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Response to Anonymous Referee #3

We would like to thank Anonymous Referee #3 for the overall positive review of our paper. Below we give a detailed reply25

to the comments.

AR#3: The authors present a data driven means of determining linear response functions from judiciously designed

perturbation and control experiments, with application to a toy model. The research is sound, and I have nothing of

substance further to add that has not already been addressed by the other reviewers. The manuscript is sufficiently30

well written, but often unnecessarily verbose. For this paper to be well cited in the future, its readability is key. I feel

that taking on board some of reviewer 1’s comments in particular more seriously would have further improved the

manuscript in this regard. A manuscript is not complete when there is nothing more to add, rather it is complete when

there is nothing more to remove. I suggest the authors review their manuscript again with this adage in mind. Despite

the above issues, I recommend the paper for publication. I’d suggest, though it is in the authors’ best interest to revise35

their manuscript to be as concise as possible.

Authors: We agree that we should strive for maximum conciseness. Therefore, as requested, we went back to the comments by

reviewer #1 who asked us in particular to shorten our exposition of regularization theory. But as we had already expressed in

our response to referee #1, we still believe that a review of certain details of regularization theory is crucial for the understand-

ing of our method, even if that makes the paper longer. Still, we agree that it makes sense to revise the paper once more to see40

where we can make it more concise.

Changes: We have reviewed the manuscript and excluded/changed certain excerpts to try to make the content less verbose (see

manuscript with highlighted revisions: L31, L173–174, L182, L260–261, L268, L296–298, L308–311, L574–L577, L617–

L625).
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Abstract. Existent methods to identify linear response functions from data require tailored perturbation experiments, e.g. im-

pulse or step experiments. And if the system is noisy, these experiments need to be repeated several times to obtain a good

statistics. In contrast, for the method developed here, data from only a single perturbation experiment at arbitrary perturbation

is sufficient if in addition data from an unperturbed (control) experiment is available. To identify the linear response function

for this ill-posed problem we invoke regularization theory. The main novelty of our method lies in the determination of the5

level of background noise needed for a proper estimation of the regularization parameter: This is achieved by comparing the

frequency spectrum of the perturbation experiment with that of the additional control experiment. The resulting noise level

estimate can be further improved for linear response functions known to be monotonic. The robustness of our method and its

advantages are investigated by means of a toy model. We discuss in detail the dependence of the identified response function on

the quality of the data (signal-to-noise ratio) and on possible nonlinear contributions to the response. The method development10

presented here prepares in particular for the identification of carbon-cycle response functions in Part II of this study. But the

core of our method, namely our new approach to obtain the noise level for a proper estimation of the regularization parameter,

may find applications in solving also other types of linear ill-posed problems.

1 Introduction

To gain understanding of a physical system it is very helpful to know how it responds to perturbations. Considering a small15

time-dependent perturbation f : R→ R, the resulting time-dependent response R : R→ R can from a very general point of

view be written as

R(t) =

t∫

0

χ(t− s)f(s)ds, (1)

where the linear response function χ : R→ R is a characteristic of the considered system. In fact, under a number of assump-

tions – among which smoothness and causality are the most important –, Eq. (1) is the first term of a functional expansion of the20
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response R into the perturbation f around the unperturbed state f(·) = 0, known as Volterra series (Volterra, 1959; Schetzen,

2010). In this framing, the key to gain insight into the system is the linear response function χ: By knowing this function one

has at hand not only a powerful tool to predict the response for sufficiently small but otherwise arbitrary perturbations, but also

a means to study the internal dynamic modes of the unperturbed system by analyzing the temporal structure of the response

function.25

Linear response functions have been successfully applied within different contexts in many fields of science and technology.

In physics, for example, material constants like the magnetic susceptibility or the dielectric function must be understood as

linear response functions that can be obtained by Kubo’s theory of linear response (Kubo, 1957) via the fluctuation-dissipation

theorem from an auto-correlation of the unperturbed system. But applications of these functions range far beyond physics

into fields like neurophysiology and climate (Gottwald, 2020). In climate science, in particular, applications of linear response30

functions in the context of Ruelle’s developments
:
in
::::::::

response
::::::
theory

::::
(see

::::::
below)

:
are a recent topic (e.g., Lucarini, 2009;

Lucarini and Sarno, 2011; Lucarini et al., 2014; Ragone et al., 2016; Lucarini et al., 2017; Aengenheyster et al., 2018; Ghil and

Lucarini, 2020; Lembo et al., 2020; Bódai et al., 2020). On the other hand, these functions have been successfully employed

as a heuristic tool to study climate and the carbon cycle already for decades (e.g., Siegenthaler and Oeschger, 1978; Emanuel

et al., 1981; Maier-Reimer and Hasselmann, 1987; Enting, 1990; Joos et al., 1996; Joos and Bruno, 1996; Thompson and35

Randerson, 1999; Pongratz et al., 2011; Caldeira and Myhrvold, 2013; Joos et al., 2013; Ricke and Caldeira, 2014; Gasser

et al., 2017; Enting and Clisby, 2019). Yet another perspective is that from engineering sciences, in which the impulse response

– that to a large extent corresponds to the linear response function – and the closely related transfer function (or system

function) characterize linear time-invariant (LTI) systems, widely applied in fields such as signal processing and control theory

(Kuo, 1966; Rugh, 1981; Beerends et al., 2003; Boulet and Chartrand, 2006). Regardless of which viewpoint a particular40

community takes to investigate the linear response of a system, a fundamental step in this investigation is the identification of

the appropriate linear response function, the topic of the present study.

From a theoretical point of view, the existence of a linear response is by no means obvious: Structurally stable dynamical

systems are the exception (Abraham and Marsden, 1982) so that already small parameter changes typically lead to topological

changes in their sets of stable and unstable solutions. Not every such bifurcation must prevent a linear response in macroscopic45

observables, but the question remains how in view of microscopic structural instability macroscopic linearity can prevail. A

key result in this field is Ruelle’s rigorous demonstration of the existence of a linear response for the structurally stable class

of uniform hyperbolic systems (Ruelle, 1997, 1998). It is believed that this result transfers to large classes of nonequilibrium

systems (Ruelle, 1999; Lucarini, 2008; Lucarini and Sarno, 2011; Gallavotti, 2014; Ragone et al., 2016; Lucarini et al., 2017).

An example may be the Lorenz system at standard parameters, for which numerical analysis revealed evidence for a linear re-50

sponse despite non-hyperbolicity (Reick, 2002; Lucarini, 2009). Recent investigations by Wormell and Gottwald (2018, 2019)

indicate that the thermodynamic limit must be invoked to reconcile microscopic structural instability with macroscopic differ-

entiability. Results on the existence/absence of a linear response have been particularly obtained for iterative maps (Großmann,

1984; Baladi, 2018; Śliwiak et al., 2021) which are known for their notoriously rich bifurcation structure. Well studied is
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also the linear response of stochastic systems (Hänggi and Thomas, 1982; Risken, 1996) for whose quasistatic response also55

rigorous mathematical results exist (Hairer and Majda, 2010).

In practical applications where the response function must be recovered from data, its identification may be a challenging

task. The reason is that the identification problem is generally ill-posed so that by classical numerical methods one obtains a

recovery severely deteriorated by noise (see below). In addition, existent methods to identify these functions from data require

performing special perturbation experiments. In the present study, we develop a method to identify linear response functions60

taking data from any type of perturbation experiment while fully accounting for the ill-posedness of the problem.

The generality of our method allows for deriving response functions in cases hardly possible before. Examples are problems

where performing perturbation experiments is computationally expensive so that one must use data that were not designed

for the purpose of deriving these functions. In geosciences, this may be the case when one is interested in characterizing by

response functions the dynamics of Earth System Models – extremely complex systems employed to simulate climate and65

its coupling to the carbon cycle. In principle, with our method one can derive these functions taking simulation data from

Earth-System-Models intercomparison exercises such as C4MIP – Coupled Climate-Carbon Cycle Model Intercomparison

Project (Taylor et al., 2012; Eyring et al., 2016) – that are already available at international databases. In Part II of this study

we explore this possibility by investigating in an Earth System Model the response of the land carbon cycle to atmospheric

CO2 perturbations. Because of the relationship between the linear response function and the impulse response and the transfer70

function in LTI systems, our work can also be seen from the viewpoint of engineering sciences as a contribution to the corpus

of methods to solve system identification problems (Åström and Eykhoff, 1971; Söderström and Stoica, 1989; Isermann and

Münchhof, 2010; Pillonetto et al., 2014).

In the field of climate science, the typical method to identify linear response functions is by means of the impulse response

function, which is the response to a Dirac delta-type perturbation (e.g., Siegenthaler and Oeschger, 1978; Maier-Reimer and75

Hasselmann, 1987; Joos et al., 1996; Thompson and Randerson, 1999; Joos et al., 2013). This method has become so widely

known that often the terms linear response function and impulse response function are used interchangeably. Indeed, in the

particular case where perturbations are weak, the two concepts coincide. But this is not true in general: If the impulse strength

is large so that nonlinearities become important, the impulse response function differs from the linear response function.

Other studies have proposed to identify linear response functions by making use of other types of perturbations. Reick (2002)80

and Lucarini (2009) used a weak periodic forcing to derive response functions in the Fourier space (also called susceptibilities).

Hasselmann et al. (1993), Ragone et al. (2016), MacMartin and Kravitz (2016), Lucarini et al. (2017), Van Zalinge et al. (2017),

Aengenheyster et al. (2018) and Bódai et al. (2020) identify the linear response function using step experiments, where the

perturbation is a Heaviside-type function. Additional studies have proposed to compute the linear response of the system using

the invariant measure of the unperturbed system (Gottwald et al., 2016) and by means of shadowing methods (Reick, 1996; Ni85

and Wang, 2017; Ni, 2020).

As noted by Lucarini et al. (2014), in principle the linear response function of a system can be derived taking data from an

arbitrary type of perturbation experiment. One method would be to apply a Laplace transform to Eq. (1), so that χ(t) can in
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principle be computed by the inverse Laplace transform

χ(t) = L−1{L{R}/L{f}}, (2)90

where L{·} is the Laplace transform operator. In fact, a first step towards the derivation of χ(t) from the general Eq. (1) was

taken by Pongratz et al. (2011), although the problem was not systematically discussed.

Deriving χ(t) from perturbation experiment data is not a trivial problem. For the general case where the perturbation is

different from a Dirac delta-type function, the problem is ill-posed (e.g., Bertero, 1989; Landl et al., 1991; Lamm, 1996;

Engl et al., 1996). This basically means that attempts to recover the exact χ(t) yield a solution with large errors due to an95

amplification of the noise in the data. On the other hand, when f(t) is a Dirac delta-type function with sufficiently small

perturbation strength so that the response can be considered linear, the impulse response gives directly the linear response

function, i.e. χ(t) =R(t). But even in this case noise may hinder the recovery: Because the perturbation is only one “pulse”

with small perturbation strength, the response may have a too low signal-to-noise ratio because of internal variability (Joos

et al., 2013), giving once more a recovery with large errors.100

To remedy these noise problems, a method intended to “damp” the noise in the response is usually employed. In MacMartin

and Kravitz (2016), a step experiment with large perturbation strength is used to obtain a better signal-to-noise ratio in the

response, but at the cost of enhancing the effect of nonlinearities. An alternative approach is employed by Ragone et al. (2016)

and Lucarini et al. (2017), who employ an ensemble of simulation experiments and take the ensemble averaged response so

that the level of noise is reduced. But especially for complex models such as Earth System Models, ensembles of simulations105

can be computationally extremely expensive so that such a procedure may not be feasible.

Instead of trying to improve the signal-to-noise ratio of the data by improved experiment design, here we are interested

in deriving χ(t) from a single realization of a given experiment by accounting for the ill-posedness of the problem. For this

purpose, we employ regularization theory. Although this theory offers a variety of methods to solve ill-posed problems (see

e.g. Groetsch, 1984; Bertero, 1989; Bertero et al., 1995; Engl et al., 1996; Hansen, 2010), currently no general all-purpose110

method exists. Typically, methods rely on some type of prior information about the problem (Istratov and Vyvenko, 1999).

Hence, they must be tailored according to the particularities of each application. Here, we develop a method that under certain

assumptions solves the ill-posed problem when in addition to the data from a single arbitrary perturbation experiment also data

from an associated unperturbed – or control – experiment are given to obtain independent information about the noise level

(section 3). First, we assume that the response function is well approximated by a sum of decaying exponentials, meaning115

that potential oscillatory contributions to the response function are so small that they can be considered as part of the noise.

The response function is obtained by applying Tikhonov-Phillips regularization. The regularization parameter is chosen via

the discrepancy method. An essential ingredient of the discrepancy method is the noise level, which is usually not known a

priori. For this reason, we propose a method to estimate the noise level by taking advantage of the information given by a

spectral analysis of the perturbation experiment and the control experiment. If the desired response function is known to be120

monotonic, the noise estimate can be further adjusted. In section 4, the method is demonstrated to give reliable results under

appropriate conditions of noise and nonlinearity. In section 5, we compare the derived method with two existent methods in
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the literature to identify the response function in the time domain. Results and technical details are discussed in section 6.

Additional calculations are shifted to appendices.

2 Linear response theory and basic ansatz of the method125

As a preparation for introducing our method in section 3, in the present section we derive its basic ansatz, which takes into

account in addition to the response formula (1) also the noise in the data. Depending on the application context, the noise

may arise for different reasons, such as errors in the measurements, stochastic components in the system, etc. As will be seen,

our basic ansatz is in principle applicable to all those cases. But to make the connection to modern applications of linear

response functions that arise in the context of Ruelle’s developments (e.g., climate), here we derive this ansatz starting from130

considerations of linear response theory (Ruelle, 2009). Ruelle considered systems of type

d

dt
x=A0(x) +A1(x)f(t), (3)

where x(t) is the possibly infinite dimensional state vector and the perturbation f(t) couples to the unperturbed system d
dtx=

A0(x) via the field A1(x). In the present context Eq. (3) could e.g. represent the dynamics of the Earth system perturbed by

anthropogenic emissions f(t). Considering an observable Y (x), Ruelle proved that the ensemble average of its deviation from135

the unperturbed system 〈∆Y 〉 can be expanded in the perturbation f(t):

〈∆Y (x(t))〉=

t∫

0

χ(t− s)f(s)ds+O(f2), (4)

where the order symbol O(f2) represents terms that vanish in the limit f(·)→ 0 faster than the leading linear term. This

expansion describes the response of a system that is noisy as a result of its chaotic evolution: Starting from different initial states

one obtains different values for ∆Y (x(t)). Compared to Eq. (1), in Eq. (4) the linear response function does not describe the140

response in observables directly but only in their ensemble average, i.e. in an average over the initial states of the unperturbed

system. For the recovery of linear response functions from numerical experiments, this would mean that one had to perform

many experiments starting from different initial states to obtain the appropriate ensemble averages. Using tailored perturbations

experiments, it was demonstrated in several studies (e.g., Ragone et al., 2016; Lucarini et al., 2017; Bódai et al., 2020) that

linear response functions can indeed be obtained in this way, but at the expense of a large numerical burden from the need to145

perform many experiments. Instead, the aim here is to obtain the linear response functions from a given experiment and only

from a single realization. Since we are dealing with a single realization, Eq. (4) becomes

∆Y (t) =

t∫

0

χ(t− s)f(s)ds+ η(t) +O(f2), (5)

where η(t) is a noise term that must show up as a consequence of dropping the ensemble average. Accordingly, the noise η(t)

is introduced here as the difference between the noisy response in a single realization ∆Y (t) and the response in the ensemble150
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average 〈∆Y (x(t))〉 (compare Eq. (4)). In addition, we assume linearity in the perturbation. As a consequence, the present

study is based on the ansatz

∆Y (t) =

t∫

0

χ(t− s)f(s)ds+ η(t), (6)

where now the response ∆Y (t) is divided into a deterministic term
∫ t

0
χ(t− s)f(s)ds and a noise term η(t).

The linearity assumption is by purpose: In the present approach to derive the linear response function (see next section),155

hereafter called RFI method (Response Function Identification method), we first use Eq. (6) to obtain χ(t) and justify the

linearity assumption a posteriori by analyzing how robustly the response can be recovered for different perturbation strengths.

Dropping the nonlinear terms has the advantage that one can use the corpus of linear methods to derive χ(t) from Eq. (6).

Note that in practice, however small the perturbation may be, the nonlinear terms do not vanish. Therefore, the contribution

of nonlinearities is in this way distributed between χ(t) and η(t), which will be different from the previous χ(t) and η(t) in160

Eq. (5). How strongly nonlinearities affect the numerical identification of χ(t) depends on the estimation of η(t), which is a

crucial part of our RFI method and the main novelty introduced here to deal with the ill-posedness of the problem to identify

χ(t).

In addition, although we derived Eq. (6) starting from considerations of linear response theory, it is clear that this ansatz

can also be employed in any other context where it may be assumed that the response formula (1) applies and that the data is165

contaminated by additive noise.

3 Identification of linear response functions from arbitrary perturbation experiments

In this section we derive the RFI method. As mentioned above, the aim of this method is to obtain the linear response function

using data from a single realization of a given perturbation experiment. For this purpose, an essential step is our novel estimation

of the noise term η(t), which requires additional data from an unperturbed (control) experiment.170

Starting from the ansatz (6), the method is based on the idea that the noise term η(t) can be estimated using information on

the internal variability from the control experiment in combination with a spectral analysis of the perturbation experiment. The

identification of the linear response function proceeds as follows: First, we assume that the linear response function decays

multi-exponentially, i.e. we take
::::::
choose a functional form for χ(t). Second, Eq. (6) is discretized for application to the discrete

set of time series data, which results in a matrix equation. Then, assuming that the solution obeys the Picard condition (see175

below), we estimate the high-frequency components of the noise term η(t) in Eq. (6) via a spectral analysis of the matrix

equation applied to the data from the perturbation experiment. Next, assuming that the spectral distribution of noise is similar

in the control and in the perturbation experiment, we estimate also the low-frequency components of η(t). The final estimate

of η(t) is then used in a regularization procedure to determine the regularization parameter and thereby find an approximate

solution for χ(t). In case χ(t) is known to be monotonic, the approximated solution is further adjusted by checking for180

monotonicity.
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::::
This

::::::
section

::
is

:::::::::
organized

::
as

:::::::
follows.

:
In the first subsection, we introduce the assumption for the functional form of the

linear response function. In subsection 3.2, we present the discretized problem. In subsection 3.3 we shortly review some

elements of regularization theory employed in our method, in particular Tikhonov-Phillips regularization (subsection 3.3.1)

and the discrepancy method (subsection 3.3.2). In subsection 3.4 we present our noise estimation procedure by which the185

regularization parameter is determined. Finally, in subsection 3.5 we show how this procedure can be further improved in the

presence of a monotonicity constraint.

3.1 Functional form of the linear response function

In general, the identification of linear response functions from data may be performed either pointwise (e.g., Ragone et al.,

2016) or assuming a functional form (e.g., Maier-Reimer and Hasselmann, 1987). Both approaches usually lead to an ill-posed190

problem, and therefore to similar difficulties to find the solution (see more details in subsection 3.3.1). Although the RFI method

may be applied in either case, here we assume that the response function consists of an overlay of exponential modes. By this

ansatz we guarantee from the outset that the response relaxes to zero for t→∞, which is consistent with the expectation that

real systems have finite memory. Besides constraining the function space for the derivation of the response function, another

added value of this approach is that in principle it also gives the spectrum of internal time scales of the response.195

Assuming this ansatz, the question on the functional form of χ(t) arises. In climate science, it is typically assumed that the

response function can be described by only a few exponents (Maier-Reimer and Hasselmann, 1987; Enting and Mansbridge,

1987; Hasselmann et al., 1993, 1997; Grieser and Schönwiese, 2001; Li and Jarvis, 2009; Joos et al., 2013; Colbourn et al.,

2015; Lord et al., 2016), i.e.

χ(t) :=

M∑

i=1

gie
−t/τi with M small, (7)200

where the τi values are interpreted as characteristic time scales and the gi values are their respective weights. τi and gi are

then obtained by applying some fitting technique taking a fixed number of terms M . Thus, an important step in this type of

approach is to determine a suitable value for M . A common practice is to initially take only a small number of terms M , solve

the problem and then add terms progressively, until the addition of a new term does not anymore improve the fit according

to some quality-of-fit criterion (e.g., Kumaresan et al., 1984; Maier-Reimer and Hasselmann, 1987; Hasselmann et al., 1993;205

Pongratz et al., 2011; Colbourn et al., 2015; Lord et al., 2016). Thereby it is assumed that once results stabilize the information

in the data has been already fully exploited so that fitting of additional terms would be artificial. Nevertheless, finding the

parameters τi and gi either from a given χ(t) by Eq. (7) or from ∆Y (t) by inserting Eq. (7) into Eq. (1) means to solve a

special case of a Fredholm equation of the first kind (see Appendix A), which is an ill-posed problem (Groetsch, 1984). This

implies that even though the obtained solution may give a very good fit to the data, it may significantly differ from the exact210

solution (see e.g. the famous example from Lanczos, 1956, p. 272).
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Therefore, to avoid the complication of determining M , we assume instead that the response function is characterized by a

continuous spectrum g(τ) (Forney and Rothman, 2012):

χ(t) =

∞∫

0

g(τ)e−t/τdτ. (8)

Accordingly, we assume that the response is dominated by relaxing exponentials, meaning that potential contributions from215

oscillatory modes are not distinguishable from noise. By this approach the time scale τ is not anymore an unknown, but is

given after discretization by a prescribed distribution with M terms covering a wide range of τi values. Thus, only a discrete

approximation to the spectrum g(τ) needs to be found. In this way the functional representation is made independent from the

question of information content as long as the spectrum of discrete time scales is chosen sufficiently large and dense to widely

cover the spectrum of internal time scales of the considered system.220

This approach has an additional advantage. By prescribing the distribution of time scales one must not solve a nonlinear

ill-posed problem (by solving Eq. (7) for τi and gi) but only a linear ill-posed problem (by solving Eq. (8) only for g(τ)), for

which the mathematical theory is fairly well developed (Groetsch, 1984; Engl et al., 1996). Because the problem is linear, the

solution is even given analytically (see section 3.3.1), which makes the method very transparent.

3.2 Discretized problem225

In view of applications to geophysical systems like the climate or the carbon cycle (Part II of this study) that are known to

cover a wide range of time scales (Ghil and Lucarini, 2020; Ciais et al., 2013, Box 6.1), it is useful to switch to a logarithmic

scale (Forney and Rothman, 2012) by rewriting Eq. (8) in terms of log10 τ :

χ(t) =

∞∫

−∞

q(τ)e−t/τd log10 τ, with q(τ) := τ ln(10)g(τ). (9)

Hereafter, q(τ) and its discrete version q (see below) will be called spectrum.230

In order to apply the basic Eq. (6) together with Eq. (9) to experiment data, the whole problem needs to be discretized in

time and also with respect to the spectrum of time scales. Here we assume the data to be given at equally spaced time steps

tk = t0 + k∆t, k = 0,1, . . . ,N − 1, where N is the number of data, while the time scales are assumed to be equally spaced at

a logarithmic scale between maximum and minimum values τmax and τmin, i.e.

log10 τj = log10 τmin + j∆log10 τ, j = 0,1, . . . ,M − 1,

with ∆log10 τ :=
log10 τmax− log10 τmin

M
(10)235

where M is the number of time scales. As shown in Appendix B, the resulting discretized equations corresponding to Eq. (6)

and Eq. (9) are

∆Yk = ∆t

k∑

i=0

χk−i fi + ηk, k = 0, ...,N − 1, (11)
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and

χk = ∆log10 τ

M−1∑

j=0

qje
−k∆t/τj , k = 0, ...,N − 1, (12)240

where ηk stands for the noise. Combining the response data ∆Yk, the spectral values qj , and the noise values ηj into vectors

∆Y ∈ RN , q ∈ RM , and η ∈ RN , these equations can be written in vector form as

∆Y = Aq+η, (13)

with the components of matrix A given by

Akj := ∆logτ ∆t
k∑

i=0

e−(k−i)∆t/τj fi, k = 0, ...,N − 1, j = 0, ...,M − 1. (14)245

The matrix A is known from the prescribed spectrum of time scales τi and the forcings fi. Considering η as a fitting error, in

principle one can apply standard linear methods to solve Eq. (13) for the desired spectrum by minimizing

min
qη
||Aqη −∆Y ||2, (15)

where || · || denotes the Euclidean norm, i.e. ||x||=
√∑

ix
2
i . Here we denoted the spectrum as qη instead of q to emphasize

that the spectrum found in this way can only be an approximation to the original q depending on the noise present in the data.250

Unfortunately, it turns out that solving Eq. (15) is not a trivial task. The first difficulty is that the finite information provided

by the data makes the problem underdetermined: Ideally one wants to obtain a spectrum q(τ) defined for τ ∈ [0,+∞[ , but the

data ∆Y is discrete and covers only a limited time span. However, the most serious issue in identifying χ(t) arises because

Eq. (1) is a special case of a Fredholm equation of the first kind (Groetsch, 1984, 2007, see also Appendix A), where the

quest for the integral kernel is well-known to be an ill-posed problem (see e.g. Bertero, 1989; Hansen, 1992). This basically255

means that any solution qη of Eq. (15) obtained via classical numerical methods such as LU or Cholesky decomposition will

be extremely sensitive to even small errors in the data (Hansen, 1992). Therefore, to solve Eq. (15) for the spectrum qη we

invoke regularization.

3.3 Regularization

As discussed above, the problem of solving
::
To

::::
treat

:::
the

:::::::::::
ill-posedness

::
of

:
Eq. (15) must be expected to be underdetermined and260

ill-posed. Strictly, the underdetermination cannot be overcome. But the ill-posedness can be treated: Our (15)
:
,
:::
our RFI method

combines techniques from regularization theory with a novel approach to estimate the noise level in the data. To facilitate the

understanding of the method, in this section we briefly review these techniques along with some other aspects of the theory

that are relevant for our method development.

3.3.1 Regularized solution265

To deal with the ill-posedness, it is useful to perform a Singular Value Decomposition (SVD) of the matrix A:

A = UΣVT (16)
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with A ∈ RN×M , U ∈ RN×N , Σ ∈ RN×M , and V ∈ RM×M . Σ is a diagonal (not necessarily square) matrix with diagonal

entries σ0 ≥ σ1 ≥ ...≥ σM−1 ≥ 0 known as singular values, and

U =:[u0,u1, ...,uN−1], (17)270

V =:[v0,v1, ...,vM−1] (18)

are orthonormal matrices with u0,u1, ...,uN−1 being the left singular vectors and v0,v1, ...,vM−1 the right singular vectors

of A. In practice, assuming that there is more data than prescribed time scales, i.e. N ≥M the singular values σi computed

numerically are nonzero (see Golub and Van Loan, 1996, section 5.5.8). In this case, Eq. (15) has the unique solution (see

Golub and Van Loan, 1996, Theorem 5.5.1)275

qη =

M−1∑

i=0

ui •∆Y

σi
vi, (19)

where • denotes the usual scalar product.

In practice, when a SVD is applied to a discrete version of a Fredholm equation of the first kind, the components of the

singular vectors vi and ui tend to have more sign changes with increasing index i, as observed by Hansen (1989, 1990). This

observation justifies that in the following we dub low-index terms in Eq. (19) as low-frequency contributions, and high-index280

terms as high-frequency contributions.

It is well-known that when applying solution (19) one encounters certain numerical problems. Regularization is a means to

handle these problems. These problems arise – even in the absence of noise – as follows. From the Riemann-Lebesgue lemma

(see e.g. Groetsch, 1984) it is known that the high-frequency components of the data ∆Y (t) must approach zero. In the discrete

case, by Hansen’s observation this means that the projections ui •∆Y should approach zero for increasing index values i. But285

due to machine precision or the noise η contained in ∆Y , numerically the absolute values |ui •∆Y | do not approach zero

but settle at a certain non-zero level for large i or, in the presence of noise, may even increase. Due to the ill-posedness also

the singular values σi in the denominator of Eq. (19) tend to zero so that these high-frequency contributions to qη are strongly

amplified. Hence applying Eq. (19) naively would not give a stable solution for qη because its value would depend critically

on numerical errors and the noise present in the data.290

Regularization remedies this problem by suppressing the problematic high-frequency components. This approach assumes

that the main information on the solution is contained in the low-frequency components so that the high-frequency contributions

to the sum (19) can be ignored. This assumption is consistent with the very nature of ill-posed problems because in such

problems information on high frequencies is anyway supressed so that only low-frequency components of the solution are

recoverable (Groetsch, 1984, section 1.1).295

To perform such filtering, we employ the Tikhonov-Phillips Regularization method (Phillips, 1962; Tikhonov, 1963)–

although the method is most famously known as Tikhonov regularization, here we choose this different name in recognition

of Phillips earlier work (see Groetsch, 2003) . Besides being mathematically well-developed (see e.g. Groetsch, 1984; Engl

et al., 1996), the Tikhonov-Phillips Regularization method gives an explicit solution in terms of the SVD expansion, which

allows for a clear interpretation of the filtering. In addition, it provides a smooth filtering of the solution, in contrast to the300
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also well-known Truncated Singular Value Decomposition method (Hansen, 1987). For additional regularization methods, see

e.g. Bertero (1989), Bertero et al. (1995) and Palm (2010).

The standard Tikhonov-Phillips Regularization yields the regularized solution in the simple form (Hansen, 2010; Bertero,

1989)

qλ =

M−1∑

i=0

fi(λ)
ui •∆Y

σi
vi, (20)305

where the fi(λ) are the filter functions

fi(λ) =
σ2
i

σ2
i +λ

. (21)

By adding the filter function indeed the high-frequency components are suppressed: With λ properly chosen, at large index i,

where σ2
i � λ, fi(λ) approaches σ2

i /λ so that the terms under sum sign are proportional to σi meaning that the terms for large

i do not contribute significantly to the sum. In contrast, for small i, λ� σ2
i so that fi(λ) is about 1 and the terms under the310

sum are almost unchanged. In this way the filter function indeed selects only the low-frequency components. Therefore, now

the problem boils down to determining λ (see next section). Once λ is determined, the solution qλ is obtained by Eq. (20) and

the desired linear response function χ(t) finally follows from Eq. (12).

3.3.2 Determining the regularization parameter λ

By construction it is clear that qλ as computed from Eq. (20) strongly depends on the regularization parameter λ. Accordingly,315

much effort has been put in developing methods to determine suitable values for λ (e.g., Engl et al., 1996; Hansen, 2010). Of

special interest are methods that give solutions converging with decreasing noise level to the “true” solution. One such method

known to conform to this condition while uniquely determining the regularization parameter has been proposed by Morozov

(1966). His discrepancy method is based on the idea that the solution to the problem allows the data to be recovered with an

error of the magnitude of the noise (Groetsch, 1984): Let δ denote an upper bound of the noise level ||η||, i.e. δ ≥ ||η||. Then,320

λ should be chosen such that the discrepancy matches δ, i.e.

||Aqλ−∆Y ||= δ. (22)

Groetsch (1983) motivates the choice of this method by demonstrating that determining λ from Eq. (22) minimizes a natural

choice for an upper bound of the error in the solution given by regularization. Unfortunately, in practical applications the noise

level δ is usually not known. To try to solve this problem for the application of interest, in the next section we propose an325

approach to estimate δ.

3.4 Estimating the noise level δ

To introduce our approach, in the following we assume that data from an unforced experiment (control experiment) are available

– as is typically the case in applications to Earth System Models (see Part II) – that allow for an independent estimate of the

noise level δ.330
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A naive way to invoke these data to determine λ would be to take δ essentially as the standard deviation of the control

experiment – more precisely: δ := σ
√
N = ||∆Y ctrl||. Technically, to find λ, one way is to start with a large value for λ and

decrease it until the left hand side of Eq. (22) matches δ (as suggested by Hämarik et al., 2011). That this procedure works

is explained by the fact that the function λ 7→ ||Aqλ−∆Y || is continuous, increasing and contains δ in its range (Groetsch,

1984, Theorem 3.3.1). Having found λ in this way, the desired solution qλ is then obtained from Eq. (20). But this approach335

is not as straightforward as one may think: Because of the forcing, the noise in the perturbed experiment may have different

characteristics from that in the control experiment. Therefore in the following we devise a method how to account for this

problem.

Formally in Eq. (13) ∆Y is split into a “clean” part and noise η. Entering this into Eq. (19) gives

qη =

M−1∑

i=0

(
ui •Aq

σi
vi +

ui •η
σi

vi

)
. (23)340

Accordingly, the first term in the sum gives the “true” solution q while the second term gives the noise contribution to qη .

As already pointed out when discussing regularization, the “true" solution of ill-posed problems can only be recovered if it is

dominated by the projection onto the first singular vectors. This requirement is formally stated by the discrete Picard condition

(Hansen, 1990), which demands that the size of the projection coefficients |ui •Aq| drops sufficiently fast to zero so that they

get smaller than σi before σi levels off to a finite value because of numerical errors. To find a good estimate for the noise level345

δ we use this in the following way. Let imax be the value of the index i where the singular values σi start to level off. Assuming

that the Picard condition holds, one can infer that

ui •∆Y

σi

(13)
=
ui •Aq

σi
+
ui •η
σi

≈ ui •η
σi

for i > imax. (24)

Therefore,

ui •∆Y ≈ ui •η for i > imax. (25)350

This equation determines the high-frequency components of the noise η. It remains to determine also the low-frequency

components to obtain an estimate for δ.

For this purpose, we take advantage of the data from the control experiment. The control experiment is an experiment

performed for the same conditions as the perturbed experiment, with the only difference that the forcing f is zero so that the

resulting ∆Y ctrl can be understood as pure noise; therefore we write ηctrl := ∆Y ctrl. While in the forced experiment the355

low-frequency noise is obscured by the low-frequency response induced by the forcing, the low-frequency part of the control

experiment data can to first order be expected to give an estimate of the low-frequency noise present in the forced experiment.

Nevertheless, it is clear that due to the forcing the spectral characteristics of noise may be different in the forced and unforced

experiments. More precisely, the spectrum of noise may differ in its overall level and spectral distribution (i.e. the “shape” of

the spectrum). In the following, we account for a possible difference in the overall level. However, we will assume that the360

spectral distribution is approximately the same for ηctrl and η; we call this the spectral similarity assumption.
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After these considerations, λ can be determined as follows: Take imax as the last index i before the plateau σi ≈ 0. This

imax distinguishes high-frequency (i > imax) from low-frequency (i≤ imax) components. Then

z :=|| [uimax+1 •∆Y , ...,uM−1 •∆Y ]
T ||, (26)

zctrl :=|| [uimax+1 •ηctrl, ...,uM−1 •ηctrl]T || (27)365

are the levels of high-frequency noise in the perturbed (see Eq. (25)) and in the control experiment, respectively. We now scale

the spectral components of ηctrl so that its high-frequency level matches the high-frequency level of ∆Y :

η′ :=
z

zctrl
ηctrl. (28)

In this way, the magnitude of the high-frequency components of η′ matches that of ∆Y , and because of Eq. (25) also that

of η. On the other hand, the spectral distribution of η′ is the same as for ηctrl, and by the spectral similarity assumption370

approximately the same as for η. Because η′ and η have similar spectral distributions, the fact that the magnitude of the high-

frequency components of η′ matches that of η implies that also the magnitude of their low-frequency components matches.

Therefore, η′ can be seen as an estimate of the noise η in the perturbed system not only at high but also at low frequencies.

Hence this corrected noise vector η′ can be used to obtain an estimate of the noise level of the perturbed system by setting

δ := ||η′||. (29)375

Compared to taking for δ simply the noise level from the unperturbed experiment (as was insinuated above), taking it in this

scaled way assures that the high-frequency components are consistent with the Picard condition that must hold for q to be

recoverable from the ill-posed problem tackled here. Having determined δ, λ can now be computed from Eq. (22) as described

above, from which the q follows (Eq. (20)) and hence χ(t) (Eq. (12)).

3.5 Additional noise level adjustment in the presence of a monotonicity constraint380

In the application to the land carbon cycle in Part II of this study we show that certain response functions χ(t) decrease

monotonically to zero. In attempts to recover such response functions by employing the noise level adjustment described in

the previous section, it may turn out that the numerically found response function fails to be monotonic. There may be several

reasons for this failure (strong nonlinearities, signal too obscured by noise, etc.). But one additional reason may be that the low-

frequency level of the noise was not properly estimated by assuming that the spectral distribution in the unperturbed experiment385

reflects the distribution in the perturbed experiment. For such cases one may try to improve the result by further adjustment of

the low-frequency noise level to obtain a more reasonable result.

The idea is to adjust the low-frequency components of noise independently of the high-frequency components iteratively

until the solution obeys the monotonicity constraint. To understand how to do so, several things must be explained:

1. A sufficient condition for χ(t) being monotonic is that all components qi have the same sign (see Appendix C). Therefore,390

starting out from a numerical solution for χ(t), it would develop towards monotonicity if one could come up with a sequence

of vectors qλ having less and less sign changes.
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2. From Eq. (20) it is seen that because of Hansen’s observation explained in section 3.3.1, that singular vectors vi are less

noisy for lower i, qλ has fewer sign changes the fewer vi contribute to the sum.

3. As seen from Eq. (20) and Eq. (21), this is the case the more components the filter function is suppressing, i.e. the larger the395

value of λ.

4. To obtain larger values of λ, one sees from the discrepancy method (22) that one has to increase δ. The proof for this can be

found in Groetsch (1984) (Theorem 3.3.1) but it can also be made plausible as follows: Starting from λ= 0, qλ = qη , which

is the solution of the minimization problem (15). Hence, for λ= 0 the discrepancy in the left-hand side of Eq. (22) is minimal.

By increasing λ one decreases all components of qλ (Eq. (20)), increasing thereby the discrepancy.400

5. Following the reasoning of the previous section, in order to obtain a larger value for δ one must increase the noise level ||η′||
(compare Eq. (29)). In doing so, one must keep the high-frequency components of ||η′|| unchanged because they must keep

matching the level of the high-frequency components of the noise in the perturbed experiment η (given by Eq. (25)). Hence, to

increase δ one sees from Eq. (29) that this is achieved by scaling up the low-frequency components of ||η′||.
Summarizing these considerations, we have to increase the level of low-frequency contributions to η′ to develop a given405

solution for χ(t) towards monotonicity.

This leads to the overall algorithm listed in Fig. 1. The first five steps have been already explained at the end of section

3.3.2. To account for monotonicity the additional step 6 combined with the loop back to step 4 has to be iteratively executed.

To enhance the low-frequency noise level as explained above, we calculate in step 6 a new noise vector ηnew by keeping the

high-frequency part from η and enhancing its low-frequency components by a factor c > 1. Then we recompute χ(t) from410

steps 4 and 5 and once more check for monotonicity.

For the RFI algorithm to be applicable, two conditions must be met: 1) a linear response exists for sufficiently weak pertur-

bation; and 2) in addition to the response experiment also a control experiment is available. The assumptions needed for the

successful application of the algorithm are summarized in Table 1.

Table 1. Summary of assumptions underlying the RFI algorithm.

Assumption Reference

1. The response function χ(t) can be approximated as a sum over non-oscillatory exponentially

decaying modes (see Eq. (8)).

Subsection 3.1

2. The discrete Picard condition holds. Subsection 3.4

3. For imax to be well defined, the singular values σi should drop sufficiently close to zero. Subsection 3.4

4. If the response function χ(t) is not known to be monotonic: Spectral similarity assumption. Subsection 3.4

5. If the response function χ(t) is known to be monotonic: The correct response function χ(t) can

be recovered by iteratively adjusting the noise level estimate η′ to account for monotonicity.
Subsection 3.5
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1. Take ηctrl := ∆Yctrl from the control experiment.

2. Determine imax as the last i before the plateau σi ≈ 0.

3. Define

z :=|| [uimax+1 •∆Y , ...,uM−1 •∆Y ]
T ||,

zctrl :=|| [uimax+1 • ηctrl, ...,uM−1 • ηctrl]T ||.

Set

η′ :=
z

zctrl
ηctrl (spectral similarity assumption).

4. Set δ := ||η′||, solve Eq. (22) for λ, and obtain qλ from Eq. (20).

5. Compute χ(t) from Eq. (12).

This is the final result except a monotonicity should be accounted for. In that
case the algorithm proceeds as follows:

6. Check if the resulting χ(t) decays monotonically to zero. If so, we are
done. Else, enhance the low-frequency noise level by setting

ηnew := c

imax∑

i=0

ui • η′ui +
M−1∑

i=imax+1

ui • η′ui,

where c is some value larger than 1. Then set η′ := ηnew and repeat
calculations starting from step 4.

Figure 1. Final RFI algorithm (see text for details).

4 Applicability in the presence of noise and nonlinearities415

In application to real data the presence of noise and nonlinearities may complicate the recovery of linear response functions.

Therefore, by using artificial data generated from a toy model, in the present section we analyze the robustness of the RFI

method in the presence of such complications. Robustness for real data is studied in Part II.

4.1 Toy model and artificial experiments

As toy model we take420

d

dt
x(t) =Mx(t) + f(t)a+n(t). (30)

Here the matrix M ∈ RD×D describes the relaxation of the unperturbed model. The second right-hand side term represents

the deterministic forcing constructed from the time-dependent forcing strength f : R→ R and the coupling vector a ∈ RD.
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Additionally, the system is perturbed by the stochastic forcing n : R→ RD, which for simplicity is assumed to be white noise.

To make the relation to the carbon cycle considered in Part II, the components of x may be understood as the carbon stored in425

plant tissues and soils at the different locations worldwide, so that the observable Y (t) :=
∑
ixi(t) is the analogue of globally

stored land carbon. The solution of the system is

x(t) =

t∫

0

eM(t−s)af(s)ds+

t∫

0

eM(t−s)n(s)ds. (31)

We assume from the outset M to be diagonal with eigenvalues −1/τ∗i , the τ∗i being the relaxation time scales. Then

Y (t) =

t∫

0

χ∗(t− s)f(s)ds+ η∗(t) (32)430

with the linear response function χ∗(t) and the noise term η∗(t) given by

χ∗(t) =

D−1∑

i=0

aie
−t/τ∗i , (33)

η∗(t) =

D−1∑

i=0

t∫

0

e−(t−s)/τ∗i ni(s)ds. (34)

To complete the description of the toy model one has to specify its parameters. For the dimension D we take 70 and the

time scales are assumed to be distributed logarithmically between τ∗min = 0.01 and τ∗max = 1000, i.e. τ∗i = 0.01× 10i∆logτ435

with ∆logτ = (log10 103− log10 10−2)/70. With carbon cycle applications in mind, the distribution of the components of the

coupling vector is adapted from the log-normal rate distribution found by Forney and Rothman (2012) for the decomposition

of soils:

ai =
1

τ∗i σ
√

2π
exp

(
− (lnτ∗i −µ)2

2σ2

)
, (35)

with µ and σ chosen so that the peak time scale is around τ = 5 and the limits of the log-normal distribution are approx-440

imately within τ = 0.1 and τ = 200 (see “true” spectrum in Fig. 3). The components of n are are taken as uncorrelated,

i.e. 〈ni(0)nj(t)〉= ξδijδ(t), with standard deviation ξ being chosen differently in different experiments.

In our experiments we explore how Y (t) behaves as a function of the forcing f(t). To this end, we choose a forcing function

f(t) (see Table 2 and Fig. 2). The most obvious way to perform the toy model experiments would be to integrate Eq. (30). But

to have a better control over the noise it is for our purpose more appropriate to use the analytical solution (32)–(34). Hence,445

we numerically integrate Eq. (32), using the representation (33) and (34). The data from these experiments are then used to

investigate the performance of the RFI algorithm to recover χ∗(t). Since all ai values are non-negative, the response function

(33) is monotonic, so that we apply the extended version of the algorithm (see Fig. 1 including step 6). In all experiments we

generate N = 140 data points, to have a time series of similar length as in the climate change simulations analyzed in Part II

(140 years, one value for each year). To apply the RFI method also the noise from an associated control experiment is needed.450

This is obtained from Eq. (34) by using another realization ni(t) of white noise for each system dimension i.
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Table 2. Experiments considered in this study. Forcings are shown in Fig. 2. To standardize the type of experiments considered here and in

Part II, we select forcing functions that mimic those employed in climate change simulation experiments to whose data the RFI method is

applied in Part II. Note that in principle any type of forcing could be employed.

Type Forcing Description

Percent

0.5%

Forcing is increased from a starting value at the specified

percent rate per time step.

0.75%

1%

1.5%

2%

Step
1.1 × f0 Forcing is abruptly increased from a starting value by the

specified factor.2 × f0

Control zero Forcing is held fixed at zero.

Figure 2. Forcings for the experiments considered in this study. To standardize the type of experiments considered here and in Part II, we

select forcing functions that mimic those employed in climate change simulation experiments to whose data the RFI method is applied in

Part II. Note that in principle any type of forcing could be employed.

4.2 Choice of parameters for the RFI method

To apply the RFI method, we choose M = 30 time scales for the recovery of χ∗. Using τmin = 0.1 and τmax = 105 we

distribute the spectrum of time scales according to Eq. (10). These parameters are also used for the application on the carbon455

cycle in Part II and for the comparison with previous methods in section 5.
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4.3 Ideal conditions

To gain trust in the numerics of our implementation of the RFI method we present in this section a technical test considering

conditions under which it is known that the linear response function should be quite perfectly recoverable. Such ideal conditions

are characterized by perfect linearity and absence of noise. Hence we use the presented toy model (which is anyway linear) in460

the absence of noise (n= 0) for this test. Actually, this will not be a full test of the algorithm, but only of the implementation

of its basic apparatus (sections 3.2 and 3.3.1) culminating in Eq. (20) since in the absence of noise the method to determine the

regularization parameter λ (sections 3.3.2 and 3.5) is not applicable. One might think that in the absence of noise one could

use Eq. (19) to determine the linear response function, but even under such ideal conditions the ill-posedness of the problem

calls for regularization to suppress the numerical noise that prevents from obtaining a sensible solution from Eq. (19) (see465

discussion in the paragraph after Eq. (19)). But choosing the small value of λ= 10−8 for the regularization parameter when

evaluating Eq. (20) is sufficient for this technical test.

Figure 3(c) shows the response of the noiseless toy model to the forcings shown in Fig. 2, i.e. we performed the experiments

listed in Table 2, although for the present test the control experiment is not needed.

Applying Eq. (20) to the experiment data gives the spectrum qλ shown in Fig. 3(a). Here, we derived the spectrum qλ for470

each experiment separately, although in the figure only single dots are seen, because all results coincide so closely and are

almost indistinguishable from the “true” solution q∗ as was expected for this ideal case. The next Fig. 3(b) shows the response

function obtained from the spectra qλ using Eq. (12). Obviously from Fig. 3(a) the “true” response function is reconstructed

perfectly from whatever experiment used. As a final test we predict using in Eq. (1) the response function obtained from the 1%

experiment the responses of other experiments. And indeed, these predicted responses are indistinguishable from the responses475

obtained directly from the experiments (see Fig. 3(c)). This latter result demonstrates perfect robustness of the numerical

approach to recover the responses in this ideal case.

4.4 First complication: noise

The presence of noise may severely hinder the detailed recovery of χ∗(t) due to the ill-posed nature of the problem. In order

to demonstrate the effect of the addition of noise on the quality of the derived χ(t), we define a relative error for the prediction480

of the responses from different experiments. Consider a particular experiment – which is in our case the 1% experiment –

from which we have obtained by the RFI method the response function, which we call here χ0(t). The relative error for the

prediction of the response from an experiment “k” by the recovered χ0(t) via the convolution (1) is

ε0
k :=

||∆Y k −χ0 ?fk||
||∆Y k|| , (36)

where ? stands for the discrete form of the convolution operation (1) used to predict the responses, i.e. ∆t
∑
i
χ0
j−i f

k
i . In the485

following we denote ε0
k the prediction error for the experiment “k”. To measure the quality of the prediction across multiple
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(a) Spectrum of time scales (b) Response function

(c) Prediction from 1%

Figure 3. Demonstration of robust recovery for noise-free data from the toy model: (a) recovered qλ; (b) recovered χ(t); and (c) original

responses and predictions using χ(t) derived from the 1% experiment. Reconstructed values are almost indistinguishable from original

data. For plotting the “true” spectrum of the toy model in subfigure (a) we used the relation q∗ = a/∆log10 τ , which can be obtained by

comparing Eq. (33) with Eq. (12). Since from the discrete spectrum the response function and the response may be obtained for any time

t, the spectrum is plotted as dots while the response function and response are plotted as continuous lines. The regularization parameter is

chosen as λ= 10−8.

experiments we define also the mean prediction error

ε0 :=
1

K

K∑

k=1

ε0
k, (37)

19



Figure 4. Mean prediction error (37) of the recovery when derivingχ(t) for different values of the SNR. As the SNR increases, the recovery

of χ(t) improves. To illustrate the most general case where χ(t) is not known to be monotonic we do not apply the monotonicity check

(step 6 of Fig. 1).

where K is the number of predicted responses. The reader may wonder why we quantify the quality of the recovery only

indirectly from the responses found in different experiments and not directly from the recovery of χ(t). The reason is that in490

real applications the “true” χ(t) is not known but the responses are. The reliability of this indirect measure for the quality of

the recovery is discussed in section 5.

To study how the quality of the recovery depends on the noise level we introduce the signal-to-noise ratio (SNR) of the

response data from a perturbation experiment as

SNR :=
||∆Y ||
δ

, (38)495

where δ is the final noise level estimate obtained by the RFI method, as described in section 3.3.2 (see Eq. (29)).

To demonstrate the dependence of the mean prediction error (37) on the SNR, we performed 1% experiments using different

noise levels. The resulting dependence is shown in Fig. 4. As expected, for a small error a sufficiently large SNR is needed,

i.e. a good recovery may be hindered by a too large noise level.

In Fig. 5 we demonstrate how the overall noise level adjustment in step 3 of the RFI algorithm (see Fig. 1) affects regular-500

ization to recover the correct response function. To guarantee that the overall level of the noise spectrum is indeed substantially

different in the control and perturbed experiment (so that the adjustment is really needed), we take for the noise in the control

experiment a standard deviation ten times smaller than that for the noise in the perturbed experiment. To demonstrate how the

adjustment works it is helpful to consider the so-called “Picard plot”. This type of plot was originally introduced to analyze the

spectral characteristics of an ill-posed problem (see e.g. Hansen, 1992). In Fig. 5(a) we show the Picard plot for data obtained505

from a 1% experiment with the toy model using a SNR ≈ 520 to assure a good recovery. The singular values σi decrease to

extremely small values as the index i increases. This demonstrates that indeed the problem to solve for the response function is
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ill-posed and therefore regularization is needed for its solution (compare Eq. (19) with Eq. (20)). The data labelled by |ui •η|
are the “true” noise coefficients, obtained by subtracting the “clean” response Aq, known analytically from the toy model

description, from the noisy toy model response ∆Y . Comparing them to the projection coefficients of the response |ui •∆Y |510

one sees that with exception of the first few coefficients the response is dominated by its noise content. Accordingly, only the

information contained in these first few coefficients is recoverable from this ill-posed problem whatever method is used. The

data labelled by |ui •ηest| have been added to the Picard plot to demonstrate how the RFI algorithm operates: These data

are the projection coefficients of the estimated noise content in the data, where ηest is the final value of η′ obtained by the

RFI method. Obviously, the RFI algorithm correctly estimates the “true” noise level not only at high frequencies – where it515

is correct by the noise level adjustment in step 3 of the RFI algorithm (see Fig. 1) – but also at low frequencies, where it is

predicted from the adjusted low-frequency components of the control experiment (also step 3). Acordingly, in this case the

spectral similarity assumption holds and there is no need to further adjust the noise level (step 6).

How the estimation of the noise in the data and the resulting regularization affects the projection coefficients of the spectrum

q can be seen in Fig. 5(b): Only those few coefficients not dominated by noise contribute to the regularized solution. In this520

case these few coefficients selected by determinining the regularization parameter λ from the noise level are sufficient for an

almost perfect recovery of the response function, as seen in Fig. 5(c).

It is important to note that in the situation of Fig. 5 where the overall noise level differs considerably in the control and in

the perturbed experiment, a naive noise estimate taken from the control experiment without the adjustment in step 3 (as first

suggested in section 3.3.2) would severely underestimate the noise actually in the data. This would in turn lead to an underes-525

timation of the regularization parameter (see Groetsch, 1984, Theorem 3.3.1). As a result, the wrong filtering by regularization

would leave projection coefficients dominated by noise in the solution, likely leading to large errors in the recovered response

function. This example therefore demonstrates the relevance of the noise adjustment in step 3.

Finally in this section, we demonstrate that by accounting for monotonicity of the linear response function one may obtain

a better estimate of the low-frequency components of the noise whereby the recovery of the response function is improved. In530

Fig. 6 we plot results from toy model experiments where the spectral similarity assumption does not hold. This was achieved

by artificially enhancing the low-frequency components of the noise η∗(t) in Eq. (32). The top row plots show the results from

the recovery when the additional noise level adjustment was not used. Because the spectral similarity assumption does not hold,

the estimated low-frequency components of the noise |ui•ηest| do not match those of the “true” noise |ui•η| (subfigure (a1)).

Ideally, only those four projection coefficients of the data |ui •∆Y | which are larger than the projection coefficients of the535

“true” noise |ui•η| should contribute to the recovered response function. Instead, as seen in subfigure (b1), the coefficients with

index between i= 4 and i= 7 give the dominant contributions because they are larger than the estimated noise coefficients

|ui •ηest| (compare subfigure (a1)). Therefore, the recovery of the response function is poor (subfigure (c1)). But since in

this case the low-frequency components of noise are such that the recovered response function is non-monotonic although the

“true” response function is known to be monotonic, one may further adjust the noise level to improve the results.540

This further adjustment is the purpose of step 6 of the RFI algorithm (see Fig. 1). Its effect is demonstrated by the second-row

plots of Fig. 6: The estimated noise components match now better the “true” noise components that had been underestimated in
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(a) Picard plot (b) Coefficients of solution (20)

(c) Response function

Figure 5. Demonstration of the operation of the RFI algorithm in the presence of noise using toy model data from a 1% and a control

experiment. To demonstrate the relevance of the noise level adjustment (step 3 from Fig. 1), the standard deviation of the noise in the control

experiment was taken ten times smaller than that for the noise in the perturbed experiment. (a) Picard plot showing the singular values σi

and the projection coefficients of the data |ui •∆Y |, the “true” noise |ui •η|, and the final noise estimate |ui •ηest|; (b) coefficients of

regularized solution (20); (c) “true” and recovered linear response functions. Since the RFI algorithm correctly adjusted the noise level to

the “true” noise in the data, the resulting regularized solution has contributions only from the first few projection coefficients which are not

completely obscured by noise. Overall, the recovery is almost perfect, because the SNR (chosen as about 520) is still sufficiently good and

because the noise was chosen to conform with the spectral similarity assumption. The regularization parameter determined by the algorithm

is λ≈ 30364. Because the noise level adjustment (step 3 from Fig. 1) already gave a good estimate to the “true” noise in the data, no

monotonicity check was needed (step 6 from Fig. 1).

the first row (compare subfigures (a2) and (a1)) so that only those four components that carry information (compare in subfigure
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(a2) the projections |ui •∆Y | for low index i with |ui •η|) survive the regularization (subfigure (b2)). As a result, the quality

of the recovery of the response function has considerably improved (subfigure (c2)).545

Picard plot
(a1)

Coefficients of solution (20)
(b1)

Response function
(c1)

(a2) (b2) (c2)

Figure 6. Demonstration of the additional noise level adjustment in the presence of a monotonicity constraint using toy model data from

a 1% and a control experiment: (a) Picard plot; (b) coefficients of regularized solution (20) and (c) recovered linear response function. All

figures are based on the same toy model experiments using a SNR = 1189. To demonstrate the effect of the noise level adjustment the

spectral similarity assumption is broken by artificially increasing the low-frequency components of the noise in the experiments. The plots

in the first row show the results from the RFI algorithm in the absence of additional noise level adjustment (step 6 in Fig. 1). Although the

“true” response function of the toy model is monotonic, the response function recovered by the RFI algorithm is non-monotonic (last figure

in the first row). But if the noise adjustment is switched on (second row), the response function is correctly recovered as monotonic (last

figure in the second row). Arrows in subfigures (b) indicate the index icritical that separates components of the solution that are only weakly

suppressed (i < icritical) from those that are almost completely suppressed (i≥ icritical). The regularization parameter determined by the

algorithm is λ≈ 1 for the first row and λ≈ 11450 for the second. For more details see text.

4.5 Second complication: nonlinearity

The second difficulty in recovering the linear response function χ(t) from a perturbation experiment may arise from nonlin-

earities present in the considered system. Generally it must be suspected that nonlinearities are present so that they should

not hurt as long as they are small. And indeed, from the viewpoint of regularization, contributions from nonlinearities can be

considered as an additional noise so that in principle they can also be filtered out. But as with noise, when getting stronger550
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they cause a deterioration of the recovery of the response function. In the following, we show this more formally and discuss

in detail how the RFI algorithm behaves in the presence of nonlinearities.

To understand how contributions from nonlinearities affect the recovery of the response function we write the nonlinear

terms in Eq. (5) collectively as η̃(t). This formally gives

∆Y = Aq+η+ η̃ (39)555

instead of Eq. (13). Plugging this into Eq. (20) the spectrum is obtained as

qλ =

M−1∑

i=0

fi(λ)

(
ui •Aq

σi
vi +

ui • (η+ η̃)

σi
vi

)
. (40)

Accordingly, the nonlinear contributions can be understood as an additional noise in the spectrum qλ so that the theory of

regularization fully applies when replacing η by the combined noise η+ η̃. Hence, as in their absence, nonlinearities do not

prevent the application of regularization as long as the signal is not buried under this combined noise.560

But for the RFI algorithm to give good results a second condition is that the contributions from η̃ must not be large compared

to those from η. To understand this, one must realize that the response and with it the nonlinear contributions η̃ are dominated

by low-frequency components because of the low-frequency nature of the forcing for the problems of interest (for instance

in %-experiments). The RFI algorithm uses an estimate for the noise level in the perturbation experiment obtained from the

control experiment assuming that the spectral distribution is approximately the same in the noise from the control experiment565

and the noise in the data from the perturbation experiment (spectral similarity assumption; step 3 of Fig. 1). But the control

experiment does not contain any contributions from nonlinearities because the forcing is zero. Therefore, if in the data from the

perturbation experiment the contributions from nonlinearities η̃ are not small compared to those from η, the spectral similarity

assumption does not hold. Since this assumption is at the heart of the RFI algorithm, its breakdown leads to a poor recovery of

the linear response function.570

All this is demonstrated in the following by toy model experiments. For this purpose, we artificially consider the response

of the toy model not in Y but in its nonlinear transform

Ynonlin(t) := Y (t)− aY 2(t), (41)

where the parameter a determines the strength of the nonlinearity. Indeed, in such a way the nonlinearity does not result

from nonlinearity of the underlying dynamics (the toy model is linear), but from the way the response is looked at. But this575

distinction is artificial since in practice a response experiment is an indivisible unity of system and observation so that the origin

of the nonlinearity is irrelevant. The particular functional form chosen for Ynonlin(t) mimics the nonlinear effect of saturation

encountered for instance in the land carbon sink when atmospheric CO2 rises to high values. In the following, to demonstrate

the effect of nonlinearities, we set the noise level in the toy model experiments to a rather small value in order to have a good

SNR in the experiments considered.580

In Fig. 7 we show by plotting the mean prediction error (see Eq. (37)) how the recovery of the response function deteriorates

as the nonlinearity parameter a increases. To demonstrate that this is indeed caused by a breakdown of the spectral similarity
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Figure 7. Mean prediction error (37) of the recovery when deriving χ(t) for different values of the nonlinearity factor a of the toy model.

As a increases, the recovery of χ(t) deteriorates because the level of the contributions from nonlinearities ||η̃|| gets large compared to the

noise level ||η||; how these terms are computed for the toy model is explained in Appendix D. To demonstrate here the pure effect from

the breakdown of the spectral similarity assumption, the RFI algorithm is used here without the additional noise level adjustment enforcing

monotonicity.

assumption we plot in addition the ratio ||η̃||/||η||. It is seen that indeed, as claimed above, the recovery works well only when

this ratio is not large, i.e. when the contributions from nonlinearities η̃ are not large compared to those from the noise η.

More insight into how nonlinearities affect the recovery is obtained from the more detailed SVD analysis shown in Fig. 8.585

The first row of subfigures was obtained from the toy model assuming a rather small nonlinearity (a= 10−10). In the Picard

plot (subfigure (a1)) it is seen that in this case both conditions necessary for a good recovery are met: First, the signal |ui•∆Y |
is well visible above the combined noise |ui • (η+ η̃)| (see the first four components). Second, in this case |ui • η̃|/|ui •η|
is small over the whole spectrum, i.e. the contributions from η̃ are small compared to those from η. As explained above,

because this second condition is also met, the noise estimate from the RFI algorithm ηest is a good approximation to the590

combined noise across all frequencies (compare in the Picard plot |ui•(η+η̃)| to |ui•ηest|). As a result, the four components

selected by the regularization for the recovered solution (subfigure (b1)) are precisely those dominated by the signal (compare

fi(λ)|ui•∆Y |/σi with fi(λ)|ui•(η+η̃)|/σi). This example demonstrates that as long as these two conditions are met, small

contributions from nonlinearities do not prevent a good recovery of the response function (see subfigure (c1)).

In the second row of Fig. 8, we demonstrate how the violation of the second condition obstructs the recovery. In this case595

the nonlinearity parameter has been given a larger value (a= 2.5× 10−5). As a consequence, one sees in the Picard plot that

the low-frequency components of the combined noise are enhanced. The first condition is still met: The signal |ui •∆Y | is

visible above the combined noise |ui • (η+ η̃)| (see the first two components). But now the ratio |ui • η̃|/|ui •η| gets large

at low frequencies, violating the second condition. As explained, the violation of the second condition leads to the breakdown

of the spectral similarity assumption. As a result, the RFI algorithm underestimates the combined noise at low frequencies600
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(compare in the Picard plot |ui•(η+ η̃)| to |ui•ηest|). Using this wrong noise estimate, regularization selects components for

the recovered solution that are to a large extent dominated by the combined noise (see components i= 2 to i= 6 in subfigure

(b2)). The result is that the strong low-frequency contributions from nonlinearities deteriorate the recovery of the response

function at long time scales (subfigure (c2)).

In the third row, we demonstrate for this type of nonlinearity that by accounting for monotonicity one can remove from the605

recovered solution all components dominated by noise. For this purpose, we set the nonlinearity parameter to the same value as

for the second row (a= 2.5× 10−5) but employ the additional noise level adjustment (step 6 of Fig. 1), i.e. the low-frequency

range of the noise estimate is now automatically adjusted in order to recover a response function that decays monotonically to

zero. As seen in the Picard plot, the additional noise level adjustment results in an artificial enhancement of the low-frequency

components of the noise estimate, with a large jump separating the low- from the high-frequency range. In this case, such610

enhancement is able to better estimate the largest components of the combined noise (first few components in the Picard plot).

As a consequence, regularization correctly selects for the recovered solution only the two first components which are not

dominated by noise (subfigure (b3)). Unfortunately, as seen in subfigure (c3), these two first components do not contain enough

information for a perfect recovery, since the quality improves at long time scales, but deteriorates at short time scales (compare

subfigures (c3) and (c2)). This is a consequence of how regularization works: It filters out components dominated by noise (or615

in this case, nonlinearity) at the expense of removing also useful information contained in those components.

Also interesting to note from this SVD analysis is that although in general the presence of nonlinearities cannot be detected

from only the two experiments needed for our RFI method, it can be detected in cases where the response function is known

to be monotonic but the nonlinearity is such that the recovered response function is non-monotonic. This is shown in the

last example above, where strong nonlinearities result in a large jump between the low- and high-frequency components of620

the noise estimate. Such jump arises because strong nonlinearities cause the response function to be non-monotonic, and this

enforces the additional adjustment of the noise estimate by the RFI algorithm. This effect is obviously a result of the particular

type of nonlinearity considered for that example. Nevertheless, such jump may be a relevant indication of strong nonlinearities

in applications to the land carbon cycle because this type of nonlinearitiy mimics precisely the saturation behaviour observed

in the land carbon sink under high values of atmospheric CO2.625

5 Comparison with previous methods

As a last test of the quality of the results given by the RFI method in application to the toy model, in this section we compare

our method against two existent methods in the literature to identify response functions in the time domain. The comparison

is performed for the particular case where the response function is known to be monotonic and also for the more general case

where it is not. As a side issue this section reveals also some insight into the relation between the quality of the recovery of630

χ(t) as measured by the prediction of responses, and the quality of the recovery of χ(t) itself.

In climate science, the most commonly used method is to obtain χ(t) from an impulse response, i.e. the response to a

perturbation of Dirac delta-type (e.g., Siegenthaler and Oeschger, 1978; Maier-Reimer and Hasselmann, 1987; Joos and Bruno,
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Picard plot
(a1)

Coefficients of solution (20)
(b1)

Response function
(c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Figure 8. Demonstration of how nonlinearities affect the recovery of the response function: (a) Picard plot; (b) coefficients of regularized

solution (20) and (c) recovered linear response function. First row: Nonlinearity factor a= 10−10 (no monotonicity check); Second row:

Nonlinearity factor a= 2.5×10−4 (no monotonicity check); Third row: Nonlinearity factor a= 2.5×10−4 (with monotonicity check). The

noise is overestimated in the low-frequency spectrum in the third row because nonlinearities yield a derived χ(t) that does not obey the

monotonicity constraint. As a consequence, the method increases the level of low-frequency components until the monotonicity constraint

is obeyed. The failure to obey the monotonicity constraint and consequent large overestimation of noise in this case can be taken as an

indication of the presence of nonlinearities in the response. Note that the “true” linear response function in this nonlinear case a 6= 0 is

obtained analytically from the linear case a= 0 via Eq. (41) (see Appendix D). The regularization parameter determined by the algorithm is

λ≈ 3120 for the first row, λ≈ 74 for the second, and λ≈ 14611873 for the third. For more details see text.
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1996; Joos et al., 1996; Thompson and Randerson, 1999; Joos et al., 2013). We call it here pulse method. Although this method

is conceptually straightforward, in some cases it might not yield satisfactory results. Since the perturbation is only one “pulse”,635

depending on the observable of interest it may give a response with small SNR. As a consequence, the recovered response

function may be severely affected by noise. On the other hand, if the strength of the pulse is made large to obtain a good SNR,

the linear regime may be exceeded. In this case, the impulse response does not correspond anymore to the linear response

function.

The second method consists of deriving the linear response function from a step response, i.e. the response to a Heaviside-640

type perturbation (e.g., Hasselmann et al., 1993; Ragone et al., 2016; MacMartin and Kravitz, 2016; Lucarini et al., 2017;

Van Zalinge et al., 2017; Aengenheyster et al., 2018). We call it here step method. Due to the special form of this “step”

perturbation, the linear response function can in principle be derived from

χ(t) =
1

fstep

d

dt
∆Ystep(t), (42)

where fstep is the step perturbation and ∆Ystep is the corresponding response. Unfortunately, such derivation involves numer-645

ical differentiation, which is known to be an ill-posed problem (Anderssen and Bloomfield, 1974; Engl et al., 1996). Because

the problem is ill-posed, noise is amplified, potentially resulting in large errors in the derived linear response function.

These two methods therefore share two limitations: First, they require a special perturbation experiment; second, because of

noise in the data they might yield a response function with large errors. In principle, the second limitation may be overcome

by using instead of a single response the ensemble average over multiple responses. But this comes at the expense of the650

numerical burden of performing multiple experiments, which is especially large when dealing with complex models such as

state-of-the-art Earth System Models.

The main advantages of the RFI method lie precisely in overcoming these two limitations: It recovers the response function

from any type of perturbation experiment and automatically filters out the noise by regularization.

For the results of this section, we performed ensembles of 200 simulation experiments with the toy model (see section 4.1).655

Each ensemble member is defined by a realization of the noise η∗(t) with a fixed standard deviation (see Eq. (34)). Each

realization was added via Eq. (32) to three experiments: 1%, step (2×f0), and pulse (4×f0). Note that because of the issue

with the SNR mentioned above, we had to employ for the pulse experiment twice the forcing strength employed for the step

experiment. Further, for each ensemble member an additional realization of the noise was generated to serve as a control

experiment to compute the noise estimate for the RFI method (step 1 of Fig. 1).660

We computed the response function by the pulse and step method as follows. For a pulse experiment the forcing is f(t) =

aδ(t) with forcing strength a, so that the response is given by

∆Ypulse(t) =

t∫

0

χ(t− s)aδ(s)ds= aχ(t). (43)

Therefore, for the pulse method we took the response from the pulse experiment and obtained the response function by

χ(t) =
1

a
∆Ypulse(t). (44)665
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The recovery by the step method was calculated by taking the response from the step experiment and applying Eq. (42). The

derivative was computed by forward difference.

To obtain comparable results with these two methods, we recovered the response function by the RFI method from the

same pulse and step experiments. To compare the quality of the results using also an experiment not decidedly tailored for the

identification, we include additionally the recovery from the 1% experiment.670

To obtain a quantitative comparison for the quality of the recovery for each method, we define the recovery error

εr :=
||χ−χ∗||
||χ∗|| , (45)

where χ is the recovered response function and χ∗ is the “true” response function, which is known because we use the toy

model. In contrast to the prediction error, that measures the quality of the recovery of χ(t) by means of the response (see

Eq. (45)), the recovery error εr measures the quality of the recovery of χ(t) itself. Another reason for introducing the recovery675

error is to compare its results with results from the prediction error. By doing that, we can gain insight into how much the

prediction error can be trusted as an indirect measure of the quality of recovery in real applications, where the “true” response

function is not known.

First, we compare the pulse and step methods against the full RFI algorithm, i.e. the RFI algorithm taking monotonicity into

account (step 6 in Fig. 1). Results are shown in Fig. 9. In the first row of subfigures, we took for the recovery the ensemble680

average over the 200 responses for each experiment. For the RFI method, we took the ensemble average over the control

experiments as well to estimate the noise (step 1 of Fig. 1). As shown in subfigure (a1), with this approach all methods recover

the response function almost perfectly. The quality of the recovery is quantified by the recovery error in subfigure (b1). The

RFI method shows the smallest values for the step and pulse experiments when compared to the step and pulse methods.

Overall, the step method clearly shows the largest value. To quantify the quality of the prediction, we plot in subfigure (c1) the685

prediction error (36). As seen, values are even smaller than for the recovery error. Overall, we see a similar pattern: the step

method again stands out, with other methods showing much smaller error values.

In the second row, we compare results by taking only a single response for the recovery. Since the quality of the recovery

by the different methods may vary depending on the particular noise realization, we again performed 200 simulations to obtain

better statistics, but this time deriving the linear response function for each ensemble member separately. Subfigure (a2) shows690

an example of recovery for one of the ensemble members. As expected, the recoveries by the pulse and step methods largely

deviate from the true response function. For the pulse method, the large errors result from the low SNR of the pulse response:

Even taking twice the forcing strength of the step experiment, the SNR of the pulse response is of order 100 against order

101 for the step and 1% responses. For the step method, on the other hand, the large errors are not a result of low SNR, but

of the noise amplification associated with the ill-posedness of numerical differentiation. In contrast to the recovery by these695

two methods, because of regularization the recoveries by the RFI method are smoother and visually seem to better fit the true

response function. To quantitatively check these results, we plot in subfigure (b2) for each method the average and standard

deviation over the 200 values of the recovery error (one for each ensemble member). The figure shows that indeed the pulse

and step methods display the largest average recovery error, with the pulse method having a much larger spread. Such spread

29



Response function
(a1)

Recovery error (45)
(b1)

Prediction error (36)
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Figure 9. Quality of response function recovery by the full RFI method (including step 6 in Fig. 1) in comparison to the pulse and step

method. Subscripts at “RFI” indicate the experiment from which the response function was recovered with the RFI method. First row:

taking the average over the whole ensemble of toy model experiments for recovery; second row: Performing the recovery for each ensemble

member separately. (a1) Recovered response function; (b1) recovery error; (c1) prediction error (36); (a2) example of recovered response

function from one ensemble member; (b2) statistics of recovery error; (c2) statistics of prediction error (36). The prediction error is separately

computed for the 0.5% and 0.75% experiments. Taking the ensemble average, all methods perform well (see first row). But taking only one

ensemble member, the RFI algorithm gives better recovery and prediction errors than the pulse and step methods when comparing the same

responses (see second row).

is probably related to the low SNR in the response from the pulse experiment. The results from the 1% and pulse experiments700

by the RFI method are better, showing comparable error magnitudes. The smallest average recovery error is obtained from

the RFI method using the step experiment. In subfigure (c2) we show the average and standard deviation over the 200 values

of the prediction error (36). The smallest average prediction errors are obtained from the RFI method using the 1% and step

experiments. The largest errors are obtained for the pulse method and the RFI method using the pulse experiment. In contrast

to the situation for the recovery error, for the prediction error no substantial difference between the two is found. Note also705

that when comparing recoveries from the same response (i.e. comparing “Pulse” with “RFIpulse” and “Step” with “RFIstep”),

the RFI method gives better results than both the pulse and step methods. Another interesting point is that prediction errors

for the step method remain approximately unchanged by taking the ensemble mean and a single response (compare “Step” in

subfigures (c1) and (c2)). Overall, as in the first row, the prediction error shows for each individual method values smaller than
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the recovery error. But now there is a difference between the plots for the recovery and prediction error: Although the pulse710

and step methods show the largest averages with values of comparable size for the recovery error, for the prediction error the

pulse method has the largest average with a value much larger than the step method.

This difference can be better understood as follows (see MacMartin and Kravitz (2016) for more details including the

influence of the forcing scenario). Because Eq. (1) is ill-posed, the convolution operator acts on χ(t) as a “low-pass filter” (see

e.g. Bertero et al., 1995; Istratov and Vyvenko, 1999). This means that high frequencies in χ(t) are suppressed by convolution715

and show up damped in the response ∆Y (t). Hence, recoveries with large errors only at high frequencies tend to give relatively

small prediction errors. Because of the low SNR, the pulse method yields a recovery of χ(t) with large errors both at high and

low frequencies. Although the errors at high frequencies are damped in the prediction, errors at low frequencies are not. Hence,

the large recovery error results in a large prediction error. On the other hand, because of the good SNR for the step response,

the step method gives a relatively good recovery of χ(t) at low frequencies, with large errors concentrated at high frequencies.720

As a result, the large recovery error results only in a small prediction error. This suppression of high-frequency errors might

also explain why the prediction error for the step method remains unchanged when recovering the response function from a

single response instead of the ensemble average. By comparing the recovery of χ(t) by the step method in Fig. 9(a1) and (a2),

one sees that the main difference is indeed at high frequencies (the recovery in Fig. 9(a2) is quite “noisy” but follows the long

term trend). This is because the noise amplification has a larger effect on the recovery from the single response due to its larger725

noise level. But since low frequencies are well recovered in both cases, the resulting prediction errors are almost the same.

Overall, the analysis of Fig. 9 suggests two main conclusions. First, as expected, the prediction error gives indeed an indi-

cation of the quality of the recovery, since good recoveries result in good predictions. But care should be taken when judging

the recovery only from the prediction error, because a good prediction does not necessarily imply a good recovery: Due to the

ill-posedness, Eq. (1) might damp large high-frequency recovery errors so that they do not show up in the prediction. Never-730

theless, from a good prediction error one can still infer a good recovery at low frequencies, because at these frequencies large

recovery errors result in large prediction errors. Since regularization filtering leaves only low-frequency terms in the recovery,

the RFI method shows in Fig. 9 small prediction errors associated to small recovery errors.

Second, by taking only a single response – and not the ensemble average – the full RFI algorithm gives on average smaller

recovery and prediction errors than the pulse and step methods when comparing results obtained from the same experiment.735

But the results above cover only the case where the full RFI algorithm is employed. In the following, we analyze also the

case where monotonicity is not taken into account. For this purpose, we repeated in all detail the exercise that led to Fig. 9

but did not apply the additional noise level adjustment to enforce monotonicity of the response function. Figure 10(a) shows

the results for the recovery error. Once more, the RFI method gives smaller values than the step and pulse methods when

comparing the recovery from the same responses. In addition, now the recovery for the RFI method using the step experiment740

even improved in comparison to Fig. 9(b2). The reason may be related to the numerical check for monotonicity: Depending

on the tolerance value that is used to judge whether the recovered response function is monotonic, the additional adjustment

might actually overestimate the noise level, leading to slightly worse results.
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Yet, the improvement brought by the additional noise level adjustment is clear when looking at the recovery error for the

1% experiment. Compared to Fig. 9(b2), the average error increases substantially, and the spread is much larger (see inset for745

the whole value). As explained in section 4.4, this deterioration results from cases where the noise in the response is such that

the spectral similarity assumption does not hold. Since here the noise estimate resulting from this assumption is not further

improved by the monotonicity check, the result is a poor recovery (see subfigure (b) for an example). But because the large

errors are mostly at high frequencies, even poor recoveries are still sufficiently good for predictions, as shown by the small

mean prediction error in subfigure (c) (see “RFI1%”). Therefore, in contrast to the case where monotonicity is taken into750

account, here some small prediction errors are associated to large recovery errors.

Nevertheless, we find that although extreme, such poor recoveries are not frequent. In fact, extreme cases with recovery error

εr > 1 account for 6.5% of the recoveries. This suggests that the large deterioration in the mean and spread of the recovery

error in subfigure (a) is not a result of overall poor recoveries, but of only few extreme cases. To check this hypothesis, we

plot in subfigure (d) the mean and standard deviation excluding these cases from the calculations. Indeed the result is much755

better, showing values comparable to the case where monotonicity is taken into account (compare “RFI1%” in Fig. 10(d) and

Fig. 9(b2)). Overall, this result indicates that at least for models of this type – where in the perturbation experiment the spectral

distribution of noise does not change drastically compared to the control experiment – although monotonicity plays a role in

avoiding large recovery errors, statistically most recoveries are still relatively good even without this additional improvement.

6 Summary, discussion and outlook760

Existent methods to identify linear response functions from data require tailored perturbation experiments. Here, we developed

a method to identify linear response functions from data using only information from an arbitrary perturbation experiment and

a control experiment. The RFI method adresses the ill-posedness inherent to the identification problem by applying Tikhonov-

Phillips regularization. The regularization parameter is computed by the discrepancy method, which involves the estimation of

the noise level. For this purpose, we take advantage of information given by a spectral analysis of the perturbation experiment765

and by the control experiment. Assuming that the Picard condition holds, we estimate from the perturbation experiment the

high-frequency components of the noise. Then, assuming that the spectral distribution of noise is approximately the same

for the perturbed and control experiments (spectral similarity assumption), we estimate from the control experiment the low-

frequency components of the noise. The obtained noise level estimate can be further adjusted if the linear response function is

known to be monotonic. The robustness of the method in the presence of noise and nonlinearity was demonstrated in section 4.770

Additional sensitivity tests showing the robustness of the method under changes in the parameters for the recovery are shown

in Appendix E.

As discussed in section 5, the developed method to identify linear response functions is an alternative approach to existent

methods in the literature, which require special perturbation experiments and often give results with large errors caused by

noise. In contrast, the RFI method accounts in a systematic way for the noise and can be directly applied to data from any type775

of perturbation experiment once also a control experiment is given. Because it filters out the noise, its results show in the cases
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(a) Recovery error (b) Example of poor recovery

(c) Prediction error (36)
(d) Recovery error without

poor recoveries

Figure 10. Quality of response function recovery by our RFI method excluding step 6 in Fig. 1 in comparison to the pulse and step method.

Response function is recovered taking the individual response for each ensemble member. Subscripts at “RFI” indicate the experiment from

which the response function was recovered with the RFI method. (a) Statistics of the recovery error; (b) example of poor recovery with the

RFI algorithm; (c) statistics of the prediction error (36); (d) statistics of the recovery error excluding for the RFI1% the 6.5% of the recoveries

with recovery error greater than 1. Once again, the RFI method gives better recovery and prediction errors than the Pulse and Step methods

for the same responses. Without accounting for monotonicity the variability in the quality of the recoveries from the 1% experiment increases

substantially, but poor recoveries are obtained only in few cases.

analyzed here a higher quality compared to results from previous methods when applied to the same data from a toy model.

And because it can identify response functions from any type of perturbation experiment, the method is particularly suitable

for application to data from the C4MIP carbon cycle model intercomparison as shown in Part II of this study.

The main novelty of the method is the estimation of the noise level (steps 1–3 of Fig. 1), which is known to be critical for the780

application of regularization theory. When solving a problem by regularization, the most crucial step is the computation of the

regularization parameter. To compute this parameter in a way that the solution converges to the “true” solution for decreasing

noise, methods need to account for the noise level (Bakushinskii, 1984; Engl et al., 1996). But in practical applications the

noise level is rarely known. Therefore, methods to obtain good estimates are needed. Our new method to estimate the noise

level consists essentially of two steps: First, estimating the high-frequency components from data and then the low-frequency785

components from the control experiment. While the second step is completely novel, the main idea behind the first step was

already brought up in earlier studies (e.g., Hansen, 1990) and has recently been further developed by methods to compute the
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“Picard parameter” (Taroudaki and O’Leary, 2015; Levin and Meltzer, 2017), which is different from the imax that we use in

our method. The Picard parameter is computed as the index for which the components |ui •∆Y | start to level off. Typically,

from this index onwards the data can be interpreted as noise. For this reason, one might think that from the Picard parameter790

one can obtain all data components dominated by noise and thereby estimate the noise level. But this is not generally true: For

instance, if the noise has large low-frequency components such as in Fig. 8(a2), then the components |ui •∆Y | level off at

an index larger than that at which the data starts to be dominated by noise, so that in this case the Picard parameter does not

determine all data components dominated by noise. In our RFI method, the interest lies in obtaining not all data components

dominated by noise, but only enough components to obtain the overall level of the high-frequency noise. For this purpose, we795

define instead of the “Picard parameter” the more conservative index imax, above which the singular values are zero and by

the Picard condition also the “true” data components must be zero. In this way, we unambiguously identify data components

that contain only noise (see Eq. (24)). These components give the high-frequency noise level so that in the second step also the

remaining low-frequency noise components can be estimated from the control experiment (step 3 of Fig. 1).

Because our noise level estimation is not particularly related to the problem of identifying response functions, it can in800

principle be applied to solve also other types of linear ill-posed problems (see e.g. Engl et al., 1996). In general, all one needs

for the application is:

1. A problem of the type

y = Ax+η, (46)

where given the matrix A and the noisy data y one is interested in finding x.805

2. Data from a situation similar to the control experiment, where Ax= 0, so that the resulting yctrl gives the noise term

ηctrl = yctrl. (47)

3. The singular values of A decaying to values sufficiently close to zero to obtain imax.

Then, as long as both the Picard condition and the spectral similarity assumption hold, the method gives a reasonable noise

estimate – since then, by assumption, the noise estimate is simply a scaling of the noise in the control experiment (see section810

3.3.2) – by which the regularization parameter can be determined.

While the Picard condition is necessary for a solution to be recoverable from an ill-posed problem, the validity of the spectral

similarity assumption is less clear. An intuitive explanation for this assumption can be thought as follows. Since here the interest

lies in identifying linear response functions, the perturbation to the system must be sufficiently weak so that the response can

be considered linear. If the noise in the control experiment depends on the perturbation, a sufficiently weak perturbation will815

modify its characteristics only slightly. The RFI method accounts partially for this change by adjusting the overall level by

which the noise increases. Nevertheless, it assumes that since the characteristics of the noise change only slightly, then the

spectral components of the noise in the perturbed experiment can be thought as having the same relative contributions as those
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in the control experiment. When in addition the response function is known to be monotonic, the estimate of the noise can

be further improved (step 6 of Fig. 1), this time by adjusting the relative contribution of the spectral components: Since the820

high-frequency region is known from the spectral analysis of the response, then the components of the noise are adjusted in the

low-frequency region; this is done iteratively until the resulting response function gets monotonic. Such additional adjustment

has been demonstrated to give good results in the applications in the present study and subsequent Part II for the special case

where the response function can be considered monotonic.

Although it is assumed that χ(t) is given by the spectral form (8), this is not essential for our method. In principle, any825

functional form can be assumed for χ(t), or even none – in which case one would recover χ(t) pointwise. But compared

to the simpler pointwise recovery of χ(t), assuming Eq. (8) has some advantages. The most obvious is that in contrast to

the pointwise approach, with Eq. (8) both χ(t) and the spectrum can be recovered together. If χ(t) is recovered pointwise,

the spectrum has to be derived in a second step from χ(t), which is also an ill-posed problem (Istratov and Vyvenko, 1999).

Further, the description (8) restricts the function space for the recovered χ(t), forcing limt→∞χ(t) = 0 as is expected for830

most problems of interest, which greatly simplifies the problem compared to the case where χ(t) can assume any form. Our

ansatz (8) has also advantages in comparison with the typical multi-exponential ansatz (7) assumed in most previous studies

(see discussion in section 3.1). When assuming that χ(t) is given by a sum of few exponents, an important problem is how

to choose the number of exponents. The typical methods to choose this number rely on “quality-of-fit” criteria; but for ill-

posed problems these criteria can be unreliable because in these problems a good fit does not mean that the derived parameters835

are close to the “true” parameters (see e.g. the famous example from Lanczos, 1956, p. 272). In our approach, as long as

the distribution of time scales is appropriately prescribed and the data quality is sufficiently good, numerical results indicate

that the solution is approximately independent of the number of exponents (Appendix E). Moreover, compared to the multi-

exponential approach, our ansatz (8) has two additional advantages: The first is that it leads to the linear problem of finding

only the spectrum q(τ) – in contrast to the nonlinear problem of finding both the time scales τi and the weights gi from Eq. (7)840

–, which permits an analytical solution and thereby gives more transparency to the method. The second is that compared to

the assumption of only a few time scales, the ansatz of a continuous spectrum of time scales is typically more realistic for real

systems, which is e.g. the case for the carbon cycle study presented in Part II. One limitation is however that our ansatz (8)

restricts the solution to systems with exponentially relaxing responses and vanishing oscillatory contributions.

In the present paper the robustness of our method has been investigated only for artificial data taken from toy model ex-845

periments. In this analysis, we not only knew the “true” response function underlying the data but also had control over the

two complications that may hinder its recovery, namely the level of background noise and nonlinearities. Under these ideal

conditions, we could carefully examine the quality of the response functions identified by our RFI method. Nevertheless, such

conditions are hardly met in practice. Therefore, the applicability of our method must be investigated as well for real problems.

Such an investigation is presented in Part II of this study.850
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Appendix A: Basic equations in this study are Fredholm equations of the first kind

In this appendix we show that Eq. (1), Eq. (7), and Eq. (1) with χ(t) given by Eq. (7) are indeed special cases of the Fredholm

equation of the first kind, as claimed in sections 3.1 and 3.2. Since inverse problems in the form of this equation are well-known

to be ill-posed (e.g., Groetsch, 1984; Bertero, 1989; Hansen, 2010), this clarifies the inherent difficulties in identifying linear

response functions from perturbation experiment data.855

A Fredholm equation of the first kind is an equation of the type (Groetsch, 1984)

h(t) =

b∫

a

k(t,s)f(s)ds. (A1)

Clearly, by setting a := 0, k(t,s) := 0 ∀ s > t, and k(t,s) := k(t−s), one obtains the form of Eq. (1) – which can also be seen

as a Volterra equation of the first kind (Olshevsky, 1930; Polyanin and Manzhirov, 1998; Groetsch, 2007).

That Eq. (7) is a special case of Eq. (A1) can be seen (Istratov and Vyvenko, 1999) by noting that Eq. (7) can be written in860

integral form as

χ(t) =

∞∫

0

e−t/τg(τ)dτ (A2)

with

g(τ) =

M∑

i=1

gi δ(τ − τi). (A3)

Since Eq. (A2) is a particular case of Eq. (A1) and Eq. (7) is a particular case of Eq. (A2), Eq. (7) is also a particular case of865

Eq. (A1).

Now, entering Eq. (7), written in the form (A2)–(A3), into Eq. (1), one obtains an equation of the type

R(t) =

∞∫

0

k(t,τ)g(τ)dτ (A4)

with

k(t,τ) =

t∫

0

e−(t−s)/τf(s)ds, (A5)870

which is a special case of Eq. (A1). Thus, Eq. (1), Eq. (7), and Eq. (1) with χ(t) given by Eq. (7) can all be understood as

Fredholm equations of the first kind.

Appendix B: Derivation of Eqs. (11) and (12) on which our study is based

This appendix complements section 3.2 by deriving the set of Eqs. (11), (12) underlying the RFI algorithm. They are a dis-

cretization of the basic definition (6) of the linear response function we are interested in. The special form (11), (12) involves in875

36



particular the logarithmic transformation (9) and a discretization of the representation (8) for the response function by means of

a spectrum of time scales. Sinceχ(t) is assumed to be given by a spectrum of time scales according to Eq. (8), the discretization

must be performed both in the time and time scale domain.

We start by defining the nondimensional time scale

τ ′ :=
τ

τ0
, (B1)880

where τ0 is a reference time scale. Applying definition (B1) in Eq. (8) gives

χ(t) =

∞∫

0

g(τ0τ
′)e−t/τ0τ

′
τ0dτ

′. (B2)

Due to the wide range of time scales of the systems of interest such as climate and the carbon cycle (Part II of this study),

calculations are facilitated if the time scales are evenly distributed at a logarithmic scale. To do so, the following change of

variables is performed in Eq. (B2):885

τ ′ = 10z, (B3)

dτ ′ = 10z ln10 dz = τ ′ ln10 d log10 τ
′. (B4)

Thus, Eq. (B2) becomes

χ(t) =

∞∫

−∞

g(τ010log10 τ
′
)e−t/τ010log10 τ

′

τ0τ
′ ln10 d log10 τ

′, (B5)

or simply890

χ(t) =

∞∫

−∞

g(τ0τ
′)e−t/τ0τ

′
τ0τ
′ ln10 d log10 τ

′. (B6)

A convenient choice for the reference value is τ0 = 1 unit of time, so that by Eq. (B1) the time scale τ = τ ′ units of time. The

resulting equation can thus be written as

χ(t) =

∞∫

−∞

q(τ ′)e−t/τ
′
d log10 τ

′, (B7)

with895

q(τ ′) := τ ′ ln10 g(τ ′). (B8)

For convenience of notation we use simply τ instead of τ ′.

For the discretization the support of q(τ) is assumed to lie within [logτmin, logτmax]. Accordingly, Eq. (B7) reduces to

χ(t) =

logτmax∫

logτmin

q(τ)e−t/τd log10 τ. (B9)
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Taking a constant step ∆logτ such that logτmax = logτmin +M∆log10 τ , Eq. (B9) may be written as900

χ(t) =

M−1∑

j=0

logτmin+(j+1)∆log10 τ∫

logτmin+j∆log10 τ

q(τ)e−t/τd log10 τ. (B10)

Naming t= (k+ 1)∆t, Eq. (6) can be rewritten as

∆Y (t) =

k∑

i=0

(i+1)∆t∫

i∆t

χ(s)f(t− s)ds+ η(t). (B11)

Plugging Eq. (B10) into Eq. (B11) and rearranging the resulting equation gives

∆Y (t) =

M−1∑

j=0

log10 τmin+(j+1)∆log10 τ∫

log10 τmin+j∆log10 τ

K(t,τ)q(τ) d log10 τ + η(t), (B12)905

where

K(t,τ) =

k∑

i=0

(i+1)∆t∫

i∆t

e−s/τf(t− s)ds. (B13)

Assuming constant steps ∆log10 τ and ∆t one may apply a quadrature rule (Hansen, 2002) to both Eq. (B12) and Eq. (B13),

so that

∆Y (t) = ∆log10 τ

M−1∑

j=0

K(t,τj)q(τj) + ετ (t) + η(t), (B14)910

K(t,τ) = ∆t

k∑

i=0

e−si/τf(t− si) + εt(t,τ), (B15)

where ετ (t) and εt(t,τ) are the errors resulting from the discretization. Plugging Eq. (B15) into Eq. (B14) yields

∆Y (t)≈∆log10 τ ∆t

M−1∑

j=0

q̃(τj)

k∑

i=0

e−si/τjf(t− si) + η(t) = ψ(t) + η(t), (B16)

where q̃ is an approximation to q that accounts for the discretization errors. Now, if one requires that ψ(tk) + η(tk) = ∆Y (tk)

for particular times tk,915

∆Y (tk) = ∆log10 τ ∆t

M−1∑

j=0

q̃(τj)

k∑

i=0

e−si/τjf(tk − si) + η(tk), k = 0,1, ...,N − 1, (B17)

with the time steps chosen as follows

tk =k∆t, k = 0,1, ...,N − 1, (B18)

si =i∆t, i= 0,1, ...,k, (B19)
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and the time scales920

τj = τmin10j∆log10 τ , j = 0,1, ...,M − 1. (B20)

In order to simplify the notation, Eq. (B17) is written as

∆Yk = ∆t

k∑

i=0

χk−i fi + ηk, k = 0, ...,N − 1, (B21)

χk = ∆log10 τ

M−1∑

j=0

qje
−k∆t/τj , k = 0, ...,N − 1. (B22)

These are Eqs. (11) and (12) underlying our study.925

Appendix C: Spectrum q(τ ) positive or negative for all τ impliesχ(t) monotonic

This appendix is referred to on section 3.5 with the claim that a sufficient condition for χ(t) being monotonic is that all

components qi have the same sign. The proof is as follows.

Let χ(t) be defined by Eq. (9). Then,930

d

dt
χ(t) =−

∞∫

−∞

q(τ)
e−t/10log10 τ

10log10 τ
d log10 τ. (C1)

Since 10log10 τ ≥ 0, e
−t/10log10 τ

10log10 τ
≥ 0 ∀ t. Thus, if q(τ)≥ 0 ∀ τ , then d

dt
χ(t)≤ 0 ∀ t. Similarly, if q(τ)≤ 0 ∀ τ , then d

dt
χ(t)≥

0 ∀ t.

Appendix D: Response function and noise in the nonlinearized response for the toy model935

In this appendix it is shown how the linear response function and the noise terms are computed in section 4.5 when discussing

by means of the toy model the complications arising from nonlinearity. We demonstrate that the linear response function for

the nonlinear response (Eq. (41) with a 6= 0) of the toy model (section 4.1) can be analytically obtained from the linear case

a= 0. Additionally, the noise from the control experiment and the combined noise in the response are defined.

We first demonstrate how to obtain the linear response function. Plugging Eq. (32) into Eq. (41) gives940

Ynonlin(t) = [1− 2aη∗(t)]

t∫

0

χ∗(t− s)f(s)ds+ η∗(t)[1− aη∗(t)]− a




t∫

0

χ∗(t− s)f(s)ds




2

. (D1)

Taking the ensemble average of Eq. (D1) and noting that 〈η∗(t)〉= 0 gives

〈Ynonlin(t)〉=

t∫

0

χ∗(t− s)f(s)ds+O(f2). (D2)
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Therefore, χ∗(t) obtained for a > 0 from the nonlinearized response (41) is the same as for the case a= 0.

Now, by taking f = 0 in Eq. (D1) one obtains for this nonlinear case the noise from the control experiment:945

ηctrl(t) := η∗(t)[1− aη∗(t)]. (D3)

To define the combined noise η(t) + η̃(t), one must first define the nonlinear term η̃(t) from Eq. (39). For the nonlinearized

response from the toy model, this term is given by the nonlinear term in Eq. (D1), i.e.

η̃(t) :=−a




t∫

0

χ∗(t− s)f(s)ds




2

. (D4)

Then, the noise term consists of the remaining terms of the nonlinear response Ynonlin after subtracting the “clean” linear950

response and the nonlinear term η̃, i.e.

η(t) := Ynonlin(t)−
t∫

0

χ∗(t− s)f(s)ds− η̃(t) =−2aη∗(t)

t∫

0

χ∗(t− s)f(s)ds+ η∗(t)[1− aη∗(t)]. (D5)

Hence, the combined noise is given by

η(t) + η̃(t) :=−2aη∗(t)

t∫

0

χ∗(t− s)f(s)ds+ η∗(t)[1− aη∗(t)]− a




t∫

0

χ∗(t− s)f(s)ds




2

. (D6)

Appendix E: Sensitivity of the recovered response function and spectrum to the parametersM , logτmin and955

logτmax of the RFI algorithm

In this appendix, it is shown that as long as the extent and resolution of the discrete distribution of time scales approximates

the spectrum sufficiently densely, the derived spectrum qλ and the derived linear response function χ(t) are approximately

independent of the number of time-scales M and on the limits of the distribution logτmin and logτmax. To isolate the effect of

changes in M , logτmin and logτmax from the effect of noise, a relatively high SNR∼O(105) is taken. For the computations960

we took data from 1% experiments performed with the toy model described in section 4.1. No monotonicity needed to be

accounted for (step 6 of Fig. 1).

Figs. E1–E5 show the recovery taking the same limits used throughout the paper (logτmin =−1 and logτmax = 5) but

different number of time scales M . Figs. E6–E8 show the recovery keeping the number of time scales and the lower limit used

throughout the paper (M = 30 and logτmin =−1) but changing the upper limit logτmax. Figs. E9–E11 show the recovery965

keeping the number of time scales and the upper limit used throughout the paper (M = 30 and logτmax = 5) but changing

the lower limit logτmax. As expected, the results are approximately independent of the changes in the prescribed parameters.

The only substantial differences are found in the recovered spectra at time scales smaller than the time step ∆t= 1, thus time

scales over which anyway only little information is given by data. These small time scales are also problematic because of the

ill-posedness of the problem that suppresses high-frequency information from the solution (see Groetsch, 1984, section 1.1).970
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(a) Spectrum (b) Response function

Figure E1. Response functionχ(t) and spectrum qλ recovered from toy model data taking the RFI parametersM = 30, logτmin =−1 and

logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black

lines indicate their “true” values.

(a) Spectrum (b) Response function

Figure E2. Response functionχ(t) and spectrum qλ recovered from toy model data taking the RFI parametersM = 60, logτmin =−1 and

logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black

lines indicate their “true” values.
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(a) Spectrum (b) Response function

Figure E3. Response functionχ(t) and spectrum qλ recovered from toy model data taking the RFI parametersM = 90, logτmin =−1 and

logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black

lines indicate their “true” values.

(a) Spectrum (b) Response function

Figure E4. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 120, logτmin =−1

and logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while

black lines indicate their “true” values.
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(a) Spectrum (b) Response function

Figure E5. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 140, logτmin =−1

and logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while

black lines indicate their “true” values.

(a) Spectrum (b) Response function

Figure E6. Response functionχ(t) and spectrum qλ recovered from toy model data taking the RFI parametersM = 30, logτmin =−1 and

logτmax = 7. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black

lines indicate their “true” values.
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(a) Spectrum (b) Response function

Figure E7. Response functionχ(t) and spectrum qλ recovered from toy model data taking the RFI parametersM = 30, logτmin =−1 and

logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black

lines indicate their “true” values.

(a) Spectrum (b) Response function

Figure E8. Response functionχ(t) and spectrum qλ recovered from toy model data taking the RFI parametersM = 30, logτmin =−1 and

logτmax = 3. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black

lines indicate their “true” values.
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(a) Spectrum (b) Response function

Figure E9. Response functionχ(t) and spectrum qλ recovered from toy model data taking the RFI parametersM = 30, logτmin =−3 and

logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black

lines indicate their “true” values.

(a) Spectrum (b) Response function

Figure E10. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 30, logτmin =−5

and logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while

black lines indicate their “true” values.
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(a) Spectrum (b) Response function

Figure E11. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 30, logτmin =−7

and logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while

black lines indicate their “true” values.
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