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Abstract. Estimating a reliable subsurface resistivity structure using conventional techniques is challenging
due to the nonlinear nature of the inverse problems. The performance of the inversion techniques can be pretty
ambiguous based on the optimal error, although traditional methods have proven to be quite effective. In this
work, the impacts of the constraints accessible from a borehole are examined for further assessment and to
enhance algorithm effectivity. The vPSOGWO strategy is a new approach that is based on a model search space
without any prior information, and it describes the hybridization of particle swarm optimization (PSO) with the
Grey Wolf Optimizer (GWO). To understand the efficiency and novelty of the algorithm, it has been validated
on two different kinds of synthetic resistivity data with various sets of noise and, subsequently, applied to three
field datasets of different geological terrains. The analyzed results suggest that the subsurface resistivity model
shows considerable uncertainty. Thus, it is superior to examine the histograms and posterior probability density
functions (PDFs) of such solutions to exemplify the global solution. A PDF with a 68.27 % confidence interval
(CI) selects a region with a higher probability. Therefore, the inverted models are used to estimate the mean global
solution and the most negligible uncertainties, where the mean global solution represents the best solution. Our
vPSOGWO-inverted outcomes have been proven to be more accurate than classic PSO, GWO, and state-of-the-
art variants of classic approaches. As a result, this novel method plays a vital role in vertical electrical sounding
(VES) data inversion.

1 Introduction

The vertical electrical resistivity sounding (VES) technique
is an economical and simple method that has been used to
determine the layered parameters in a wide range of applica-
tions in the hydrogeological, groundwater, mineral, geother-5

mal, hydrocarbon, engineering, and environmental fields,
among others (Sen et al., 1993; Sharma, 2012; Panda et al.,
2018). VES data interpretation is challenging due to its unsta-
ble, nonunique solution and algorithm sensitivity (Narayan et
al., 1994; Oldenburg and Li, 1994; Singh et al., 2005, 2013).10

Therefore, many researchers have developed several inver-
sion algorithms to improve accuracy and stability and to re-

duce uncertainty in the solutions. These inversion techniques
are grouped into local and global optimization techniques. In
the local inversion techniques, a logical initial guess is re- 15

quired to get the solution. This has led researchers to think
about alternative methods via which a broad range of param-
eters can be established. Researchers have developed vari-
ous metaheuristic optimization algorithms to solve various
real-world problems. These algorithm types, inspired by nat- 20

ural phenomenon, include ant colony optimization (ACO;
Colorni et al., 1991), the Bat Algorithm (Yang, 2010), bio-
geographically based optimization (Simon, 2008), differen-
tial evolution (DE; Storn and Price, 1997), the Firefly Al-
gorithm (Yang, 2010), the Genetic Algorithm (GA; Whit- 25
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ley, 1994; Mitchell, 1998), the Gravitational Search Algo-
rithm (GSA; Rashedi et al., 2009), the Grey Wolf Optimizer
(GWO; Mirjalili et al., 2014), and particle swarm optimiza-
tion (PSO; Kennedy and Eberhart, 1995). These optimization
techniques aim to have an optimum solution and fast conver-5

gent rate to obtain global minima. However, unique charac-
teristics, namely, exploration and exploitation, in global op-
timization algorithms persist. For example, PSO has a very
high potential regarding exploitation, implying that the al-
gorithm performs well with respect to a local search (Şenel10

et al., 2019), but it is inferior regarding exploration, which
means that the algorithm has less ability with respect to es-
tablishing the starting position near global minima and, due
to low exploration characteristics, it gets trapped at the local
minima (Eiben and Schippers, 1998; Mirjalili and Hashim,15

2010). Therefore, integrating two algorithms with the oppo-
site characteristics is the best way to solve the exploration
characteristics and exploitation characteristics and to pro-
vide a more accurate and reliable solution, compared with
results obtained with an individual algorithm. Many authors20

have developed various hybrid metaheuristic algorithms such
as PSOGA for fundamental function analysis, PSOACO for
data mining, PSODE for global optimization using the stan-
dard function, and PSOGSA using the standard function
(Esmin et al., 2013; Lai and Zhang, 2009; Rashedi et al.,25

2009).
This study focuses on a variable-weight hybrid algorithm,

known as vPSOGWO (Şenel et al., 2019), that fuses the ex-
ploration ability of PSO with the exploration ability of GWO.
In this algorithm, some random particles of PSO are re-30

placed with new ones obtained from GWO. In prior work, the
constant-weight hybrid technique of PSO and GWO, known
as HPSOGWO, has been used by some authors for different
applications, such as for single-area-unit commitment prob-
lems (Kamboj, 2015), mathematical problems (Singh and35

Singh, 2017), and benchmark functions and real-world is-
sues (Şenel et al., 2019). However, to the best of our knowl-
edge, none of these researchers have tested these methods on
geophysical data inversion. Thus, in this study, the applica-
bility of the vPSOGWO algorithm is demonstrated on syn-40

thetic data with noise, synthetic data without noise, and var-
ious field resistivity sounding data to estimate the resistivity
distribution in a 1D Earth’s subsurface model. This work also
calculates the posterior probability density functions (PDFs)
with a 68.27 % confidence interval (CI) and correlation ma-45

trix on all accepted models to determine the mean global
model and uncertainty. As a result, we analyzed and com-
pared the effectiveness of the proposed algorithms with clas-
sic PSO, GWO, and state-of-the-art variants of classic meth-
ods. Our analysis advocates for the fact that the vPSOGWO50

algorithm produces a more accurate and reliable model with
excellent stability, the least model uncertainty, and the ability
to successfully resist noise.

2 Forward modeling algorithm

CE1The forward code was developed, and synthetic resistiv- 55

ity datasets were created using the kernel function (Koefoed,
1979) with Schlumberger resistivity configuration (Fig. 1)
from known parameters, such as the current electrode spac-
ing and the number of geological multilayers of true resis-
tivity and their thickness. The mathematical expression for 60

apparent resistivity is given as follows:

ρa (s,m)= ρ1+ s
2ρ1

∫
∞

0
T1(λ,m)J 1(λs)dλ, (1)

where J 1 is the first-order Bessel function, λ represents the
integration variables, s is half of the current electrode spac-
ing, m is the model, T n is the kernel’s resistivity transform, 65

ρk is the resistivity, and tk represents the thickness of the kth
layers.

For each layer, the kernel’s resistivity transform Tk has
been determined by Pekeris (1940). The apparent resistivity,
T k(λ), is convoluted with linear filter theory to compute the 70

following:

T k (λ)= ρk ×
(
T k+1 (λ)+ ρk tanh(λtk)

)
/(

ρk +T k+1 (λ) tanh(λtk)
)
. (2)

3 Inverse modeling algorithm

The geophysical inverse problem can be formulated through
a forward modeling operator/functional with the aim of 75

achieving the geophysical model/solution that best illumi-
nates the observed data. This operator integrates the geophys-
ical problems and maps between the observed data y and the
solution x as follows:

y = f (x). (3) 80

The inversion techniques minimize the cost functional/misfit
functional, which is generally a degree of the relationship be-
tween the N number of observed data (yo) and the calculated
data (yc). This misfit functional can be introduced here as a
mean square error (MSE) and can be defined as follows: 85

MSE=
1
N

∑N

i=1
(yo− yc)2. (4)

3.1 Particle swarm optimization

Particle swarm optimization (PSO) is based on the social
behavior of animals, such as the schooling behavior of fish
or the flocking behavior of birds (Kennedy and Eberhart, 90

1995). When birds go in search of food, they scatter ran-
domly within a search space before they can determine the
position of food. While searching for food, there is always
a bird who is aware of the position of food, and they share
this information with others. Using this method, each bird 95
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Figure 1. Schlumberger array configuration for the three-layer case: C1 and C2, through which the current is injected, are current electrodes
with spacing s, while P1 and P2 are potential electrodes with spacing b.

Figure 2. Three-layer synthetic data: (a) observed data (*) and best-fitted calculated apparent resistivity curve (>68.27 % PDF); (b) the 1D
mean model (>68.27 % PDF) for the true model (black), vPSOGWO (red), GWO (blue), and PSO (green).

is referred to as a particle and is represented by geophysi-
cal solutions/models (i.e., here, a particle is a resistivity layer
parameter). The capability/fitness of each swarm/bird is es-
timated between the N number of observed data (yo), which
measure the swarm and the food distance, and the computed5

data (yc), which measure the swarm and the estimated posi-
tion (resistivity layer parameter/solution) of the prey distance
using Eq. (4).

The best position among particles with information about
it is stored in memory for each iteration. The new velocity10

and position of the population pool are accepted if their pos-
sibility is large, otherwise they are rejected. In that case, the
particles are randomly distributed in the search space in or-
der to escape the local optima. The search continues until it
gains a maximum possibility or reaches the maximum itera-15

tion. In the global search space, the position of each particle

is updated by the following two mathematical equations:

vi (t + 1)= vi (t)+ c1× rand
(
xp (t)− xi (t)

)
+ c2× rand×

(
xg − xi (t)

)
, (5)

xi(t + 1)= xi(t)+ vi(t + 1). (6)

Here, vi represents the velocity of the ith particle with po- 20

sition xi , xp is the best position obtained by the ith parti-
cle, xg is the best position, t is the number of the iteration, i
represents the number of the model (i = 1, 2, 3, . . .,N ), rand
represent the random values with a range of [0, 1], and the
coefficients c1 and c2 represent the optimization parameter. 25

The disadvantage of the PSO algorithm is that, while direct-
ing particles to random positions, it has a small possibility of
escaping the local minima.
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Figure 3. Convergence curve for the best-fitted model parameters for the vPSOGWO algorithm.

Figure 4. Convergent curve, also known as the error versus iteration curve, for three-layer noiseless synthetic data.

3.2 The Grey Wolf Optimizer (GWO) algorithm

The GWO algorithm mimics the leadership hierarchy and
hunting mechanics of grey wolves and is used to solve both
standard and real-life problems. In the grey wolf commu-
nity, animals are divided in four groups: (i) alpha animals,5

(ii) beta animals, (iii) delta animals, and (iv) omega animals.
Alpha, beta, and delta animals are the fittest wolves, and they
guide omega animals towards promising areas of the search
space. The alpha is the pack leader and generally makes im-
portant and final decision for all of the wolves; thus, the al-10

pha represents the fittest solution. The betas are subordinates
and help the alphas in their decision-making. However, be-
tas cannot force alphas into any decision; they can only order
the lower wolves. The beta group takes orders from the alpha
group, enforces orders with respect to the other groups, and15

sends feedback back to the alpha group. All of the groups are
dominant with respect to the omega group. Nevertheless, the
omega group is an important component of the pack during
hunting, as they play the role of the scapegoat and are only al-
lowed to eat at the end. If a wolf is not part of the alpha, beta,20

or omega group, they are known as delta and only summit
to alpha and beta groups. In the GWO algorithm, the alpha
group represents the best position, i.e., geophysical model/-

solution. In our case, the geophysical model is the resistiv-
ity layer parameters. The beta and delta groups are consecu- 25

tive best solutions, and the omega group is the best solution
that always follows the other groups. The capability/fitness
of each wolf is estimated between the observed data (which
measure the wolf and prey distance) and the computed data
(which measure the wolf and the estimated position of the 30

prey distance) using Eq. (4).
Hunting in the grey wolf community has been divided into

three groups: searching for prey, encircling the prey, and at-
tacking the prey. The encircling nature of the wolves is de-
fined by the following equations: 35

d = |c× (t)− xi (t)| , (7)
xi (t + 1)= xp (t)− a× d. (8)

Here, xp is the prey position, xi is the grey wolves’ positions,
and a and c are the vectors mathematically formulated as
follows: 40

a = a1× (2× rand− 1) , (9)
c = 2× rand. (10)

Here, a1 = 2× (1− t/ l) and varies from 2 to 0 in decreasing
order with increasing iteration (t), l represents the maximum
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Figure 5. (a) Histogram and (b) posterior PDF of all 10 000 solutions corresponding to the output of each run for the three-layer synthetic
Earth model.

Figure 6. Correlation plot between model parameters (off-diagonal) and the posterior PDF curve (diagonal) for those models whose PDF
exceeds 68.27 % of the confidence interval (CI).

iteration, and rand is the random number in the range of [0,
1].

In the grey wolf community, the alpha group leads, the
beta and the delta groups search for the prey location, and the
omega group follows the other groups. Therefore, the alpha5

group gives the best solution, while the respective second-
and third-best solutions are provided by the beta and the delta
groups. Thus, the remaining wolves, i.e., the omega group,
follow the best solution (the other wolf groups) to obtain the

best location. This is mathematically equated as follows: 10

dα,β,δ = |c1,2,3× xα,β,δ − x|. (11)

The best location/position for alpha, beta, and delta wolves
in each iteration is given by xα , xβ , and xδ , respectively:

x1,2,3 = |xα,β,δ − a1,2,3× dα,β,δ|. (12)

Here, xp (t + 1) describes the updated position of the prey in 15

the (t + 1) iteration and is obtained from the mean position
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Figure 7. Four-layer synthetic data: (a) observed data (*) and the best-fitted calculated apparent resistivity curve (>68.27 % PDF); (b) the
1D mean model (>68.27 % PDF) for the true model (black), vPSOGWO (red), GWO (blue), and PSO (green).

Figure 8. Convergent curve, also known as the error versus iteration curve, for four-layer noiseless synthetic resistivity sounding data.

of three best wolves in the population; thus,

xp (t + 1)= (x1+ x2+ x3)/3. (13)

The values of a are utilized by wolves who force the search to
move away from the prey. When a ≥ 1, hunting is abandoned
in order to find a better solution; in contrast, when a < 1, the5

wolves are forced to attack the prey. In Eq. (9), a varies in
the range of [−2a1,2a1].

3.3 Variable-weight hybrid PSOGWO (vPSOGWO)

Despite usefulness of the PSO technique with respect to
achieving successful results in real-world problems, it tends10

to fall into the local minima, causing the solution to move
away from global minima. This tendency for deterioration
within the local minima is stopped by the explorative ability
of the GWO algorithm. Therefore, the variable-weight hy-
brid PSOGWO, known as vPSOGWO, fuses the exploitation15

potential of PSO with the exploration potential of GWO to
overcome each other’s discrepancy via the implementation
of varying weight. Due to the involvement of two distinct
variants running together to solve the problem, this hybrid
vPSOGWO is called a coevolutionary hybrid algorithm. The20

encircling behavior of each wolf is updated by the following:

dα,β,δ = |c1,2,3× xα,β,δ −w× x|, (14)
where, w = wmax− (wmax−wmin)× t/ l. (15)

Here, wmax = 0.9 and wmin = 0.2 are found to be more ap-
propriate after tuning for our study. 25

The best location/position (geophysical model) for alpha,
beta, and delta wolves in each iteration is given by xα , xβ ,
and xδ , respectively.

x1,2,3 = |xα,β,δ − a1,2,3× dα,β,δ|, (16)

where 30

a1,2,3 = a1× (2× rand− 1) , (17)
c1,2,3 = 0.5 (chosen after tuning), (18)
a1 = 2× (1− t/ l) . (19)
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Figure 9. Histogram of the logarithmic mean square error for vPSOGWO, GWO, and PSO over 10 000 models. The x axis of the three
histograms represents the misfit error corresponding to 10 000 models.

Figure 10. (a) Histogram and (b) posterior PDF of all 10 000 solutions corresponding to the output of each run for four-layer synthetic
resistivity sounding data.

The updated velocity and position of vPSOGWO are as fol-
lows:

vi (t + 1)= w× vi (t)+ c1× rand× (x1− xi (t))

+ c2× rand× (x2− xi (t))+ c3× rand
× (x3− xi(t)) , (20)

xi(t + 1)= xi(t)+ vi(t + 1). (21)

Here, the value of 1.5 is found to be more suitable for each5

of the coefficients (c1, c2, and c3) after tuning the parameters
in the present study (Roshan and Singh, 2017).

4 Statistical simulation for global model and
uncertainty estimation

The proposed algorithms yield good-fitting models, but the10

evaluation of a global solution requires numerous techniques.

This is noteworthy with respect to selecting the region of
solution/model search space, where we find enormous solu-
tions. The methods for selecting the region of model space
were chosen to envisage the global solution and reduce the 15

uncertainty in the ultimate solution (Mosegaard and Taran-
tola, 1995; Sen and Stoffa, 1996). Thus, many solutions
and the associated error estimated were kept in memory for
consequent statistical measurements. Therefore, 108 solu-
tions were generated for each algorithm using the logarith- 20

mic mean square error, and every computed response corre-
sponding to each model fits well with the observed response.
However, the model parameters obtained, which lie within
the search range in multidimensional space, may differ from
each other. Hence, the mean model from the model parame- 25

ters is defined as follows (Ross, 2009):

m̂i =
1
M

∑M

j=1
mi,j , (22)
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Figure 11. Correlation plot between the model parameters (off-diagonal) and posterior PDF curve (diagonal) for models whose PDF exceeds
68.27 % of the confidence interval (CI).

Figure 12. Three-layer field data over Mount Turner, northern Queensland, Australia: (a) observed data (*) and the best-fitted calculated
apparent resistivity curve (>68.27 % PDF); (b) the 1D mean model (>68.27 % PDF) for the true model (black), vPSOGWO (red), GWO
(blue), and PSO (green).



K. Sarkar and U. K. Singh: Stability and uncertainty assessment: a new approach 9

Figure 13. Five-layer field data: (a) observed data (*) and the best-fitted calculated apparent resistivity curve (>68.27 % PDF); (b) the 1D
mean model (>68.27 % PDF) for the true model (black), vPSOGWO (red), GWO (blue), and PSO (green).

Figure 14. Six-layer field data over Keshiari (Kharagpur), India: (a) observed data (*) and the best-fitted calculated apparent resistivity curve
(>68.27 % PDF); (b) the 1D mean model (>68.27 % PDF) for the true model (black), vPSOGWO (red), GWO (blue), and PSO (green).

where i represents the layer parameters, j is the number of
models, and mi,j is the j th model with i number of parame-
ters.

All algorithms are executed for 10 000 runs with 1000 iter-
ations to obtain the best model parameters. It is important to5

mention that multiple runs are crucial in vPSOGWO, as 1000
weightage points lay between the inertial weights of 0.9 and
0.2, such that each weightage point yields a fitted model in a
run. As a result, 10 000 runs provide 10 000 chances for each
weightage point to fetch the best-fitted model.10

Therefore, the posterior covariance matrices are defined
using the following equation (Ross, 2009):

Cov(mi,k)=
1

M − 1

∑M

j=1

(
mi,j − m̂i

)
×
(
mk,j − m̂k

)
. (23)

Posterior correlation matrices are described using the follow-
ing equation: 15

Corr(mi,k)= Cov(mi,k)/
√

Cov(mi,i)×Cov(mk,k). (24)

Here, i and k lie between 1 and total number of parameters.
The square roots of the diagonal elements of the covari-

ance matrix define the uncertainty in the solution, and the
correlation matrix gives a rough idea about the relation be- 20

tween the model parameters. If the parameters do not pro-
vide a global solution, the apparent resistivity curve corre-
sponding to the mean model will not adequate to the ob-
served value. The posterior correlation matrix corresponding
to the indigenous solution will not yield an actual correla- 25

tion between the parameters obtained via linear regression.
For further analysis, posterior PDFs and histograms are cal-
culated over all accepted models. The 1D posterior PDF for
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Table 1. Optimization of the mean model result for three-layer synthetic resistivity sounding data.

Model True Search Inman Mean model (final 10 000 solutions) Mean model (PDF >68.27 %)
parameter value range (1975)

GWO PSO vPSOGWO GWO PSO vPSOGWO

ρ1 (�m) 10 5–15 10± 0.06 10.33± 0.55 10± 0.39 10± 0.02 10.15± 0.23 9.98± 0.08 10± 0.01

ρ2 (�m) 390 15–500 398± 8.2 324.55± 56.71 343.10± 49.70 391.29± 8.39 319.15± 24.02 340.90± 23.10 391.09± 3.67

ρ3 (�m) 10 1–20 10± 0.05 10.50± 3.76 9.56± 7.78 11.25± 3.66 10.71± 1.88 9.25± 2.84 11.27± 1.70

h1 (m) 10 1–20 10.1± 0.09 10.15± 0.82 9.74± 0.56 10± 0.04 9.85± 0.33 9.72± 0.18 10± 0.02

h2 (m) 250 100–500 245± 4.9 314.70± 61.46 299.55± 54.63 247.59± 9.84 312.61± 26.91 293.21± 23.57 247.51± 3.93

Table 2. Correlation matrix using a 68.27 % PDF limit for three-layer synthetic resistivity sounding data.

Model parameter ρ1 (�m) ρ2 (�m) ρ3 (�m) h1 (m) h2 (m)

ρ1 (�m) 1.0000 −0.0575 0.0142 0.3820 0.0222
ρ2 (�m) 1.0000 0.2585 0.6293 −0.7994
ρ3 (�m) 1.0000 0.0537 −0.7678
h1 (m) 1.0000 −0.4278
h2 (m) 1.0000

Algorithm 1 The vPSOGWO algorithm.

Max_Iter: maximum iterations set
Pop_no: population size
Para: number of parameters
Fitness= infinite: already set
Lb and Ub: set lower bound (Lb) and upper bound (Ub) for
different parameters
Initialize particles randomly
Procedure
for l = 1 to Max_Iter do

for i = 1 to Pop_no do
for j = 1 to Para do

check the Lb and Ub for randomly created particles
end for

end for
for i = 1 to Pop_no do

Calculate the fitness form cost function
Update the wolves’ fitness and position

end for
Update a1, a, c, and w using Eqs. (15) and (17)–(19)
for i = 1 to Pop_no do

for j = 1 to Para do
Update position of x1, x2, and x3 using Eqs. (14) and
(16)
Update best particle velocity and position using
Eqs. (20)–(21)

end for
end for

end for

various parameters with mean m̂i and standard deviation σi
is given as follows (Ross, 2009):

p
(
yi,m̂i,σ i

)
=

(
1/σ i
√

2π
)
× exp(−

(
yi − m̂i

)2
/2σ 2

i ), (25)

where y is the solution/model parameter’s output store af-
ter 10 000 runs of an algorithm and i is between 1 and the 5

number of model parameters.
Different techniques are based on the posterior PDF to ob-

tain the global solution. One of these techniques is to pick the
model parameters with the highest probability values. An-
other method based on the PDF is to normalize (0 to 1) each 10

model parameter by its respective highest probability value.
The best model is considered to have the highest sum of
normalized probability values (Sharma, 2012). Furthermore,
the best model can also be determined by taking the mean
of each parameter with probably more significance than the 15

threshold probability. However, these techniques fail to pro-
vide the global model.

Therefore, proceeding with a new approach to the study,
we introduce a confidence interval (CI) more significant than
68.27 % as a benchmark for all model parameters. According 20

to the empirical rule, 68.27 % of the data lie within 1 standard
deviation of the mean (Ross, 2009). Thus, the model param-
eters below a CI of 68.27 % are discarded, and the remaining
parameters are used to determine the mean solution and un-
certainty. This means that the model represents the global 25

solution with less uncertainty.

5 Computational information

The code used in this work was developed in MATLAB
R2019a on a Windows 10 platform with the following con-
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Table 3. Stability test for three-layer synthetic resistivity sounding data using different search ranges.

Model parameter ρ1 (�m) ρ2 (�m) ρ3 (�m) h1 (m) h2 (m)

True values 10 390 10 10 250
Search range 5–30 500–1000 15–30 1–10 50–90
vPSOGWO 10± 0.02 390.44± 8 10.48± 3.60 10± 0.04 249.25± 9.93
Search range 2.5–30 7.5–750 0.1–40 1–40 50–750
vPSOGWO 10± 0.03 398.39± 18.01 15.93± 8.47 10.02± 0.07 237.24± 21.98
Search range 1–60 1–1000 0.01–80 1–80 1–1000
vPSOGWO 10± 0.03 428.11± 60.40 23.14± 13.19 10.10± 0.15 214.86± 39.66

Table 4. Optimization mean model result for three-layer synthetic resistivity sounding data with 10 % noise.

Model True Search Mean model (final 10 000 solutions) Mean model (PDF >68.27 %)
parameter value range

GWO PSO vPSOGWO GWO PSO vPSOGWO

ρ1 (�m) 10 5–15 10.37± 0.56 10.05± 0.40 10.04± 0.02 10.21± 0.24 10.03± 0.08 10.04± 0.01
ρ2 (�m) 390 15–500 323.27± 55.51 341.58± 49.74 384.37± 7.78 317.68± 24.39 339.42± 23 384.24± 3.41
ρ3 (�m) 10 1–20 10.46± 3.79 9.57± 7.78 11.17± 3.60 10.61± 1.94 9.35± 2.84 11.17± 1.65
h1 (m) 10 1–20 10.16± 0.83 9.75± 0.57 9.99± 0.04 9.89± 0.35 9.74± 0.18 9.99± 0.02
h2 (m) 250 100–500 314.65± 60.48 300± 54.45 251.72± 9.59 312.96± 27.59 293.61± 23.54 251.64± 3.82

figuration: an HP Z240 Tower Workstation and an Intel Xeon
E3-1225 v6 3.30 GHz CPU with 32.0 GB of RAM and a 64-
bit operating system (OS). However, global optimization is a
time-consuming process, as it requires many forwarding cal-
culations to obtain the best-fitted result.5

6 Results and discussion

The applicability of the new algorithm (vPSOGWO), GWO,
and PSO has been assessed by inverting several cases of syn-
thetic and field data extracted from different geological ter-
rains (Dixon and Doherty, 1977; Panda et al., 2018). Both10

synthetic and field datasets were computed and optimized us-
ing the developed algorithms, maintaining a population size
of 10 and 1000 iterations for 10 000 runs, leading each algo-
rithm to analyze 108 models. We discuss the inverted results
of the algorithms with respect to their application in a few15

example synthetic and field cases in the following sections.

6.1 Example 1: synthetic data – three-layer case

Initially, to access the applicability and efficacy of the pro-
posed algorithms, a synthetic apparent resistivity sounding
dataset measured with a Schlumberger array was generated20

considering a three-layer Earth model sandwich with a highly
resistant layer of 500.0�m and a thickness of 150.0 m be-
tween two low-resistance layers of 8.0 and 5.0�m, respec-
tively. The synthetic data were computed in the MATLAB
environment, as shown in Fig. 2a using asterisks. Figure 2a25

shows the three-layer synthetic data with the best-fitted cal-
culated apparent resistivity curve (>68.27 % PDF), while

Fig. 2b presents the 1D mean model (>68.27 % PDF) for
the true model (black), vPSOGWO (red), GWO (blue), and
PSO (green). 30

The search limit for novel inversions techniques (vP-
SOGWO, GWO, and PSO) is carefully chosen, as shown in
Table 1. Each algorithm, including vPSOGWO, runs 10 000
times to perform statistical analysis and determine the global
mean model with the least uncertainty. Figure 3 shows the 35

convergence curve of the resistivity layer parameters using
vPSOGWO. We found no changes in the convergence pattern
after 590 iterations, and layer parameters became stable. The
convergence curves, in terms of error versus iterations, for
three existing algorithms are shown in Fig. 4. It is observed 40

that vPSOGWO, GWO, and PSO converged at 590, 950, and
380 iterations and have mean square errors of 1.586× 10−8,
5.238×10−8, and 5.792×10−8, respectively, whereas ridge
regression has an error of 0.633.

The 10 000 models inverted are used to find the posterior 45

PDF and histogram for each parameter. As shown in Fig. 5b,
the peak of the posterior PDF is roughly close to the actual
model parameter. The histogram shown in Fig. 5a suggests
that ρ2 and h2 have a broader range. This represents the
equivalence problem associated with the resistive layer, as 50

the uncertainty in each algorithm was found to be large con-
sidering all of the accepted models. Therefore, selecting the
models with a posterior PDF with a CI greater than 68.27 %
reduces the uncertainty in the model, increases the resolution
of a solution, and helps estimate the best mean model close 55

to the actual model (Table 1). Table 1 shows the model pa-
rameters and uncertainty for the proposed algorithms.
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Table 5. Correlation matrix using a 68.27 % PDF limit for three-layer synthetic resistivity sounding data with 10 % noise.

Model parameter ρ1 (�m) ρ2 (�m) ρ3 (�m) h1 (m) h2 (m)

ρ1 (�m) 1.0000 −0.0816 −0.0017 0.3315 −0.0552
ρ2 (�m) 1.0000 0.2356 0.6142 −0.7879
ρ3 (�m) 1.0000 0.0064 −0.7618
h1 (m) 1.0000 −0.3922
h2 (m) 1.0000

Table 6. Optimization of the mean model result for four-layer synthetic resistivity sounding data.

Model True Search Ridge regression Mean model (final 10 000 solutions) Mean model (PDF >68.27 %)
parameter value range (Inman, 1975)

GWO PSO vPSOGWO GWO PSO vPSOGWO

ρ1 (�m) 12 5–30 12.1± 0.1 12.03± 0.07 12.10± 1.05 11.99± 0.08 12.02± 0.03 12.01± 0.39 11.99± 0.04
ρ2 (�m) 840 500–1000 814± 62 809.16± 28.80 802.90± 69.13 824.36± 58.13 814.38± 10.86 803.12± 31.07 822.71± 26.06
ρ3 (�m) 24 15 – 30 18.2± 805 24.34± 1.30 23.78± 5.01 23.59± 3 24.50± 0.36 23.50± 1.95 23.69± 1.41
ρ4 (�m) 8400 5000–10 000 7500± 3275 8151.4± 293.68 8068.1± 614.66 8415.50± 151.53 8150.1± 118.05 8065.2± 301.79 8411.9± 70.40
h1 (m) 6 1–10 6± 0.07 6± 0.06 6.04± 0.68 5.99± 0.06 6± 0.03 5.99± 0.22 5.99± 0.03
h2 (m) 72 50–90 74± 25.7 75.13± 2.82 75.79± 7.36 73.99± 5.71 74.61± 0.94 75.14± 3.20 73.77± 2.59
h3 (m) 48 30–60 36± 1595 48.43± 2.71 46.98± 9.93 47.10± 5.98 48.82± 0.88 46.46± 3.86 47.30± 2.81

Here, two approaches are used to present the mean solu-
tion with its uncertainty estimation: (1) the mean solution for
all accepted best-fitted solutions obtained from 10 000 runs
for all three algorithms is used or (2) the mean model cal-
culated from the solution with a posterior PDF (for which5

values are greater than 68.27 % CI from all accepted solution
parameters) is used.

Here, we observed that the second-layer parameters for
PSO and GWO are too diverted from actual values (higher
uncertainty) due to their inability to balance exploitation and10

exploration properties. In contrast, the hybrid vPSOGWO al-
gorithm provides more accurate results and falls within the
uncertainty ranges (Table 1). Therefore, the hybrid algorithm
has a more balanced nature with respect to exploitation and
exploration than PSO and GWO. As shown in Table 2, the15

posterior correlation matrix illustrates that the first-layer re-
sistivity reveals a feeble correlation with other associated pa-
rameters. However, there is a negative correlation found be-
tween ρ2 and h2 (both parameters have a trade-off relation-
ship). In contrast, a positive correlation is observed between20

ρ2 and h1 (i.e., resistivity of the second layer increases with
increasing the thickness of the first layer and vice versa).
Similarly, a correlation can also be seen between third-layer
resistivity and second-layer thickness, but it is inverse in na-
ture.25

Figure 6 represents the correlation plot between model pa-
rameters (off-diagonal) and the posterior PDF curve (diago-
nal) for models with a CI greater than 68.27 % for all param-
eters. No significant error differences are found between the
observed and calculated apparent resistivity data for all three30

algorithms (Fig. 2a). However, the error difference in the 1D
model and the result for the mean model with a CI of 68.27 %
are presented in Fig. 2b and Table 1, respectively.

To check the stability of the parameter, the hybrid algo-
rithm is tested with three different search spaces, as shown in 35

Table 3. Consequently, it estimates the mean model and un-
certainty for 100 runs. Table 3 suggests that using a broader
search space does not cause the result to divert too much from
the actual model. In this example, the computational time re-
quired for one run with 30 data points was 1.54, 1.49, and 40

1.48 s for vPSOGWO, GWO, and PSO, respectively.
The proposed optimization is also performed using the

same synthetic data with 10 % Gaussian noise and keeping
the search range shown in Table 1. The same procedure is
applied to determine the mean model from all best-fitted so- 45

lutions and solutions with a posterior PDF with a CI greater
than 68.27 % for parameters of all of the solutions (Table 4).
Although 10 % noise is added, the result obtained from the
mean model for a posterior PDF of 68.27 % for the hybrid
algorithm is not much different compared to actual values. 50

At the same time, the error was observed to slightly in-
crease: 1.309× 10−5, 1.313× 10−5, and 1.327× 10−5 for
vPSOGWO, GWO, and PSO, respectively. Table 5 depicts
the correlation matrix of vPSOGWO, which clearly shows
interdependence with values of 0.3315 and −0.7879 for the 55

first- and second-layer parameters. Similarly, we can also
determine the relation between second-layer resistivity and
first-layer thickness (0.6142), third-layer resistivity, and the
second-layer thickness (−0.7618). Hence, the result obtained
using the proposed technique shows good agreement with the 60

actual model values.

6.2 Example 2: synthetic data – four-layer case

A four-layer Earth model with a thin, relatively low-
resistance layer (24.0�m) sandwiched between two high-



K. Sarkar and U. K. Singh: Stability and uncertainty assessment: a new approach 13

Table 7. Correlation matrix using a 68.27 % PDF limit for four-layer synthetic resistivity sounding data.

Model parameter ρ1 (�m) ρ2 (�m) ρ3 (�m) ρ4 (�m) h1 (m) h2 (m) h3 (m)

ρ1 (�m) 1.0000 −0.0359 −0.0029 −0.0207 0.7383 0.0354 −0.0041
ρ2 (�m) 1.0000 −0.0481 −0.0598 0.4667 −0.9798 −0.0105
ρ3 (�m) 1.0000 0.0284 −0.0188 0.0274 0.9983
ρ4 (�m) 1.0000 −0.0183 0.0935 0.0509
h1 (m) 1.0000 −0.4286 −0.0036
h2 (m) 1.0000 −0.0079
h3 (m) 1.0000

Table 8. Optimization of the mean model result for four-layer synthetic resistivity sounding data with 10 % noise.

Model True Search Mean model (final 10 000 solutions) Mean model (PDF >68.27 %)
parameter value range

GWO PSO vPSOGWO GWO PSO vPSOGWO

ρ1 (�m) 12 5–30 12.25± 0.07 12.38± 1.03 12.27± 0.09 12.24± 0.03 12.26± 0.37 12.27± 0.04
ρ2 (�m) 840 500–1000 813.70± 31.51 816.76± 66.79 901.03± 53.95 812.08± 12.36 816.46± 29.21 899.24± 24.66
ρ3 (�m) 24 15–30 24.17± 1.36 23.51± 5.03 23.59± 2.84 24.31± 0.42 23.28± 1.87 23.50± 1.37
ρ4 (�m) 8400 5000–10 000 8070.5± 310.96 7971.2± 596.07 8415.50± 167.11 8082± 143.09 7973.5± 292.28 8417± 80.27
h1 (m) 6 1–10 6.15± 0.06 6.22± 0.67 5.99± 0.06 6.15± 0.03 6.15± 0.21 6.20± 0.03
h2 (m) 72 50–90 76.80± 2.98 76.96± 6.96 73.99± 4.59 76.72± 1.29 76.38± 3.00 69.75± 2.10
h3 (m) 48 30–60 47.35± 2.84 47.35± 10.09 47.10± 5.85 48.75± 0.94 47.02± 3.77 48.27± 2.83

resistance layers (840.0�m and 8400.0�m) is considered
for the demonstration of the proposed algorithms. Table 6 il-
lustrates the actual model for synthetic data, the search range,
and the inverted results. vPSOGWO, GWO, and PSO con-
verge at iterations 590, 674, and 750 and with associated er-5

rors of 3.624×10−8, 1.370×10−8, and 2.097×10−7, respec-
tively, as shown in Fig. 8, whereas the error estimated using
the ridge regression method is 0.383. Instead of higher error
in vPSOGWO compared with GWO, it can be observed that
the error scale for the vPSOGWO algorithm is narrower than10

the other two algorithms, which is an essential factor for de-
termining the mean model (Fig. 9). Hence, the mean model
is affected by the error scale, as shown in Fig. 9.

To reduce uncertainty and increase the resolution of the
model, model parameters containing a posterior PDF with15

a CI greater than 68.27 % are selected. In Table 6, the true
model lies within the uncertainty range of the hybrid vP-
SOGWO, whereas GWO and PSO have failed to keep the
true model within its uncertainty range in the second-, third-,
and fourth-layer parameters. In the case of ridge regression,20

the uncertainty level of the model parameters is too high. For
example, in the case of the third layer, both resistivity and
thickness have an uncertainty approx. 44 times higher than
the actual value.

The inverted 10 000 models are also computed in this ex-25

ample to find the posterior PDFs and histograms for each pa-
rameter. The peak of the posterior PDF is roughly close to the
actual solution, as shown in the histograms in Fig. 10a and b,
which reveal that ρ2 and h2 have a broader range that sig-
nifies the equivalence problem associated with the resistive30

layer. The uncertainty in each algorithm is found to be large
considering all of the accepted models. However, picking the
models with a greater posterior PDF CI than 68.27 % reduces
the uncertainty in the model and increases the resolution of a
solution. 35

The correlation plot between model parameters (off-
diagonal) and the posterior PDF curve (diagonal) for models
with a CI greater than 68.27 % for all parameters is shown
in Fig. 11. There are also no significant error differences be-
tween the computed and observed apparent resistivity data 40

for all three optimization algorithms.
The correlation matrix of a four-layer model of synthetic

resistivity data is shown in Table 7. It illustrates that the
first-layer parameters are correlated by a correlation matrix
of 0.7383. A strong negative correlation was found between 45

the second-layer parameters (−0.9798), and the third-layer
parameters are strongly correlated with each other by a posi-
tive correlation matrix of 0.9983. Figure 7a shows the fitness
between four-layer synthetic (*) and computed apparent re-
sistivity data obtained for vPSOGWO, GWO, and PSO. The 50

difference in fitness curves for all three optimization tech-
niques cannot be determined, as the observed error is signif-
icantly negligible. However, the error difference can be ob-
served in the 1D resistivity–depth models obtained from the
mean model with a PDF CI of 68.27 %, as shown in Fig. 7b. 55

Table 6 shows the mean model with a posterior PDF with
a CI greater than 68.27 % for all accepted parameters in the
four-layer Earth model case. In this example, the computa-
tional time required for one run with 27 data points for vP-
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Table 9. Correlation matrix using a 68.27 % PDF limit for four-layer synthetic resistivity sounding data with 10 % noise.

Model parameter ρ1 (�m) ρ2 (�m) ρ3 (�m) ρ4 (�m) h1 (m) h2 (m) h3 (m)

ρ1 (�m) 1.0000 0.0003 0.0271 −0.0948 0.7644 −0.0109 0.0251
ρ2 (�m) 1.0000 −0.0168 0.0327 0.3605 −0.9665 0.0153
ρ3 (�m) 1.0000 0.0260 0.0211 −0.0042 0.9980
ρ4 (�m) 1.0000 −0.0446 0.0009 0.0549
h1 (m) 1.0000 −0.3180 0.0268
h2 (m) 1.0000 −0.0329
h3 (m) 1.0000

Table 10. Optimization of the mean model result for three-layer field resistivity sounding data.

Model Search Dixon and Mean model (final 10 000 solutions) Mean model (PDF >68.27 %)
parameter range Doherty (1977)

GWO PSO vPSOGWO GWO PSO vPSOGWO

ρ1 (�m) 2000–3000 2500 2646.6± 246.65 2532.3± 78.20 2536± 8.67 2619.8± 109.70 2533.8± 34.59 2535.9± 4.05
ρ2 (�m) 10–400 100 116.01± 16.45 110.17± 3.38 109.23± 0.29 112.55± 4.65 109.78± 1.11 109.24± 0.13
ρ3 (�m) 200–500 300 318.99± 31.67 334.01± 33.22 314.42± 1.63 315.50± 11.96 327.15± 14.93 314.40± 0.77
h1 (m) 0.1–3 1.42 (approx.) 1.28± 0.13 1.33± 0.02 1.33± 0.00 1.29± 0.05 1.33± 0.01 1.33± 0.00
h2 (m) 20–50 29.21 (approx.) 34.02± 7.38 34.91± 6.29 31.90± 0.31 32.66± 2.99 33.67± 2.17 31.90± 2.17

SOGWO, GWO, and PSO is 1.94, 1.84, and 1.85 s (PSO),
respectively.

The optimization techniques are also executed using the
same four-layer model of synthetic data with 10 % Gaus-
sian noise and keeping the search range shown in Table 6.5

The same procedure is applied to determine the mean model
from all of the best-fitted models and models of a posterior
PDF with a CI greater than 68.27 % for all model parame-
ters presented in Table 8. Although 10 % noise is added, the
result obtained from the mean model for the posterior PDF10

CI of 68.27 % for the hybrid algorithm is not much differ-
ent from actual values. At the same time, the experimental
error is 3.831× 10−4, 3.831× 10−4, and 3.870× 10−4 for
vPSOGWO, GWO, and PSO, respectively.

Table 9 illustrates the correlation matrix of the hybrid al-15

gorithm, which clearly describes interdependence, as seen
by values of 0.7644, −0.9665, and 0.9980 for the first- and
second-, and third-layer parameters, respectively. Similarly,
we also find a relation between second-layer resistivity and
first-layer thickness (0.3605) and the resistivity of the fourth20

layer and thickness of the third layer (0.0549). This means
that the outcome from the advocated approachCE2 is very
close to the real model.

6.3 Example 3: field data – three-layer case

For the first field example, we used a one three-layer case25

of vertical electrical resistivity sounding data measured with
a Schlumberger array over Mount Turner, northern Queens-
land, Australia, interpreted by Dixon and Doherty (1977,
Fig. 2a), as shown in Fig. 12a. After selecting a suitable
search range, three novel algorithms, namely, vPSOGWO,30

GWO, and PSO, are executed to reconstruct the model inter-
preted by Dixon and Doherty (1977). The search range and
the comparison of the proposed algorithms with the previous
result (Dixon and Doherty, 1977) are presented in Table 10.
Our results (for a 68.27 % CI) are closed to the development 35

given by Dixon and Doherty (1977). The convergent error for
the best-fitted model in vPSOGWO is 3.681×10−4, GWO is
3.697× 10−4, and PSO is 3.682× 10−4.

Table 11 presents a correlation matrix that shows a nega-
tive correlation between the first-layer parameters and a posi- 40

tive correlation between the second-layer parameters. A pos-
itive correlation is also observed between ρ3 and h2, which
maintain the same model data. Figure 12a shows the appar-
ent resistivity curve, while the 1D model obtained from the
mean model with a 68.27 % CI result is shown in Fig. 12b. 45

In this example, the computational time required for one run
with 14 data points is 0.90, 0.83, and 0.78 s for vPSOGWO,
GWO, and PSO respectively.

6.4 Example 4: field data – five-layer case

We selected another field example using a vertical electrical 50

resistivity sounding dataset from Keshiari (Kharagpur), West
Bengal, India, as a five-layer Earth subsurface model to deter-
mine the aquifer zone (Panda et al., 2018, their Fig. 3). This
area is covered with different geological units, such as lat-
erite, clay, and sand, and laterite material restricts the aquifer 55

recharge process and is the most problematic area with re-
spect to groundwater potential. We inverted these data for
a five-layer Earth structure parameter using the vPSOGWO,
GWO, and PSO inversion algorithms. The results are shown
in Table 12 for the available models, borehole samples, and 60
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Table 11. Correlation matrix using a 68.27 % PDF limit for three-layer field resistivity sounding data.

Model parameter ρ1 (�m) ρ2 (�m) ρ3 (�m) h1 (m) h2 (m)

ρ1 (�m) 1.0000 0.0046 −0.0003 −0.2336 0.0086
ρ2 (�m) 1.0000 −0.0389 −0.0897 0.3075
ρ3 (�m) 1.0000 0.0144 0.4050
h1 (m) 1.0000 −0.0256
h2 (m) 1.0000

Table 12. Optimization of the mean model result for five-layer field resistivity sounding data.

Model Search Litho-log detail of VES6 (Panda et al., Mean model (final 10 000 solutions) Mean model (PDF >68.27 %)
parameter range 100 m deep well 2018) VFSA

GWO PSO vPSOGWO GWO PSO vPSOGWO

ρ1 (�m) 60–120 – 97± 5 87.97± 10.02 88.41± 13.73 78.21± 8.28 87.44± 3.37 88.43± 5.31 77.99± 3.17
ρ2 (�m) 10–30 – 19± 0.2 20.38± 0.87 19.38± 1.18 19.73± 0.17 20.43± 0.34 19.43± 0.43 19.73± 0.06
ρ3 (�m) 80–150 – 128± 29 116.04± 10.01 118.34± 14.41 123.24± 9.56 115.28± 3.50 117.55± 5.67 123.01± 3.67
ρ4 (�m) 10–25 – 60± 1 16.79± 1.31 15.27± 2.12 14.83± 0.69 16.93± 6.49 15.35± 0.83 14.84± 0.27
ρ5 (�m) 25–60 – 40± 0.4 41.91± 2.99 44.46± 3.60 42.83± 0.52 41.61± 1.06 44.28± 1.35 42.67± 0.20
h1 (m) 0.2–0.9 0.6 (dry soil) 0.5± 0.1 0.54± 0.05 0.56± 0.06 0.56± 0.02 0.53± 0.02 0.56± 0.02 0.56± 0.01
h2 (m) 5–10 7 (moist soil) 6.5± 0.3 7.06± 0.56 6.35± 1.01 7.06± 0.13 7.10± 0.21 6.36± 0.35 7.06± 0.05
h3 (m) 6–10 8 (compact laterite) 7.7± 2.3 8.41± 0.72 8.78± 1.33 8.37± 0.68 8.38± 0.26 8.77± 0.53 8.37± 0.26
h4 (m) 40–55 48 (soft laterite) 45.0± 5.0 51.15± 3.57 48.34± 6.10 48.22± 3.28 51.37± 1.37 48.60± 2.42 48.23± 1.27

The symbol “–” in the table denotes no information. VFSA stands for very fast simulated annealing.

the search space for vPSOGWO, GWO, and PSO. The com-
puted apparent resistivity curve for all three algorithms (–
) and the field data (indicated by asterisks) are shown in
Fig. 13a. Their error differences are significant (Fig. 13a, Ta-
ble 12). The inverted 1D layered model using all algorithms5

obtained from the mean model with a 68.27 % CI is shown in
Fig. 13b. In this example, the computational time for one run
with 28 data points is 2.55, 2.43, and 2.45 s for vPSOGWO,
GWO, and PSO, respectively.

The result obtained from the mean solution of all accepted10

solutions and solutions with a PDF CI greater than 68.27 %
aimed at all parameters using the developed techniques is
presented in Table 12. The final mean models are compa-
rable with lithological data from a 100 m deep tube well near
VES6. The convergent error for vPSOGWO, GWO, and PSO15

is 4.498×10−4, 4.541×10−4, and 4.566×10−4, respectively,
whereas the error for very fast simulated annealing (VFSA)
obtained by Panda et al. (2018) is 1.7×10−2. The correlation
matrix clearly shows a strong relation between the parame-
ters of the first layer (−0.9736), the second layer (0.8434),20

and the third layer (−0.9907) as well as a moderate relation
between the parameters of the fourth layer (0.5653). We have
noticed a moderate interdependence of ρ3 with h2 and of ρ5
with h4, which can be seen in Table 13.

6.5 Example 5: field data – six-layer case25

As a six-layer case study, we again applied the vPSOGWO,
GWO, and PSO algorithms to invert field apparent resistivity
data extracted near a borehole in Apulia, South Italy, for hy-
drogeological purposes (Sen et al., 1993). The search range

was taken from Sen et al. (1993), but the fourth-layer and 30

upper-bound thickness of the fifth layer increase by 50 m,
as shown in Table 14. The reproduced field data (*) and in-
verted field data (–) are shown in Fig. 14a. The misfit error
obtained is 2.830×10−4, 3.243×10−4, and 3.133×10−4 for
vPSOGWO, GWO, and PSO, respectively, whereas the error 35

using simulating annealing (SA) in Sen et al. (1993) is 0.017.
Table 14 also includes the mean model for a CI of 100 % and
68.27 % using the proposed algorithms and previously pub-
lished literature. It is observed that few parameters obtained
fall within the uncertainty of corresponding parameters of 40

vPSOGWO. The vPSOGWO-inverted results provide higher
similarity with the borehole information than the results from
SA (Sen et al., 1993). The interdependence between the layer
parameters can be seen from the correlation matrix shown
in Table 15. A strong correlation among parameters of the 45

first layer (0.8211), the second layer (−0.9327), and the third
layer (0.9766) is shown by the correlation matrix, which is
comparable to the correlation matrix that has been presented
in Sen et al. (1933, their Table 13). A moderate correlation
between fourth-layer (−0.5246) and fifth-layer parameters 50

(0.4486) is also observed. It is also notable that there is a sen-
sible relation between sixth-layer resistivity and fifth-layer
thickness, keeping the same model data.

The error differences between computed data and ob-
served data are significant, as shown in Fig. 14a and Ta- 55

ble 12. The inverted 1D layered models obtained from the
mean model with a CI of 68.27 % are shown in Fig. 14b.
In this example, the computational time for one run with 28
data points is 3.58, 3.44, and 3.45 s for vPSOGWO, GWO,
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Table 13. Correlation matrix using a 68.27 % PDF limit for five-layer field resistivity sounding data.

Model parameter ρ1 (�m) ρ2 (�m) ρ3 (�m) ρ4 (�m) ρ5 (�m) h1 (m) h2 (m) h3 (m) h4 (m)

ρ1 (�m) 1.0000 0.8103 0.0246 0.0164 0.1051 −0.9779 0.5888 −0.0288 0.0492
ρ2 (�m) 1.0000 0.1267 −0.1124 0.0684 −0.8652 0.7855 −0.1035 −0.0675
ρ3 (�m) 1.0000 −0.1272 −0.1221 −0.0390 0.6185 −0.9664 −0.1169
ρ4 (�m) 1.0000 0.4706 0.0028 −0.3107 −0.0985 0.9726
ρ5 (�m) 1.0000 −0.1026 −0.0414 0.0449 0.6416
h1 (m) 1.0000 −0.6356 0.0392 −0.0328
h2 (m) 1.0000 −0.5463 −0.2534
h3 (m) 1.0000 −0.0936
h4 (m) 1.0000

Table 14. Optimization of the mean model result for six-layer field resistivity sounding data.

Model Search Borehole detail Patella Sen et al. Mean model (final 10 000 solutions) Mean model (PDF >68.27 %)
parameter range from Patella (1975) (1993)

(1975)

GWO PSO vPSOGWO GWO PSO vPSOGWO

ρ1 (�m) 10–50 – 37 33± 4.91 36.47± 6.23 30.00± 8.49 32.93± 1.60 40± 2.41 30.24± 2.08 33.06± 0.57

ρ2 (�m) 50–250 – 140 240± 29.63 121.81± 29.04 158.49± 49.17 112.32± 24.59 121.42± 11.63 152.01± 20.51 111.25± 9.33

ρ3 (�m) 1–40 – 17 24± 1.37 19.38± 4.58 24.14± 7.07 18.19± 3.21 19.26± 1.85 24.49± 2.08 18.70± 1.15

ρ4 (�m) 100–600 – 340 300± 17.5 278.55± 71.41 299.07± 53.73 355.16± 42.70 258.02± 30.37 291.83± 23.55 354.49± 16.04

ρ5 (�m) 30–500 – 130 120± 32.09 276.27± 80.72 265.25± 65.06 105.80± 39.26 262.16± 33.24 259.27± 30.44 103.67± 14.50

ρ6 (�m) 100–500 – 300 320± 8.33 286.46± 46.72 303.76± 27.36 349.29± 20.98 273.73± 21.91 301.75± 12.34 349.68± 7.90

h1 (m) 0.5–3 1
(alluvial soil)

1.3 1.1± 0.198 1.32± 0.48 0.96± 0.66 0.91± 0.09 1.36± 0.16 0.86± 0.10 0.92± 0.03

h2 (m) 1–8 3
(fine sand)

2.7 1.3± 0.252 3.17± 0.98 2.13± 1.16 3.16± 0.47 3.01± 0.41 1.97± 0.34 3.13± 0.18

h3 (m) 1–25 12.5 (calcarenite
and sandy clay)

12 17± 1.13 13.66± 3.49 17.72± 6.03 12.93± 2.74 13.41± 1.36 17.57± 1.94 13.26± 1.02

h4 (m) 10–200 118.5 (calcareous
tufa and limestone)

120 125± 8.39 117.93± 33.89 124.38± 29.15 118.95± 30.44 117.28± 12.31 125.08± 13.71 117.72± 11.72

h5 (m) 10–200 65 (water-bearing
limestone)

120 70± 23.15 118.79± 34.45 127.62± 29.37 93.12± 33.99 116.89± 12.36 125.98± 13.51 92.85± 13.03

and PSO, respectively. The inverted results from vPSOGWO,
GWO, and PSO have been shown along with the borehole
data and published results (Sen et al., 1993) in Table 14. In
addition to published findings, it is notable that the outcomes
obtained from the hybrid algorithm (vPSOGWO) satisfy the5

borehole information very well compared with the other al-
gorithms.

7 Conclusion

We conducted an assessment of three metaheuristic algo-
rithms, namely PSO, GWO, and vPSOGWO, to determine10

their effectiveness and suitability with respect to solving geo-
electrical inverse issues. These challenges include the esti-
mation of 1D resistivity models based on geoelectrical resis-
tivity sounding data. The relevance of these algorithms was
validated using synthetic and field resistivity sounding data15

signifying the different kinds of Earth subsurface stratigra-
phy. An enormous solution (100 000 000 from 10 000 runs)

was assessed. Subsequently, the best-fitted solutions were
chosen within a predefined value for statistical measure-
ments. The statistical study, including a posterior PDF with a 20

68.27 % CI, a mean solution, a posterior solution correlation
matrix, and a covariance matrix using search space, was car-
ried out to refine the solutions and obtain the global mean so-
lution with the least uncertainty. These statistical simulations
yield essential information as to the reliability of an inver- 25

sion algorithm. In general, conventional techniques can be
quite effective in resolving the model with respect to random
noise but can fail with respect to systematic error and inap-
propriate models. Our investigation with the application of
the developed algorithm, including the statistical simulation 30

for different multilayer resistivity parameters, resulted in a
quantitative appraisal of uncertainty in the derived model pa-
rameters. We observed that the output of the hybrid algorithm
in terms of the mean model or error might be similar to either
PSO or GWO (attributed to the exploration characteristics of 35

GWO and the exploitation characteristics of PSO). The vP-
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Table 15. Correlation matrix using a 68.27 % PDF limit for six-layer field resistivity sounding data.

Model ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 h1 h2 h3 h4 h5
parameter (�m) (�m) (�m) (�m) (�m) (�m) (m) (m) (m) (m) (m)

ρ1 (�m) 1.000 0.4779 −0.0875 −0.1111 0.0853 −0.0560 0.9324 −0.4458 −0.0868 0.0234 0.0152
ρ2 (�m) 1.000 0.3732 0.1178 −0.0770 0.1340 0.7174 −0.9018 0.3785 0.0674 0.0949
ρ3 (�m) 1.000 0.5415 −0.3876 0.3916 0.0045 −0.6603 0.9881 0.0207 0.1858
ρ4 (�m) 1.000 −0.6227 0.4864 −0.0878 −0.12579 0.6469 −0.4198 0.2740
ρ5 (�m) 1.000 −0.6675 0.0699 0.1727 −0.4580 −0.1085 0.0217
ρ6 (�m) 1.000 −0.0263 −0.2226 0.4484 0.3239 0.5275
h1 (m) 1.000 −0.6546 0.0059 0.0438 0.0327
h2 (m) 1.000 −0.6551 −0.0679 −0.1304
h3 (m) 1.000 −0.0324 0.2173
h4 (m) 1.000 −0.0142
h5 (m) 1.000

SOGWO, GWO, and PSO algorithm performance has been
analyzed based on the uncertainty and stability and on the
mean model of the layered Earth structure. We found that vP-
SOGWO gives much closer results than the results inverted
from other two algorithms and than conventional methods5

and that these results are consistently better than the previ-
ously published results and are correlated well with borehole
information.
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Şenel, F. A., Gökçe, F., Yüksel, A. S., and Yiğit, T.: A novel hybrid 55
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