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ABSTRACT 7 

Estimating a reliable subsurface resistivity structure using conventional techniques is 8 

challenging due to the nonlinear nature of the inverse problems. The performance of the 9 

inversion techniques can be pretty ambiguous based on the optimal error. Although 10 

traditional methods have proven to be quite effective. The impact of the constraints accessible 11 

from the borehole is examined for further assessment and enhance the algorithm’s 12 

effectiveness. The vPSOGWO is a new approach based on model search space without any 13 

prior information. This new strategy describes the hybridization of the particle swarm 14 

optimizer (PSO) with the grey wolf optimizer (GWO). To understand the efficiency and 15 

novelty of the algorithm, it has been validated on two different kinds of synthetic resistivity 16 

data with various sets of noise and finally applied on three field datasets of different 17 

geological terrains. The analyzed results suggest that the subsurface resistivity model shows 18 

considerable uncertainty. Thus, it is superior to examine the histograms and posterior 19 

probability density functions (PDF) of such solutions for exemplifying the global solution. 20 

PDF with 68.27% CI selects a region with a higher probability. Therefore, the inverted 21 

models are used to estimate the mean global solution and the most negligible uncertainties, 22 

where the mean global solution represents the best solution. Our vPSOGWO inverted 23 

outcomes have been proven to be more accurate than classic PSO, GWO and state-of-art 24 
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variant of classic approaches. As a results, this novel method plays a vital role in DC data 25 

inversion effectively. 26 

Keywords: vPSOGWO, Uncertainty, Stability, Inversion, Resistivity data. 27 

 28 

1. INTRODUCTION 29 

The vertical electrical resistivity sounding (VES) method is an economical and simple 30 

method due to a wide application such as hydrogeological, groundwater, minerals, 31 

geothermal, hydrocarbon, engineering, environmental fields, etc. (Sen et al., 1993, Sharma, 32 

2012, Panda et al., 2018), which have been used for determining the layered parameters. The 33 

VES data interpretation is challenging due to its unstable, nonunique solution and algorithm 34 

sensitivity (Narayan et al., 1994, Oldenburg and Li, 1994, Singh et al., 2005, 2013). 35 

Therefore, many researchers have developed several inversion algorithms to improve the 36 

accuracy, stability and reduce the uncertainty of the solutions. These inversion techniques are 37 

grouped into local and global optimization techniques. In the local inversion techniques, a 38 

logical initial guess is required to get the solution. The researchers have led to think about 39 

alternative methods, where a broad range of parameters can be established. Many researchers 40 

have developed various metaheuristic optimization algorithms to solve various real-world 41 

problems. These algorithms inspired from the natural phenomenon include Ant Colony 42 

(Colorni et al., 1991), Bat algorithm (Yang, 2010), Biogeographically based Optimization 43 

(Simon, 2008), Differential Evolution (Storn and Price, 1997), Firefly algorithm (Yang, 44 

2010), Genetic Algorithm (Whitley, 1994; Mitchell, 1996), Gravitational Search Algorithm 45 

(Rashedi et al., 2009), Grey Wolves Optimizer (Mirjalili et al., 2014), Particle Swarm 46 

Optimization (Kennedy and Eberhart, 1995), etc. These optimization techniques aim to have 47 

an optimum solution and fast convergent rate to obtain global minima. However, unique 48 

characteristics, viz. exploration and exploitation, in global optimization algorithms persist. 49 
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For example, the Particle Swarm Optimization (PSO) algorithm has very high potential in 50 

exploitation, implies that the algorithm performs well in local search (Senel et al., 2019) but 51 

is inferior in exploration, which means the algorithm has less ability to find out the starting 52 

position near-global minima and because of low exploration characteristics, it gets trapped at 53 

the local minima (Eiben and Schippers, 1998, Mirjalili and Hashim, 2010). So, integrating the 54 

two algorithms with opposite characteristics is the best way to solve the exploration 55 

characteristics and exploitation characteristics, and provide more accurate and reliable 56 

solution than results obtained from an individual's algorithm. Many authors have developed 57 

various hybrid metaheuristic algorithms such as PSOGA for fundamental function analysis, 58 

PSOACO for data mining, PSODE for global optimization using the standard function, and 59 

PSOGSA using the standard function (Esmin et al., 2013; Lai and Mingyi, 2009; Rashedi et 60 

al., 2009).  61 

This study focuses on a variable weight hybrid algorithm that fuses the exploration 62 

ability of Particle Swarm Optimizer (PSO) with the exploration ability of Grey Wolves 63 

Optimizer (GWO), known as vPSOGWO (Şenel et al., 2019). In this algorithm, some 64 

random particles of PSO are replaced by the new ones obtained from GWO. Earlier the 65 

constant weight hybrid technique of PSO and GWO known as HPSOGWO has been used 66 

in different applications by some authors, such as for single area unit commitment 67 

problems (Kamboj, 2015), mathematical problems (Singh and Singh, 2017), and 68 

benchmark functions and real-world issues (Senel et al., 2019). But none of the researchers 69 

have tested the current work in geophysical data inversion to the best of our information. 70 

Thus, the applicability of the vPSOGWO algorithm is demonstrated on synthetic data with 71 

noise, without noise, and various field resistivity sounding data for estimating the 72 

resistivity distribution in a 1D earth’s subsurface model. The study also calculate the 73 

posterior probability density functions (PDF) with 68.27% confidence interval and 74 

https://doi.org/10.5194/npg-2022-13
Preprint. Discussion started: 23 November 2022
c© Author(s) 2022. CC BY 4.0 License.



-

4 
 

correlation matrix on all accepted models for determining mean global model and 75 

uncertainty. As a result, we analysed and compared the effectiveness of the proposed 76 

algorithms with classical PSO, GWO and state-of-art variant of classic methods. Our 77 

analysis advocates that the vPSOGWO algorithm produces a more accurate and reliable 78 

model with excellent stabilities and the least uncertainty in the model independently, as 79 

well as the ability to successfully resist noise. 80 

 81 

2. FORWARD MODELLING ALGORITHM 82 

The forward code is developed, and synthetic resistivity data sets were created using the 83 

kernel function (Koefoed, 1979) with Schlumberger resistivity configuration (Fig. 1) from 84 

known parameters such as current electrode spacing, number of geological multilayers of 85 

true resistivity their thickness. The mathematical expression for apparent resistivity is 86 

given as: 87 

𝝆𝒂(𝒔,𝒎) = ρ1 + 𝒔2𝜌1 ∫ 𝑇1(𝝀,𝒎)
∞

0
 𝑱𝟏(𝝀𝒔)𝑑𝜆        (1) 88 

where, 𝑱𝟏 is the first order Bessel function, λ is the integration variables, s is half of the 89 

current electrode spacing, m is the model. 𝑻𝒏 is the kernel’s resistivity transform, 𝝆𝒌 is the 90 

resistivity and 𝒕𝒌 is the thickness of the kth layers. 91 

For each layer, the kernel’s resistivity transform 𝑇𝑘 has been determined by Pekeris 92 

(1940). The apparent resistivity, 𝑻𝒌(𝝀), is convolution with linear filter theory to compute 93 

as:   94 

𝑻𝒌(𝝀) = 𝝆𝒌 ∗ (𝑻𝒌+𝟏(𝝀) + 𝝆𝒌 tanh(𝜆𝒕𝒌)) (𝝆𝒌 + 𝑻𝒌+𝟏(𝝀) tanh(𝝀𝒕𝒌))⁄       (2) 95 
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 96 

Figure 1. Schlumberger array configuration for three layer case, where C1 and C2, through 97 

which current is injected, are current electrode with spacing s; P1 and P2 are potential 98 

electrodes with spacing b. 99 

 100 

3. INVERSE MODELLING ALGORITHM 101 

The geophysical inverse problem can be formulated through forward modelling 102 

operator/functional to aim at achieving the geophysical model/solution, which illuminates the 103 

observed data in the best. This operator integrates the geophysical problems and maps 104 

between the observed data y and the solution x as: 105 

𝒚 = 𝑓(𝒙)          (3) 106 

Inversion set up finding a model that minimizes cost function/misfit functional that generally 107 

is a degree of the relationship between the N number of observed data (𝑦𝑜) and the calculated 108 

data (𝑦𝑐). This misfit functional can be introduced here as a mean-square-error (MSE) and 109 

can be defined as: 110 

MSE =
1

𝑁
∑ (𝑦𝑜 − 𝑦𝑐)

2𝑁

𝑖=1
        (4)  111 

 112 
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3.1. Particle swarm optimization 113 

Particle swarm optimization (PSO) is based on the social behavior of animals such as 114 

schooling of fish or flocking of bird (Kennedy and Eberhart in 1995). When the birds go in 115 

search of food, they scattered randomly within the search space before they can determine 116 

the position of food. While searching for food, there is always a bird who is aware of the 117 

position of food. This information they share with others. In this method, each bird is 118 

called as particle which is represented by geophysical solutions/models (i.e., here particle 119 

is resistivity layer parameters). The capability/fitness of each swarm/birds is estimated 120 

between the N number of observed data (yo), which measure the swarm and the food 121 

distance, and the computed data (yc) which measures the swarm and the estimated position 122 

(resistivity layer parameter/solution) of the prey distance using equation 4. 123 

The best position among particles with information about it are store for each 124 

iteration in memory. The new velocity and position of the population pool are accepted if 125 

its possibility is large, otherwise it is rejected. In that case, the particles are randomly 126 

distributed in the search space in order to escape the local optima. The search continues 127 

until it gains maximum possibility or it reaches the maximum iteration. In global search 128 

space, the position of each particle is updated by the following two mathematical 129 

equations: 130 

𝒗⃗⃗ 𝑖(𝑡 + 1) = 𝒗⃗⃗ 𝑖(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑 (𝒙⃗⃗ 𝑝(𝑡) − 𝒙⃗⃗ 𝑖(𝑡)) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝒙⃗⃗ 𝑔 − 𝒙⃗⃗ 𝑖(𝑡)) (5) 131 

𝒙⃗⃗ 𝑖(𝑡 + 1) = 𝒙⃗⃗ 𝑖(𝑡) + 𝒗⃗⃗ 𝑖(𝑡 + 1)       (6) 132 

Here, 𝒗⃗⃗ 𝑖 represent the velocity of the ith particle with position 𝒙⃗⃗ 𝑖, 𝒙⃗⃗ 𝑝 is the best 133 

position obtained by the  ith particle, 𝒙⃗⃗ 𝑔 is the best position, t is the number of the iteration, 134 

i represents the number of the model (𝑖 = 1, 2, 3, … ,𝑁), 𝑟𝑎𝑛𝑑 represent the random values 135 

with range [0,1], and the coefficient 𝑐1and 𝑐2 represent the optimization parameter. The 136 
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disadvantage of PSO algorithm is that, while directing particles to random positions, it has 137 

small possibility to escape the local minima. 138 

 139 

3.2 Grey wolf optimization 140 

Grey wolf optimization (GWO) algorithm mimics the leadership hierarchy and hunting 141 

mechanics of grey wolves, and used its ability to solve the standard and real-life problems. In 142 

the grey wolf’s community, they are divided in four groups: (i) the alpha, (ii) the beta, (iii) 143 

the delta and (iv) the omega, in which alpha, beta and delta are the fittest wolves, who guide 144 

omega towards promising areas of the search space. The alpha is the leader, which generally 145 

makes important and final decision for all the wolves so and represents the fittest solution. 146 

The betas are subordinates that help the alphas in their decision making but they cannot force 147 

them in any decision. They can only order the lower wolves. The beta group takes the order 148 

from alpha group which they reinforce throughout the other group and send back the 149 

feedback to the alpha. All the groups dominate over the omega wolves. The omega group is 150 

an important part during hunting as they play role of the scapegoat and are always allowed to 151 

eat at the end. If a wolf is not the part of alpha, beta or omega group, then they are known as 152 

delta which only summit to alpha and beta groups. In GWO algorithm, the alpha group 153 

represents the best position, i.e., geophysical model/solution. In our case geophysical model 154 

is resistivity layer parameters. The beta and delta groups are consecutive best solutions and 155 

omega group is the best solution that follows always the other groups. The capability/fitness 156 

of each wolf is estimated between the observed data (which measures wolf and prey distance) 157 

and the computed data (which measures the wolf and the estimated position of the prey 158 

distance) using equation 4. 159 
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Hunting in the grey wolf’s community has been divided into three groups: prey 160 

search, encircling the prey, and attacking the prey. The encircling nature of the wolves is 161 

defined by the following equation: 162 

𝑑 = |𝑐 × (𝑡) − 𝒙⃗⃗ 𝑖(𝑡)|      (7) 163 

𝒙⃗⃗ 𝑖(𝑡 + 1) = 𝒙⃗⃗ 𝑝(𝑡) − 𝑎 × 𝑑     (8) 164 

where, 𝒙⃗⃗ 𝑝 is the prey position, 𝒙⃗⃗ 𝑖 is the grey wolf’s positions, a and c are the vectors 165 

mathematically formulated as: 166 

𝑎 = 𝑎1 × (2 × 𝑟𝑎𝑛𝑑 − 1)     (9) 167 

𝑐 = 2 × 𝑟𝑎𝑛𝑑       (10) 168 

Here, 𝑎1 = 2 × (1 − 𝑡 𝑙⁄ ) which varies from 2 to 0 in decreasing order with 169 

increasing iteration (t), 𝑙 represent the maximum iteration, and rand is the random 170 

number between [0,1]. 171 

The alpha group led the grey wolves’ community, in which the beta and the delta 172 

group to search the prey location and the omega groups follow them. The alpha group 173 

wolves gives the best solution, while the second and third best solution is provided by 174 

the beta and the delta group wolves, respectively. Therefore, the rest community wolves 175 

i.e., omega group wolves follows the best solution wolves to obtain best location. This is 176 

mathematical equated by: 177 

𝑑𝛼,𝛽,𝛿 = |𝒄⃗ 1,2,3 × 𝒙⃗⃗ 𝛼,𝛽,𝛿 − 𝒙⃗⃗ |       (11) 178 

The best location/position for alpha, beta and delta wolves in each iteration is 179 

given by 𝒙⃗⃗ 𝛼, 𝒙⃗⃗ 𝛽 and 𝒙⃗⃗ 𝛿, respectively. 180 

𝒙⃗⃗ 1,2,3 = |𝒙⃗⃗ 𝛼,𝛽,𝛿 − 𝒂⃗⃗ 1,2,3 × 𝒅⃗⃗ 𝛼,𝛽,𝛿|       (12) 181 

Here, 𝒙⃗⃗ 𝑝(𝑡 + 1) describe the updated position of the prey in (𝑡 + 1) iteration 182 

which is obtained from the mean position of three best wolves in the population, that is, 183 

𝒙⃗⃗ 𝑝(𝑡 + 1) = (𝒙⃗⃗ 1 + 𝒙⃗⃗ 2 + 𝒙⃗⃗ 3) 3⁄        (13) 184 
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The values of 𝑎 are utilized by wolves which force the search to move away from 185 

the prey. When 𝑎 ≥ 1, the hunting is abandoned in order to have a better solution and, 186 

when 𝑎 < 1, the wolves are enforced to attack the prey. In equation 9, 𝑎 varies between 187 

[−2𝑎1,   2𝑎1]. 188 

 189 

3.3 Hybrid variable weighted PSOGWO (vPSOGWO) 190 

Despite its usefulness in achieving successful results in real-world problems, it tends to 191 

fall into the local minima, causing the solution to move away from global minima. This 192 

tendency for deteriorating within the local minima is stopped by the exploration ability 193 

of the GWO algorithm. Therefore, the hybrid variable weighted PSOGWO, known as 194 

vPSOGWO that fuses the exploitation potential of PSO with the exploration potential of 195 

GWO to overcome each other’s discrepancy with the implementation of varying weight. 196 

Due to the involvement of two distinct variants running together to solve the problem, 197 

this hybrid vPSOGWO is called a co-evolutionary hybrid algorithm. The encircling 198 

behaviour of each wolf is updated by the following equations: 199 

𝒅⃗⃗ 𝛼,𝛽,𝛿 = |𝒄⃗ 1,2,3 × 𝒙⃗⃗ 𝛼,𝛽,𝛿 − 𝑤 × 𝒙⃗⃗ |       (14) 200 

Here, 𝑤 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) × 𝑡 𝑙⁄       (15) 201 

Here, 𝑤𝑚𝑎𝑥 = 0.9, and 𝑤𝑚𝑖𝑛 = 0.2 are found more appropriate after tuning for our 202 

study. 203 

The best location/position (geophysical model) for alpha, beta and delta wolves in 204 

each iteration is given by 𝑥 𝛼, 𝑥 𝛽 and 𝑥 𝛿, respectively. 205 

𝒙⃗⃗ 1,2,3 = |𝒙⃗⃗ 𝛼,𝛽,𝛿 − 𝒂⃗⃗ 1,2,3 × 𝒅⃗⃗ 𝛼,𝛽,𝛿|       (16) 206 

where, 207 

𝑎1,2,3 = 𝑎1 ∗ (2 ∗ 𝑟𝑎𝑛𝑑 − 1)       (17) 208 

𝑐1,2,3 = 0.5 (chosen after tuning)       (18) 209 
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𝑎1 = 2 ∗ (1 − 𝑡 𝑙⁄ )         (19) 210 

The updated velocity and position of vPSOGWO are:  211 

𝒗⃗⃗ 𝑖(𝑡 + 1) = 𝑤 × 𝒗⃗⃗ 𝑖(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝒙⃗⃗ 1 − 𝒙⃗⃗ 𝑖(𝑡)) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝒙⃗⃗ 2 − 𝒙⃗⃗ 𝑖(𝑡)) +212 

𝑐3 × 𝑟𝑎𝑛𝑑 × (𝒙⃗⃗ 3 − 𝒙⃗⃗ 𝑖(𝑡))      213 

 (20) 214 

𝒙⃗⃗ 𝑖(𝑡 + 1) = 𝒙⃗⃗ 𝑖(𝑡) + 𝒗⃗⃗ 𝑖(𝑡 + 1)       (21) 215 

Here, the value 1.5 for each coefficients 𝑐1, 𝑐2, and 𝑐3 after tuning the parameters 216 

found more suitable in the present study (Roshan and Singh, 2017).   217 

_______________________________________________________________________ 218 

vPSOGWO algorithm 219 

_______________________________________________________________________ 220 

Max_Iter: maximum iterations set 221 

Pop_no: population size 222 

Para: Number of parameters  223 

Fitness=infinite: already set 224 

Lb and Ub: set Lower bound (Lb) and Upper bound (Ub) for different parameters 225 

Initialize particles randomly 226 

Procedure 227 

for l = 1 to Max_Iter do 228 

  for i = 1 to Pop_no do 229 

   for j = 1 to Para do 230 

   check the Lb and Ub for randomly created particles 231 

   end  232 

  end  233 

  for i = 1 to Pop_no do 234 
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   Calculate the fitness form cost function 235 

   Update the wolves’ fitness and position 236 

  end  237 

  Update a1, a, c, w, using equations (15-17), (13) 238 

  for i = 1 to Pop_no do 239 

   for j = 1 to Para do 240 

   Update position of 𝒙⃗⃗ 1, 𝒙⃗⃗ 2 and 𝒙⃗⃗ 3 using equations (14) and (16) 241 

    Update best particle velocity and position using equations (20-21) 242 

   end  243 

  end  244 

 end 245 

 ______________________________________________________________________ 246 

4.0   Statistical simulation for global model and uncertainty estimation 247 

The proposed algorithms yield good-fitting models, but the evaluation of a global solution 248 

requires numerous techniques. It is noteworthy for selecting the region of solution/model 249 

search space, where we find enormous solutions. The methods for selecting the region of 250 

model space were selected to envisage the global solution and reduce the uncertainty in the 251 

ultimate solution (Mosegaard and Tarantola, 1995; Sen and Stoffa, 1996). Thus, many 252 

solutions and associated error estimated were kept in memory for consequent statistical 253 

measurements. Therefore, 108 solutions were generated for each algorithm using logarithmic 254 

mean square error, and every computed response corresponding to each model fits well with 255 

the observed response. However, the model parameters obtained may differ from each other, 256 

which lie within the search range in multidimensional space. Hence, the mean model from the 257 

model parameters is defined as (Ross, 2009):  258 

𝒎̂𝑖 =
1

𝑀
∑ 𝒎𝑖,𝑗

𝑀
𝑗=1            (20) 259 
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where i =1 to the total number of the parameters, M is the total models and 𝒎𝑖,𝑗.  260 

All algorithms are executed for 10,000 runs with 1000 iterations to obtain the best 261 

model parameters. It is noteworthy to mention that in vPSOGWO, multiple runs are crucial 262 

because 1000 weightage points are laying in between the inertial weights of 0.9 to 0.2, such 263 

that each weightage point yields a fitted model in a run. As a result, 10,000 runs provide 264 

10,000 chances to each weightage point to fetch the best-fitted model. 265 

Therefore, the posterior covariance matrices are defined in the equation (Ross, 266 

2009): 267 

𝐶𝑜𝑣(𝒎𝑖,𝑘) =
1

𝑀−1
∑ (𝒎𝑖,𝑗 − 𝒎̂𝑖) × (𝒎𝑘,𝑗 − 𝒎̂𝑘)

𝑀
𝑗=1     (21) 268 

and posterior correlation matrices are described in the equation: 269 

𝐶𝑜𝑟𝑟(𝒎𝑖,𝑘) = 𝐶𝑜𝑣(𝒎𝑖,𝑘) √𝐶𝑜𝑣(𝒎𝑖,𝑖) × 𝐶𝑜𝑣(𝒎𝑘,𝑘)⁄     (22) 270 

where i and k lie  between 1 to total number of parameters.  271 

The square-rooted diagonal elements of the covariance matrix define the 272 

uncertainty of the solution, and the correlation matrix gives a rough idea about the relation 273 

between the model parameters. If the parameters don't provide a global solution, then the 274 

apparent resistivity curve corresponding to the mean model will not adequate the observed 275 

value. The posterior correlation matrix corresponding to the indigenous solution will not 276 

yield an actual correlation between the parameters obtained via linear regression. For 277 

further analysis, posterior PDF and histogram are calculated over all accepted models. The 278 

one-dimensional posterior probability density function for various parameters with mean 279 

𝑚̂𝑖 and standard deviation 𝜎𝑖 is given as (Ross, 2009): 280 

𝑝(𝒚𝒊, 𝒎̂𝒊, 𝝈𝒊) = ( 1 𝝈𝒊√2𝜋⁄ ) × exp (− (𝒚𝒊 − 𝒎̂𝑖)
2 2𝝈𝒊

2⁄ )   (23) 281 

where y is the solution/model parameter’s output store after 10,000 runs of an algorithm 282 

and i = 1 to the number of model parameters. 283 
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Different techniques are based on the posterior PDF to obtain the global solution. 284 

One of the techniques is to pick the model parameters with the highest probability values. 285 

Another method based on PDF is to normalize (0 to 1) each model parameter by their 286 

respective highest probability values. The best model is considered to have the highest sum 287 

of normalized probability values (Sharma, 2012). Further, the best model can also be 288 

determined by taking the mean of each parameter with probably more significance than the 289 

threshold probability. However, these techniques fail to provide the global model. 290 

Therefore, proceeding with a new approach to the study by introducing a 291 

confidence interval (CI) more significant than 68.27% as a benchmark for all model 292 

parameters. According to the empirical rule, 68.27% of the data lies within the one 293 

standard deviation of the mean (Ross, 2009). Thus, the model parameters below 68.27% CI 294 

are discarded, and the remaining parameters are used for determining the mean solution 295 

and uncertainty. It means that the model represents the global solution with less 296 

uncertainty. 297 

 298 

5.0 Computation information 299 

The code was developed in MATLAB R2019a in Windows 10 platform having 300 

configuration: Model-HP Z240 Tower Workstation, Processor- Intel Xeon CPU E3-1225 301 

v6 @ 3.30GHz, 32.0 GB RAM, 64-bit operating system (OS). However, Global 302 

optimization is a time-consuming process, as it requires many forwarding calculations to 303 

obtain the best-fitted result.  304 

 305 

6.0 Results and discussion 306 

The applicability of the new algorithm vPSOGWO, GWO, and PSO has been assessed 307 

inverting several cases of synthetic and field data extracted from different geological 308 
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terrains (Dixon & Doherty, 1977; Panda et al., 2017). Both synthetic and field data sets 309 

were computed and optimized using the developed algorithms, keeping the ten population 310 

size and 1000 iterations for 10,000 runs, leading each algorithm to analyzed 108 models. 311 

We have discussed the inverted results of algorithms to the application on few examples of 312 

synthetic and field cases: 313 

 314 

6.1 Example 1: Synthetic data- Three-layer case 315 

Initially, to access the applicability and efficacy of the proposed algorithms, a synthetic 316 

apparent resistivity sounding data measured with Schlumberger array is generated 317 

considering the three-layered earth model sandwich with a high resistive layer of 500.0Ωm 318 

and thickness 150.0 m between two low resistive layers of 8.0Ωm and 5.0Ωm. The 319 

synthetic data is computed in the Matlab environment as shown in Fig. 2(a) with the (*) 320 

mark. Fig. 2 shows (a) the three-layer synthetic data with the best fitted calculated apparent 321 

resistivity curve (> 68.27% PDF) and (b) one-dimensional mean model (> 68.27% PDF) 322 

for true model (black color), vPSOGWO (red color), GWO (blue color) and PSO (green 323 

color).  324 

 325 
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Figure 2. Three layer synthetic data (a) observed (*) and the best fitted calculated apparent 326 

resistivity curve (> 68.27% PDF); (b) one dimensional mean model (> 68.27% PDF) for true 327 

model (black colour), vPSOGWO (red colour), GWO (blue colour) and PSO (green colour).  328 

 329 

The search limit for novel inversions techniques (vPSOGWO, GWO, and PSO) is 330 

carefully chosen, as shown in Table 1. Each algorithm, including vPSOGWO, runs 10,000 331 

times to perform statistical analysis and determine the global mean model with the least 332 

uncertainty. Fig. 3 shows the convergence curve of the resistivity layer parameters using 333 

vPSOGWO. We found no changes seen in the convergence pattern after 590 iterations, and 334 

layer parameters get stable. The convergence curves in terms of error versus iterations for 335 

existed three algorithms are shown in Fig. 4. It is observed that vPSOGWO, GWO, and 336 

PSO have converged at 590, 950, and 380 iterations with the mean square error of 1.586e–337 

8, 5.238e–8, and 5.792e–8, respectively, whereas ridge regression has an error of 0.633.  338 

 339 

Figure 3. Convergence curve for best fitted model parameters for vPSOGWO algorithm. 340 
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 341 

 342 

Figure 4. Convergent curve known as error versus iteration curve for three layers noiseless 343 

synthetic data. 344 

 345 

Figure 5. (a) Histogram and (b) posterior PDF of all 10,000 solution corresponding to 346 

output of each run for three layer synthetic earth model. 347 

 348 

The 10,000 models inverted are used to find out the posterior PDF and histogram 349 

for each parameter. As shown in Fig. 5(a), the peak of posterior PDF is roughly close to the 350 

actual model parameter. The histogram is shown in Fig. 5(b) suggests that the 𝜌2 and ℎ2 351 
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have a broader range. It represents the equivalence problem associated with the resistive 352 

layer as the uncertainty in each algorithm was found to be large considering all the 353 

accepted models. So by selecting the models having posterior PDF greater than 68.27% CI 354 

reduces the uncertainty in the model, increases the resolution of a solution, and helps 355 

estimate the best mean model close to the actual model (Table 1). Table 1 shows the model 356 

parameters and uncertainty for proposed algorithms.  357 

Table 1. Optimization mean model result for three layer synthetic resistivity sounding data. 358 

Model 

Parameter 

True 

value 

Search 

Range 

True 

model 

Mean model 

(final 10000 solution) 

Mean model  

(PDF > 68.27%) 

GWO PSO vPSOGWO GWO PSO vPSOGWO 

ρ1 (Ωm) 10 5 – 15 10 

± 0.06 

10.33 

± 0.55 

10 

± 0.39 

10 

± 0.02 

10.15 

± 0.23 

9.98 

± 0.08 

10 

± 0.01 

ρ2 (Ωm) 390 15 – 

500 

398 

± 8.2 

324.55 

± 56.71 

343.10 

± 49.70 

391.29 

± 8.39 

319.15 

± 24.02 

340.90 

± 23.10 

391.09 

± 3.67 

ρ3 (Ωm) 10 1 – 20 10 

± 0.05 

10.50 

± 3.76 

9.56 

± 7.78 

11.25 

± 3.66 

10.71 

± 1.88 

9.25 

± 2.84 

11.27 

± 1.70 

h1 (m) 10 1 – 20 10.1 

± 0.09 

10.15 

± 0.82 

9.74 

± 0.56 

10 

± 0.04 

9.85 

± 0.33 

9.72 

± 0.18 

10 

± 0.02 

h2 (m) 250 100 – 

500 

245 

± 4.9 

314.70 

± 61.46 

299.55 

± 54.63 

247.59 

± 9.84 

312.61 

± 26.91 

293.21 

± 23.57 

247.51 

± 3.93 

 359 

Table 2. Correlation matrix using 68.27% PDF limit for three layer synthetic resistivity 360 

sounding data. 361 

 362 

 363 

 364 

 365 

Model 

Parameter 

ρ1 

(Ωm) 

ρ2 

(Ωm) 

ρ3 

(Ωm) 

h1 (m) h2 (m) 

ρ1 (Ωm) 1.0000         –0.0575     0.0142     0.3820     0.0222 

ρ2 (Ωm)  1.0000       0.2585     0.6293    –0.7994 

ρ3 (Ωm)   1.0000        0.0537    –0.7678 

h1 (m)    1.0000    –0.4278 

h2 (m)     1.0000    
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Here, two approaches are used to present the mean solution with its uncertainty 366 

estimation: (i) the mean solution for all accepted best-fitted solutions obtained from 10,000 367 

runs for all three algorithms; and (ii) the mean model calculated from solution with 368 

posterior PDF, which values are greater than 68.27% CI from all accepted solution 369 

parameters.  370 

Here, we observed that the second layer parameters for PSO and GWO are too 371 

diverted from actual values with higher uncertainty due to their inability to balance 372 

exploitation and exploration properties. In contrast, the hybrid vPSOGWO algorithm 373 

provides more accurate results and falls within its uncertainty ranges (Table 1). Therefore, 374 

a hybrid algorithm has better exploitation and exploration balancing nature than PSO and 375 

GWO. As shown in Table 2, the posterior correlation matrix illustrations that first layer 376 

resistivity reveals a feeble correlation with other associated parameters. Whereas there is a 377 

negative correlation found between 𝜌2 and ℎ2, both parameters have a trade-off 378 

relationship. 379 

 380 
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Figure 6. Correlation plot between model parameters (off diagonal) and posterior PDF 381 

curve (diagonal) from models having all parameters greater than 68.27% PDF.  382 

 383 

In contrast, a positive correlation between 𝜌2 and ℎ1 is observed (i.e., resistivity of 384 

the second layer increases with increasing the thickness of the first layer and vice versa). 385 

Similarly, it can also be seen between third layer resistivity and second layer thickness but 386 

inverse in nature. Fig. 6 represents the correlation plot between model parameters (off-387 

diagonal) with the posterior PDF curve (diagonal) for models greater than 68.27% CI for 388 

all parameters. No significant error differences are found between the observed and 389 

calculated apparent resistivity data for all three algorithms (Fig. 2(a)). However, the error 390 

difference in the 1D model and result for 68.27% CI’s mean model are presented in Fig. 391 

2(b) and Table 1, respectively.  392 

Table 3. Stability test for three layer synthetic resistivity sounding data using different 393 

search range. 394 

Model 

Parameter 

ρ1 (Ωm) ρ2 (Ωm) ρ3 (Ωm) h1 (m) h2 (m) 

True values 10 390 10 10 250 

Search Range 5 – 30 500 – 1000 15 – 30 1 – 10 50 – 90 

vPSOGWO 10 ±  0.02 390.44 ± 8 10.48 ± 3.60 10 ± 0.04 249.25 ±  9.93 

Search Range 2.5 - 30  7.5 – 750 0.1 – 40 1 – 40 50 - 750 

vPSOGWO 10 ± 0.03 398.39 ± 18.01 15.93 ± 8.47 10.02 ± 0.07 237.24 ± 21.98 

Search Range 1 - 60  1 – 1000 0.01 – 80 1 - 80  1 - 1000 

vPSOGWO 10 ± 0.03 428.11 ± 60.40 23.14 ± 13.19 10.10 ± 0.15 214.86 ± 39.66 

 395 

To check the stability of the parameter, the hybrid algorithm is tested with three 396 

different search spaces, as shown in Table 3. Consequently, it estimates the mean model 397 
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and uncertainty for 100 runs. This Table illuminates using a broader search space suggests 398 

that the result does not divert too much from the actual model. The computations time 399 

required for vPSOGWO, GWO, and PSO are 1.54s, 1.49s, and 1.48s, respectively, for one 400 

run with 30 data points in this example.  401 

Table 4. Optimization mean model result for three layer synthetic resistivity sounding data 402 

with 10% noise. 403 

Model 

Parameter 

True 

value 

Search 

Range 

Mean model 

(final 10000 solution) 

Mean model  

(PDF > 68.27%) 

GWO PSO vPSOGWO GWO PSO vPSOGWO 

ρ1 (Ωm) 10 5 – 15 10.37 

± 0.56 

10.05 

± 0.40 

10.04 

± 0.02 

10.21 

± 0.24 

10.03 

± 0.08 

10.04 

± 0.01 

 

ρ2 (Ωm) 390 15 – 

500 

323.27 

± 55.51 

341.58 

± 49.74 

384.37 

± 7.78 

317.68 

± 24.39 

339.42 

± 23 

384.24 

± 3.41 

 

ρ3 (Ωm) 10 1 – 20 10.46 

± 3.79 

9.57 

± 7.78 

11.17 

± 3.60 

10.61 

± 1.94 

9.35 

± 2.84 

11.17 

± 1.65 

 

h1 (m) 10 1 – 20 10.16 

± 0.83 

9.75 

± 0.57 

9.99 

± 0.04 

9.89 

± 0.35 

9.74 

± 0.18 

9.99 

± 0.02 

 

h2 (m) 250 100 – 

500 

314.65 

± 60.48 

300 

± 54.45 

251.72 

± 9.59 

312.96 

± 27.59 

293.61 

± 23.54 

251.64 

± 3.82 

 

 404 

The proposed optimization is also performed using the same synthetic data with 405 

10% Gaussian noise and keeping the search range (Table 1). The same procedure is applied 406 

to determine the mean model from all best-fitted solutions and solutions with posterior 407 

PDF greater than 68.27% CI used for parameters of all the solutions (Table 4). Although a 408 

10% noise is added, the result obtained from the mean model for posterior PDF of 68.27% 409 

for the hybrid algorithm is not much diverted from actual values. At the same time, the 410 

error was observed that slightly increase 1.309e–5, 1.313e–5, and 1.327e–5 for 411 

vPSOGWO, GWO, and PSO, respectively. Table 5 depicts the correlation matrix of the 412 

vPSOGWO, which clearly described interdependence by 0.3315 and –0.7879 for the first 413 
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and second layer's parameters. Similarly, we can also determine the relation between 414 

second layer resistivity and first layer thickness (0.6142), third layer resistivity, and the 415 

second layer thickness (-0.7618). Hence, it shows good agreement with the actual model 416 

values.  417 

Table 5. Correlation matrix using 68.27% PDF limit for three layer synthetic resistivity 418 

sounding data with 10% noise. 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

6.2 Example 2: Synthetic data- Four layers case 427 

The four-layer earth model having a thin, relatively low resistive (24.0 Ωm) sandwiched 428 

between the two high resistivity layers (840.0 Ωm and 8400.0 Ωm) is considered for 429 

demonstration of the proposed algorithms. Table 6 illustrates the actual model for synthetic 430 

data, search range, and inverted results. The vPSOGWO, GWO, and PSO converge at 431 

iterations 590, 674, and 750 with associated errors 3.624e–8, 1.370e–8, and 2.097e–7, 432 

respectively as shown in Fig. 8, whereas the error estimated using ridge regression method 433 

is 0.383. Instead of higher error in vPSOGWO than GWO, it can also be observed that the 434 

error scale for the vPSOGWO algorithm is narrower than the other two algorithms, which 435 

is an essential factor for determining the mean model (Fig. 9). Hence, the mean model is 436 

affected by the error scale, as shown in Fig. 9. 437 

Model 

Parameter 

ρ1 (Ωm) ρ2 (Ωm) ρ3 (Ωm) h1 (m) h2 (m) 

ρ1 (Ωm) 1.0000 –0.0816 –0.0017 0.3315 –0.0552 

ρ2 (Ωm)  1.0000 0.2356 0.6142 –0.7879 

ρ3 (Ωm)   1.0000 0.0064 –0.7618 

h1 (m)    1.0000 –0.3922 

h2 (m)     1.0000 
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 438 

Figure 7. Four layer synthetic data: (a) observed (*) and the best fitted calculated apparent 439 

resistivity curve (> 68.27% PDF); (b) one dimensional mean model (> 68.27% PDF) for 440 

true model (black colour), vPSOGWO (red colour), GWO (blue colour) and PSO (green 441 

colour). 442 

 443 

Figure 8. Convergent curve known as error versus iteration curve for four layers noiseless 444 

synthetic resistivity sounding data. 445 

 446 
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 447 

Figure 9. Histogram of logarithmic mean square error for vPSOGWO, GWO and PSO 448 

over 10,000 models. The x axis of three histogram represent the misfit error correspond to 449 

10,000 models.  450 

Table 6. Optimization mean model result for four layer synthetic resistivity sounding data. 451 

Model 

Parameter 

True 

value 

Search 

Range 

Ridge 

regressi

on  

Mean model 

(final 10000 solution) 

Mean model  

(PDF > 68.27%) 

GWO PSO vPSOGWO GWO PSO vPSOGWO 

ρ1 (Ωm) 12 5 – 30 12.1  

± 0.1 

12.03  

± 0.07 

12.10  

± 1.05  

11.99  

± 0.08  

12.02 

± 0.03 

12.01 

± 0.39 

11.99  

± 0.04 

ρ2 (Ωm) 840 500 – 

1000 

814  

± 62 

809.16  

± 28.80 

802.90  

± 69.13 

824.36  

± 58.13 

814.38 

± 10.86 

803.12 

± 31.07 

822.71 

± 26.06 

ρ3 (Ωm) 24 15 – 30 18.2  

± 805 

24.34  

± 1.30 

23.78   

± 5.01 

23.59  

± 3 

24.50 

± 0.36 

23.50 

± 1.95 

23.69 

± 1.41 

ρ4 (Ωm) 8400 5000 – 

10000 

7500  

± 3275 

8151.4  

± 293.68 

8068.1  

± 614.66 

8415.50  

± 151.53 

8150.1 

± 118.05 

8065.2 

± 301.79 

8411.9 

± 70.40  

h1 (m) 6 1 – 10 6  

± 0.07 

6  

± 0.06 

6.04  

± 0.68 

5.99  

± 0.06 

6 

± 0.03 

5.99 

± 0.22 

5.99 

± 0.03 

h2 (m) 72 50 – 90 74  

± 25.7 

75.13  

± 2.82 

75.79  

± 7.36 

73.99  

± 5.71 

74.61 

± 0.94 

75.14 

± 3.20 

73.77 

± 2.59 

h3 (m) 48 30 – 60 36  

± 1595 

48.43  

± 2.71 

46.98  

± 9.93 

47.10  

± 5.98 

48.82 

± 0.88 

46.46 

± 3.86 

47.30 

± 2.81 

 452 
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To reduce uncertainty and increase the resolution of the model, model parameters 453 

containing posterior PDF greater than 68.27% CI are selected. In Table 6, the true model 454 

lies within the uncertainty range of hybrid vPSOGWO, whereas GWO and PSO have failed 455 

to keep the true model within its uncertainty range in the second, third, and fourth layer's 456 

parameters. In the case of ridge regression, the uncertainty level of the model parameters is 457 

too high. For example, in the case of the third layer, both resistivity and thickness have 458 

uncertainty approx. 44 times higher than the actual value.  459 

 460 

Figure 10. (a) Histogram and (b) posterior PDF of all 10,000 solution corresponding to 461 

output of each run for four layer synthetic resistivity sounding data. 462 

 463 

The inverted 10,000 models are also computed in this example to find out the 464 

posterior PDF and histogram for each parameter. The peak of posterior PDF is roughly 465 

nearby the actual solution, as shown in histogram Fig. 10(a) and Fig. 10(b) reveals the 𝜌2 466 

and ℎ2 have a broader range that signifies the equivalence problem associated with the 467 

resistive layer. The uncertainty in each algorithm is found to be large considering all the 468 
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accepted models. However, picking the models with greater posterior PDF than 68.27% CI 469 

reduces the uncertainty in the model, increases the resolution of a solution.  470 

 471 

Figure 11. Correlation plot between model parameters (off diagonal) and posterior PDF 472 

curve (diagonal) from models having all parameters greater than 68.27% PDF. 473 

 474 

The correlation plot between model parameters (off-diagonal) with the posterior 475 

PDF curve (diagonal) for models greater than 68.27% CI for all parameters is shown in 476 

Fig. 11. There are also no significant error differences between the computed and observed 477 

apparent resistivity data for all three optimization algorithms.  478 

https://doi.org/10.5194/npg-2022-13
Preprint. Discussion started: 23 November 2022
c© Author(s) 2022. CC BY 4.0 License.



-

26 
 

Table 7. Correlation matrix using 68.27% PDF limit for four layer synthetic resistivity 479 

sounding data. 480 

 481 

The correlation matrix of a four-layer model of synthetic resistivity data is shown in 482 

Table 7. It illustrations that the first layer parameters are correlated by a correlation matrix 483 

of 0.7383. A strong negative correlation was found between the second layer parameters (-484 

0.9798), and the third layer parameters are strongly correlated with each other by a positive 485 

correlation matrix of 0.9983. Fig. 7(a) shows the fitness between four-layer synthetic (*) 486 

and computed apparent resistivity data obtained for vPSOGWO, GWO, and PSO. The 487 

difference in fitness curves for all three optimization techniques cannot be determined as 488 

the observed error is significantly negligible. However, the error difference can be 489 

observed in the 1D resistivity-depth models obtained from 68.27% CI’s mean model, as 490 

shown in Fig. 7(b). Table 6 shows the mean model having posterior PDF greater than 491 

68.27% CI for all accepted parameters in the four-layer earth model case. The computation 492 

time for vPSOGWO, GWO, and PSO are 1.94s, 1.84s, and 1.85s (PSO), respectively, for 493 

one run with 27 data points in this example. 494 

The optimization techniques are also executed using the same four-layer model of 495 

synthetic data with 10% Gaussian noise and keeping the search range in Table 6. The 496 

Model 

Parameter 

ρ1 (Ωm) ρ2 (Ωm) ρ3 (Ωm) ρ4 (Ωm) h1 (m) h2 (m) h3 (m) 

ρ1 (Ωm) 1.0000         –0.0359 –0.0029 –0.0207     0.7383     0.0354    –0.0041 

ρ2 (Ωm)  1.0000       –0.0481 –0.0598     0.4667    –0.9798    –0.0105 

ρ3 (Ωm)   1.0000        0.0284 –0.0188     0.0274     0.9983 

ρ4 (Ωm)    1.0000    –0.0183     0.0935     0.0509 

h1 (m)     1.0000    –0.4286   –0.0036 

h2 (m)      1.0000    –0.0079 

h3 (m)       1.0000    
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same procedure is applied to determine the mean model from all the best-fitted models 497 

and models of a posterior PDF greater than 68.27% CI for all model parameters 498 

presented in Table 8. Although a 10% noise is added, the result obtained from the mean 499 

model for the posterior PDF of 68.27% for the hybrid algorithm is not much diverted 500 

from actual values. At the same time, the experimental error is 3.831e–4, 3.831e–4, and 501 

3.870e–4 for vPSOGWO, GWO, and PSO, respectively.  502 

Table 8. Optimization mean model result for four layer synthetic resistivity sounding 503 

data with 10% noise. 504 

Model 

Parameter 

True 

value 

Search 

Range 

Mean model 

(final 10000 solution) 

Mean model  

(PDF > 68.27%) 

GWO PSO vPSOGWO GWO PSO vPSOGWO 

ρ1 (Ωm) 12 5 - 30 12.25  

± 0.07 

12.38  

± 1.03  

12.27  

± 0.09  

12.24 

± 0.03 

12.26 

± 0.37 

12.27  

± 0.04 

ρ2 (Ωm) 840 500 – 

1000 

813.70  

± 31.51 

816.76  

± 66.79 

901.03  

± 53.95 

812.08 

± 12.36 

816.46 

± 29.21 

899.24 

± 24.66 

ρ3 (Ωm) 24 15 - 30 24.17  

± 1.36 

23.51   

± 5.03 

23.59  

± 2.84 

24.31 

± 0.42 

23.28 

± 1.87 

23.50 

± 1.37 

ρ4 (Ωm) 8400 5000 - 

10000 

8070.5  

± 

310.96 

7971.2 

± 596.07 

8415.50  

± 167.11 

8082 

± 143.09 

7973.5 

± 292.28 

8417 

± 80.27  

h1 (m) 6 1 - 10 6.15  

± 0.06 

6.22  

± 0.67 

5.99  

± 0.06 

6.15 

± 0.03 

6.15 

± 0.21 

6.20 

± 0.03 

h2 (m) 72 50 - 90 76.80  

± 2.98 

76.96  

± 6.96 

73.99  

± 4.59 

76.72 

± 1.29 

76.38 

± 3.00 

69.75 

± 2.10 

h3 (m) 48 30 - 60 47.35  

± 2.84 

47.35  

± 10.09 

47.10  

± 5.85 

48.75 

± 0.94 

47.02 

± 3.77 

48.27 

± 2.83 

 505 

Table 9 illustrates the correlation matrix of the hybrid algorithm, which clearly 506 

described interdependence by 0.7644, –0.9665, and 0.9980 for the first and second, and 507 

third layers parameters. Similarly, we can also find out the relation between second layer 508 

resistivity and first layer thickness (0.3605) and the resistivity of the fourth layer and 509 
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thickness of the third layer (0.0549). Hence, it shows good agreement with the actual 510 

model values.  511 

Table 9. Correlation matrix using 68.27% PDF limit for four layer synthetic resistivity 512 

sounding data with 10% noise. 513 

Model 

Parameter 

ρ1 (Ωm) ρ2 (Ωm) ρ3 (Ωm) ρ4 (Ωm) h1 (m) h2 (m) h3 (m) 

ρ1 (Ωm) 1.0000         0.0003        0.0271 –0.0948     0.7644    –0.0109     0.0251 

ρ2 (Ωm)  1.0000       –0.0168     0.0327     0.3605    –0.9665     0.0153 

ρ3 (Ωm)   1.0000        0.0260     0.0211    –0.0042     0.9980 

ρ4 (Ωm)    1.0000    –0.0446     0.0009     0.0549 

h1 (m)     1.0000    –0.3180     0.0268 

h2 (m)      1.0000    –0.0329 

h3 (m)       1.0000    

 514 

 515 

6.3 Example 3: Field data - Three-layer case 516 

We have taken one three-layer case of vertical electrical resistivity sounding data measured 517 

with Schlumberger array over Mt. Turner, North Queensland, Australia, interpreted by 518 

Dixon and Doherty (1977, Fig. 2a), as shown in Fig. 12(a). After selecting a suitable 519 

search range, three novel algorithms, namely vPSOGWO, GWO, and PSO, are executed to 520 

reconstruct the model interpreted by Dixon and Doherty (1977). The search range and 521 

comparison among proposed algorithms with the previous result (Dixon and Doherty, 522 

1977) are presented in Table 10. Our results (for 68.27% CI) are closed to the development 523 

given by Dixon and Doherty (1977). The convergent error for the best-fitted model in 524 

vPSOGWO is 3.681e–4, whereas GWO is 3.697e–4, and PSO is 3.682e–4. 525 
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 526 

Figure 12. Three layer field data over Mt. Turner, North Queenland, Australia: (a) 527 

observed (*) and the best fitted calculated apparent resistivity curve (> 68.27% PDF); (b) 528 

one dimensional mean model (> 68.27% PDF) for true model (black colour), vPSOGWO 529 

(red colour), GWO (blue colour) and PSO (green colour). 530 

Table 10. Optimization mean model result for three layer field resistivity sounding data. 531 

Model 

Parameter 

Search 

Range 

Dixon 

and 

Doherty 

(1977) 

Mean model 

(final 10000 solution) 

Mean model  

(PDF > 68.27%) 

GWO PSO vPSOGWO GWO PSO vPSOGWO 

ρ1 (Ωm) 2000 – 

3000 

2500 2646.6 

± 246.65 

2532.3 

± 78.20 

2536  

± 8.67  

2619.8 

± 109.70 

2533.8 

± 34.59 

2535.9  

± 4.05  

ρ2 (Ωm) 10 – 

400 

100 116.01 

± 16.45 

110.17  

± 3.38 

109.23 

± 0.29 

112.55 

± 4.65 

109.78 

± 1.11 

109.24 

± 0.13 

ρ3 (Ωm) 200 – 

500 

300 318.99  

± 31.67 

334.01   

± 33.22 

314.42  

± 1.63 

315.50 

± 11.96 

327.15 

± 14.93 

314.40 

± 0.77 

h1 (m) 0.1 – 3 1.42 

(approx.) 

1.28  

± 0.13 

1.33   

± 0.02  

1.33 

± 0.00 

1.29 

± 0.05 

1.33 

± 0.01 

1.33 

± 0.00 

h2 (m) 20 - 50 29.21 

(approx.) 

34.02  

± 7.38 

34.91  

± 6.29 

31.90  

± 0.31 

32.66 

± 2.99 

33.67 

± 2.17 

31.90 

± 2.17 

 532 

 533 
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Table 11. Correlation matrix using 68.27% PDF limit for three layer field resistivity 534 

sounding data. 535 

Model 

Parameter 

ρ1 (Ωm) ρ2 (Ωm) ρ3 (Ωm) h1 (m) h2 (m) 

ρ1 (Ωm) 1.0000         0.0046 –0.0003 –0.2336 0.0086    

ρ2 (Ωm)  1.0000       –0.0389 –0.0897 0.3075 

ρ3 (Ωm)   1.0000        0.0144 0.4050 

h1 (m)    1.0000    –0.0256 

h2 (m)     1.0000    

 536 

Table 11 presents the correlation matrix, which shows a negative correlation 537 

between the first layer parameters, and a positive correlation is observed between the 538 

second layer parameters. A positive correlation is also observed between 𝜌3 and ℎ2, which 539 

maintains the same model data. Fig. 12(a) shows the apparent resistivity curve and the 1D 540 

model obtained from the mean model with a 68.27% CI result shown in Fig. 12(b). The 541 

computation time requires for one run in this example with 14 data points is 0.90s 542 

(vPSOGWO), 0.83s (GWO), and 0.78s (PSO), respectively. 543 

 544 

6.4 Example 4: Field data - Five-layer case 545 

We have selected another field example using a vertical electrical resistivity sounding data 546 

as a five-layer case of earth’s subsurface model from Keshiari-Kharagpur near Kharagpur, 547 

West Bengal, India, to determine the aquifer zone (Panda et al., 2018, Fig. 3). The area is 548 

covered with different geological units such as laterite, clay, sand, etc., and laterite material 549 

restricts the aquifer's recharge process and most problematic area for groundwater 550 

potential. We inverted this data for a five-layered earth structure parameter using the 551 

vPSOGWO, GWO, and PSO inversion algorithm. The results are shown in Table 12 552 

available model, borehole sample, and the search space for vPSOGWO, GWO, and PSO. 553 
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The computed apparent resistivity curve for all the three algorithms (-) and field data 554 

indicated by the symbol (*) are shown in Fig. 13(a). Their error differences are significant 555 

(Fig. 13a, Table 12). The inverted 1D layered model using all algorithms obtained from 556 

68.27% CI’s mean model is shown in Fig. 13(b). The computations time for vPSOGWO, 557 

GWO, and PSO are 2.55s, 2.43s, and 2.45s, respectively, for one run with 28 data points in 558 

this example.  559 

Table 12. Optimization mean model result for five layer field resistivity sounding data. 560 

Model 

Parameter 

Search 

Range 

Litho log 

detail of 

100m 

deep 

VES6 

(Panda 

et al., 

2017) 

VFSA 

Mean model 

(final 10000 solution) 

Mean model  

(PDF > 68.27%) 

GWO PSO vPSOGWO GWO PSO vPSOGWO 

ρ1 (Ωm) 60 – 

120 

- - 97  

± 5 

87.97 

± 10.02 

88.41 

± 13.73 

78.21 

± 8.28 

87.44 

± 3.37 

88.43 

± 5.31 

77.99 

± 3.17 

ρ2 (Ωm) 10 – 

30 

- - 19  

± 0.2 

20.38 

± 0.87 

19.38 

± 1.18 

19.73  

± 0.17 

20.43 

± 0.34 

19.43 

± 0.43 

19.73 

± 0.06 

ρ3 (Ωm) 80 - 

150 

- - 128  

± 29 

116.04 

± 10.01 

118.34 

± 14.41 

123.24 

± 9.56 

115.28 

± 3.50 

117.55 

± 5.67 

123.01 

± 3.67 

ρ4 (Ωm) 10 - 

25 

- - 60  

± 1 

16.79 

± 1.31 

15.27 

± 2.12 

14.83 

± 0.69 

16.93 

± 6.49 

15.35 

± 0.83 

14.84 

± 0.27 

ρ5 (Ωm) 25 -60 - - 40 

± 0.4 

41.91 

± 2.99 

44.46 

± 3.60 

42.83 

± 0.52 

41.61 

± 1.06 

44.28 

± 1.35 

42.67 

± 0.20 

h1 (m) 0.2 – 

0.9 

0.6 

 (Dry 

soil) 

0.5 

± 0.1 

0.54  

± 0.05 

0.56  

± 0.06 

0.56 

± 0.02 

0.53 

± 0.02 

0.56 

± 0.02 

0.56 

± 0.01 

h2 (m) 5 – 10 7  

(Moist 

soil) 

6.5 

± 0.3 

7.06 

± 0.56  

6.35 

± 1.01 

7.06  

± 0.13 

7.10 

± 0.21 

6.36 

± 0.35 

7.06 

± 0.05 

h3 (m) 6 – 10 8 

(Compact 

laterite) 

7.7  

± 2.3 

8.41 

± 0.72 

8.78 

± 1.33 

8.37  

± 0.68 

8.38 

± 0.26 

8.77 

± 0.53 

8.37 

± 0.26 

h4 (m) 40 – 

55 

48  

(Soft 

laterite) 

45.0 

± 5.0 

51.15 

± 3.57 

48.34 

± 6.10 

48.22 

± 3.28 

51.37 

± 1.37 

48.60 

± 2.42 

48.23 

± 1.27 

 561 

* The symbol “- -” in table stand for no information. 562 
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 563 

Figure 13. Five layer field data: (a) observed (*) and the best fitted calculated apparent 564 

resistivity curve (> 68.27% PDF); (b) one dimensional mean model (> 68.27% PDF) for 565 

true model (black colour), vPSOGWO (red colour), GWO (blue colour) and PSO (green 566 

colour). 567 

Table 13. Correlation matrix using 68.27% PDF limit for five layer field resistivity 568 

sounding data. 569 

Model 

Parameter 

ρ1 (Ωm) ρ2 (Ωm) ρ3 (Ωm) ρ4 (Ωm) ρ5 (Ωm) h1 (m) h2 (m) h3 (m) h4 (m) 

ρ1 (Ωm) 1.0000         0.8103    0.0246    0.0164    0.1051    –0.9779     0.5888 –0.0288    0.0492 

ρ2 (Ωm)  1.0000       0.1267    –0.1124     0.0684    –0.8652     0.7855 –0.1035     –0.0675 

ρ3 (Ωm)   1.0000        –0.1272    –0.1221     –0.0390     0.6185 –0.9664     –0.1169 

ρ4 (Ωm)    1.0000    0.4706     0.0028    –0.3107 –0.0985     0.9726 

ρ5 (Ωm)     1.0000    –0.1026     –0.0414 0.0449     0.6416 

h1 (m)      1.0000    –0.6356 0.0392     –0.0328 

h2 (m)       1.0000    –0.5463     –0.2534 

h3 (m)        1.0000    –0.0936 

h4 (m)         1.0000    

 570 
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The result obtained from the mean solution of all accepted solutions and solutions 571 

with PDF greater than 68.27% CI aimed at all parameters using the developed techniques 572 

is presented in Table 12. The final mean models are comparable with lithological data of 573 

100m deep tube well near VES6. The convergent error for vPSOGWO, GWO, and PSO 574 

are 4.498e–4, 4.541e–4, and 4.566e–4, respectively, whereas the error is 1.7e–2 for VFSA 575 

obtained by Panda et al. (2018). The correlation matrix clarifies a strong correlation 576 

between the parameters of the first layer (–0.9736), the second layer (0.8434), and the third 577 

layer (–0.9907) and a moderate relation between the parameters of the fourth layer 578 

(0.5653). We have noticed a moderate interdependence between ρ3 with ℎ2 and ρ5 with ℎ4, 579 

which follows to retain the same model data shown in Table 13.  580 

 581 

6.5 Example 5: Field data - Six layer case 582 

We again applied the vPSOGWO, GWO, and PSO algorithms to invert the field apparent 583 

resistivity data as a six-layer case study extracted near a borehole from in Apulia, South Italy, 584 

for hydrogeological purposes (Sen et al. 1993). The search range has been taken from Sen et 585 

al. (1993), but the fourth and upper bound thickness of the fifth layers increases by 50 m, as 586 

shown in Table 14. The reproduced field data (*) and inverted field data (-) are shown in Fig. 587 

14(a). The misfit error obtained is 2.830e–4, 3.243e–4, and 3.133e–4 for vPSOGWO, GWO, 588 

and PSO, respectively, whereas the error using Simulating Annealing (SA) is 0.017 by Sen et 589 

al. (1993). Table 14 also includes the mean model for 100% and 68.27% CI using proposed 590 

algorithms and previously published literature. It is observed that few parameters obtained 591 

fall within the uncertainty of corresponding parameters of vPSOGWO. The vPSOGWO 592 

inverted results provide higher similarity with the borehole information than the results by 593 

SA (Sen et al., 1993). The interdependence between the layer parameter can be seen from the 594 

correlation matrix as shown in Table 15. A strong correlation among parameters of the first 595 
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layer (0.8211), the second layer (–0.9327), and the third layer (0.9766) has been shown by the 596 

correlation matrix, which is comparable to the correlation matrix that has been presented by 597 

Sen et al. (1933 Table 13). A moderate correlation between fourth (–0.5246) and fifth layer 598 

parameters (0.4486) is also observed. It is also to be noticed that there is a sensible relation 599 

between sixth layer resistivity and fifth layer thickness, keeping the same model data.  600 

 601 

Figure 14. Six layer field data over Keshiari-Kharagpur near Kharagpur, India: (a) 602 

observed (*) and the best fitted calculated apparent resistivity curve (> 68.27% PDF); (b) 603 

one dimensional mean model (> 68.27% PDF) for true model (black colour), vPSOGWO 604 

(red colour), GWO (blue colour) and PSO (green colour).  605 

The error differences in computed data with observed data are significant, as shown 606 

in Fig. 14(a) and Table 12. The inverted 1D layered models obtained from the mean model 607 

of 68.27% CI are shown in Fig. 14(b). The computations time for vPSOGWO, GWO, and 608 

PSO are 3.58s, 3.44s, and 3.45s, respectively, for one run with 28 data points in this 609 

example. The inverted results from vPSOGWO, GWO, and PSO have been shown along 610 

with the borehole data, published result (Sen et al., 1993) in Table 14. It can note that the 611 
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outcomes from the hybrid algorithm satisfy the borehole information provided than the 612 

other algorithms and earlier published results. 613 

Table 14.  Optimization mean model result for six layer field resistivity sounding data. 614 

Model 

Parameter 

Search 

Range 

Borehole 

Detail 

from 

Patella, 

1975 

Sen et al., 

1993 

Mean model 

(final 10000 solution) 

Mean model  

(PDF > 68.27%) 

GWO PSO vPSOGWO GWO PSO vPSOGWO 

ρ1 (Ωm) 10 - 

50 

- - 37 33  

± 4.91 

36.47  

± 6.23  

30.00  

± 8.49  

32.93 

± 1.60  

40  

± 2.41  

30.24  

± 2.08  

33.06  

± 0.57 

ρ2 (Ωm) 50 – 

250 

- - 140 240 

± 29.63 

121.81 

± 29.04 

158.49  

± 49.17 

112.32 

± 24.59 

121.42  

± 11.63 

152.01  

± 20.51 

111.25  

± 9.33 

ρ3 (Ωm) 1 – 40 - - 17 24  

± 1.37 

19.38 

± 4.58 

24.14   

± 7.07 

18.19 

± 3.21 

19.26   

± 1.85 

24.49   

± 2.08 

18.70   

± 1.15 

ρ4 (Ωm) 100 – 

600 

- - 340 300  

± 17.5 

278.55 

± 71.41 

299.07 

± 53.73 

355.16 

± 42.70 

258.02 

± 30.37 

291.83 

± 23.55 

354.49 

± 16.04 

ρ5 (Ωm) 30 -

500 

- - 130 120 

± 32.09 

276.27 

± 80.72 

265.25 

± 65.06 

105.80 

± 39.26 

262.16 

± 33.24 

259.27 

± 30.44 

103.67 

± 14.50 

ρ6 (Ωm) 100 – 

500 

- - 300 320 

± 8.33 

286.46 

± 46.72 

303.76 

± 27.36 

349.29 

± 20.98 

273.73 

± 21.91 

301.75 

± 12.34 

349.68 

± 7.90 

h1 (m) 0.5 –3 1  

(Aluvial 

soil) 

1.3 1.1 

± 0.198 

1.32 

± 0.48 

0.96  

± 0.66 

0.91  

± 0.09 

1.36  

± 0.16 

0.86 

± 0.10 

0.92  

± 0.03 

h2 (m) 1 – 8 3 

(Fine 

sand) 

2.7 1.3 

± 0.252 

3.17  

± 0.98 

2.13 

± 1.16 

3.16 

± 0.47 

3.01 

± 0.41 

1.97 

± 0.34 

3.13 

± 0.18 

h3 (m) 1 – 25 12.5 

(Calcarenit

e & sandy 

clay) 

12 17  

± 1.13 

13.66  

± 3.49 

17.72  

± 6.03 

12.93  

± 2.74 

13.41  

± 1.36 

17.57 

± 1.94 

13.26  

± 1.02 

h4 (m) 10 – 

200 

118.5 

(Calcareou

s tufa & 

limestone) 

120 125 

± 8.39 

117.93 

± 33.89 

124.38 

± 29.15 

118.95 

± 30.44 

117.28 

± 12.31 

125.08 

± 13.71 

117.72 

± 11.72 

h5 (m) 10 – 

200 

65  

(Water 

bearing 

limestone) 

120 70 

± 23.15 

118.79 

± 34.45 

127.62 

± 29.37 

93.12 

± 33.99 

116.89 

± 12.36 

125.98 

± 13.51 

92.85 

± 13.03 

 615 
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Table 15.  Correlation matrix using 68.27% PDF limit for six layer field resistivity sounding 616 

data. 617 

 Model 

Parameter 
ρ1 (Ωm) ρ2 (Ωm) ρ3 (Ωm) ρ4 (Ωm) ρ5 (Ωm) ρ6 (Ωm) h1 (m) h2 (m) h3 (m) h4 (m) h5 (m) 

ρ1 (Ωm) 1.000 0.478 –0.088 –0.111 0.086 –0.056 0.933 –0.446 –0.087 0.024 0.015 

ρ2 (Ωm) 
 

1.000 0.3732 0.118 –0.077 0.134 0.718 –0.902     0.379 0.068 0.095 

ρ3 (Ωm) 
  

1.000 0.542 –0.388     0.392 0.005    –0.661     0.988 0.021 0.186 

ρ4 (Ωm) 
   

1.000 –0.623    0.487 –0.088    –0.126       0.647 –0.420 0.274 

ρ5 (Ωm) 
    

1.000 –0.668     0.070 0.173 –0.458    –0.109 0.022 

ρ6 (Ωm) 
     

1.000 –0.027 –0.223    0.449 0.324 0.528 

h1 (m) 
      

1.000 –0.655   0.006     0.044 0.033 

h2 (m) 
       

1.000 –0.655    –0.068 –0.131 

h3 (m) 
        

1.000 –0.033 0.217 

h4 (m) 
         

1.000 –0.014 

h5 (m)                     1.000 

 618 

 619 

7.0 CONCLUSION 620 

We have evaluated three meta-heuristic algorithms such as PSO, GWO, and vPSOGWO to 621 

realize their efficacy and applicability in the geoelectrical inverse problems, which narrates 622 

the appraisal of 1D resistivity models from geoelectrical resistivity sounding data. The 623 

relevance of these algorithms validated using synthetic and field resistivity sounding data 624 

signifying the kinds of earth’s subsurface stratigraphy. An enormous solution 569 625 

(100,000,000 from 10,000 runs) is assessed. Subsequently, the best-fitted solutions are 626 

chosen within a pre-distinct value for statistical measurements. The statistical study 627 

includes posterior PDF with 68.27% CI, a mean solution, posterior solution correlation 628 

matrix, and covariance matrix using search space, was carried out to refine the solutions to 629 

obtain the global mean solution with the least uncertainty. These statistical simulations 630 
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yield essential information as to the reliability of an inversion algorithm. In general, 631 

conventional techniques can be quite effective in resolving the model in random noise but 632 

can fail in systematic error and inappropriate models. Our investigation with the 633 

application of the developed algorithm, including statistical simulation for different 634 

multilayer resistivity parameters, resulted in a quantitative appraisal of uncertainty in the 635 

derived model parameters. We observed that the output of the hybrid algorithm in terms of 636 

mean model or error might be similar to either PSO or GWO (attributed to the exploration 637 

characteristics of GWO and exploitation characteristics of PSO). The vPSOGWO, GWO, 638 

and PSO algorithms performances have been analyzed based on the uncertainty and 639 

stability and mean model of layered earth structure. We found that the vPSOGWO gives 640 

very closer results than the results inverted from other two algorithms and also 641 

conventional methods which is consistently better than the previously published results, 642 

and correlated well with borehole information.  643 
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