 Large Ensemble during 1972-2021 (a,d), the 399 
Observational Large Ensemble during 1972-2021 (b,e), and the CESM2 Large Ensemble during 400 
2022-2071 (c,f).  See text for details. 401 
 402 

How much do model biases in ensemble s shown previously affect the signal-to-noise of the 403 

model’s forced trends?  We address this question by using the OBS LE s values in place of the 404 

model’s s values in the signal-to-noise calculation (note that the “signal” in the two LEs is identical 405 
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by construction). This substitution results in an enhancement of signal-to-noise of past forced 406 

temperature trends over southern Europe and a reduction in signal-to-noise over Scandinavia, 407 

Germany and Poland, with a net increase from 38% to 60% in the area with values > 2 (Fig. 8b). 408 

The impact of model biases in ensemble trend s is much less pronounced for precipitation than 409 

temperature, with signal-to-noise values in all locations remaining below 2 (Fig. 8e).   410 

 411 

As expected, signal-to-noise values are higher for forced trends in the future than in the past. 412 

Ninety-seven percent of the area of the continent (excluding Iceland and Greenland) shows a 413 

signal-to-noise value > 2 for forced temperature trends during 2022-2071 (Fig. 8c), compared with 414 

38% for trends during 1972-2021. Forced precipitation trends in the future remain uncertain, with 415 

only 2% of the land area showing a signal-to-noise value > 2 (Fig. 8f).   416 

 417 

Another way to view the relative impacts of internal variability and external forcing on trends is 418 

by computing the fraction of ensemble members at each location that show a positive trend (e.g., 419 

warming or wetting). This metric conveys the likelihood of having a positive (or negative) trend 420 

in any single ensemble member, which is analogous to the single “realization” of the real world.  421 

At nearly all locations, more than 95% of ensemble members in the CESM2 LE show warming in 422 

both the past and future periods, with slightly lower percentages (85-95%) over western 423 

Scandinavia and parts of Great Britain (and < 75% over Ireland, Scotland and Iceland in the 424 

future); (Figs. 9a and c).  Similar percentages are obtained when the internal component of past 425 

temperature trends in the OBS LE is used in place of the model’s internal trends, with some 426 

reduction (75-95%) over Scandinavia, northern Russia, Germany and Poland (Fig. 9b).   427 
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 428 

Figure 9. The percentage of ensemble members with a positive trend in winter (top) air 429 
temperature and (bottom) precipitation trends based on (a,d) the 100-member CESM2 Large 430 
Ensemble during 1972-2021, (b,e) the 100-member Observational Large Ensemble during 1972-431 
2021, and (c,f) the 100-member CESM2 Large Ensemble during 2022-2071.   432 
 433 

The sign of the trend in any given ensemble member is more uncertain for precipitation than for 434 

temperature. The highest chances (> 85%) of a positive precipitation trend are found over the 435 

northernmost third of the continent excluding Norway, both in the past and future (Figs. 9d and f).  436 

Similarly high chances of a negative precipitation trend (equivalent to < 15% of a positive trend) 437 

occur in areas near the Mediterranean Sea, but only in the future. The central portion of the 438 

continent shows roughly equal chances of having a positive or negative trend, both in the past and 439 

future.  The area with a > 85% chance of a positive precipitation trend in the past 50 years expands 440 

southward into northern France, Germany and areas bordering the Baltic Sea when internal 441 

variability is derived from the OBS LE compared to the CESM2 LE (Fig. 9e).   442 

 443 
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Taken together, the results shown in Fig. 9 indicate that warming is virtually guaranteed at nearly 444 

all locations, both in the past 50 years and the next 50 years, according to the CESM2 LE.  445 

However, the sign of the precipitation trend (past and future) is robust only over the northern tier 446 

of the continent, and only in the future over the Mediterranean region. The model results for past 447 

trends are found to be generally credible as measured against the OBS LE, with some 448 

overestimation in north-central Europe.   449 

 450 

e. Range of outcomes and the role of the atmospheric circulation 451 

As the saying goes, “climate is what we expect, weather is what we get”.  This adage is also 452 

applicable to climate change, where “human-induced climate change is what we expect, internal 453 

variability plus human-induced climate change is what we get” (Deser 2020).  Here, we illustrate 454 

“what we expect” and the range of “what we get” for past and future 50-year trends in the CESM2 455 

LE, using the ensemble-mean for “what we expect” and two contrasting ensemble members for 456 

the range of “what we get”. We select the contrasting members from the bottom and top 5th 457 

percentiles of the distribution of 100-member trends averaged over the European continent for 458 

each period separately. This selection criterion is somewhat arbitrary and does not necessarily 459 

capture the wide range of trend amplitudes that may occur at a single location or sub-region, nor 460 

does it portray the full range of spatial patterns that occur within the ensemble.   461 

 462 

There is a large range in temperature trend outcomes (“what we get”) for both the past 50 years 463 

and the next 50 years as depicted by the “warm” and “cool” end-members (Fig. 10).  For past 464 

trends, the “warm” end-member shows temperature increases of 0.9-1.1 °C per decade over the 465 

eastern portion of the continent (Fig. 10b), while the “cool” end-member displays muted warming  466 
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 467 

Figure 10.  A Range of Outcomes. Trends in winter air temperature (color shading; °C per 468 
decade) and sea-level pressure (SLP) (contours; contour interval of 0.25 hPa per decade, negative 469 
values dashed) for the period (top) 1972-2021 and (bottom) 2022-2071. Panel (a) shows observed 470 
trends (1972-2021) and remaining panels show simulated trends from the 100-member CESM2 471 
Large Ensemble: (c,g) ensemble-mean; (b,f) “warm” end-member; (d,h): “cool” end-member. See 472 
text for details.  Note that panels (a) and (c) are identical to the “OBS” and “EM” panels in Fig. 1, 473 
respectively. Panel (e): Distribution of European-average trends for 1972-2021 (blue) and 2022-474 
2071 (green) from the CESM2 Large Ensemble (box outlines 25th-to-75th percentile range, 475 
whiskers mark the 5th-to-95th percentile range, the horizontal white line denotes the median value, 476 
and the black circle marks the observed value).   477 
 478 
(< 0.3 °C per decade) and even slight cooling through the midsection of the continent (Fig. 10d).  479 

Clearly, the forced trend (“what we expect”), which depicts moderate warming (0.2-0.6°C per 480 

decade) across the continent does not tell the whole story (Fig. 10c).  Analogous results are found 481 

for trends projected over the next 50 years: the “warm” member shows temperature increases of 482 

1.0-1.5 °C per decade over west-central Russia (Fig. 10f) while the “cool” member depicts < 0.2°C 483 

per decade warming over most of the continent (Fig. 10h), in marked contrast to the forced trend 484 

which ranges from 0.3-0.6°C per decade (Fig. 10g). As discussed previously, the observed 485 

temperature trend map resembles the model’s ensemble-mean, but this could be by chance (Fig. 486 
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10a).  In terms of European averages, the observed trend (0.36 °C per decade) is nearly coincident 487 

with the median value of the model’s trend distribution, which has a 5th-to-95th percentile range of 488 

0.13-0.60 °C per decade for past 50-year trends (Fig. 10e).  Curiously, the model’s median trend 489 

value for Europe as a whole increases only slightly in the future compared to the past, while the 490 

5th-to-95th and 25th-to-75th percentile ranges narrow (Fig. 10e).  Further work is needed to 491 

understand why this is the case.   492 

 493 

As mentioned in Section 1d, previous work has shown that internal variability of the large-scale 494 

atmospheric circulation causes much of the member-to-member differences in temperature trends 495 

in model LEs. Here, we provide a qualitative indication of the circulation influence by 496 

superimposing SLP trends upon the maps in Fig. 10.  In the case of past trends, the “warm” member 497 

shows a positive North Atlantic Oscillation (NAO)-like pattern (Hurrell et al. 2003), with negative 498 

SLP trends centered near Iceland and positive SLP trends centered over the Mediterranean (Fig. 499 

10b). This SLP pattern is indicative of stronger westerly/southwesterly flow, which brings 500 

relatively warm maritime air over the continent.  The “cool” member shows a largely opposite 501 

flow configuration (albeit with longitudinal shifts in the SLP centers-of-action), which advects 502 

relatively cold air from the east over the continent (Fig. 10d).  In comparison, the forced response 503 

shows negligible atmospheric circulation change (Fig. 10c). Striking contrasts in circulation are 504 

also found for the future period, with a large positive NAO-like trend pattern in the “warm” 505 

member and a blocking continental “High” in the “cool” member (Figs. 10f and h).  Future trends 506 

in SLP also contain a modest forced component indicative of enhanced westerlies over the 507 

continent (Fig. 10g).   508 

 509 
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The “wet” and “dry” end-members also show striking regional contrasts in both precipitation and 510 

circulation (Fig. 11). For example, for past trends, the “wet” member shows precipitation increases 511 

of 0.2-0.3 mm d-1 per decade over France, southern Germany, Portugal and the UK, and 512 

precipitation declines over northern Norway and along the Mediterranean Sea (Fig. 11b).  A nearly 513 

opposite pattern is found for the “dry” member (Fig. 11d). These contrasting precipitation trends 514 

can be understood in the context of the overlying atmospheric circulation changes, with wetter 515 

areas coinciding with anomalous westerly/southwesterly flow and drier areas located under 516 

blocking anticyclones.  Analogous patterns are found for future trends, with pronounced increases 517 

in precipitation over western Europe associated with the low pressure trend centered over the 518 

British Isles in the “wet” member (Fig. 11f), and generally reduced precipitation in the “dry” 519 

member associated with the blocking High centered over southern Europe (Fig. 11h).   520 

 521 

Figure 11.  As in Fig. 10 but for precipitation (mm d-1 per decade). Note that panels (a) and (c) 522 
are identical to the “OBS” and “EM” panels in Fig. 2, respectively. 523 
  524 
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 525 

f. Unmasking forced climate change in observations via “Dynamical Adjustment”  526 

The empirical method of “dynamical adjustment” introduced in Section 1d can be used to estimate 527 

the circulation-induced component of observed temperature anomalies; this dynamically-induced 528 

contribution can then be subtracted from the original anomaly to obtain the thermodynamically-529 

induced component as a residual. Since this method uses no information from climate models, it 530 

provides an independent estimate of the thermodynamic component of observed temperature 531 

trends, which can be compared with the forced response simulated by climate model LEs.   532 

 533 

Figure 12 shows the decomposition of observed DJF temperature trends into their dynamical and 534 

residual thermodynamic contributions. For this example, we have used the 60-year period 1962-535 

2021 when observed SLP trends are more than twice as large as those during 1972-2021 on a per 536 

decade basis (compare SLP contours in Figs. 10a and 12a). Observed SLP trends during the past 537 

60 years show a pronounced positive NAO-like pattern, with maximum negative values of -1.25 538 

hPa per decade near Iceland and maximum positive values of +0.75 hPa per decade west of Spain 539 

(Fig. 12a).  Enhanced westerly/southwesterly flow associated with this pattern advects warm air, 540 

raising surface temperatures by 0.1- 0.3°C per decade (with maximum warming over northern 541 

Europe) according to the dynamical adjustment algorithm (Fig. 12b). Removing this dynamically-542 

induced component from the total trend reveals the residual thermodynamic contribution to the 543 

observed warming trend (Fig. 12c). This observed thermodynamic trend is much closer in 544 

amplitude (and arguably pattern) to the model’s forced response, given by the CESM2 LE 545 

ensemble-mean trend (Fig. 12d), than is the total observed trend.  Further, the lack of an 546 

appreciable forced SLP trend in CESM2 indicates that the model’s forced temperature trend is 547 



 32 

nearly all thermodynamically-driven. The level of agreement between the observed 548 

thermodynamic temperature trend and the model’s forced thermodynamic trend leads to two 549 

powerful conclusions: 1) the model’s forced temperature trend is realistic; and 2) removing the 550 

circulation-induced component from the observed trends can effectively reveal the influence of 551 

anthropogenic forcing. Analogous results have been found for North America (Deser et al. 2016).  552 

It may seem surprising that the model’s forced temperature trend agrees so well in amplitude with 553 

the observed thermodynamic-residual trend, given that CESM2 has been characterized as a “high 554 

climate sensitivity” model (Gettelman et al., 2019). However, this characterization refers 555 

specifically to the model’s equilibrium climate sensitivity (diagnosed as the model’s response to 556 

an instantaneous doubling of CO2 based on a slab-ocean configuration), and does not translate to 557 

a high transient climate sensitivity over the 1962-2021 period of record analyzed here, as 558 

evidenced by the fact that the observed global-mean temperature increase lies within the ensemble-559 

spread of global-mean temperature trends simulated by the CESM2-LE for this time period (not 560 

shown).  561 

 562 

 563 

Figure 12.  Decomposition of (a) observed winter air temperature trends (1962-2021; °C per 564 
decade) into (b) dynamical and (c) residual thermodynamic contributions using the “dynamical 565 
adjustment” procedure of Deser et al. (2018) based on constructed circulation analogues (see text 566 
for details).  Contours in (a) show observed sea-level pressure (SLP) trends (contour interval of 567 
0.25 hPa per decade, negative values dashed); contours in (b) show the observed SLP trends 568 
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estimated from the constructed circulation analogues; contours in (c) based on the difference 569 
between (a) and (b) are near-zero and not shown.  Panel (d) shows the ensemble-mean temperature 570 
and SLP trends from the 100-member CESM2 Large Ensemble (note that only the zero contour 571 
shows up in panel d).   572 
 573 

Precipitation is an inherently noisier field than temperature in both time and space, making it 574 

challenging to extract the forced signal via “dynamical adjustment”; indeed, only one previous 575 

study has attempted dynamical adjustment of observed precipitation trends (Guo et al. 2019).  576 

Keeping in mind that the estimate of the circulation-induced component of precipitation trends 577 

may be less robust than for temperature, we present the results as a proof-of-concept.  Observed 578 

precipitation trends during 1962-2021 are mainly driven by changes in atmospheric circulation, 579 

with a small thermodynamic residual component (Fig. 13). This residual component bears some 580 

resemblance to the forced response in CESM2, particularly in terms of amplitude (~ 0.05 mm d-1 581 

per decade; Fig. 13d).  Notable areas of agreement in the sign of trends include drying over most 582 

of Spain, Portugal, Algeria, Turkey and Syria, and wetting over parts of northern and north-central 583 

Europe; disagreement in sign is found over many central European countries (France, Germany, 584 

Switzerland, Austria, Ukraine, Romania and southern Russia) where the signal-to-noise is low 585 

(Figs. 8d,e) due to a combination of low signal in the transition region between southern drying 586 

and northern wetting (Fig. 11c) and high noise (Figs. 7d,e).  The low signal and high noise in these 587 

areas limits the accuracy of the dynamical adjustment results, where the error of the method is of 588 

the same amplitude as the thermodynamic-residual trend (see Guo et al., 2019 for details).  589 

 590 
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 591 

Figure 13.  As in Fig. 12 but for precipitation (mm d-1 per decade). 592 
 593 

g. Toward an observationally-based “range of outcomes”  594 

We conclude by bringing together the results of the Observational LE and “dynamical adjustment” 595 

to produce a fully observationally-based estimate of the range of past 60-year trends in temperature 596 

and precipitation.  To the best of our knowledge, this is first time that these two approaches have 597 

been combined. Specifically, we add the internal component of trends from each member of the 598 

OBS LE to the thermodynamic-residual trend (the estimated observed forced response) obtained 599 

from dynamical adjustment. As before, we select two contrasting ensemble members from the tails 600 

of the distribution based on European-wide averages to illustrate the range of trend outcomes.  The 601 

“warm” end-member shows pronounced temperature increases over the northern two-thirds of the 602 

continent, with maximum values in excess of 0.9 °C per decade, while the “cool” end-member 603 

warms less than 0.2 °C per decade in most areas and even cools slightly over Ukraine and 604 

neighboring countries (Figs. 14 b and d, respectively). These divergent temperature trends are 605 

associated with contrasting SLP trends, with a positive NAO-like pattern in the “warm” member 606 

a negative (and eastward-shifted) NAO pattern in the “cool” member (Figs. 14 b and d). 607 

Qualitatively, this range of trend outcomes for both temperature and SLP is remarkably similar to 608 

that obtained directly from the CESM2 LE, with some regional differences in the location of 609 
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cooling in the “cool” end-member (Figs. 14 e and g). There is no guarantee that the patterns and 610 

amplitudes of trends sampled in our selected end-members will agree between the model and 611 

observationally-based results, since there are many configurations that produce extremes in 612 

European-wide averages (not shown).  That there is a strong qualitative resemblance between them 613 

is a testament to both the realism of the model’s forced response and internal variability, and the 614 

efficacy of the OBS LE and dynamical adjustment approaches. 615 

 616 

Figure 14.  As in Fig. 10 but for the period 1962-2021. The top row is based on the Observational 617 
Large Ensemble combined with the residual thermodynamic component of observed trends.  The 618 
bottom row is based on the 100-member CESM2 Large Ensemble.  See text for details. 619 
Precipitation trends in the “wet” and “dry” end-members are also similar between the model and 620 

observationally-based results (Fig. 15). The “wet” members show widespread increases in 621 

precipitation over southern and central Europe (maximum values of 0.2-0.4 mm d-1 per decade) 622 

and drying over the northern UK and parts of Scandinavia (Figs. 15 b and e). Largely opposite 623 

patterns prevail in the “dry” members (Figs. 15 d and g). The contrasting precipitation trends in 624 
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the “wet” and “dry” end-members are associated with opposite flow configurations, with regions 625 

of drying corresponding to high pressure and vice versa.  626 

 627 

Figure 15.  As in Fig. 14 but for precipitation (mm d-1 per decade). 628 
 629 

4. Summary and open questions  630 

Disentangling the effects of internal variability and anthropogenic forcing on regional climate 631 

trends remains a long-standing issue in climate sciences. Recent advances in climate modeling and 632 

physical understanding have led to new insights on this topic, and provided an improved source of 633 

information on the future risks of weather extremes associated with human-induced climate 634 

change. Here, we have highlighted new findings for European winter climate based on the 635 

following complementary tools: Earth System Model Large Ensemble simulations; an 636 

observationally-based Large Ensemble; and an empirical approach for removing the influence of 637 
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atmospheric circulation variability from observed temperature and precipitation data, termed 638 

“dynamical adjustment”.  639 

 640 

The new 100-member CESM2 Large Ensemble shows that internal climate variability imparts 641 

considerable uncertainty to past and future 50-year trends in winter temperature and precipitation 642 

over Europe. Such uncertainty is irreducible due to the lack of predictability of the simulated 643 

internal variability on decadal time scales. A novel synthetic Large Ensemble constructed from the 644 

statistical characteristics of internal variability in the observational record exhibits quantitatively 645 

similar levels of uncertainty in past 50-year trends as the CESM2 LE, reinforcing the credibility 646 

of the model’s internally-generated trends. Additionally, the results of our “dynamical adjustment” 647 

procedure applied to observations shows good agreement between the observed thermodynamic-648 

residual trend component and the model’s forced thermodynamic trend, further underscoring the 649 

realism of CESM2. Finally, we have combined internal variability of trends from an Observational 650 

Large Ensemble with an observational estimate of the forced trend (the thermodynamic-residual 651 

component obtained from “dynamical adjustment”) to show what the observed range of past trends 652 

in European temperature and precipitation could have been.  Because it does not rely on climate 653 

model information, this observationally-based range of trend outcomes provides a powerful test of 654 

the range of simulated trends in a model Large Ensemble. To the best of our knowledge, this is the 655 

first time that such a synthesis of the two purely observational methods has been undertaken.  656 

 657 

Many outstanding questions remain regarding the relative influences of internal climate variability 658 

and anthropogenic forcing on regional climate change in models and the real world.  Fortunately, 659 

promising new tools are being developed to help address these challenges. For example, innovative 660 
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machine learning methods may be able to improve upon existing techniques for constructing 661 

Observational Large Ensembles. Such methods have shown good results as statistical emulators 662 

of model-based LEs, but their application to the observational record remains to be pursued 663 

(Beusch et al. 2019). Similarly, neural network approaches to dynamical adjustment may offer 664 

increased skill compared to conventional methods (Davenport and Diffenbaugh, 2021), but have 665 

yet to be applied with the aim of separating forced and internal components of observed trends.  666 

Complementary physically-based approaches such as Linear Inverse Modeling and Low-667 

Frequency Pattern Analysis mentioned in Section 1d also offer promise for estimating the forced 668 

response in observations without reliance on climate models and should be pursued more widely. 669 

 670 

We have relied on the fact that the CESM2 LE (like other models of its class; see Deser et al. 671 

2020a and references therein) simulates a negligible forced atmospheric circulation trend over the 672 

past 50-60 years to interpret our observed dynamical adjustment results (i.e., we have equated the 673 

observed dynamically-induced trend with the internal component, and the observed 674 

thermodynamic-residual trend with the forced component). If the model is erroneous in this regard, 675 

then our interpretation of our decomposition of observed trends into “internal dynamical” and 676 

“forced thermodynamic” components is flawed. Recent work suggests that large-scale extra-677 

tropical atmospheric circulation variability simulated by climate models may be less predictable 678 

on seasonal-to-decadal timescales than that in the real world, implying that models underestimate 679 

the signal-to-noise ratio of predictable components (Scaife et al. 2014; Eade et al. 2014; Scaife and 680 

Smith, 2018). But the underlying mechanisms for this underestimation, and whether this so-called 681 

“signal-to-noise paradox” found in initial-value predictability studies applies to models’ 682 

atmospheric circulation response to anthropogenic forcing, remain unknown at this time.  683 
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Emerging efforts to develop higher-resolution (km scale) global coupled climate models may 684 

provide the key to addressing this elusive challenge (Slingo et al. 2022). 685 

 686 
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