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Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-
derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of
a coupled model to directly impact another component through inclusion of cross-domain terms in the background error co-
variance matrix. When different components have disparate dominant spatial scales, localization between model domains must
properly account for the multiple length scales at play. In this work we develop two new multivariate localization functions,
one of which is a multivariate extension of the fifth-order piecewise rational Gaspari-Cohn localization function; the within-
component localization functions are standard Gaspari-Cohn with different localization radii while the cross-localization func-
tion is newly constructed. The functions produce positive semidefinite localization matrices, which are suitable for use in
both Kalman Filters and variational data assimilation schemes. We compare the performance of our two new multivariate lo-
calization functions to two other multivariate localization functions and to the univariate and weakly coupled analogs of all
four functions in a simple experiment with the bivariate Lorenz 96 system. In our experiments the multivariate Gaspari-Cohn

function leads to better performance than any of the other multivariate localization functions.

1 Introduction

An essential part of any data assimilation (DA) method is the estimation of the background error covariance matrix PP. The
background error covariance statistics stored in PP provide a structure function that determines how observed quantities affect
the model state variables, which is of particular importance when the state space is not fully observed (Bannister, 2008).
A poorly designed PP matrix may lead to an analysis estimate, after the assimilation of observations, that is worse than the
prior state estimate (Morss and Emanuel, 2002). In ensemble DA schemes the PP matrix is estimated through an ensemble
average. Using an ensemble to estimate PP allows the estimates of the background error statistics to change with the model
state, which is desirable in many geophysical systems (Smith et al., 2017; Frolov et al., 2021). However, this estimate of PP
will always include noise due to sampling errors because the ensemble size is finite. In practice, ensemble size is limited
by computational resources and hence sampling errors can be substantial. The standard practice to mitigate the impact of
these errors is localization. A number of different localization methods exist in the DA literature (e.g Gaspari and Cohn,
1999; Houtekamer and Mitchell, 2001; Bishop and Hodyss, 2007; Anderson, 2012; Ménétrier et al., 2015). In this study

we concentrate on distance-based localization. Distanced-based localization uses physical distance as a proxy for correlation
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strength and sets correlations to zero when the distance between the variables in question is sufficiently large. Localization is
typically incorporated into the data assimilation in one of two ways - either through the PP matrix or through the observation
error covariance R (Greybush et al., 2011). We are focusing on Schur (or elementwise) product localization applied directly to
the PP matrix. The Schur product theorem (Horn and Johnson, 2012, Theorem 7.5.3) guarantees that if the localization matrix
is positive semidefinite, then the localized estimate of PP is also positive semidefinite. Positive semidefiniteness of estimates
of PP is essential for the convergence of variational schemes and interpretability of schemes like the Kalman Filter which are
intended at minimizing the statistical variance of the estimation error.

The localization functions presented in this work are suitable for use in coupled DA, where two or more interacting large-
scale model components are assimilated in one unified framework. Coupled DA is widely recognized as a burgeoning and vital
field of study. In Earth system modeling in particular, coupled DA shows improvements over single domain analyses (Sluka
et al., 2016; Penny et al., 2019). However, coupled DA systems face unique challenges as they involve simultaneous analysis
of multiple domains spanning different spatiotemporal scales. Cross-domain error correlations in particular are found to be
spatially inhomogeneous (Smith et al., 2017; Frolov et al., 2021). Schemes that include cross-domain error correlations in the
PP matrix are broadly classified as strongly coupled, which is distinguished from weakly coupled schemes where P does
not include any nonzero cross-domain error correlations. The inclusion of cross-domain correlations in P offers advantages,
particularly when one model domain is more densely observed than another (Smith et al., 2020). Strongly coupled DA requires
careful treatment of cross-domain correlations with special attention to the different correlation length scales of the different
model components. Previous studies, discussed below, show that appropriate localization schemes are vital to the success of
strongly coupled DA.

As in single domain DA, there is a broad suite of localization schemes proposed for use in strongly coupled DA. Lu et al.
(2015) artificially deflate cross-domain correlations with a tunable parameter. Yoshida and Kalnay (2018) use an offline method,
called correlation-cutoff, to determine which observations to assimilate into which model variables and the associated localiza-
tion weights. The distance-based multivariate localization functions developed in Roh et al. (2015) allow for different localiza-
tion functions for each component and are positive definite, but require a single localization scale across all components. Other
distance-based localization schemes allow for different localization length scales for each component, but are not necessarily
positive semidefinite (Frolov et al., 2016; Smith et al., 2018; Shen et al., 2018). Frolov et al. (2016) report that their proposed
localization matrix is experimentally positive semidefinite for some length scales. Smith et al. (2018) use a similar method and
find cases in which their localization matrix is not positive semidefinite.

In this work, we build on these methods and investigate distance-based, multivariate, positive semidefinite localization
functions and their use in strongly coupled DA schemes. We introduce a new multivariate extension of the popular fifth-order
piecewise rational localization function of Gaspari and Cohn (1999) (hereafter GC). This function is positive semidefinite for all
length scales and hence appropriate for Ensemble-Variational (EnVar) schemes. We compare this to another newly developed
multivariate localization function that extends Bolin and Wallin (2016), and to two other functions from the literature (Daley
etal., 2015). We investigate the behavior of these functions in a simple bivariate model proposed by Lorenz (1996). In particular,

we look at the impact of variable localization on the cross-domain localization function. We show that these functions are
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compatible with variable localization schemes of Lu et al. (2015); Yoshida and Kalnay (2018). We find that, in some setups,
artificially decreasing the magnitude of the cross-domain correlation hinders the assimilation of observations, while in other
setups the best performance come when there are no cross-domain updates. We compare all of the multivariate functions to
their univariate and weakly coupled analogs and observe that the new multivariate extension of GC outperforms all multivariate
competitors.

This paper is organized as follows. In Sect. 2 we present two new multivariate localization functions and two multivariate
localization functions from the literature. In Sect. 3 we describe experiments with the bivariate Lorenz 96 model. We conclude

in section 4.

2 Multivariate localization functions
2.1 Multivariate localization background

Consider the background error covariance matrix PP of a strongly coupled DA scheme with interacting model components X
and Y. The PP matrix may be written in terms of within-component background error covariances for components X and YV’
(P%x and P%+,) and cross-domain covariances between X and Y (P%~, and P%x). Strongly coupled DA is characterized

by the inclusion of nonzero cross-domain covariances in P&+, and P% . Here P%+, controls the effect of system X on Y and

vice versa for PLy . Strongly-coupled DA is characterized by-the inclusion of non Since P"

is symmetric, P% ané-is necessarily equal to the transpose of P%«, i.e. Py = (P% ) . Similar to PP, the localization
matrix L may be decomposed into a 2 x 2 block matrix so that the localized estimate of the background covariance matrix is

given by

Lxx Lxv| |Pxx Pxy

LoPP = (1)

Lyx Lyy| |PYx Py
where o denotes a Schur product. In distance-based localization, the elements in the L matrix are evaluated through a localiza-
tion function £ with a specified localization radius R, beyond which L is zero. For example, if Pbij is the sample covariance
Cov(n;,n;) where 1; = 1)(s;) denotes the background error in process X at spatial location s; € R™, then the associated local-
ization weight is L;; = £(d,;), where d;; = ||s; — s;]|. Furthermore, if d > R then £(d) = 0.
Often different model components will have different optimal localization radii and hence one may wish to use a different

localization function for each model component (Ying et al., 2018). That is, we may wish to use a different localization function

to form each submatrix of L in (1). Since we seek a symmetric L matrix, it suffices to construct L L and Lxv. The

remaining submatrix L is determined through L =Lxy .LetL x x and the Ly be the localization functions associ-

ated with model components X and Y respectively. A fundamental difficulty in localization for strongly coupled DA is how to
propose a cross-localization function L xy to populate beth-Lxyand-, and hence Lyx, such that whenever a block localization
matrix L is formed through evaluation of {Lx x,Lyy,Lxy } then L is positive semidefinite. We call this collection of com-

ponent functions a multivariate positive semidefinite function if it always produces a positive semidefinite L matrix (Genton
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and Kleiber, 2015). We refer to multivariate positive semidefinite functions as multivariate localization functions when they
are used to localize background error covariance matrices. In this study we compare four different multivariate localization
functions, including one that extends GC.

Similar block localization matrices are used in scale-dependent localization, where X and Y are not components, but rather
a decomposition of spectral wavebands from a single process. Scale-dependent localization aims to use a different localization
radius for each waveband, which leads to the same question of how to construct the between-scale localization blocks. Buehner
and Shlyaeva (2015) constructed Lxx and Ly through evaluation of localization functions with different radii. They then
constructed the cross-localization matrix through Lxy = (Lxx)l/ 2 (Lyy)T/ 2 with Lyx defined analogously. This is ap-
propriate for scale-dependent localization where X and Y are defined on the same grid and hence Lxx and Ly are of the
same dimension. It is still an open question how to extend this construction to the strongly coupled application where different
components are defined on different grids. The multivariate localization functions we construct below could also be used in
scale-dependent localization.

In our comparison of multivariate localization functions, we investigate the impact of the shape parameters cross-localization
radius, and cross-localization weight factor. The cross-localization radius, Rxy, is the smallest distance such that for all
d > Rxy we have Lxy (d) = 0. For all of the functions in this study, the cross-localization radius is related to the within-
component localization radii Rx x and Ryy. We define the cross-localization weight factor, B > 0, as the value of the cross-
localization function at distance d =0, i.e. 8:= Lxy (0). The cross-localization weight factor /3 is restricted to be less than
or equal to 1 in order to ensure positive semidefiniteness (Genton and Kleiber, 2015) and smaller values of 3 lead to smaller
analysis updates when updating the X model component using observations of Y, and vice versa. Each function we consider
has a different maximum allowable cross-localization weight, which we denote S,,.. Values of 3 greater than 3, lead to
functions that are not necessarily positive semidefinite, while values of 3 less than (.« are allowable and may be useful in
attenuating undesirable correlations between blocks of variables (Lu et al., 2015).

Note that while this example shows model space localization for a coupled model with two model components, the local-
ization functions we develop and investigate may also be used in observation space localization, and can be extended to an

arbitrary number of model components.
2.2 Kernel convolution

Localization functions created through kernel convolution, such as GC, may be extended to multivariate functions in the fol-
lowing straightforward manner. Suppose Lx x (d) = [kx * kx](d) and Lyy (d) = [ky * ky](d) where d € R, d = ||d||, ()
denotes convolution over R", and kx, ky are square integrable functions. For ease of notation let the kernels kx and ky be
normalized such that Lxx(0) = Lyy(0) =1, which is appropriate for localization functions. Then the function £xy (d) =
[kx * ky](d) is a compatible cross-localization function in the sense that, when taken together {Lx x,Lyy,Lxy } is a multi-

variate, positive semidefinite function.
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As a proof, we define two processes Z;, where j can represent either X or Y, as the convolution of the kernel k; with a
white noise field W:

Zji(s) = /kj(s —t)dW. 2
R

It is straightforward to show that the localization functions we have defined are exactly the covariance functions for these two

processes, L;;(d) = Cov(Z;(s), Z;(t)), with ¢, j = X, Y, locations s, t € R™, and distance d = ||s—t||. Thus {Lx x,Lyv,Lxv }

is a multivariate covariance function, and hence a multivariate, positive semidefinite function (Genton and Kleiber, 2015).

For localization functions created through kernel convolution the localization radii are related to the kernel radii. Suppose
the kernels kx and ky have radii cx and cy, i.e. k;(d) = 0 for all d > ¢;. The convolution of two kernels is zero at distances
greater than the sum of the kernel radii. Thus the implied within-component localization radii are R;; = 2c¢;, for processes
7 = X, Y. Further, the implied cross-localization radius is the sum of the two kernel radii Rxy = cx + cy. Equivalently, the
cross-localization radius is the average of the two within-component localization radii, Rxy = %(R xx + Ryy), which is how
we will write it going forward. Interestingly, this is exactly the cross-localization radius used in Frolov et al. (2016) and Smith
et al. (2018).

Unlike within-component localization functions, cross-localization functions created through kernel convolution will al-
ways have Lxy (0) < 1 whenever kx # ky. The maximum allowable cross-localization weight factor (8 := Lxy (0)) is ex-
actly the value produced through the convolution, i.e. Bmax = [kx * ky](0). Smaller cross-localization weight factors also
lead to positive semidefinite functions since if {Lx x,Lyy,Lxy } is a multivariate, positive semidefinite function, then so is
{Lxx,Lyy,BLxy} for § <1 (Roh et al., 2015). To aid in comparisons to other cross-localization functions, we re-define

kernel-based cross-localization functions as,

Lxy(d) = [kx *ky](d) 3)

max

with 8 < Biax. In this way Lxy (0) = & [kx * ky] (0) = 8 which is consistent with our definition of the cross-localization
weight factor in the previous section. We will experiment with the impact of varying 3, but must always ensure 5 < [yax t0
maintain positive semidefiniteness.

For most kernels, closed form analytic expressions for the convolutions above are not available. In the following two sections
we present two cases where a closed form is available. The kernels used in these two cases are the tent function (GC) and the

indicator function (Bolin-Wallin).
2.3 Multivariate Gaspari-Cohn

The standard univariate GC localization function is constructed through convolution over R? of the kernel, k(r) o (1 - 72) n
with itself. Here we define r = ||r|| with r € R? and z; = max{z,0}. The kernel has radius ¢ and is normalized so that

L(0) = [k k] (0) = 1. As discussed in the previous section, the localization radius, R, is related to the kernel radius through



155

160

165

1r 1r L 1r L
L4 LY Gaspari-Cohn
== == Bolin-Wallin
0.8} 0.8t 08F Askey
== == Wendland
0.6 0.6} 0.6}
0.4} 0.4} 0.4f
0.2} 0.2} 0.2}
0 0 " 9 0
-40 -20 0 20 40 -40 -20 0 20 40
Distance Distance Distance

Figure 1. Four multivariate localization functions are shown in three panels. The first panel shows the function £x x used to localize the
teng-"large” process, X . The second panel shows the function Lyy used to localize the short-""small” process, Y. The third panel shows the
cross-localization function £ xy . In each panel, the color of the line shows the different multivariate functions: Gaspari-Cohn (green, solid),
Bolin-Wallin (dark, dashed), Askey (dark, dotted), and Wendland (dark, dash-dot). In the case of univariate localization, the functions in the
middle panel are used to localize all processes. The within component localization radii are Ryy = 15 and Rx x = 45 for all functions. The

cross-localization radii are Rxy = 30 for Gaspari-Cohn and Bolin-Wallin and Rxy = 15 for Askey and Wendland.

R = 2c. We develop a multivariate extension of this function through convolutions with two kernels,

kj(r)“<1—r) , J=XY. (4)
Cj +
The resulting within-component localization functions £§§:0) (d) = [k; = k;](d) are exactly equal to GC, Eq. (4.10) in Gaspari

and Cohn (1999). The formula for the cross-localization function Eggg ) (d) = [kx *ky](d) is quite lengthy and is thus included

in Appendix A.

Recalling from the previous section that the maximum cross-localization weight factor is Spmax = [kx * ky](0), we find

3_3

that for multivariate GC By ayx = %/f — 3k 7°, where for convenience we define k* = max{fixx, fyy}

min{RXX ,Ryy}

component localization radii. As with all localization functions created through kernel convolution, the cross-localization radius

as a ratio of the within-

is the average of the within-component localization radii, Rxy = %(R xx + Ryy). An example multivariate GC function with
Rxx =45,and Ryy = 15, and 8 = SBpax is shown in Fig. 1. The multivariate GC localization function for three or more model

components is discussed in Appendix A3.
2.4 Multivariate Bolin-Wallin

We derive our second multivariate localization function through convolution of normalized indicator functions over a sphere in

R3. As in the previous section, the kernels are supported on spheres of radii cx and cy,

kj(r) = ﬁ-[c]' (T)v J=XY, )

3
47rcj
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where I, (r) is an indicator function which is 1if < ¢; and 0 otherwise. The resulting within-component localization function

with localization radius I;; = 2¢; is
1 .
£ (d) = <2R3> (Rj; —d)* 2Rj;+d) ifd <Ry, (6)
JJ

This is commonly referred to as the spherical covariance function. The label (BW) references Bolin and Wallin, who performed
the convolutions necessary to create the associated cross-localization function in a work aimed at a different application of
covariance functions (Bolin and Wallin, 2016). While Bolin and Wallin never developed multivariate covariance (or in our case
localization) functions, the algebra is the same. We present only the localization functions that result from the convolution over
R3, though similar functions for R? and R™ are available in Bolin and Wallin (2016). Note that there is a typo in Bolin and
Wallin (2016), which has been corrected below.

Let cx > cy be kernel radii, then the resulting cross-localization function is,

arcd .
3 s ifd<cx —cy
LM @) = 758 o i Priod )
Bmax 47T(CXCY) Vs (Cx,$>+‘/3 (Cy,#) ifecx —cy <d<ecx+cy.

Here V3(r,2) denotes the volume of the spherical cap with triangular height = of a sphere with radius r, which is given by

2
V() = (r—z)*2r+z) |z|<r ®

otherwise.

S wln

max{Rxx,Ryvy}

As with multivariate GC, it is convenient to define a ratio of within-component localization radii by x? = == .
min{Rx x,Ryy}

Then we can write the maximum cross-localization weight factor as Buyax = £~ °. The cross-localization radius for BW is
Rxy = %(R x x + Ryy) because it is created through kernel convolution. An example multivariate BW function with Rx x =

45, Ryy =15, and 8 = Bax is shown in Fig. 1.
2.5 Wendland-Gneiting functions

We compare the two functions of the preceding sections to the Wendland-Gneiting family of multivariate, compactly-supported,
positive semidefinite functions. This family is not generated through kernel convolution, but rather through Montée and De-

scente operators (Gneiting, 2002). The simplest univariate function in this family is the the Askey function, which is given by

£(d) = (1 - ;)V 9)

+
with shape parameter v and localization radius R. Other functions in this family are called Wendland functions. Several
examples of univariate Wendland functions are displayed in Table 1.
Porcu et al. (2013) developed a multivariate version of the Askey function, where the exponent in Eq. (9) can be different

for each process while the localization radius R is constant across all processes. Roh et al. (2015) found that this multivariate
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Original Wendland Functions
Us(d) = (1—d)% (4d+1)
Yaz(d) = 1(1—d)$ (354 +18d + 3)
¥s,3(d) = (1 —d)} (32d° +25d° +8d + 1)
1
5

Poa(d) = (1= d)1° (429d* + 450d° + 210d° + 50d + 5)
Table 1. Selected univariate Wendland functions

localization function outperforms common univariate localization methods when assimilating observations into the bivariate
Lorenz 96 model. Daley et al. (2015) extended the work of Porcu et al. (2013) and constructed a multivariate version of
general Wendland-Gneiting functions that allows for different localization radii for different processes. The multivariate Askey

function from Daley et al. (2015) has the form,

v+vij+1 1 =4
LE;‘) (d) = Bij (1— Rd> , Big = ! . 4,j=X)Y (10)
R B i#]

The general form for multivariate Wendland functions is,

- d L o=y .
LEJW>(d) = Bij Vvt +1,k <R) , B = , ,j=X,Y (11)
K B i#j
where ’IZ is defined as,
1
Dirirp(w) = Bk i1, V+“Y+1 / u? — w? —u)"Pdu (12)

w

with B the beta function, B(x,y) = fol t*~1(1—¢)¥~'dt. The parameters v and {v;; } are related to the shape of the localization
functions, and are necessary to guarantee positive semidefiniteness in a given dimension. The parameter k& determines the
differentiability of the Wendland functions at lag zero (Gneiting, 2002). Note that the Askey function in Eq. (10) is a special
case of the Wendland function (11) which corresponds to the case k = 0. Daley et al. (2015) gave sufficient conditions on
the parameters v, k, R;j;, v;j, and 3 to guarantee that Eq. (11), and hence (10), is positive semidefinite. In particular for
two processes X and Y, Eq. (11) is positive semidefinite on R when v > %(n +1)+k min{Rxx,Ryy}> Rxy, 7xy >

Rxy ( yxx Vvy
2 (RXX+RYY) and

B< Boae i= (Riy)ymﬂ B +2k+1yxy +1)7 (13)
< Pmax = RxxRyy Blv+2k+1,vxx +1)Blr+2k+1,yyy +1)

Going forward we consider the multivariate Askey function (10) and the multivariate Wendland function with £ =1 in (11).

Note that with both of these functions the cross-localization radius depends only on the smallest localization radius. In
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Thus for given Rx x and Ryy, the cross-localization radius for Askey and Wendland functions is always smaller than the

cross-localization radius for GC and BW. With the choice Rxy = min{Rx x, Ryy }, we see that Syax depends on the ratio

maX{RXX ,Ryy}
min{Rxx,Ryvy}’

Rxy =15, and 8 = Spax are shown in Fig. 1. Important parameters for the four multivariate localization functions presented

as in GC and BW. Examples of multivariate Askey and Wendland functions with Rx x = 45, Ryy = 15,

in this section are summarized in Table 2.

Function name | Maximum cross-localization weight factor, Cross-localization radius
k2 = max{Rxx,Ryy}
— min{Rxx.Ryy}
: 5,.,-3_ 3,5 1
Gaspari-Cohn | 257° — 2k 5(Rxx + Ryy)
Bolin-Wallin | 73 %(RXX + Ryvy)
—(v+1) B(v+1l,vxy+1)? i
Askey | r \/B(V+17VXX+1)B<V+1»’YYY+1) min{Rxx, Ryy}
—(v+2k+1) B(V+2k+l,"/xy+l)2 .
Wendland | & \/B(V+2k+1,’Yxx+1)B(V+2k+1,’yyy+1) min{Rxx,Ryvy}

Table 2. Summary of important shape parameters for four cross-localization functions.

3 Experiments

In this section we investigate the performance of a data assimilation scheme using each of the four multivariate localization
functions presented in Sect. 2. We choose a setup which isolates the impact of the cross-localization functions and relate
the filter performance to important cross-localization shape parameters. As a baseline for comparison, we also test two simple
approaches to localization for coupled DA. The first method uses a single localization function and radius to localize all within-
and cross-component blocks of the background error covariance matrix, i.e. Lxx = Lyy = Lxy. We call this approach
univariate localization. In systems with very different optimal localization radii this type of univariate localization is likely to
perform poorly, however it does provide a useful comparison point. The second approach uses different localization functions
for each process and then zeroes out all cross-correlations between processes, i.e. Lxx # Lyy, and Lxy = 0. We call this
approach weakly coupled localization as it leads to a weakly coupled data assimilation scheme. All of the experiments are run

with the bivariate Lorenz 96 model, which is described below (Lorenz, 1996).
3.1 Bivariate Lorenz model

The bivariate Lorenz 96 model is a conceptual model of atmospheric processes and is comprised of two coupled processes
with distinct temporal and spatial scales. The “shortsmall’” process can be thought of as rapidly-varying small-scale convective
fluctuations while the “ large” process can be thought of as smooth large-scale waves. The model is periodic in the spatial
domain, as a process on a fixed latitude band would be.

The “lenglarge” process, X, has K distinct variables, X, for k =1,..., K. The “shertsmall” process, Y, is divided into

K sectors, with each sector corresponding to one “longlarge” variable Xj,. There are J “shertsmall” process variables in
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each sector, for a total of JK distinct Y variables, Y;; for j=1,...,J;k=1,...,K. The Y variables, arranged in or-
der,are Y1 1,Y21,...,Y51,Y12,Y22,..., Y k. Succinctly, Y;_ 5, = Y; p_1 and Y, 5 =Y 41, with periodicity conditions
Y k+x = Yjr—k = Yj forall j, k. The X process is also periodic with X g = Xj_x = X, for all k.

We represent the variables on a circle where the arc length between neighboring Y variables is 1. Equivalently, the radius of
the circle is r = 25 Variable Y} , is located at (rcos(; 1), rsin(6;,)) where 8; 5, = 2= (J(k — 1) + j). We choose to place
the variable X, located at (1 cos(¢y),rsin(¢x)), in the middle of the sector whose variables are coupled to it, e.g. if J =10
then X}, is halfway in between Y ;. and Y5 j and ¢y, = 72 (10(k — 1) +5.5). The placement of these variables is illustrated in

10K
A6

Fig. 2. The chord distance between any two variables is 27 sin (7) where A# is the angle increment, e.g. the angle increment

between Y, x, and Yy, i, is A0 = |0}, k, — 05, k, |-

The governing equations are,

dXx;. ha\ <
dY; ha
7d]t’k —abYjy1k (Yiso, —Yj_1,6) —a¥jk + <b) X (15)

We follow Lorenz (1996) and let K = 36,.J = 10, so there are 36 sectors and 10 times more “shertsmall” variables than
“longlarge” variables. We let a = 10 and b = 10, indicating that convective scales fluctuate 10 times faster than the larger scales,
while their amplitude is around 1/10 as large. For the forcing we choose F' = 10, which Lorenz (1996) found to be sufficient to
make both scales behave chaotically. All simulations are performed using an adaptive fourth-order Runge-Kutta method with
relative error tolerance 103 and absolute error tolerance 10~% (Dormand and Prince, 1980; Shampine and Reichelt, 1997).
The solutions are output each assimilation cycle. Unless otherwise specified, the assimilation cycles are separated by a time
interval of 0.005 model time units (MTU), which Lorenz (1996) found to be similar to 36 minutes in more realistic settings.
This time scale is 10 times shorter than the time scale typically used in the univariate Lorenz 96 model. The factor of 10 is
consistent with the understanding that the “shortsmall” process evolves 10 times faster than the “longlarge” process, where the
“lenglarge” process is akin to the univariate Lorenz 96 model. In choosing the coupling strength, we follow Roh et al. (2015)
and set h = 2, which is twice as strong as the coupling used by Lorenz. Varying the coupling strength h across values {%, 1,4}
changes the magnitude of the analysis errors, but does not change the relative performance of different localization functions

in our experiments.
3.2 Assimilation scheme

In our experiments we use the stochastic Ensemble Kalman Filter (EnKF) (Evensen, 1994; Houtekamer and Mitchell, 1998;

Burgers et al., 1998). The EnKF update formula for a single ensemble member is

xa:Xb—l—K(y—l—n—be) (16)

10
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Figure 2. Left: Schematic illustrating the location of the different variables in the bivariate Lorenz 96 model, inspired by Wilks (2005). The
setup has K = 36 sectors, with J = 10 “shertsmall” process variables per sector. The “lenglarge” process is shown on the inner circle and
each X variable is labeled. The “shortsmall” process is shown, unlabeled, on the outer circle. Brackets show the sectors. Right: A single
snapshot of the bivariate Lorenz 96 model with variables placed on a circle. The “longlarge” process X (red, dashed) has fluctuations with
amplitude about 10 times larger than the fluctuation of the “shertsmall” process Y (dark, solid).

where x? is the analysis vector, xP is the background state vector, y is the observation, each element of 7 is a random draw

from the probability distribution of observation errors, and H is the linear observation operator. The Kalman gain matrix K is
-1
K—P'H (HP'H' +R) a7

where PP is the background error covariance matrix and R is the observation error covariance matrix. The background covari-
ance matrix is approximated by a sample covariance matrix from an ensemble, x; for i =1,..., N, where IV, is the ensemble
size. In this experiment we use the adaptive inflation scheme of El Gharamti (2018) and inflate each prior ensemble member

through,
xb = XP 4 A1/? (xb—ﬁ), (18)

where A is a diagonal matrix with each element on the diagonal containing the inflation factor for one variable and xP is the
background ensemble mean. We then use x? in place of x” in Eq. (16) and in the estimation of P". Note that estimating P

with the inflated ensemble is equivalent to estimating it with the original ensemble and then multiplying by A'/2 on the left

and right, A1/2PPA'/2, We-The Bayesian approach to adaptive inflation in El Gharamti (2018) uses observations to update
the inflation distribution associated with each state variable. The inflation prior has an inverse gamma distribution with shape
and rate parameters determined from the mode and prior inflation variance. In this study we initialize the inflation factors with

A =1.11, where I is the identity matrix. E-Gharam M8 -defined-a—priorvariance-assoetated—with-each—inflation—factor:

We initialize the prior inflation variance with o3 = 0.09an
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algorithm. The localization matrix L is incorporated into the estimate of the background covariance matrix through a Schur
product as in Eq. (1).

We use N, = 20 ensemble members, except where otherwise noted. The small ensemble size is chosen to accentuate the
spurious correlations and hence the need for effective localization functions. We run each DA scheme for 3,000 analysis
cycles, discarding the first 1,000 cycles and reporting statistics from the remaining 2,000 cycles. Each experiment is repeated
50 times with independent reference states, which serve as the “truth” in our experiments. We generate “observations” by

adding independent Gaussian noise to the reference state.
3.3 Experimental design

The experiments described in this section compare the performance of each of the four multivariate localization functions
presented in Sect. 2. Performance is measured through the root-mean-square distance between the analysis mean and the true
state, which we refer to as the root-mean-square error (RMSE). We present scaled analysis errors to aid in comparison between
the "large” and “small” components. RMS errors are divided by the climatological standard deviation for each process. To stan-
dardize the comparison of the different shapes, we use the same within-component localization radii for all multivariate func-
tions. We also investigate the performance of univariate and weakly coupled localization functions. The univariate localization
functions are chosen to be equal to the within-component localization function for Y, i.e. £ = Lyy. The within-component
weakly coupled localization functions are equal to the within-component multivariate localization functions. However, the
weakly coupled cross-localization functions are identically zero. The free localization function parameters are chosen to bal-
ance performance of the univariate, multivariate, and weakly coupled forms of each localization function. We estimate these
parameters through a process which we describe in Appendix B.

We test the performance of multivariate localization functions using three different observation operators. First we observe
all “shertsmall” variables and none of the “lenglarge” variables. In this setup we isolate the impact the of the cross-localization
function, which allows us to make conjectures about important cross-localization shape parameters. Next we flip the setup
and observe all “longlarge” variables and none of the “shortsmall” variables. We compare and contrast our findings with those
from the previous case. Finally, we observe both processes and observe behavior reminiscent of both of the previous cases. The
experimental setups are grouped by observation operator below. The source code for all experiments is publicly available (see
Code Availability).

3.3.1 Observe only the “shertsmall” process

To isolate the impact of the cross-localization functions we fully observe the “shertsmall” process and do not observe the
“lenglarge” process at all. In this configuration, analysis increments of the “lenglarge” process can be fully attributed to
the cross-domain assimilation of observations of the “shertsmall” process. The treatment of cross-domain background error
covariances plays a crucial role in the analysis of the “tenglarge” process, so we expect that changes in the cross-localization
function will lead to changes in the “lenglarge” process analyses. All observations are assimilated every 0.005 MTU. We use

an observation error variance of o3- = 0.005 both in the generation of synthetic observations from the reference state and in the
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assimilation scheme. The observation error variance is chosen to be about 5% of the climatological variance of the Y process.
We also run the experiment with o3 = 0.02, or about 20% of climatological variance, and find that the analyses are degraded,
but the relative performance of the different localization functions is the same.

The localization parameters we use in this experiment are given in Table 3. For all functions we use the maximum allowable
cross-localization weight factor, 8 = [,.x- In estimating the optimal cross-localization weight factor we find that since the
only updates to X are through observations of Y, smaller cross-localization weight factors lead to degraded performance
(Appendix B).

Function name Univariate parameters | Multivariate parametersUnivariate- Multivartate-

median RMSE-n—-X-median RMSE-n—-XheightGaspari-Cohn | R =15 Ryy =15, Rxx =45, Rxy = 30, 3 = 0.38 6-:036-0-6
Bolin-Wallin R=15 Ryy =15, Rxx =45, Rxy = 30, 3 = 0.19 6-035-6-6-
Askey R=15v=1 Ryy =15, Rxx =45, Rxy = 15, 3 = 0.46, 6-034-0-6
Wendland R=15,v=2,k=1 | Ryy =15, Rxx =45, Rxy = 15, 3 = 0.22, 6:036-6-0

Table 3. Localization parameters for the experiment observing only the “shertsmall” process. Note that weakly coupled parameters are not

shown in this table because they are exactly equal to the multivariate parameters except with 8 = 0. Theright-columns-show-the-median

 RMSE-of-the FOCESS each-funetion—Median-RMSE he-weaklv-coubled-ecase—tsnot-shownbeeause—weak-coun

3.3.2  Observe only the “longlarge” process

Next we investigate the impact of the different localization functions when we fully observe the “lenglarge” process and do not
observe the “shortsmall” process at all. The * large” process fluctuates about 10 times more slowly than the “shertsmall”
process, so we use an assimilation cycle length that is 10 times longer than the one in the previous configuration. All observa-
tions are assimilated every 0.05 MTU. We use an observation error variance of o3 = 0.28 both in the generation of synthetic
observations from the reference state and in the assimilation scheme. The observation error variance is chosen to be about 5%
of the climatological variance of the X process. We also run the experiment with 0% = 1.1, or about 20% of climatological
variance, and find that the X analyses are degraded, but the relative performance of the different localization functions is the
same. The localization parameters we use in this experiment are given in Table B1. We find that the analysis errors are similar
with all values of 3. For consistency with the previous experiment we use the maximum allowable cross-localization weight

factor, 8 = Bmax-

3.3.3 Observe both processes

Finally, we observe both processes and note the impact of the different localization functions. In this configuration we observe
75% of the variables in each process, with the observation locations chosen randomly for each trial. All observations are
assimilated every 0.005 MTU, in line with the analysis cycle length for the observation of the “shertsmall” process only.

We use observation error variances of o2 = 0.01 and 0% = 0.57 in the generation of observations and in the assimilation
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scheme. The observation error variance is chosen to be about 10% of the climatological variance of each process. We also
run the experiment with a% =0.02 and ai, = 1.1, or about 20% of climatological variance, and find that the performance is
similar. The localization parameters we use in this experiment are given in Table B2. We find that the analysis errors grow
with increasing 3. Nonetheless, to distinguish between multivariate localization, which allows for cross-domain information

transfer, and weakly coupled localization, which does not, we use 8 = B,.x for all multivariate functions.
3.4 Results
3.4.1 Observe only the “shortsmall” process

Figure 3 shows the distribution of RMSEs-analysis errors for the configuration described in Sect. 3.3.1. With weakly coupled
localization functions no information is shared in the update step between the observed Y process and the unobserved X pro-
cess. This leads to no updates of the X variables and eventually to catastrophic filter divergence. In principle the system might
be able to synchronize the unobserved (“lenglarge”) process through dynamical couplings with the observed (“shertsmall”)
process, but in our setup this does not happen. Hence weakly coupled localization functions are not included in the figure.
The RMSE-analysis error distributions for the observed Y process are similar for all functions except multivariate Wendland.
For the unobserved X process, the analysis errors are comparable across all of the univariate localization functions. This is
consistent with the fact that all of the univariate localization functions have similar shapes as seen in the second panel of
Fig. 1. The multivariate localization functions, on the other hand, show great diversity of performance. The Wendland function
leads to significantly worse performance with the multivariate function when compared to the univariate functions. BW and
Askey functions shew-ne-statistically-significant-differenee-between-perform similarly for both the multivariate and univariate
funetionscases. Out of all of the localization functions we consider, the best performance is achieved with multivariate GC.
To understand the improved performance with multivariate GC, we consider two different shape parameters. Recall from
Sect. 3.3.1 that smaller cross-localization weights led to worse performance when holding all other localization parameters
fixed. Extending this finding, we hypothesize that functions with a larger Sy,ax Will allow for more information to propagate
across model domains, thereby improving performance in this setup. With the chosen localization parameters, the multivariate
Askey function has the largest cross-localization weight factor with 5,5 = 0.46, followed by GC with SBy,.x ~ 0.38. A visual
representation of the cross-localization weight factor is shown as the height of the cross-localization function at zero in the
third panel of Fig. 1. The shape of each cross-localization function varies not only in its height at zero, but also in its radius
and smoothness near zero. For example, while the Askey cross-localization function peaks higher than GC, GC is generally
smoother near zero and has a larger cross-localization radius. All of these differences in shape impact how much information
propagates across model domains. Based on its height and width, we hypothesize that GC allows for sufficient cross-domain
information propagation at both shert-small and long distances and this is why multivariate GC outperforms all other functions

in this experiment.
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Figure 3. Violin plots show the distribution of RMSE-analysis errors for the X and Y process with different localization functions (Hoff-

mann, 2015). Analysis errors are calculated as RMS deviations from the “truth” and are scaled by the climatological standard deviation of

the associated process. All four univariate localization functions perform similarly, while there is a greater range in performance for the
multivariate versions of these functions. Multivariate Gaspari-Cohn shows improvement over its univariate counterparts. Univariate and mul-
tivariate Bolin-Wallin and Askey functions appear to perform similarly. For Wendland, the multivariate function performs significantly worse

than the univariate function.

3.4.2 Observe only the “longlarge” process

When we observe only the “lenglarge” process (as described in Sect. 3.3.2), we find that all localization functions lead to very

similar performance. In this case the shape of the localization function is not important. Rather, the dynamics of the bivariate
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Lorenz model are driving the behavior. In this configuration, the true background error cross-correlations are very small (less
than 0.1 even at shert-small distances). The Y variables are restored towards (%) X in their sector (Eq. 15). Thus even when
the assimilation does not update the Y variables, we expect to recover the mean of the Y process. Based on climatology we
find that the conditional mean of Y} , given X, = x is E[Y] i|z] ~ 0.05592. The median root-mean-square difference between
Y and its conditional mean is 0.294. Our results show that the median RMSE in the Y process ranges from 0.294 to 0.297.
Thus, the filter does not improve upon a simple linear conditional mean prediction, which is perhaps unsurprising given the
small magnitude of error cross-correlations. Figure 4 shows the distribution of RMSE-analysis errors for univariate, weakly

coupled, and multivariate GC. The distributions for other functions are nearly identical and hence not shown.
3.4.3 Observe both processes

When we observe both processes the precise shape of the localization function appears to have little impact. We do see differ-
ences between univariate, weakly coupled, and multivariate localization functions. Figure 4 shows RMSE-analysis error distri-
butions for the three different versions of GC, which are broadly representative of the behavior seen in other functions as well.
This configuration is quite unstable. About 80% of the trials with weakly coupled localization functions lead to catastrophic
filter divergence. Trials with univariate and multivariate localization diverge less often, but still diverge about 20% of the time.
Figure 4 shows results from only the trials (out of 50 total) which did not diverge. Weakly coupled localization appears to lead
to the best performance, when the filter does not diverge. There is some variation in the results across the different localization
functions. In particular, multivariate Askey appears to lead to better performance than weakly coupled Askey, but this may be
attributable to the issues with stability. Catastrophic filter divergence is a well-documented but poorly understood phenomenon
Gottwald and Majda, 2013; Houtekamer and Zhang, 2016, Appendix A.b). The mechanism is understood in highl
models (Kelly et al., 2015), but the dynamics of instability in models as simple as the bivariate Lorenz-96 model remains

unclear and is outside the scope of the present investigation.
The complicated story with the weakly coupled schemes indicates that, in this configuration, filter performance is highly

-idealized

sensitive to the treatment of cross-domain background error covariances. The small ensemble size combined with small true
forecast error cross-correlations can lead to spuriously large estimates of background error cross-covariances. Meanwhile, we
have nearly complete observations of both processes, so within-component updates are likely quite good. Thus, zeroing out the
cross terms, as in weakly coupled schemes, may improve state estimates. On the other hand, inclusion of some cross-domain

terms appears to be important for stability.

4 Conclusions

In this work we developed a multivariate extension of the oft-used GC localization function, where the within-component local-
ization functions are standard GC with different localization radii, while the cross-localization function is newly constructed
to ensure that the resulting localization matrix is positive semidefinite. A positive semidefinite localization matrix guaran-

tees, through the Schur product theorem, that the localized estimate of the background error covariance matrix is positive
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Figure 4. Violin plots show the distribution of RMSE-analysis errors for all versions of the Gaspari-Cohn localization function (Hoff-

mann, 2015). Analysis errors are calculated as RMS deviations from the “truth” and are scaled by the climatological standard deviation of

the associated process. Left: results from the experiment where we observe only the “longlarge” process. All functions perform similarly.
Right: results from the experiment where we observe both processes. The weakly coupled localization functions appear to lead to the best

performance, but are highly unstable.

semidefinite (Horn and Johnson, 2012, Theorem 7.5.3). We compared multivariate GC to three other multivariate localization
functions (including one other newly presented multivariate function), and their univariate and weakly coupled counterparts.
We found that the performance of different localization functions is highly dependent on the observation operator. When we
observed only the “longlarge” process, all localization functions performed similarly. In an experiment where we observed

410 both processes, weakly coupled localization led to the smallest analysis error. When we observed only the “shertsmall” pro-
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cess, multivariate GC led to better performance than any of the other localization functions we considered. We hypothesized
that the shape of the GC cross-localization function allows for larger cross-domain assimilation than the other functions. There
is still an outstanding question of how multivariate GC will perform in other, perhaps more realistic, systems.

We found that choosing an appropriate cross-localization weight factor, 3, is crucial to the performance of the multivariate
localization functions. This parameter determines the amount of information which is allowed to propagate between co-located
variables in different model components. We found that this parameter should be as large as possible when observing only
the “shortsmall” process. By contrast, the parameter should be small or even zero when both processes are well observed.
This is consistent with other studies which have shown the value in deflating cross-domain updates between non-interacting
processes (Lu et al., 2015; Yoshida and Kalnay, 2018).

A natural application of this work is localization in a coupled atmosphere-ocean model. The bivariate Lorenz 96 model has

a linear relationship between the large and small scales. Hence the results presented here are relevant to linear coupling in

climate models, e.g. the sensible heat exchange between ocean and atmosphere which is approximately linearly proportional
to the temperature difference. Multivariate GC allows for within-component covariances to be localized with GC exactly as

they would be in an uncoupled setting, using the optimal localization length scale for each component (Ying et al., 2018).
The cross-localization length scale for GC is the average of the two within-component localization radii, which is the same as
the cross-localization radius proposed in Frolov et al. (2016). We hypothesize that the cross-localization radius is important

in determining filter performance. However, the functions considered here did not allow for a thorough investigation of the

optimal cross-localization radius, which is an important area for future research.

Appendix A: Derivation of multivariate Gaspari-Cohn

Al Multivariate Gaspari-Cohn cross-localization function

Let cx,cy be the kernel radii associated with model components X and Y. Without loss of generality, we take cx > cy. The
formula depends on the relative sizes of cx and cy, with two different formulas for the cases (i) cx < 2c¢y and (ii) cx > 2cy.

In both cases, the notation is significantly simplified when we let cx = x2cy . The first case we consider is cy < cx < 2cy. In
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where Binax = %n*‘?’ — %/{*5 and 3 < Bpax- Note that when we take cx — cy, which implies x — 1, this multivariate function

converges to the standard univariate GC function, as we would expect.
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The second case to consider is cx > 2cy . Again, let cx = k2cy . In this case, the cross-localization function is
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where, as in the above case, Bpax = gn*?’ — 3k 5and B < Bmax- Note that when cx = 2cy (Al) is equal to (A2).

A2 Derivation of multivariate Gaspari-Cohn cross-localization function L(Gc)

The multivariate GC cross-localization function is created through the convolution of two kernels, £ GC) (d) = [kx x ky](d),
with k;(r) = k9 ([[r])) = (1—|r||/¢j)+, j = X,Y, and r € R®. Theorem 3.c.1 from Gaspari and Cohn (1999) provides a frame-
work for evaluating the necessary convolutions. It is shown that for radially symmetric functions k;(r) = k?(| |r||) compactly

supported on a sphere of radius ¢;, j = X,Y, with ¢y < cx the convolution over R? given by

Pyy(lldl) = /k%(l\rll)k%(lld*rll) dr, (A3)
can equivalently be written,
cy r4+d
27 0
PYy(d) = v kY (1) sk (s) ds dr. (A4)
0 |r—d|

Equation (A4) is normalized to produce a localization function with £x x (0) = Lyy (0) = 1. The normalization factor Pjoj (0)

is given by
Cj
2 .
PP(0) =4r / (rk9(r))” dr, j=X.Y. (AS)
0

The resulting cross-localization function is a normalized version of (A4),

P
Exr = (o P, O .
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With this framework, we are now able to compute the cross-localization function using the GC kernels. We first compute the
normalization factor P};(0) using GC kernels. Plugging in k9 (r) = (1 —7/c;) . gives,
Cj 2
m .
P%(O)z47r/r2(l—r/cj)2 drzﬁc?, j=X,Y. (A7)
0

Thus the denominator in Eq. (A6) is

2T

[Py (0)PEy (O] = 12

c§( c%,. (A8)

To compute the numerator in Eq. (A6), which is precisely (A4), we consider eight different cases, four cases for each formula
presented above.
The case cx > 2cy and 0 < |d| < ¢y is shown in detail here. The other cases are derived similarly and are not shown. The

inner integral in Eq. (A4) is

r+d r+d
T T 1 23 +6rd? ifr<d

/ skS (s) ds = / s(l1—s/cx) ds:2rd—3— (A9)
el el X |6r2d+2d® ifr>d

The outer integral in (A4) is

Cy d Cy

/r(l —7r/cy)(2rd) dr — i/r(l—r/cY)(QrMﬁrd?) dr — i/ru —r/ey)(6r2d +2d°) dr (A10)
3cx 3cx

0 0 d

which simplifies to

1 1 1 1 1 3
—dc3 — —d &P ——d*+ AP+ =t . All
6°Y " 3ey {30cY 10" T3vE Yy (Al
Substituting (A11) into (A4) we see,
1 1 1 1 1 3
PY(d =on(=c8 — — &P ——d*+ AP+ =t | ). Al2
xy(d<ey)=2m <6CY 3ex [3OCY 10" T3 Yy (Al2)

With the proper normalization, we have the cross-localization function,

5
2my\/c% 5 Xy

Now make the substitution k2 = Z—’Y‘ and this becomes

1/d\° 1 (d\" 5 (d\ 5(1\ 3(1
S (R TR T (U I R N G B R Al4
Lxy(d<er) 6 <H0y> * 2K (/<wy> 3k3 <H0y> * 2 (/&) 2 </£5> alh

Other cases are calculated similarly, with careful consideration of the bounds of the kernels and integrals.

ﬁxy(d<0y)= (d<Cy). (A13)
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A3 Multivariate Gaspari-Cohn with three or more length scales

Suppose we have p processes, X1, ..., X, with p different localization radii R11,...,Rpy. Define the associate kernel radii by
¢; = R;;/2 and the associated kernels by k;(r) o (1 —r/c;)+. Then the localization function used to taper background error

covariances between process X; and X is £;;(d) = a;;[k; * k;](d), with
[evijI 1 (A15)

a positive semidefinite matrix with 1’s on the diagonal, i.e. a;; = 1. When ¢ = j, £;; is precisely the standard univariate GC

function. When i # j, £,; is given by Eq. (Al) if max{R;;, R;;} < 2min{R;;, R;;} or Eq. (A2) otherwise. The ratio of length

max{Rii,Rjj}
min{Rii,Rjj} :

the case of two components. Here we replace 3/5max by «;; to emphasize the importance for three or more length scales is

scales  is defined as k2 = We have written (A1) and (A2) with a coefficient 8/fmax, which is convenient for
in choosing «;; such that (A15) is positive semidefinite. Wang et al. (2021) discussed how to construct a similar matrix for

multiscale localization using matrix square roots. The simplest case is to let a;; = 1 for all 4, j.

Appendix B: Estimation of localization parameters

A fair comparison between the univariate, weakly coupled, and multivariate localization functions requires that thoughtful
attention be paid to the many parameter choices in the different localization functions. We estimate different localization pa-
rameters for each observation operator. This section describes our reasoning behind the selection of the localization parameters
for the experiment where we observe only the “shertsmall” process. We follow the same estimation procedure for the other
two observation operators as well.

Some of the parameters are shared across functions. For example, every univariate function has a localization radius R. To
aid in comparisons between functions, we estimate a single univariate localization radius which is shared by all univariate
functions. Indeed, whenever different methods share a parameter we estimate a single value for it. We estimate a separate
cross-localization weight factor 5 for each function because each function has a different upper bound on this parameter.

We estimate the localization parameters iteratively in the the following way. First, note that Wendland is a family of functions,
with parameter k& controlling the smoothness. In sensitivity experiments (not shown) we found that increasing k degrades the
performance of the filter. Thus, we choose to use k£ = 1 for all experiments.

Next, we pick appropriate localization radii for each process. We use a large (500-member) ensemble with no localization
to compute forecast error correlations, hereafter called the “true” forecast error correlations, and shown in Fig. B1. We see that
the true forecast error correlations for the “shertsmall” process Y degrade to zero in just a few spatial units. The forecast errors
for the “lenglarge” process X, by contrast, have meaningful correlations out to about 40 spatial units. This gives us a baseline
for the range of localization radii we should investigate. We compare the performance of all univariate localization functions
with the radius: R € [5,10,15,20,30,45]. In these sensitivity experiments we use v = 1 for Askey and v = 2 for Wendland.
These values of v are as small as possible while still guaranteeing positive semidefiniteness. Figure B2 shows that univariate

localization radius R = 15 leads to the best performance.
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Figure B1. True forecast error correlations for variables in the middle of each sector, X and Y5 . Correlations between Y variables (dark
blue) decay to zero after about 5 spatial units, while correlations between X variables (dark red) are significant up to 40 spatial units away.

Cross-correlations (pink and light blue) are small everywhere, but still significant out to at least 20 spatial units.

Using this univariate localization radius, we now estimate v for univariate Askey and Wendland. To maintain positive
semidefiniteness we require v > 1 for Askey and v > 2 for Wendland. We compare RMSEs-analysis errors for process X
and Y with v € [1,1.5,2,2.5] for Askey and v € [2,2.5,3,3.5] for Wendland. In general we find that smaller value of v lead
to less peaked localization functions and better performance, and choose v to be as small as possible, i.e. v = 1 for Askey and
v = 2 for Wendland.

Next we estimate the optimal multivariate localization radii. We want to eliminate as much ambiguity as possible in our com-
parison of univariate and multivariate localization functions. For this reason we choose to set the univariate localization radius
equal to one of the within-component localization radii. From Fig. B1 we know that the univariate localization radius R = 15
is closer to the range of significant true forecast error correlations for process Y than for process X so we set Ryy = R = 15.
Now for the within-X localization radius, we consider the following localization values: Rx x € [30,40,45, 50,60, 75]. For
Askey and Wendland we use Rxy = min{Rxx,Ryy }, and vi; =0 forall 7,7 = X, Y. For all functions we use Bmax as the
cross-localization weight factor. The RIMSE-analysis errors for both processes is-are minimized with values of R x x between 40
and 50 (not shown). Informed by the true forecast error correlations, we pick Rx x = 45. Now we turn to the cross-localization
radius. For Gaspari-Cohn and Bolin-Wallin Rxy is determined by Rx x and Ryy, with Rxy = % (Rxx + Ryvy). For Askey
and Wendland we require Rxy < min{Rxx,Ryy } to maintain positive semidefiniteness. From the true forecast error cor-
relations we see that the correlation length scale for X is larger than the cross-correlation length scale, which is in turn larger
than the length scale for Y. This intuition tells us that, ideally we would have Ryy < Rxy < Rx x.However, because of the
requirement for positive semidefinitess in Askey and Wendland the closest we can come is Ryy = Rxy < Rxx. We could
choose to use a smaller cross-localization radius, but the true forecast error correlation indicates that this would be a mistake,

as there are non-negligible cross-correlations out past 15 units. Thus, we choose Rxy = Ryy = min{Ryy,Rxx}.
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Figure B2. RMSE Analysis errors for different univariate localization radii. Analysis errors are calculated as RMS deviations from the
“truth” and are scaled by the climatological standard deviation of the associated process. Considering all functions, the best performance

comes when R = 15.

Using all of the previously estimated multivariate localization parameters, we now estimate <y;;, for all processes i,j = X, Y
for both Askey and Wendland. For Askey we consider all combinations of yyy € [0,1,2] and yx x € [0,1,2,3]. For Wendland

535 we consider all combinations of vyy € [0,1,2] and vxx € [0,1,3,4,5,6,7,9]. The guarantee of positive semidefiniteness
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Figure B3. Left: Maximum cross-localization weight factor as a function of Rx x / Ryy . Right: Average %%Wshown
on the y-axis for different multivariate functions. The top (bottom) plot shows RMSE-analysis errors for the X (Y") process. For all functions,
as the cross-localization weight factor increases, the analysis errors {RMSE)-decrease. Analysis errors are calculated as RMS deviations from

restricts our search for vxy to yxy > R% (7%’)‘(7’; + ;{,YT’;) For simplicity, we take vxy to be at the edge of the allowable

range, Yxy = RXTY (% + %YT‘;) While investigating 7, we use the maximum allowable cross-localization weight factor.
For Askey we find that the best performance comes with yxx =1 and ~yy = 0. For Wendland we see that performance
improves as yx x increases, all the way out to vx x = 5. We hypothesize that this is because increasing vx x allows for an
increased cross-localization weight factor. We use vx x = 5 and vy y = 0 for Wendland.

The final localization parameter to estimate is the cross-localization weight factor, /5. This parameter determines how much
cross-domain information propagation occurs between the X and Y processes. Each multivariate localization function has a
different upper bound on S, which depends on a ratio of localization radii, as shown in Fig. B3. Note that setting 5 = 0 leads
to a weakly coupled scheme, so to distinguish between multivariate and weakly coupled we consider only value of 3 greater
than 0.1. For each multivariate localization function, we vary /3 between Spax and 0.1 while holding all other parameters fixed.
In this setup, the best performance generally comes when the cross-correlation is at or near its maximum allowable value, as
shown in Fig. B3. Figure B3 shows visually that the GC cross-correlation is always greater than the BW cross-correlation,
which is easily verified analytically since £~3 < 35’3 - %H’E’ for all k > 1 (true by the definition of ). Similarly we see that
the cross-localization weight factor for Askey is greater than cross-localization weight factor for Wendland across the range of

parameters considered here.
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The localization parameters for the other two observation operators are estimated following the same procedure. The local-

ization parameters for the experiment where we observe only the * large” process are given in Table B1. The localization

parameters for the experiment where we observe both processes are given in Table B2.

Function name

Univariate parameters

Multivariate parameters

Gaspari-Cohn
Bolin-Wallin
Askey
Wendland

R=20

R=20
R=20,v=1
R=20,v=2,k=1

Ryy =20, Rxx =40, Rxy =30, § ~ 0.62

Ryy =20, Rxx =40, Rxy =30, 5~ 0.35

Ryy =20, Rxx =40, Rxy =20,8~04l,v=1,7vy =2,7xx =0, 7xy =1

Ryy =20, Rxx =40, Rxy =20,8~0.14,v =2,7vy =2, 7xx =0, 7xy =1, k=1

Table B1. Localization parameters for the experiment where we observe only the “terglarge” process.

Function name

Univariate parameters

Multivariate parameters

Gaspari-Cohn
Bolin-Wallin
Askey
Wendland

R=15

R=15
R=15v=1
R=15v=2k=1

Ryy =15, Rxx =40, Rxy =27.5, 3~ 0.44
Ryy =15, Rxx =40, Rxy = 27.5, 3~ 0.23
Ryy =15, Rxx =40, Rxy =15, 37046, v =1,7vy =2, 7xx = 1, yxy = 15
Ryy =15, Rxx =40, Rxy = 15,5%0.07,Nl/: 2,7y =2,7xx=0,vxy=1Lk=1

Table B2. Localization parameters for the experiment where we observe both processes.
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