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Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-

derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of

a coupled model to directly impact another component through inclusion of cross-domain terms in the background error co-

variance matrix. When different components have disparate dominant spatial scales, localization between model domains must

properly account for the multiple length scales at play. In this work we develop two new multivariate localization functions,5

one of which is a multivariate extension of the fifth-order piecewise rational Gaspari-Cohn localization function; the within-

component localization functions are standard Gaspari-Cohn with different localization radii while the cross-localization func-

tion is newly constructed. The functions produce positive semidefinite localization matrices, which are suitable for use in

::::
both

::::::
Kalman

::::::
Filters

::::
and variational data assimilation schemes. We compare the performance of our two new multivariate lo-

calization functions to two other multivariate localization functions and to the univariate
:::
and

::::::
weakly

:::::::
coupled

:
analogs of all10

four functions in a simple experiment with the bivariate Lorenz ’96 system. In our experiment
:::::::::
experiments

:
the multivariate

Gaspari-Cohn function leads to better performance than any of the other
::::::::::
multivariate localization functions.

1 Introduction

An essential part of any data assimilation (DA) method is the estimation of the background error covariance matrix Pb. The

background error covariance statistics stored in Pb provide a structure function that determines how observed quantities affect15

the model state variables, which is of particular importance when the state space is not fully observed (Bannister, 2008).

A poorly designed Pb matrix may lead to an analysis estimate, after the assimilation of observations, that is worse than the

prior state estimate (Morss and Emanuel, 2002). In ensemble DA schemes the Pb matrix is estimated through an ensemble

average. Using an ensemble to estimate Pb allows the estimates of the background error statistics to change with the model

state, which is desirable in many geophysical systems
::::::::::::::::::::::::::::::::
(Smith et al., 2017; Frolov et al., 2021). However, this estimate of Pb20

will always include noise due to sampling errors because the ensemble size is finite. In practice, ensemble size is limited

by computational resources and hence sampling errors can be substantial. The standard practice to mitigate the impact of

these errors is localization. A number of different localization methods exist in the DA literature (e.g Gaspari and Cohn,

1999; Houtekamer and Mitchell, 2001; Bishop and Hodyss, 2007; Anderson, 2012; Ménétrier et al., 2015). In this study

we concentrate on distance-based localization. Distanced-based localization uses physical distance as a proxy for correlation25
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strength and sets correlations to zero when the distance between the variables in question is sufficiently large. Localization is

typically incorporated into the data assimilation in one of two ways - either through the Pb matrix or through the observation

error covariance R (Greybush et al., 2011). We are focusing on Schur (or elementwise) product localization applied directly to

the Pb matrix. The Schur product theorem (Horn and Johnson, 2012, Theorem 7.5.3) guarantees that if the localization matrix

is positive semidefinite, then the localized estimate of Pb is also positive semidefinite. Positive semidefiniteness of estimates30

of Pb is essential for the convergence of variational schemes and interpretability of schemes like the Kalman Filter which are

intended at minimizing the statistical variance of the estimation error.

The localization functions presented in this work are suitable for use in coupled DA, where two or more interacting large-

scale model components are assimilated in one unified framework. Coupled DA is widely recognized as a burgeoning and vital

field of study. In Earth system modeling in particular, coupled DA shows improvements over single domain analyses (Sluka35

et al., 2016; Penny et al., 2019). However, coupled DA systems face unique challenges as they involve simultaneous analysis

of multiple domains spanning different spatiotemporal scales. Cross-domain error correlations in particular are found to be

spatially inhomogeneous (Smith et al., 2017)
:::::::::::::::::::::::::::::::
(Smith et al., 2017; Frolov et al., 2021). Schemes that include cross-domain error

correlations in the Pb matrix are broadly classified as strongly coupled, which is distinguished from weakly coupled schemes

where Pb does not include any nonzero cross-domain error correlations. The inclusion of cross-domain correlations in Pb40

offers advantages, particularly when one model domain is more densely observed than another (Smith et al., 2020). Strongly

coupled DA requires careful treatment of cross-domain correlations with special attention to the different correlation length

scales of the different model components. Previous studies, discussed below, show that appropriate localization schemes are

vital to the success of strongly coupled DA.

As in single domain DA, there is a broad suite of localization schemes proposed for use in strongly coupled DA. Lu et al.45

(2015) artificially deflate cross-domain correlations with a tunable parameter. Yoshida and Kalnay (2018) use an offline method,

called correlation-cutoff, to determine which observations to assimilate into which model variables and the associated local-

ization weights. The distance-based multivariate localization functions developed in Roh et al. (2015) allow for different lo-

calization functions for each component and are positive semidefinite
::::::
definite, but require a single localization scale across all

components. Other distance-based localization schemes allow for different localization length scales for each component, but50

are not necessarily positive semidefinite (Frolov et al., 2016; Smith et al., 2018; Shen et al., 2018). Frolov et al. (2016) report

that their proposed localization matrix is experimentally positive semidefinite for some length scales. Smith et al. (2018) use a

similar method and find cases in which their localization matrix is not positive semidefinite.

In this work, we build on these methods and investigate distance-based, multivariate, positive semidefinite localization func-

tions and their use in strongly coupled DA schemes. We introduce a new multivariate extension of the popular fifth-order55

piecewise rational localization function of Gaspari and Cohn (1999) (hereafter GC). This function is positive semidefinite

for all length scales and hence appropriate for Ensemble-Variational (EnVar) schemes. We compare this to another newly

developed multivariate localization function that extends Bolin and Wallin (2016), and to two other functions from the lit-

erature (Daley et al., 2015). We investigate the behavior of these functions in a simple bivariate model proposed by Lorenz

(1996). In particular, we look at the impact of variable localization on the cross-domain localization function. We show that60
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these functions are compatible with variable localization schemes of Lu et al. (2015); Yoshida and Kalnay (2018). We find

that, in our set up
::::
some

::::::
setups, artificially decreasing the magnitude of the cross-domain correlation hinders the assimilation of

observations
:
,
::::
while

:::
in

::::
other

::::::
setups

:::
the

:::
best

:::::::::::
performance

:::::
come

::::
when

:::::
there

:::
are

::
no

::::::::::::
cross-domain

::::::
updates. We compare all of the

multivariate functions to their univariate
:::
and

::::::
weakly

:::::::
coupled

:
analogs and observe that the new multivariate extension of GC

outperforms all
:::::::::
multivariate

:
competitors.65

This paper is organized as follows. In Sect. 2 we present two new multivariate localization functions and two multivariate

localization functions from the literature. In Sect. 3 we describe the set up for the experiment whose results are presented in

Sect. 3.1
::::::::::
experiments

::::
with

:::
the

::::::::
bivariate

::::::
Lorenz

::
96

::::::
model.

:::
We

::::::::
conclude

::
in

::::::
section

::
4.

2 Multivariate localization functions

2.1 Multivariate localization background70

Consider the background error covariance matrix Pb of a strongly coupled DA scheme with interacting model components X

and Y . The Pb matrix may be written in terms of within-component background error covariances for components X and Y

(Pb
XX and Pb

YY) and cross-domain covariances between X and Y (Pb
XY and Pb

YX). Here Pb
XY controls the effect of system

X on Y and vice versa for Pb
YX. Strongly coupled DA is characterized by the inclusion of nonzero cross-domain covariances

in Pb
XY and Pb

YX. Similar to Pb, the localization matrix L may be decomposed into a 2×2 block matrix so that the localized75

estimate of the background covariance matrix is given by

L ◦Pb =

LXX LXY

LYX LYY

 ◦
Pb

XX Pb
XY

Pb
YX Pb

YY

 , (1)

where ◦ denotes a Schur product. In distance-based localization, the elements in the L matrix are evaluated through a localiza-

tion function L with a specified localization radius R, beyond which L is zero. For example, if Pb
ij is the sample covariance

Cov(ηi,ηj) where ηi = η(si) denotes the background error in process X at spatial location si ∈ Rn, then the associated local-80

ization weight is Lij = L(dij), where dij = ‖si− sj‖. Furthermore, if d > R then L(d) = 0.

Often different model components will have different optimal localization radii and hence one may wish to use a different

localization function for each model component (Ying et al., 2018). Let LXX and the LY Y be the localization functions as-

sociated with model components X and Y respectively. A fundamental difficulty in localization for strongly coupled DA is

how to propose a cross-localization function LXY to populate both LXY and LYX such that whenever a block localization85

matrix L is formed through evaluation of {LXX ,LY Y ,LXY } then L is positive semidefinite. We call this collection of com-

ponent functions a multivariate positive semidefinite function if it always produces a positive semidefinite L matrix (Genton

and Kleiber, 2015). We refer to multivariate positive semidefinite functions as multivariate localization functions when they

are used to localize background error covariance matrices. In this study we compare four different multivariate localization

functions, including one that extends GC.90
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Similar block localization matrices are used in scale-dependent localization, where X and Y are not components, but rather

a decomposition of spectral wavebands from a single process. Scale-dependent localization aims to use a different localization

radius for each waveband, which leads to the same question of how to construct the between-scale localization blocks. Buehner

and Shlyaeva (2015) constructed LXX and LYY through evaluation of localization functions with different radii. They then

constructed the cross-localization matrix through LXY = (LXX)
1/2

(LYY)
T/2, with LYX defined analogously. This is ap-95

propriate for scale-dependent localization where X and Y are defined on the same grid and hence LXX and LYY are of the

same dimension. It is still an open question how to extend this construction to the strongly coupled application where different

components are defined on different grids. The multivariate localization functions we construct below could also be used in

scale-dependent localization.

In our comparison of multivariate localization functions, we investigate the impact of the shape parameters cross-localization100

radius, and cross-localization weight factor. The cross-localization radius, RXY , is the smallest distance such that for all

d > RXY we have LXY (d) = 0. For all of the functions in this study, the cross-localization radius is related to the within-

component localization radii RXX and RY Y . We define the cross-localization weight factor, β ≥ 0, as the value of the cross-

localization function at distance d= 0, i.e. β := LXY (0). The cross-localization weight factor β is restricted to be less than

or equal to 1 in order to ensure positive semidefiniteness (Genton and Kleiber, 2015) and smaller values of β lead to smaller105

analysis updates when updating the X model component using observations of Y , and vice versa. Each function we consider

has a different maximum allowable cross-localization weight, which we denote βmax. Values of β greater than βmax lead to

functions that are not necessarily positive semidefinite, while values of β less than βmax are allowable and may be useful in

attenuating undesirable correlations between blocks of variables (Lu et al., 2015). However, we find that in our experimental

setup the best performance comes when β = βmax.110

Note that while this example shows model space localization for a coupled model with two model components, the local-

ization functions we develop and investigate may also be used in observation space localization, and can be extended to an

arbitrary number of model components.

2.2 Kernel convolution

Localization functions created through kernel convolution, such as GC, may be extended to multivariate functions in the fol-115

lowing straightforward manner. Suppose LXX(d) = [kX ∗ kX ](d) and LY Y (d) = [kY ∗ kY ](d) where d ∈ Rn, d= ‖d‖, (∗)
denotes convolution over Rn, and kX , kY are square integrable functions. For ease of notation let the kernels kX and kY be

normalized such that LXX(0) = LY Y (0) = 1, which is appropriate for localization functions. Then the function LXY (d) =

[kX ∗ kY ](d) is a compatible cross-localization function in the sense that, when taken together {LXX ,LY Y ,LXY } is a multi-

variate, positive semidefinite function.120

As a proof, we define two processes Zj , where j can represent either X or Y , as the convolution of the kernel kj with a

white noise fieldW:

Zj(s) =

∫
Rn

kj(s− t)dWt. (2)
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It is straightforward to show that the localization functions we have defined are exactly the covariance functions for these two

processes,Lij(d) = Cov(Zi(s),Zj(t)), with i, j =X,Y , locations s,t ∈ Rn, and distance d= ‖s−t‖. Thus {LXX ,LY Y ,LXY }125

is a multivariate covariance function, and hence a multivariate, positive semidefinite function (Genton and Kleiber, 2015).

For localization functions created through kernel convolution the localization radii are related to the kernel radii. Suppose

the kernels kX and kY have radii cX and cY , i.e. kj(d) = 0 for all d > cj . The convolution of two kernels is zero at distances

greater than the sum of the kernel radii. Thus the implied within-component localization radii are Rjj = 2cj , for processes

j =X,Y . Further, the implied cross-localization radius is the sum of the two kernel radii RXY = cX + cY . Equivalently, the130

cross-localization radius is the average of the two within-component localization radii,RXY = 1
2 (RXX+RY Y ), which is how

we will write it going forward. Interestingly, this is exactly the cross-localization radius used in Frolov et al. (2016) and Smith

et al. (2018).

Unlike within-component localization functions, cross-localization functions created through kernel convolution will al-

ways have LXY (0)< 1 whenever kX 6≡ kY . The maximum allowable cross-localization weight factor (β := LXY (0)) is ex-135

actly the value produced through the convolution, i.e. βmax = [kX ∗ kY ](0). Smaller cross-localization weight factors also

lead to positive semidefinite functions since if {LXX ,LY Y ,LXY } is a multivariate, positive semidefinite function, then so is

{LXX ,LY Y ,βLXY } for β < 1 (Roh et al., 2015). To aid in comparisons to other cross-localization functions, we re-define

kernel-based cross-localization functions as,

LXY (d) =
β

βmax
[kX ∗ kY ] (d) (3)140

with β ≤ βmax. In this way LXY (0) = β
βmax

[kX ∗ kY ] (0) = β which is consistent with our definition of the cross-localization

weight factor in the previous section. We will experiment with the impact of varying β, but must always ensure β ≤ βmax to

maintain positive semidefiniteness.

For most kernels, closed form analytic expressions for the convolutions above are not available. In the following two sections

we present two cases below where a closed form is available. The kernels used in these two cases are the tent function (GC)145

and the indicator function (Bolin-Wallin).

2.3 Multivariate Gaspari-Cohn

The standard univariate GC localization function is constructed through convolution over R3 of the kernel, k(r)∝
(
1− r

c

)
+

with itself. Here we define r = ‖r‖ with r ∈ R3 and z+ = max{z,0}. The kernel has radius c and is normalized so that

L(0) = [k ∗ k] (0) = 1. As discussed in the previous section, the localization radius, R, is related to the kernel radius through150

R= 2c. We develop a multivariate extension of this function through convolutions with two kernels,

kj(r)∝
(

1− r

cj

)
+

, j =X,Y. (4)

The resulting within-component localization functions L(GC)
jj (d) = [kj ∗kj ](d) are exactly equal to GC, Eq. (4.10) in Gaspari

and Cohn (1999). The formula for the cross-localization functionL(GC)
XY (d) = [kX∗kY ](d) is quite lengthy and is thus included

in Appendix A.155
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Figure 1. Four multivariate localization functions are shown in three panels. The first panel shows the function LY Y ::::
LXX used to localize

the short
:::
long

:
process, Y

::
X . The second panel shows the function LXX ::::

LY Y :
used to localize the long

:::
short

:
process, X

::
Y . The third

panel shows the cross-localization function LXY . In each panel, the color of the line shows the different multivariate functions: Gaspari-

Cohn (blue
:::::
green,

::::
solid), Bolin-Wallin (red

::::
dark,

:::::
dashed), Askey (yellow

::::
dark,

:::::
dotted), and Wendland (purple

:::
dark,

:::::::
dash-dot). In the case of

univariate localization, the functions in the left
:::::
middle

:
panel are used to localize all processes. The within component localization radii are

RY Y = 15 and RXX = 45 for all functions. The cross-localization radii are RXY = 30 for Gaspari-Cohn and Bolin-Wallin and RXY = 15

for Askey and Wendland.

Recalling from the previous section that the maximum cross-localization weight factor is βmax = [kX ∗ kY ](0), we find

that for multivariate GC βmax = 5
2κ
−3− 3

2κ
−5, where for convenience we define κ2 = max{RXX ,RY Y }

min{RXX ,RY Y } as a ratio of the within-

component localization radii. As with all localization functions created through kernel convolution, the cross-localization radius

is the average of the within-component localization radii,RXY = 1
2 (RXX+RY Y ). An example multivariate GC function with

RXX = 45, andRY Y = 15, and β = βmax is shown in Fig. 1. The multivariate GC localization function for three or more model160

components is discussed in Appendix A3.

2.4 Multivariate Bolin-Wallin

We derive our second multivariate localization function through convolution of normalized indicator functions over a sphere in

R3. As in the previous section, the kernels are supported on spheres of radii cX and cY ,

kj(r) =

√
3√

4πc3j

Icj (r) , j =X,Y, (5)165

where Icj (r) is an indicator function which is 1 if r ≤ cj and 0 otherwise. The resulting within-component localization function

with localization radius Rjj = 2cj is

L(BW )
jj (d) =

(
1

2R3
jj

)
(Rjj − d)

2
(2Rjj + d) if d≤Rjj (6)
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This is commonly referred to as the spherical covariance function. The label (BW ) references Bolin and Wallin, who performed

the convolutions necessary to create the associated cross-localization function in a work aimed at a different application of170

covariance functions (Bolin and Wallin, 2016). While Bolin and Wallin never developed multivariate covariance (or in our case

localization) functions, the algebra is the same. We present only the localization functions that result from the convolution over

R3, though similar functions for R2 and Rn are available in Bolin and Wallin (2016). Note that there is a typo in Bolin and

Wallin (2016), which has been corrected below.

Let cX > cY be kernel radii, then the resulting cross-localization function is,175

L(BW )
XY (d) =

β

βmax
· 3

4π (cXcY )
3/2
·


4πc3Y

3 if d < cX − cY
V3

(
cX ,

d2+c2X−c
2
Y

2d

)
+V3

(
cY ,

d2+c2Y −c
2
X

2d

)
if cX − cY ≤ d < cX + cY .

(7)

Here V3(r,x) denotes the volume of the spherical cap with triangular height x of a sphere with radius r, which is given by

V3(r,x) =

 π
3 (r−x)2(2r+x) |x|< r

0 otherwise.
(8)

As with multivariate GC, it is convenient to define a ratio of within-component localization radii by κ2 = max{RXX ,RY Y }
min{RXX ,RY Y } .

Then we can write the maximum cross-localization weight factor as βmax = κ−3. The cross-localization radius for BW is180

RXY = 1
2 (RXX+RY Y ) because it is created through kernel convolution. An example multivariate BW function withRXX =

45, RY Y = 15, and β = βmax is shown in Fig. 1.

2.5 Wendland-Gneiting functions

We compare the two functions of the preceding sections to the Wendland-Gneiting family of multivariate, compactly-supported,

positive semidefinite functions. This family is not generated through kernel convolution, but rather through Montée and De-185

scente operators (Gneiting, 2002). The simplest univariate function in this family is the the Askey function, which is given by

L(d) =

(
1− d

R

)ν
+

(9)

with shape parameter ν and localization radius R. Other functions in this family are called Wendland functions. Several

examples of univariate Wendland functions are displayed in Table 1.190

Porcu et al. (2013) developed a multivariate version of the Askey function, where the exponent in equation
:::
Eq.

:
(9) can

be different for each process while the localization radius R is constant across all processes. Roh et al. (2015) found that this

multivariate localization function outperforms common univariate localization methods when assimilating observations into the

bivariate Lorenz 96 model. Daley et al. (2015) extended the work of Porcu et al. (2013) and constructed a multivariate version

of general Wendland-Gneiting functions that allows for different localization radii for different processes. The multivariate195
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Original Wendland Functions

ψ̃3,1(d) = (1− d)4+(4d+1)

ψ̃4,2(d) =
1
3
(1− d)6+

(
35d2 +18d+3

)
ψ̃5,3(d) = (1− d)8+

(
32d3 +25d2 +8d+1

)
ψ̃6,4(d) =

1
5
(1− d)10+

(
429d4 +450d3 +210d2 +50d+5

)
Table 1. Selected univariate Wendland functions

Askey function from Daley et al. (2015) has the form,

L(A)
ij (d) = βij

(
1− d

Rij

)ν+γij+1

+

, βij =

1 i= j

β i 6= j
, i, j =X,Y (10)

The general form for multivariate Wendland functions is,

L(W )
ij (d) = βijψ̃ν+γij+1,k

(
d

Rij

)
, βij =

1 i= j

β i 6= j
, i, j =X,Y (11)

where ψ̃ is defined as,200

ψ̃ν+γ+1,k(w) =
1

B(2k+ 1,ν+ γ+ 1)

1∫
w

(
u2−w2

)k
(1−u)ν+γdu (12)

with B the beta function, B(x,y) =
∫ 1

0
tx−1(1−t)y−1dt. The parameters ν and {γij} are related to the shape of the localization

functions, and are necessary to guarantee positive definiteness
:::::::::::::
semidefiniteness in a given dimension. The parameter k deter-

mines the differentiability of the Wendland functions at lag zero (Gneiting, 2002). Note that the Askey function in equation

:::
Eq. (10) is a special case of the Wendland function (11) which corresponds to the case k = 0. Daley et al. (2015) gave sufficient205

conditions on the parameters ν, k, Rij , γij , and β to guarantee that equation
:::
Eq.

:
(11), and hence (10), is positive semidefi-

nite. In particular for two processes X,Y , equation
::
X

::::
and

::
Y ,

:::
Eq.

:
(11) is positive semidefinite on Rn when ν ≥ 1

2 (n+ 1) + k,

min{RXX ,RY Y } ≥RXY , γXY ≥ RXY

2

(
γXX

RXX
+ γY Y

RY Y

)
, and

β ≤ βmax :=

√(
R2
XY

RXXRY Y

)ν+2k+1
B(ν+ 2k+ 1,γXY + 1)2

B(ν+ 2k+ 1,γXX + 1)B(ν+ 2k+ 1,γY Y + 1)
. (13)

Going forward we consider the multivariate Askey function (10) and the multivariate Wendland function with k = 1 in (11).210

Note that with both of these functions the cross-localization radius depends only on the smallest localization radius. In

fact, we choose RXY = min{RXX ,RY Y }, although smaller values for RXY also produce positive semidefinite functions.

Thus for given RXX and RY Y , the cross-localization radius for Askey and Wendland functions is always smaller than the

cross-localization radius for GC and BW. With the choice RXY = min{RXX ,RY Y }, we see that βmax depends on the ratio

8



max{RXX ,RY Y }
min{RXX ,RY Y } , as in GC and BW. Examples of multivariate Askey and Wendland functions with RXX = 45, RY Y = 15,215

RXY = 15, and β = βmax are shown in Fig. 1. Important parameters for the four multivariate localization functions presented

in this section are summarized in Table 2.

Function name Maximum cross-localization weight factor, Cross-localization radius

κ2 = max{RXX ,RY Y }
min{RXX ,RY Y }

Gaspari-Cohn 5
2
κ−3− 3

2
κ−5 1

2
(RXX +RY Y )

Bolin-Wallin κ−3 1
2
(RXX +RY Y )

Askey κ−(ν+1)
√

B(ν+1,γXY +1)2

B(ν+1,γXX+1)B(ν+1,γY Y +1)
min{RXX ,RY Y }

Wendland κ−(ν+2k+1)
√

B(ν+2k+1,γXY +1)2

B(ν+2k+1,γXX+1)B(ν+2k+1,γY Y +1)
min{RXX ,RY Y }

Table 2. Summary of localization
:::::::
important

::::
shape

:::::::::
parameters

::
for

::::
four

:::::::::::::
cross-localization functions.

3 Experimental design
::::::::::
Experiments

We compare the
::
In

:::
this

::::::
section

:::
we

:::::::::
investigate

:::
the

::::::::::
performance

:::
of

:
a
::::
data

::::::::::
assimilation

::::::
scheme

:::::
using

::::
each

::
of

:::
the four multivariate

localization functions
::::::::
presented in Sect. 2to .

::::
We

::::::
choose

:
a
:::::
setup

:::::
which

:::::::
isolates

:::
the

::::::
impact

::
of

:::
the

:::::::::::::::
cross-localization

::::::::
functions220

:::
and

:::::
relate

:::
the

::::
filter

:::::::::::
performance

::
to

::::::::
important

:::::::::::::::
cross-localization

:::::
shape

::::::::::
parameters.

:::
As

:
a
:::::::
baseline

:::
for

:::::::::::
comparison,

:::
we

:::
also

::::
test

two simple approaches to localization for coupled DA. The first method uses a single localization function and radius to

localize all within- and cross-component blocks of the background error covariance matrix
:
,
:::
i.e.

::::::::::::::::::
LXX ≡ LY Y ≡ LXY . We call

this approach univariate localization. The second simple approach is to use
:
In

:::::::
systems

::::
with

::::
very

:::::::
different

:::::::
optimal

::::::::::
localization

::::
radii

:::
this

::::
type

:::
of

::::::::
univariate

::::::::::
localization

::
is

:::::
likely

::
to

:::::::
perform

:::::::
poorly,

:::::::
however

::
it

::::
does

:::::::
provide

:
a
::::::
useful

::::::::::
comparison

:::::
point.

::::
The225

::::::
second

:::::::
approach

::::
uses

:
different localization functions for each process and then zero

:::::
zeroes

:
out all cross-correlations between

processes. This approach
:
,
:::
i.e.

::::::::::::
LXX 6= LY Y ,::::

and
::::::::
LXY ≡ 0.

::::
We

:::
call

::::
this

::::::::
approach

::::::
weakly

:::::::
coupled

:::::::::::
localization

::
as

::
it

:
leads

to a “weakly ” coupled scheme, which is not the focus of this work. Additionally, in our setup we observe only one of the

two processes and we find that when the assimilation is not allowed to update the unobserved process the result is prone to

catastrophic divergence. Hence going forward we focus on the comparison between univariate and multivariate localization. In230

this section we outline the details of the model and assimilation scheme.
:::::
weakly

:::::::
coupled

::::
data

::::::::::
assimilation

:::::::
scheme.

::::
All

::
of

:::
the

::::::::::
experiments

:::
are

:::
run

::::
with

:::
the

:::::::
bivariate

::::::
Lorenz

:::
96

::::::
model,

:::::
which

::
is
::::::::
described

::::::
below

::::::::::::
(Lorenz, 1996)

:
.

3.1 Bivariate Lorenz model

The bivariate Lorenz 96 model is a simple model of two coupled variables
:::::::::
conceptual

::::::
model

::
of

::::::::::
atmospheric

::::::::
processes

::::
and

::
is

::::::::
comprised

::
of

::::
two

:::::::
coupled

::::::::
processes with distinct temporal and spatial scales. This model is a conceptual model of atmospheric235

processes, where the
:::
The

:
“short” process can be thought of as rapidly-varying small-scale convective fluctuations and

:::::
while

the “long” process can be thought of as smooth large-scale waves. The model is periodic in the spatial domain, as a process on

a fixed latitude band would be. In the bivariate Lorenz 96 model, X is the

9



:::
The “long” processwith

:
,
::
X ,

:::
has

:
K distinct variables,Xk for k = 1, . . . ,K. The “short” process, Y , has JK distinct variables,

Yj,k for j = 1, . . .J,k = 1, . . . ,K. The governing equations are,240

dXk

dt
= −Xk−1 (Xk−2−Xk+1)−Xk − (ha/b)

J∑
j=1

Yj,k +F

dYj,k
dt

= −abYj+1,k (Yj+2,k −Yj−1,k)− aYj,k + (ha/b)Xk.

The Y process is divided into K sectors, with each sector corresponding to one “long” variable Xk.
:::::
There

:::
are

::
J
:::::::
“short”

::::::
process

::::::::
variables

::
in

::::
each

::::::
sector,

::
for

::
a
::::
total

::
of

::::
JK

::::::
distinct

::
Y

::::::::
variables,

::::
Yj,k:::

for
:::::::::::::::::::::
j = 1, . . . ,J,k = 1, . . . ,K.

:
The Y variables, ar-

ranged in order, are Y1,1,Y2,1, . . . ,YJ,1,Y1,2,Y2,2, . . . ,YJ,K . Succinctly, Yj−J,k = Yj,k−1 and Yj+J,k = Yj,k+1, with periodicity245

conditions Yj,k+K = Yj,k−K = Yj,k for all j,k. The X process is also periodic with Xk+K =Xk−K =Xk for all k.

We
:::::::
represent

:::
the

::::::::
variables

::
on

::
a
:::::
circle

:::::
where

:::
the

:::
arc

:::::
length

::::::::
between

::::::::::
neighboring

::
Y

::::::::
variables

:
is
::
1.
:::::::::::
Equivalently,

:::
the

::::::
radius

::
of

::
the

:::::
circle

::
is
::::::::
r = JK

2π .
:::::::
Variable

::::
Yj,k ::

is
::::::
located

::
at

::::::::::::::::::::
(r cos(θj,k), r sin(θj,k))

:::::
where

::::::::::::::::::::::
θj,k = 2π

JK (J(k− 1) + j).
:::
We

::::::
choose

::
to

:::::
place

::
the

:::::::
variable

::::
Xk,

::::::
located

::
at
:::::::::::::::::::
(r cos(φk), r sin(φk)),

::
in

:::
the

::::::
middle

::
of

:::
the

::::::
sector

:::::
whose

::::::::
variables

:::
are

:::::::
coupled

::
to

::
it,

::::
e.g.

:
if
:::::::
J = 10

:::
then

::::
Xk :

is
:::::::
halfway

::
in

:::::::
between

::::
Y5,k:::

and
::::
Y6,k::::

and
:::::::::::::::::::::::
φk = 2π

10K (10(k− 1) + 5.5).
::::
The

::::::::
placement

::
of

:::::
these

:::::::
variables

::
is
:::::::::
illustrated

::
in250

:::
Fig.

::
2.

::::
The

:::::
chord

:::::::
distance

:::::::
between

:::
any

::::
two

:::::::
variables

::
is

::::::::::
2r sin

(
∆θ
2

)
,
::::::
where

:::
∆θ

::
is

::
the

:::::
angle

:::::::::
increment,

::::
e.g.

::
the

:::::
angle

:::::::::
increment

:::::::
between

:::::
Yj1,k1:::

and
::::::
Yj2,k2 ::

is
::::::::::::::::::
∆θ = |θj1,k1 − θj2,k2 |.:

:::
The

:::::::::
governing

::::::::
equations

:::
are,

:

dXk

dt
::::

=
:
−Xk−1 (Xk−2−Xk+1)−Xk −

(
ha

b

) J∑
j=1

Yj,k +F

::::::::::::::::::::::::::::::::::::::::::

(14)

dYj,k
dt

::::

=
:
−abYj+1,k (Yj+2,k −Yj−1,k)− aYj,k +

(
ha

b

)
Xk.

:::::::::::::::::::::::::::::::::::::::::

(15)255

:::
We follow Lorenz (1996) and let K = 36,J = 10, so there are

::
36

::::::
sectors

::::
and 10 times more “short” variables than “long”

variables. We let a= 10 and b= 10, indicating that convective scales fluctuate 10 times faster than the larger scales, while their

amplitude is around 1/10 as large. For the forcing we choose F = 10, which Lorenz (1996) found to be sufficient to make both

scales behave chaotically. All simulations are performed using an adaptive fourth-order Runge-Kutta method with relative error

tolerance 10−3 and absolute error tolerance 10−6 (Dormand and Prince, 1980; Shampine and Reichelt, 1997). The solutions260

are output with
:::
each

:::::::::::
assimilation

:::::
cycle.

::::::
Unless

::::::::
otherwise

::::::::
specified,

:::
the

::::::::::
assimilation

::::::
cycles

:::
are

::::::::
separated

::
by

:
a time interval of

0.005 model time units
::::::
(MTU), which Lorenz (1996) found to be similar to or 36 minutes in more realistic settings. This time

scale is 10 times shorter than the time scale typically used in the univariate Lorenz 96 model. The factor of 10 is consistent

with the understanding that the “short” process evolves 10 times faster than the “long” process, where the “long” process is

akin to the univariate Lorenz 96 model. In choosing the coupling strength, we follow Roh et al. (2015) and set h= 2, which is265

twice as strong as the coupling used by Lorenz. Increasing
::::::
Varying

:
the coupling strength leads to larger covariances between

the forecast errors in processes X and Y , thereby making the effect of cross-localization more pronounced and easier to study.
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Figure 1: Inspiration from the Wilks 2005 paper in QJRMS. Figure can be adapted for other values of K and J .

1

Figure 2. Left: Schematic illustrating the location of the different variables in the bivariate Lorenz 96 model, inspired by Wilks (2005). The

setup has K = 36 sectors, with J = 10 “short” process variables per sector. The “long” process is shown on the inner circle and each X

variable is labeled. The “short” process is shown, unlabeled, on the outer circle. Brackets show the sectors. Right: A single snapshot of the

bivariate Lorenz 96 model with variables placed on a circle. The “long” process X is shown with a
:::
(red,

:
dashedline and

:
) has

:::::::::
fluctuations

:::
with

:
amplitude about 10 times larger than the

::::::::
fluctuation

::
of

::
the

:
“short” process Y (

::::
dark, solidblack line).

:
h
::::::
across

:::::
values

:::::::
{ 1

2 ,1,4}:::::::
changes

:::
the

:::::::::
magnitude

::
of

:::
the

:::::::
analysis

:::::
errors,

:::
but

::::
does

:::
not

:::::::
change

::
the

:::::::
relative

::::::::::
performance

::
of

::::::::
different

:::::::::
localization

::::::::
functions

::
in

:::
our

:::::::::::
experiments.

:

The variables are periodic, so we represent them on a circle where the arc length between neighboring Y variables is 1.270

There are 360 Y variables, so the radius of the circle is r = 180/π. Variable Yj ,k is located at (r cos(θj,k), r sin(θj,k)) where

θj,k = π(10(k−1)+j)
180 . We choose to place the variableXk in the middle of the sector whose variables are coupled to it, i. e.Xk is

halfway in between Y5,k and Y6,k. Variable Xk is located at (r cos(φk), r sin(φk)) where φk = π(10(k−1)+5.5)
180 . The placement

of these variables is illustrated in Fig. 2. The chord distance between any two variables is 2r sin
(

∆θ
2

)
, where ∆θ is the angle

increment, e.g. the angle increment between Yj1,k1 and Yj2,k2 is ∆θ = |θj1,k1 − θj2,k2 |.275

3.2 The assimilation
:::::::::::
Assimilation scheme

We develop localization functions for data assimilation schemes that rely on Schur product modification of the background error

covariance matrix B. In our experiments we use the stochastic Ensemble Kalman Filter (EnKF) (Evensen, 1994; Houtekamer

and Mitchell, 1998; Burgers et al., 1998). However, because 3D-Var and the analysis step of the Kalman Filter are equivalent

in the case of a linear observation operator (Daley, 1993), our results translate to EnVar schemes as well. The positive280

semi-definiteness of the localization matrix is essential to ensure convergence of the numerical optimization methods used

to implement EnVar (Bannister, 2008). The
:::
The

:
EnKF update formula for a single ensemble member is

xa = +
√
λxb−+ K

(
y +η−Hxb

)
(16)
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where xa is the analysis vector, xb is the background state vector, xb is the background ensemble mean, λ is the inflation

factor, y is the observation, each element of η is a random draw from the probability distribution of observation errors, and H285

is the linear observation operator. The Kalman gain matrix K is

K = PbH
T
(
HPbH

T
+ R

)−1

(17)

where Pb is the background error covariance matrix and R is the observation error covariance matrix. The background covari-

ance matrix is approximated by a sample covariance matrix from an ensemble, xi for i= 1, . . . ,Ne where Ne is the ensemble

size. The localization matrix L is incorporated into the estimate of the background covariance matrix through a Schur product290

as in equation (1). In this experiment we use the adaptive inflation scheme of El Gharamti (2018) and apply the inflation to the

prior estimate
:::::
inflate

::::
each

:::::
prior

::::::::
ensemble

:::::::
member

:::::::
through,

xb
λ = xb + Λ1/2

(
xb−xb

)
,

:::::::::::::::::::::::

(18)

:::::
where

::
Λ

::
is

:
a
::::::::
diagonal

::::::
matrix

::::
with

::::
each

:::::::
element

::
on

:::
the

::::::::
diagonal

:::::::::
containing

:::
the

:::::::
inflation

:::::
factor

:::
for

::::
one

:::::::
variable

:::
and

:::
xb

::
is

:::
the

:::::::::
background

:::::::::
ensemble

:::::
mean.

:::
We

::::
then

:::
use

:::
xb
λ::

in
:::::
place

::
of

:::
xb

::
in

:::
Eq.

::::
(16)

::::
and

::
in

:::
the

:::::::::
estimation

::
of

::::
Pb.

::::
Note

::::
that

:::::::::
estimating

:::
Pb295

::::
with

::
the

:::::::
inflated

::::::::
ensemble

::
is

::::::::
equivalent

::
to

:::::::::
estimating

::
it

::::
with

::
the

:::::::
original

::::::::
ensemble

:::
and

::::
then

::::::::::
multiplying

::
by

:::::
Λ1/2

::
on

:::
the

:::
left

::::
and

::::
right,

::::::::::::
Λ1/2PbΛ1/2. We initialize the inflation factor at λ= 1.1 everywhere, and the inflation variance at

:::::
factors

::::
with

:::::::::
Λ = 1.1I,

:::::
where

:
I
::
is
:::
the

:::::::
identity

::::::
matrix.

:::::::::::::::::
El Gharamti (2018)

::::::
defined

:
a
:::::
prior

:::::::
variance

:::::::::
associated

::::
with

::::
each

:::::::
inflation

::::::
factor.

:::
We

::::::::
initialize

::
the

:::::
prior

:::::::
inflation

:::::::
variance

::::
with

:
σ2
λ = 0.09 .

:::
and

:::::
update

:::
the

::::::::
variance

::::::::
following

:::
the

::::::::
enhanced

:::::::
adaptive

:::::::
inflation

:::::::::
algorithm.

::::
The

:::::::::
localization

::::::
matrix

::
L
::

is
:::::::::::

incorporated
::::
into

:::
the

::::::::
estimate

::
of

:::
the

::::::::::
background

:::::::::
covariance

::::::
matrix

:::::::
through

::
a
:::::
Schur

:::::::
product

::
as

:::
in300

:::
Eq.

:::
(1).

:

We use Ne = 20 ensemble members, except where otherwise noted. The small ensemble size is chosen to accentuate the

spurious correlations and hence the need for effective localization functions. We run each DA scheme for 3,000 analysis cycles,

discarding the first 1,000 cycles and reporting statistics from the remaining 2,000 cycles. Each experiment is repeated 50 times

with independent reference statesand observation errors. The observation operator H is such that all of the Y variables are305

observed, and none of theX variables are observed. In this way we can isolate the effect of the localization on the performance

of the filter for the X variable. The observation error variance for the Y process is σ2
Y = 0.005, which is about 5% of the

climatological variance of the Y process. ,
::::::

which
:::::
serve

::
as

::::
the

::::::
“truth”

::
in

::::
our

:::::::::::
experiments.

:::
We

:::::::
generate

:::::::::::::
“observations”

:::
by

:::::
adding

:::::::::::
independent

::::::::
Gaussian

::::
noise

::
to

:::
the

::::::::
reference

:::::
state.

3.3 Univariate vs. multivariate setup310

3.3
:::::::::::

Experimental
::::::
design

We compare univariate and multivariate versions of four localization functions: Gaspari-Cohn, Bolin-Wallin, Askey, and

Wendland. Across all functions, the univariate localization function is equivalent to the
:::
The

::::::::::
experiments

:::::::::
described

::
in

::::
this

::::::
section

:::::::
compare

:::
the

:::::::::::
performance

:::
of

::::
each

::
of

::::
the

::::
four

::::::::::
multivariate

::::::::::
localization

::::::::
functions

:::::::::
presented

::
in

:::::
Sect.

::
2.

:::::::::::
Performance
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:
is
:::::::::

measured
:::::::
through

:::
the

:::::::::::::::
root-mean-square

:::::::
distance

:::::::
between

:::
the

:::::::
analysis

:::::
mean

::::
and

:::
the

::::
true

:::::
state,

:::::
which

:::
we

:::::
refer

::
to

:::
as

:::
the315

::::::::::::::
root-mean-square

:::::
error

::::::::
(RMSE).

::
To

::::::::::
standardize

:::
the

::::::::::
comparison

::
of

:::
the

::::::::
different

::::::
shapes,

:::
we

::::
use

:::
the

::::
same

::::::::::::::::
within-component

:::::::::
localization

::::
radii

:::
for

::
all

::::::::::
multivariate

:::::::::
functions.

:::
We

:::
also

:::::::::
investigate

:::
the

:::::::::::
performance

::
of

::::::::
univariate

:::
and

::::::
weakly

:::::::
coupled

::::::::::
localization

::::::::
functions.

::::
The

::::::::
univariate

::::::::::
localization

::::::::
functions

:::
are

::::::
chosen

:::
to

::
be

:::::
equal

::
to

:::
the

::::::::::::::::
within-component localization function for the

Y process, L= LY Y .All univariate functions use a localization radius of R= 15. All multivariate functions use localization

radius RY Y = 15 for the Y process and RXX = 45 for the X process. For multivariate Gaspari-Cohn and Bolin-Wallin this320

implies a
:
,
:::
i.e.

:::::::::
L ≡ LY Y .

::::
The

:::::::::::::::
within-component

:::::::
weakly

:::::::
coupled

::::::::::
localization

::::::::
functions

:::
are

:::::
equal

::
to

:::
the

::::::::::::::::
within-component

::::::::::
multivariate

:::::::::
localization

:::::::::
functions.

::::::::
However,

:::
the

::::::
weakly

::::::
coupled

:
cross-localization radius equal toRXY = 30. For multivariate

Askey and Wendland the cross-localization radius is RXY = 15. These localization radii are chosen in accordance with

sensitivity experiments, described
:::::::
functions

:::
are

::::::::::
identically

::::
zero.

::::
The

::::
free

:::::::::::
localization

:::::::
function

::::::::::
parameters

:::
are

::::::
chosen

:::
to

::::::
balance

:::::::::::
performance

::
of

::::
the

:::::::::
univariate,

:::::::::::
multivariate,

:::
and

:::::::
weakly

:::::::
coupled

:::::
forms

:::
of

::::
each

::::::::::
localization

::::::::
function.

:::
We

::::::::
estimate325

::::
these

:::::::::
parameters

:::::::
through

:
a
:::::::
process

:::::
which

:::
we

:::::::
describe

:
in Appendix ??

:::
B1.

For all functions we use the maximum allowable
::
We

::::
test

:::
the

::::::::::
performance

::
of

:::::::::::
multivariate

:::::::::
localization

::::::::
functions

:::::
using

:::::
three

:::::::
different

::::::::::
observation

::::::::
operators.

::::
First

:::
we

:::::::
observe

::
all

::::::
“short”

::::::::
variables

:::
and

:::::
none

::
of

:::
the

::::::
“long”

::::::::
variables.

::
In

:::
this

:::::
setup

:::
we

::::::
isolate

::
the

:::::::
impact

:::
the

::
of

:::
the

:
cross-localization weight factor, β = βmax. We find that, because we observe only the Y process and

hence the only updates to X are through observations of Y , smaller
:::::::
function,

::::::
which

::::::
allows

::
us

:::
to

:::::
make

::::::::::
conjectures

:::::
about330

::::::::
important cross-localization weight factors lead to degraded performance. Details of the sensitivity experiments involving β

are provided in Appendix ??. We hypothesize that an important factor in the performance of
::::
shape

::::::::::
parameters.

:::::
Next

::
we

::::
flip

::
the

:::::
setup

::::
and

::::::
observe

:::
all

::::::
“long”

:::::::
variables

::::
and

::::
none

::
of

:::
the

:::::::
“short”

::::::::
variables.

:::
We

:::::::
compare

::::
and

:::::::
contrast

:::
our

:::::::
findings

::::
with

:::::
those

::::
from

:::
the

:::::::
previous

::::
case.

:::::::
Finally,

:::
we

::::::
observe

::::
both

::::::::
processes

::::
and

::::::
observe

::::::::
behavior

::::::::::
reminiscent

::
of

::::
both

::
of

:::
the

:::::::
previous

:::::
cases.

::::
The

::::::::::
experimental

::::::
setups

:::
are

:::::::
grouped

::
by

::::::::::
observation

:::::::
operator

::::::
below.

::::
The

::::::
source

::::
code

:::
for

::
all

::::::::::
experiments

::
is
:::::::
publicly

::::::::
available

::::
(see335

::::
Code

:::::::::::
Availability).

:

3.3.1
:::::::
Observe

::::
only

:::
the

:::::::
“short”

:::::::
process

::
To

::::::
isolate

:::
the

::::::
impact

::
of

:
the multivariate localization functions is the size of βmax and that functions with a larger βmax will

allow for more information to propagate across model domains which will lead to better performance in our setup. With our

chosen parameters, the multivariate Askey function has the largest
::::::::::::::
cross-localization

::::::::
functions

:::
we

::::
fully

:::::::
observe

:::
the

:::::::
“short”340

::::::
process

::::
and

::
do

::::
not

:::::::
observe

:::
the

::::::
“long”

:::::::
process

::
at

:::
all.

::
In
::::

this
::::::::::::
configuration,

:::::::
analysis

::::::::::
increments

::
of

:::
the

::::::
“long”

:::::::
process

::::
can

::
be

::::
fully

:::::::::
attributed

::
to

:::
the

::::::::::::
cross-domain

::::::::::
assimilation

:::
of

::::::::::
observations

:::
of

:::
the

::::::
“short”

::::::::
process.

::::
The

::::::::
treatment

::
of

::::::::::::
cross-domain

:::::::::
background

:::::
error

::::::::::
covariances

:::::
plays

::
a
::::::
crucial

::::
role

::
in

:::
the

::::::::
analysis

::
of

:::
the

::::::
“long”

::::::::
process,

::
so

:::
we

::::::
expect

::::
that

:::::::
changes

:::
in

:::
the

cross-localization weight factor at βmax ≈ 0.46, followed by Gaspari-Cohn (βmax ≈ 0.38), Wendland (βmax ≈ 0.22), and

Bolin-Wallin (βmax ≈ 0.19). A visual representation of this ordering is shown in the third panel of Fig. 1. In this figure we see345

that the shape of each cross-localization function varies not only in its height at zero, but also in its radius and smoothness near

zero. While Askey peaks higher than GC, GC is generally smoother near zero and has a larger cross-localization radius. All of

these differences in shape impact directly how much information propagates across model domains, so we hypothesize that GC
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allows for larger cross-domain updates than any of the other multivariate localization functions presented here. The parameter

choices for each function in the experiment and Fig. 1 are assembled
:::
will

::::
lead

::
to

:::::::
changes

::
in

:::
the

::::::
“long”

:::::::
process

::::::::
analyses.

:::
All350

::::::::::
observations

:::
are

::::::::::
assimilated

:::::
every

:::::
0.005

::::::
MTU.

:::
We

:::
use

:::
an

::::::::::
observation

::::
error

::::::::
variance

::
of

::::::::::
σ2
Y = 0.005

::::
both

:::
in

:::
the

:::::::::
generation

::
of

::::::::
synthetic

::::::::::
observations

:::::
from

:::
the

::::::::
reference

::::
state

::::
and

::
in

:::
the

:::::::::::
assimilation

:::::::
scheme.

::::
The

::::::::::
observation

::::
error

:::::::
variance

::
is
:::::::

chosen

::
to

::
be

:::::
about

:::
5%

:::
of

:::
the

::::::::::::
climatological

:::::::
variance

:::
of

:::
the

::
Y

:::::::
process.

:::
We

::::
also

:::
run

::::
the

:::::::::
experiment

::::
with

::::::::::
σ2
Y = 0.02,

::
or

:::::
about

:::::
20%

::
of

::::::::::::
climatological

::::::::
variance,

:::
and

::::
find

:::
that

::::
the

:::::::
analyses

:::
are

::::::::
degraded,

::::
but

:::
the

::::::
relative

:::::::::::
performance

::
of

:::
the

::::::::
different

::::::::::
localization

:::::::
functions

::
is
:::
the

:::::
same.

:
355

:::
The

::::::::::
localization

:::::::::
parameters

:::
we

:::
use

::
in

:::
this

::::::::::
experiment

::
are

:::::
given

:
in Table 3and described in further detail in Appendix ??. The

source code for all experiments is publicly available (see Code Availability
:
.
:::
For

:::
all

::::::::
functions

:::
we

:::
use

:::
the

::::::::
maximum

:::::::::
allowable

::::::::::::::
cross-localization

::::::
weight

::::::
factor,

:::::::::
β = βmax.

::
In

:::::::::
estimating

:::
the

:::::::
optimal

:::::::::::::::
cross-localization

::::::
weight

:::::
factor

:::
we

::::
find

::::
that

:::::
since

:::
the

::::
only

::::::
updates

:::
to

::
X

:::
are

:::::::
through

:::::::::::
observations

:::
of

:::
Y ,

::::::
smaller

:::::::::::::::
cross-localization

::::::
weight

::::::
factors

:::::
lead

::
to

::::::::
degraded

:::::::::::
performance

:::::::::
(Appendix

::
B1).360

Function name Univariate parameters Multivariate parameters Univariate Multivariate

median RMSE
::
in

::
X median RMSE

::
in

::
X

Gaspari-Cohn R= 15 RY Y = 15, RXX = 45,RXY = 30, β ≈ 0.38 0.036 0.028
:::::
0.028

Bolin-Wallin R= 15 RY Y = 15, RXX = 45,RXY = 30, β ≈ 0.19 0.035 0.033

Askey R= 15, ν = 1 RY Y = 15, RXX = 45,RXY = 15, β ≈ 0.46, 0.034 0.035

ν = 1, γY Y = 0, γXX = 1, γXY = 1
6

Wendland R= 15, ν = 2, k = 1 RY Y = 15, RXX = 45,RXY = 15, β ≈ 0.22, 0.036 0.047

ν = 2, γY Y = 0, γXX = 5, γXY = 5
6

, k = 1

Table 3. Parameter choices
:::::::::
Localization

:::::::::
parameters for the experiment comparing univariate and

:::::::
observing

::::
only

:::
the

:::::
“short”

:::::::
process.

::::
Note

:::
that

:::::
weakly

:::::::
coupled

::::::::
parameters

:::
are

::
not

::::::
shown

:
in
::::

this
::::
table

::::::
because

:::
they

:::
are

::::::
exactly

::::
equal

::
to

:::
the multivariate localization

::::::::
parameters

:::::
except

:::
with

:::::
β = 0.

::::
The

::::
right

::::::
columns

::::
show

:::
the

::::::
median

::::::
analysis

:::::
RMSE

::
of
:::
the

::
X

::::::
process

:::
for

:::
each

:::::::
function.

::::::
Median

::::::
RMSE

::
for

:::
the

::::::
weakly

::::::
coupled

:::
case

::
is

::
not

::::::
shown

::::::
because

::::
weak

:::::::
coupling

::::
leads

::
to

:::::::::
catastrophic

::::
filter

::::::::
divergence.

4 Univariate vs. multivariate results

3.0.1
:::::::
Observe

::::
only

:::
the

:::::::
“long”

::::::
process

::::
Next

:::
we

:::::::::
investigate

:::
the

::::::
impact

:::
of

:::
the

:::::::
different

::::::::::
localization

::::::::
functions

:::::
when

:::
we

:::::
fully

:::::::
observe

:::
the

::::::
“long”

::::::
process

::::
and

:::
do

:::
not

::::::
observe

:::
the

::::::
“short”

:::::::
process

::
at

:::
all.

:::
The

::::::
“long”

::::::
process

::::::::
fluctuates

:::::
about

:::
10

::::
times

:::::
more

::::::
slowly

::::
than

::
the

:::::::
“short”

:::::::
process,

::
so

:::
we

:::
use

::
an

::::::::::
assimilation

:::::
cycle

:::::
length

::::
that

::
is

::
10

:::::
times

:::::
longer

::::
than

:::
the

::::
one

::
in

:::
the

:::::::
previous

::::::::::::
configuration.

:::
All

::::::::::
observations

:::
are

::::::::::
assimilated365

::::
every

::::
0.05

::::::
MTU.

:::
We

:::
use

::
an

::::::::::
observation

:::::
error

:::::::
variance

::
of

:::::::::
σ2
X = 0.28

::::
both

::
in

:::
the

:::::::::
generation

::
of

::::::::
synthetic

::::::::::
observations

:::::
from

:::
the

:::::::
reference

:::::
state

:::
and

::
in

:::
the

::::::::::
assimilation

:::::::
scheme.

::::
The

::::::::::
observation

::::
error

::::::::
variance

::
is

::::::
chosen

::
to

::
be

:::::
about

::::
5%

::
of

:::
the

::::::::::::
climatological

:::::::
variance

::
of

:::
the

::
X

:::::::
process.

:::
We

::::
also

:::
run

:::
the

::::::::::
experiment

::::
with

:::::::::
σ2
X = 1.1,

::
or

:::::
about

::::
20%

::
of

::::::::::::
climatological

::::::::
variance,

::::
and

:::
find

::::
that
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::
the

:::
X

:::::::
analyses

:::
are

::::::::
degraded,

::::
but

:::
the

::::::
relative

:::::::::::
performance

::
of

:::
the

:::::::
different

::::::::::
localization

::::::::
functions

::
is

:::
the

:::::
same.

::::
The

::::::::::
localization

:::::::::
parameters

:::
we

:::
use

::
in

::::
this

:::::::::
experiment

:::
are

:::::
given

::
in

:::::
Table

::::
B1.

:::
We

::::
find

:::
that

:::
the

:::::::
analysis

::::::
errors

:::
are

::::::
similar

::::
with

::
all

::::::
values

::
of

:::
β.370

:::
For

::::::::::
consistency

::::
with

:::
the

:::::::
previous

:::::::::
experiment

:::
we

:::
use

:::
the

:::::::::
maximum

::::::::
allowable

:::::::::::::::
cross-localization

::::::
weight

:::::
factor,

:::::::::
β = βmax.

:

3.0.2
:::::::
Observe

::::
both

:::::::::
processes

::::::
Finally,

:::
we

:::::::
observe

::::
both

::::::::
processes

:::
and

::::
note

:::
the

::::::
impact

::
of

:::
the

:::::::
different

::::::::::
localization

:::::::::
functions.

::
In

:::
this

:::::::::::
configuration

:::
we

:::::::
observe

::::
75%

::
of

:::
the

::::::::
variables

:::
in

::::
each

:::::::
process,

::::
with

::::
the

::::::::::
observation

::::::::
locations

::::::
chosen

::::::::
randomly

::::
for

::::
each

::::
trial.

::::
All

:::::::::::
observations

:::
are

:::::::::
assimilated

:::::
every

:::::
0.005

::::::
MTU,

::
in

::::
line

::::
with

:::
the

:::::::
analysis

:::::
cycle

:::::
length

:::
for

:::
the

::::::::::
observation

:::
of

:::
the

::::::
“short”

:::::::
process

::::
only.

:::
We

::::
use375

:::::::::
observation

:::::
error

::::::::
variances

::
of

::::::::::
σ2
Y = 0.01

:::
and

::::::::::
σ2
X = 0.57

::
in

:::
the

:::::::::
generation

::
of

:::::::::::
observations

::::
and

::
in

:::
the

:::::::::::
assimilation

:::::::
scheme.

:::
The

::::::::::
observation

:::::
error

:::::::
variance

::
is
::::::
chosen

:::
to

::
be

:::::
about

:::::
10%

::
of

:::
the

:::::::::::::
climatological

:::::::
variance

::
of

:::::
each

:::::::
process.

:::
We

::::
also

::::
run

:::
the

:::::::::
experiment

::::
with

:::::::::
σ2
Y = 0.02

::::
and

::::::::
σ2
X = 1.1,

:::
or

:::::
about

::::
20%

::
of

::::::::::::
climatological

::::::::
variance,

:::
and

::::
find

::::
that

:::
the

::::::::::
performance

::
is
:::::::
similar.

:::
The

::::::::::
localization

::::::::::
parameters

:::
we

:::
use

:::
in

:::
this

::::::::::
experiment

:::
are

:::::
given

:::
in

:::::
Table

::::
B2.

:::
We

::::
find

::::
that

:::
the

:::::::
analysis

::::::
errors

::::
grow

:::::
with

::::::::
increasing

::
β.

:::::::::::
Nonetheless,

::
to

:::::::::
distinguish

:::::::
between

::::::::::
multivariate

::::::::::
localization,

::::::
which

:::::
allows

:::
for

:::::::::::
cross-domain

::::::::::
information

:::::::
transfer,380

:::
and

::::::
weakly

:::::::
coupled

::::::::::
localization,

::::::
which

::::
does

:::
not,

:::
we

:::
use

:::::::::
β = βmax :::

for
::
all

::::::::::
multivariate

:::::::::
functions.

3.1
::::::
Results

Figure 3 shows the root mean square error (RMSE) for process

3.1.1
:::::::
Observe

::::
only

:::
the

:::::::
“short”

:::::::
process

:::::
Figure

::
3
::::::
shows

:::
the

::::::::::
distribution

::
of

:::::::
RMSEs

:::
for

:::
the

:::::::::::
configuration

:::::::::
described

::
in

::::
Sect.

::::::
3.3.1.

::::
With

:::::::
weakly

:::::::
coupled

::::::::::
localization385

:::::::
functions

:::
no

::::::::::
information

:
is
::::::
shared

::
in

:::
the

::::::
update

:::
step

:::::::
between

:::
the

::::::::
observed

::
Y

::::::
process

::::
and

:::
the

:::::::::
unobserved

:
X for the localization

functions defined in Table 3. The RMSE compares analysis states to the “truth”, which is the state we perturb to generate the

“observations ”. Each panel compares performance with univariate and multivariate versions of a function.The performance

of all
:::::::
process.

::::
This

:::::
leads

::
to

::
no

:::::::
updates

:::
of

:::
the

::
X

::::::::
variables

::::
and

:::::::::
eventually

::
to

::::::::::
catastrophic

:::::
filter

:::::::::
divergence.

:::
In

::::::::
principle

:::
the

::::::
system

:::::
might

::
be

::::
able

::
to

::::::::::
synchronize

:::
the

:::::::::
unobserved

::::::::
(“long”)

::::::
process

:::::::
through

::::::::
dynamical

:::::::::
couplings

::::
with

:::
the

:::::::
observed

::::::::
(“short”)390

::::::
process,

::::
but

::
in

:::
our

::::
setup

::::
this

::::
does

:::
not

:::::::
happen.

:::::
Hence

:::::::
weakly

::::::
coupled

::::::::::
localization

::::::::
functions

:::
are

:::
not

::::::::
included

::
in

::
the

::::::
figure.

::::
The

:::::
RMSE

:::::::::::
distributions

:::
for

:::
the

:::::::
observed

::
Y
:::::::
process

:::
are

::::::
similar

:::
for

::
all

::::::::
functions

::::::
except

::::::::::
multivariate

:::::::::
Wendland.

:::
For

:::
the

::::::::::
unobserved

::
X

:::::::
process,

:::
the

::::::
analysis

::::::
errors

::
are

::::::::::
comparable

::::::
across

::
all of the univariate localization functionsis very similar. This is consistent

with the fact that all of the univariate localization functions have similar shapes as seen in the first
:::::
second

:
panel of Fig. 1. The

univariate functions, while they do not allow for longer-range cross-domain updates, do allow for the largest cross-domain395

updates at small distances, with L(0) = 1 and hence provide a consistent benchmark against which to test the multivariate

functions. The multivariate
:::::::::
multivariate

:
localization functions, on the other hand, show great diversity of performance. GC

shows improved performance when using the multivariate localization function . By contrast, the
::::
The

::::::::
Wendland

:::::::
function

:::::
leads

::
to

::::::::::
significantly

:::::
worse

:::::::::::
performance

::::
with

:::
the

::::::::::
multivariate

:::::::
function

:::::
when

:::::::::
compared

::
to

:::
the

::::::::
univariate

:::::::::
functions. BW and Askey
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functions show no statistically significant difference between the multivariate and univariate versions. The Wendland function400

shows significantly worse performance with the multivariate function when compared to the univariate version
::::::::
functions.

::::
Out

::
of

::
all

::
of

:::
the

::::::::::
localization

::::::::
functions

:::
we

::::::::
consider,

:::
the

:::
best

:::::::::::
performance

::
is

:::::::
achieved

::::
with

::::::::::
multivariate

::::
GC.

As noted in
::
To

::::::::::
understand

:::
the

::::::::
improved

:::::::::::
performance

::::
with

::::::::::
multivariate

::::
GC,

:::
we

:::::::
consider

::::
two

::::::::
different

:::::
shape

::::::::::
parameters.

:::::
Recall

::::
from

:
Sect. 3.3 the shape of the GC

::::
3.3.1

:::
that

::::::
smaller

:
cross-localization function appears to allow for the most cross-domain

localization because it is nearly as tall as Askey, fairly smooth near d= 0, and it decays to zeromore slowly than any other405

function, with the possible exception of BW. We
::::::
weights

::::
led

::
to

::::::
worse

:::::::::::
performance

:::::
when

:::::::
holding

:::
all

:::::
other

::::::::::
localization

:::::::::
parameters

:::::
fixed.

:::::::::
Extending

:::
this

:::::::
finding,

:::
we

::::::::::
hypothesize

::::
that

::::::::
functions

::::
with

::
a
:::::
larger

:::::
βmax::::

will
:::::
allow

:::
for

:::::
more

::::::::::
information

::
to

::::::::
propagate

::::::
across

:::::
model

::::::::
domains,

:::::::
thereby

:::::::::
improving

:::::::::::
performance

::
in

::::
this

:::::
setup.

::::
With

::::
the

::::::
chosen

::::::::::
localization

::::::::::
parameters,

::
the

:::::::::::
multivariate

::::::
Askey

:::::::
function

::::
has

:::
the

::::::
largest

:::::::::::::::
cross-localization

::::::
weight

::::::
factor

::::
with

::::::::::::
βmax ≈ 0.46,

::::::::
followed

:::
by

:::
GC

:::::
with

:::::::::::
βmax ≈ 0.38.

::
A

:::::
visual

::::::::::::
representation

::
of
::::

the
::::::::::::::
cross-localization

::::::
weight

::::::
factor

::
is

::::::
shown

::
as

:::
the

::::::
height

::
of

:::
the

:::::::::::::::
cross-localization410

:::::::
function

::
at

::::
zero

::
in

:::
the

::::
third

:::::
panel

::
of

::::
Fig.

::
1.

:::
The

::::::
shape

::
of

::::
each

:::::::::::::::
cross-localization

:::::::
function

:::::
varies

:::
not

::::
only

::
in

:::
its

:::::
height

::
at
:::::
zero,

:::
but

:::
also

:::
in

::
its

::::::
radius

:::
and

::::::::::
smoothness

::::
near

:::::
zero.

:::
For

::::::::
example,

:::::
while

:::
the

::::::
Askey

::::::::::::::
cross-localization

::::::::
function

:::::
peaks

::::::
higher

::::
than

:::
GC,

::::
GC

::
is

::::::::
generally

::::::::
smoother

::::
near

::::
zero

::::
and

:::
has

:
a
::::::

larger
::::::::::::::
cross-localization

::::::
radius.

::::
All

::
of

:::::
these

:::::::::
differences

::
in
::::::

shape
::::::
impact

:::
how

:::::
much

::::::::::
information

::::::::::
propagates

:::::
across

::::::
model

::::::::
domains.

:::::
Based

:::
on

::
its

::::::
height

:::
and

::::::
width,

:::
we

:
hypothesize that GC allows for

sufficient cross-domain information propagation at both short and long distances and this is why multivariate GC outperforms415

all other functions in this experiment.

Askey has the largest cross-localization weight factor of any of the multivariate functions we consider, and yet shows no

improvement over the univariate version. Both the Askey and Wendland functions have smaller cross-localization radii and

fall off very rapidly compared to GC and BW. Thus multivariate Askey allows for the largest cross-domain updates at short

distances, but not at longer distances. By contrast, Wendland and BW both have small cross-localization weight factors, so that420

even at short distances the ability to propagate information across model domains is limited. Thus, BW allows for minimal

cross-domain updates at short distances, but this falls off slowly at longer distances. Multivariate Wendland, which allows for

minimal cross-domain updates at short distances and falls off very quickly, shows the worst performance.

3.1.2
:::::::
Observe

::::
only

:::
the

:::::::
“long”

::::::
process

:::::
When

:::
we

:::::::
observe

::::
only

:::
the

::::::
“long”

:::::::
process

:::
(as

::::::::
described

::
in
:::::

Sect.
::::::
3.0.1),

:::
we

::::
find

:::
that

:::
all

::::::::::
localization

::::::::
functions

::::
lead

:::
to

::::
very425

::::::
similar

:::::::::::
performance.

::
In

:::
this

::::
case

:::
the

:::::
shape

:::
of

:::
the

::::::::::
localization

:::::::
function

::
is

:::
not

:::::::::
important.

::::::
Rather,

:::
the

::::::::
dynamics

::
of

:::
the

::::::::
bivariate

::::::
Lorenz

:::::
model

:::
are

::::::
driving

:::
the

::::::::
behavior.

:::
In

:::
this

::::::::::::
configuration,

:::
the

:::
true

::::::::::
background

:::::
error

:::::::::::::::
cross-correlations

:::
are

::::
very

:::::
small

::::
(less

:::
than

::::
0.1

::::
even

::
at

:::::
short

:::::::::
distances).

::::
The

::
Y

::::::::
variables

:::
are

:::::::
restored

:::::::
towards

::::::

(
h
b

)
X

::
in

::::
their

::::::
sector

::::
(Eq.

::::
15).

::::
Thus

:::::
even

:::::
when

:::
the

::::::::::
assimilation

::::
does

:::
not

::::::
update

:::
the

::
Y

::::::::
variables,

:::
we

::::::
expect

::
to

:::::::
recover

:::
the

:::::
mean

::
of

:::
the

::
Y

:::::::
process.

:::::
Based

:::
on

::::::::::
climatology

:::
we

::::
find

:::
that

:::
the

::::::::::
conditional

:::::
mean

::
of

::::
Yj,k:::::

given
:::::::
Xk = x

::
is
::::::::::::::::::
E[Yj,k|x]≈ 0.0559x.

::::
The

:::::::
median

:::::::::::::::
root-mean-square

::::::::
difference

::::::::
between430

::
Y

:::
and

:::
its

:::::::::
conditional

:::::
mean

::
is

::::::
0.294.

:::
Our

::::::
results

:::::
show

::::
that

:::
the

::::::
median

::::::
RMSE

:::
in

:::
the

::
Y

::::::
process

::::::
ranges

:::::
from

:::::
0.294

::
to

::::::
0.297.

:::::
Thus,

:::
the

::::
filter

::::
does

:::
not

::::::::
improve

::::
upon

::
a
::::::
simple

:::::
linear

::::::::::
conditional

:::::
mean

:::::::::
prediction,

:::::
which

::
is
:::::::
perhaps

:::::::::::
unsurprising

:::::
given

:::
the
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::::
small

:::::::::
magnitude

:::
of

::::
error

::::::::::::::::
cross-correlations.

::::::
Figure

::
4

:::::
shows

:::
the

::::::::::
distribution

:::
of

::::::
RMSE

:::
for

:::::::::
univariate,

:::::::
weakly

:::::::
coupled,

::::
and

::::::::::
multivariate

:::
GC.

::::
The

::::::::::
distributions

:::
for

:::::
other

::::::::
functions

:::
are

:::::
nearly

::::::::
identical

:::
and

:::::
hence

:::
not

::::::
shown.

:

3.1.3
:::::::
Observe

::::
both

:::::::::
processes435

:::::
When

:::
we

:::::::
observe

::::
both

:::::::::
processes

:::
the

::::::
precise

::::::
shape

::
of

::::
the

::::::::::
localization

:::::::
function

:::::::
appears

::
to
:::::

have
::::
little

:::::::
impact.

::::
We

::
do

::::
see

:::::::::
differences

:::::::
between

:::::::::
univariate,

::::::
weakly

::::::::
coupled,

:::
and

:::::::::::
multivariate

::::::::::
localization

::::::::
functions.

::::::
Figure

::
4

:::::
shows

::::::
RMSE

:::::::::::
distributions

::
for

:::
the

:::::
three

:::::::
different

::::::::
versions

::
of

::::
GC,

:::::
which

:::
are

:::::::
broadly

::::::::::::
representative

::
of

:::
the

::::::::
behavior

::::
seen

::
in

:::::
other

::::::::
functions

::
as

:::::
well.

::::
This

:::::::::::
configuration

::
is

::::
quite

::::::::
unstable.

::::::
About

::::
80%

::
of

:::
the

:::::
trials

::::
with

::::::
weakly

:::::::
coupled

::::::::::
localization

::::::::
functions

::::
lead

::
to

::::::::::
catastrophic

:::::
filter

:::::::::
divergence.

:::::
Trials

:::::
with

::::::::
univariate

::::
and

::::::::::
multivariate

::::::::::
localization

:::::::
diverge

::::
less

:::::
often,

:::
but

::::
still

:::::::
diverge

:::::
about

::::
20%

:::
of

:::
the

:::::
time.440

:::::
Figure

::
4

:::::
shows

::::::
results

::::
from

::::
only

:::
the

:::::
trials

:::
(out

:::
of

::
50

:::::
total)

:::::
which

:::
did

:::
not

:::::::
diverge.

:::::::
Weakly

::::::
coupled

::::::::::
localization

:::::::
appears

::
to

::::
lead

::
to

::
the

::::
best

:::::::::::
performance,

:::::
when

:::
the

::::
filter

::::
does

:::
not

:::::::
diverge.

:::::
There

::
is
:::::
some

::::::::
variation

::
in

::
the

::::::
results

::::::
across

:::
the

:::::::
different

::::::::::
localization

::::::::
functions.

::
In

:::::::::
particular,

::::::::::
multivariate

:::::
Askey

:::::::
appears

::
to

::::
lead

::
to

:::::
better

:::::::::::
performance

::::
than

::::::
weakly

:::::::
coupled

::::::
Askey,

:::
but

:::
this

::::
may

:::
be

:::::::::
attributable

::
to

:::
the

:::::
issues

::::
with

::::::::
stability.

:::
The

:::::::::::
complicated

::::
story

::::
with

:::
the

:::::::
weakly

:::::::
coupled

:::::::
schemes

::::::::
indicates

::::
that,

::
in
::::

this
::::::::::::
configuration,

::::
filter

:::::::::::
performance

::
is

::::::
highly445

:::::::
sensitive

::
to

:::
the

::::::::
treatment

:::
of

:::::::::::
cross-domain

::::::::::
background

::::
error

:::::::::::
covariances.

::::
The

:::::
small

::::::::
ensemble

:::
size

:::::::::
combined

::::
with

:::::
small

::::
true

::::::
forecast

:::::
error

::::::::::::::
cross-correlations

::::
can

::::
lead

::
to

:::::::::
spuriously

::::
large

::::::::
estimates

::
of

::::::::::
background

:::::
error

:::::::::::::::
cross-covariances.

::::::::::
Meanwhile,

:::
we

::::
have

:::::
nearly

::::::::
complete

::::::::::
observations

:::
of

::::
both

::::::::
processes,

::
so

::::::::::::::::
within-component

::::::
updates

:::
are

:::::
likely

::::
quite

:::::
good.

:::::
Thus,

:::::::
zeroing

:::
out

:::
the

::::
cross

::::::
terms,

::
as

::
in

::::::
weakly

:::::::
coupled

::::::::
schemes,

::::
may

:::::::
improve

::::
state

:::::::::
estimates.

:::
On

:::
the

:::::
other

::::
hand,

::::::::
inclusion

:::
of

::::
some

::::::::::::
cross-domain

::::
terms

:::::::
appears

::
to

::
be

:::::::::
important

:::
for

:::::::
stability.450

4 Conclusions

In this work we developed a multivariate extension of the oft-used GC localization function, where the within-component lo-

calization functions are standard GC with different localization radii, while the cross-localization function is newly constructed

to ensure that the resulting localization matrix is positive semidefinite. A positive semidefinite localization matrix guarantees,

through the Schur product theorem, that the localized estimate of the background error covariance matrix is positive semidefi-455

nite (Horn and Johnson, 2012, Theorem 7.5.3). We compared multivariate GC to three other multivariate localization functions

(including one other newly presented multivariate function), and their univariate
:::
and

::::::
weakly

:::::::
coupled

:
counterparts. We found

that , in a toy model,
::
the

:::::::::::
performance

::
of

:::::::
different

::::::::::
localization

::::::::
functions

::
is

:::::
highly

:::::::::
dependent

::
on

:::
the

::::::::::
observation

:::::::
operator.

::::::
When

::
we

::::::::
observed

::::
only

:::
the

::::::
“long”

:::::::
process,

::
all

::::::::::
localization

::::::::
functions

:::::::::
performed

::::::::
similarly.

::
In

::
an

::::::::::
experiment

:::::
where

:::
we

::::::::
observed

::::
both

::::::::
processes,

:::::::
weakly

:::::::
coupled

::::::::::
localization

:::
led

::
to

:::
the

:::::::
smallest

:::::::
analysis

:::::
error.

::::::
When

:::
we

:::::::
observed

:::::
only

:::
the

::::::
“short”

:::::::
process,

:
mul-460

tivariate GC led to better performance than any of the other localization functions we considered.
:::
We

:::::::::::
hypothesized

::::
that

:::
the

:::::
shape

::
of

:::
the

:::
GC

:::::::::::::::
cross-localization

:::::::
function

::::::
allows

::
for

::::::
larger

:::::::::::
cross-domain

::::::::::
assimilation

::::
than

:::
the

:::::
other

::::::::
functions.

:
There is still

an outstanding question of how multivariate GC will perform in other, perhaps more realistic, systems.
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In this work we investigated the importance of the
:::
We

:::::
found

::::
that

:::::::
choosing

:::
an

:::::::::
appropriate

:
cross-localization weight factor,

β, which
:
is
::::::

crucial
:::

to
:::
the

:::::::::::
performance

::
of

:::
the

::::::::::
multivariate

::::::::::
localization

:::::::::
functions.

::::
This

:::::::::
parameter

:
determines the amount of465

information which is allowed to propagate between co-located variables in different model components. We found that this

parameter should be as large as possible . This is likely unique to our setup as other studies
:::::
when

::::::::
observing

::::
only

:::
the

:::::::
“short”

::::::
process.

:::
By

::::::::
contrast,

:::
the

:::::::::
parameter

::::::
should

::
be

:::::
small

::
or
:::::

even
::::
zero

:::::
when

::::
both

::::::::
processes

:::
are

:::::
well

::::::::
observed.

::::
This

::
is

:::::::::
consistent

::::
with

::::
other

::::::
studies

::::::
which have shown the value in deflating cross-domain updates between non-interacting processes (Lu et al.,

2015; Yoshida and Kalnay, 2018). This can easily be incorporated in this framework by taking β to be small or even zero.470

A natural application of this work is localization in a coupled atmosphere-ocean model. Multivariate GC allows for within-

component covariances to be localized with GC exactly as they would be in an uncoupled setting, using the optimal localization

length scale for each component (Ying et al., 2018). In this work we discussed the importance of the
:::
The

:
cross-localization

:::::
length

:::::
scale

::
for

::::
GC

::
is

:::
the

::::::
average

:::
of

:::
the

:::
two

:::::::::::::::
within-component

::::::::::
localization

:::::
radii,

:::::
which

::
is
:::
the

:::::
same

::
as

:::
the

:::::::::::::::
cross-localization

radius in determining performance. However, this work did not address the question of
::::::::
proposed

::
in

::::::::::::::::
Frolov et al. (2016).

::::
We475

::::::::::
hypothesize

:::
that

:::
the

::::::::::::::
cross-localization

::::::
radius

:
is
:::::::::
important

::
in

::::::::::
determining

::::
filter

:::::::::::
performance.

::::::::
However,

:::
the

::::::::
functions

:::::::::
considered

:::
here

:::
did

::::
not

::::
allow

:::
for

::
a

:::::::
thorough

:::::::::::
investigation

::
of

:::
the

:
optimal cross-localization radiusselection, which is an important area for

future research.

::::::::
Although

:::
we

:::::
tested

:::
the

::::::::::
localization

::::::::
functions

::
in

:::
an

:::::
EnKF

:::
our

::::::
results

::::::
should

::::::::
translate

::
to

:::::
EnVar

::::::::
schemes

::
as

:::::
well,

:::::::
because

::::::
3D-Var

:::
and

:::
the

:::::::
analysis

::::
step

::
of

:::
the

:::::::
Kalman

::::
Filter

:::
are

:::::::::
equivalent

::
in

:::
the

::::
case

::
of

:
a
:::::
linear

::::::::::
observation

:::::::
operator

::::::::::::
(Daley, 1993).

::::
The480

::::::
positive

::::::::::::::
semidefiniteness

::
of

:::
the

::::::::::
localization

::::::
matrix

::
is

:::::::
essential

:::
to

:::::
ensure

:::::::::::
convergence

::
of

:::
the

:::::::::
numerical

::::::::::
optimization

::::::::
methods

::::
used

::
to

:::::::::
implement

:::::
EnVar

:::::::::::::::
(Bannister, 2008).

::::
The

::::::::::
localization

::::::::
functions

:::
we

::::
have

::::::::
presented

::::
may

::
be

::::
used

::
in
:::::::::
variational

::::::::
schemes

::::::
without

:::
the

:::::
need

::
to

::::::::
numerical

::::::
verify

:::
that

::::
the

::::::::::
localization

:::::
matrix

::
is
:::::::
positive

:::::::::::
semidefinite

::::
each

::::
time

::
a

::::
new

::
set

:::
of

::::::::::
localization

::::
radii

:
is
::::::
tested.

:

Appendix A: Derivation of multivariate Gaspari-Cohn485

A1 Multivariate Gaspari-Cohn cross-localization function

Let cX , cY be the kernel radii associated with model components X and Y . Without loss of generality, we take cX > cY . The

formula depends on the relative sizes of cX and cY , with two different formulas for the cases (i) cX < 2cY and (ii) cX ≥ 2cY .

In both cases, the notation is significantly simplified when we let cX = κ2cY . The first case we consider is cY < cX < 2cY . In
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this case, the GC cross-localization function is,490
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βmax
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(A1)

where βmax = 5
2κ
−3− 3

2κ
−5 and β ≤ βmax. Note that when we take cX → cY , which implies κ→ 1, this multivariate function

converges to the standard univariate Gaspari-Cohn
:::
GC function, as we would expect.
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The second case to consider is cX > 2cY . Again, let cX = κ2cY . In this case, the cross-localization function is

L(GC)
XY (d) =
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(A2)495

where, as in the above case, βmax = 5
2κ
−3− 3

2κ
−5 and β ≤ βmax. Note that when cX = 2cY (A1) is equal to (A2).

A2 Derivation of multivariate Gaspari-Cohn cross-localization function L(GC)
XY

The multivariate GC cross-localization function is created through the convolution of two kernels, L(GC)
XY (d) = [kX ∗ kY ](d),

with kj(r) = k0
j (‖r‖) = (1−‖r‖/cj)+, j =X,Y , and r ∈ R3. Theorem 3.c.1 from Gaspari and Cohn (1999) provides a frame-

work for evaluating the necessary convolutions. It is shown that for radially symmetric functions kj(r) = k0
j (||r||) compactly500

supported on a sphere of radius cj , j =X,Y , with cY ≤ cX the convolution over R3 given by

P 0
XY (‖d‖) =

∫
k0
X(‖r‖)k0

Y (‖d− r‖) dr, (A3)

can equivalently be written,

P 0
XY (d) =

2π

d

cY∫
0

rk0
Y (r)

r+d∫
|r−d|

sk0
X(s) ds dr. (A4)

Equation (A4) is normalized to produce a localization function with LXX(0) = LY Y (0) = 1. The normalization factor P 0
jj(0)505

is given by

P 0
jj(0) = 4π

cj∫
0

(
rk0
j (r)

)2
dr, j =X,Y. (A5)

The resulting cross-localization function is a normalized version of (A4),

LXY (d) :=
P 0
XY (d)

[P 0
XX(0)P 0

Y Y (0)]1/2
, (A6)
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With this framework, we are now able to compute the cross-localization function using the GC kernels. We first compute the510

normalization factor P 0
jj(0) using GC kernels. Plugging in k0

j (r) = (1− r/cj)+ gives,

P 0
jj(0) = 4π

cj∫
0

r2(1− r/cj)2 dr =
2π

15
c3j , j =X,Y. (A7)

Thus the denominator in Eq. (A6) is

[P 0
XX(0)P 0

Y Y (0)]1/2 =
2π

15

√
c3Xc

3
Y . (A8)

To compute the numerator in Eq. (A6), which is precisely (A4), we consider eight different cases, four cases for each formula515

presented above.

The case cX > 2cY and 0≤ |d|< cY is shown in detail here. The other cases are derived similarly and are not shown. The

inner integral in equation
::
Eq.

:
(A4) is

r+d∫
|r−d|

sk0
X(s) ds=

r+d∫
|r−d|

s(1− s/cX) ds= 2rd− 1

3cX

2r3 + 6rd2 if r ≤ d

6r2d+ 2d3 if r ≥ d
(A9)

The outer integral in (A4) is520

cY∫
0
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which simplifies to
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Substituting (A11) into (A4) we see,
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. (A12)525

With the proper normalization, we have the cross-localization function,

LXY (d < cY ) =
15

2π
√
c3Xc

3
Y

P 0
XY (d < cY ). (A13)

Now make the substitution κ2 = cX
cY

and this becomes

LXY (d < cY ) =−1
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Other cases are calculated similarly, with careful consideration of the bounds of the kernels and integrals.530
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A3 Multivariate Gaspari-Cohn with three or more length scales

Suppose we have p processes, X1, . . . ,Xp with p different localization radii R11, . . . ,Rpp. Define the associate kernel radii by

cj =Rjj/2 and the associated kernels by kj(r)∝ (1− r/cj)+. Then the localization function used to taper background error

covariances between process Xi and Xj is Lij(d) = αij [ki ∗ kj ](d), with

[αij ]
p
i,j=1 (A15)535

a positive semidefinite matrix with 1’s on the diagonal
:
,
:::
i.e.

::::::
αii = 1. When i= j, Lii is precisely the standard univariate GC

function. When i 6= j, Lij is given by Eq. (A1) if max{Rii,Rjj}< 2min{Rii,Rjj} or Eq. (A2) otherwise. The ratio of length

scales κ is defined as κ2 =
max{Rii,Rjj}
min{Rii,Rjj} . We have written (A1) and (A2) with a coefficient β/βmax, which is convenient for

the case of two components. Here we replace β/βmax by αij to emphasize the importance for three or more length scales is

in choosing αij such that (A15) is positive semidefinite.
:::::::::::::::
Wang et al. (2021)

::::::::
discussed

::::
how

::
to

::::::::
construct

::
a

::::::
similar

::::::
matrix

:::
for540

::::::::
multiscale

::::::::::
localization

:::::
using

::::::
matrix

:::::
square

:::::
roots.

:
The simplest case is to let αij = 1 for all i, j.

Appendix B: Sensitivity experiments
:::::::::
Estimation

::
of

::::::::::
localization

:::::::::::
parameters

B1 Localization radius

A fair comparison between the univariate
:
,
::::::
weakly

::::::::
coupled, and multivariate localization functions requires that thoughtful

attention be paid to the many parameter choices in the different localization functions. While each localization function has545

its own parameters and constraints on those parameters, there are two
:::
We

:::::::
estimate

:::::::
different

::::::::::
localization

::::::::::
parameters

::
for

:::::
each

:::::::::
observation

::::::::
operator.

::::
This

::::::
section

::::::::
describes

:::
our

::::::::
reasoning

::::::
behind

:::
the

::::::::
selection

::
of

:::
the

::::::::::
localization parameters which are shared

by all functions:
::
for

:::
the

:::::::::
experiment

::::::
where

:::
we

::::::
observe

:::::
only

:::
the

::::::
“short”

:::::::
process.

:::
We

::::::
follow

:::
the

::::
same

:::::::::
estimation

:::::::::
procedure

:::
for

::
the

:::::
other

::::
two

:::::::::
observation

::::::::
operators

::
as

:::::
well.

:::::
Some

::
of

:::
the

:::::::::
parameters

:::
are

::::::
shared

:::::
across

:::::::::
functions.

:::
For

::::::::
example,

::::
every

:::::::::
univariate

:::::::
function

:::
has

::
a localization radius R, and550

:
.
::
To

:::
aid

::
in

:::::::::::
comparisons

:::::::
between

::::::::
functions,

:::
we

:::::::
estimate

::
a

:::::
single

::::::::
univariate

::::::::::
localization

:::::
radius

::::::
which

::
is

:::::
shared

:::
by

::
all

:::::::::
univariate

::::::::
functions.

:::::::
Indeed,

::::::::
whenever

::::::::
different

:::::::
methods

:::::
share

::
a

::::::::
parameter

:::
we

::::::::
estimate

:
a
::::::

single
:::::
value

:::
for

::
it.

:::
We

::::::::
estimate

:
a
::::::::

separate

cross-localization weight factor β . We discuss the localization radius in this section and the cross-localization weight factor

in ??.
::
for

:::::
each

:::::::
function

:::::::
because

::::
each

:::::::
function

:::
has

:
a
::::::::
different

:::::
upper

:::::
bound

:::
on

:::
this

:::::::::
parameter.

:

:::
We

:::::::
estimate

::
the

::::::::::
localization

:::::::::
parameters

:::::::::
iteratively

::
in

:::
the

::
the

::::::::
following

:::::
way.

::::
First,

::::
note

:::
that

:::::::::
Wendland

:
is
::
a
:::::
family

::
of

:::::::::
functions,555

::::
with

::::::::
parameter

::
k

:::::::::
controlling

:::
the

:::::::::::
smoothness.

::
In

::::::::
sensitivity

:::::::::::
experiments

::::
(not

::::::
shown)

:::
we

:::::
found

::::
that

::::::::
increasing

::
k
::::::::
degrades

:::
the

::::::::::
performance

::
of

:::
the

:::::
filter.

:::::
Thus,

:::
we

::::::
choose

::
to

:::
use

:::::
k = 1

:::
for

::
all

:::::::::::
experiments.

:

We first pick an appropriate localization radius for univariate localization functions
::::
Next,

:::
we

::::
pick

::::::::::
appropriate

::::::::::
localization

::::
radii

:::
for

::::
each

:::::::
process. We use a large (500-member) ensemble with no localization to compute forecast error correlations,

hereafter called the “true” forecast error correlations, and shown in Fig. B1. We see that the true forecast error correlations560

for the “short” process Y degrade to zero in just a few spatial units. The forecast errors for the “long” process X , by contrast,
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have meaningful correlations out to about 40 spatial units. We observe the entire Y process and none of the X process, thus

the dominant behavior for the purposes of constructing a background error covariance matrix is determined by the “short”

Y process. Hence we choose the localization radius for the
:::
This

:::::
gives

:::
us

:
a
:::::::
baseline

::::
for

:::
the

:::::
range

::
of

::::::::::
localization

:::::
radii

:::
we

:::::
should

::::::::::
investigate.

:::
We

::::::::
compare

:::
the

:::::::::::
performance

::
of

:::
all

:
univariate localization functions to be consistent with the non-zero565

correlation range of the Y process. Sensitivity experiments (not shown) reveal that
::::
with

:::
the

::::::
radius:

:::::::::::::::::::::
R ∈ [5,10,15,20,30,45].

::
In

::::
these

:::::::::
sensitivity

::::::::::
experiments

:::
we

::::
use

:::::
ν = 1

:::
for

:::::
Askey

::::
and

:::::
ν = 2

:::
for

:::::::::
Wendland.

:::::
These

::::::
values

::
of

::
ν
:::
are

::
as

:::::
small

:::
as

:::::::
possible

::::
while

::::
still

:::::::::::
guaranteeing

::::::
positive

:::::::::::::::
semidefiniteness.

:::::
Figure

:::
B2

::::::
shows

:::
that

::::::::
univariate

::::::::::
localization

::::::
radius R= 15 is an appropriate

localization radius for univariate localization
::::
leads

::
to

:::
the

::::
best

::::::::::
performance.

For multivariate localization , we keep the same localization radius for the “short” process ,570

:::::
Using

:::
this

:::::::::
univariate

::::::::::
localization

:::::::
radius,

:::
we

::::
now

:::::::
estimate

::
ν
:::

for
:::::::::

univariate
::::::
Askey

::::
and

:::::::::
Wendland.

:::
To

::::::::
maintain

:::::::
positive

:::::::::::::
semidefiniteness

:::
we

:::::::
require

:::::
ν ≥ 1

::::
for

:::::
Askey

::::
and

::::::
ν ≥ 2

:::
for

:::::::::
Wendland.

::::
We

:::::::
compare

:::::::
RMSEs

::::
for

::::::
process

:::
X

::::
and

::
Y

:::::
with

::::::::::::::
ν ∈ [1,1.5,2,2.5]

:::
for

:::::
Askey

::::
and

::::::::::::::
ν ∈ [2,2.5,3,3.5]

:::
for

:::::::::
Wendland.

::
In

::::::
general

:::
we

::::
find

:::
that

:::::::
smaller

::::
value

:::
of

:
ν
::::
lead

::
to

::::
less

::::::
peaked

:::::::::
localization

::::::::
functions

::::
and

::::
better

::::::::::::
performance,

:::
and

::::::
choose

:
ν
::
to

:::
be

::
as

::::
small

:::
as

:::::::
possible, i.e.RY Y =R= 15, and allow the radius

for
::::
ν = 1

:::
for

::::::
Askey

:::
and

:::::
ν = 2

:::
for

:::::::::
Wendland.

:
575

::::
Next

:::
we

:::::::
estimate

:::
the

:::::::
optimal

::::::::::
multivariate

:::::::::
localization

:::::
radii.

::::
We

::::
want

::
to

::::::::
eliminate

:::
as

:::::
much

:::::::::
ambiguity

::
as

:::::::
possible

::
in
::::

our

:::::::::
comparison

:::
of

::::::::
univariate

::::
and

::::::::::
multivariate

::::::::::
localization

::::::::
functions.

::::
For

:::
this

::::::
reason

:::
we

::::::
choose

::
to

:::
set

:::
the

:::::::::
univariate

::::::::::
localization

:::::
radius

:::::
equal

::
to

:::
one

:::
of

:::
the

:::::::::::::::
within-component

::::::::::
localization

:::::
radii.

:::::
From

:::
Fig.

:::
B1

:::
we

:::::
know

::::
that

:::
the

::::::::
univariate

::::::::::
localization

::::::
radius

::::::
R= 15

::
is

:::::
closer

:::
to the X variable to vary. Informed by the true forecast error correlations we choose RXX = 45, which is

approximately the range of non-negligible correlations for the forecast errors in the X process .580

For the four functions under consideration here,
::::::::
significant

::::
true

::::::
forecast

:::::
error

::::::::::
correlations

:::
for

::::::
process

::
Y

::::
than

:::
for

::::::
process

:::
X

::
so

::
we

:::
set

::::::::::::::
RY Y =R= 15.

::::
Now

:::
for

::
the

::::::::
within-X

::::::::::
localization

::::::
radius,

:::
we

:::::::
consider

::
the

:::::::::
following

:::::::::
localization

::::::
values:

:::::::::::::::::::::::::
RXX ∈ [30,40,45,50,60,75].

:::
For

:::::
Askey

::::
and

::::::::
Wendland

:::
we

:::
use

:::::::::::::::::::::::
RXY = min{RXX ,RY Y },:::

and
:::::::
γij = 0

:::
for

::
all

::::::::::
i, j =X,Y .

:::
For

:::
all

::::::::
functions

:::
we

:::
use

:::::
βmax ::

as

the choice of these two localization radii determines the cross-localization radius RXY . As shownin Table 2,
:::::
weight

::::::
factor.

:::
The

::::::
RMSE

:::
for

::::
both

::::::::
processes

::
is

:::::::::
minimized

::::
with

:::::
values

::
of

:::::
RXX:::::::

between
:::
40

:::
and

:::
50

:::
(not

:::::::
shown).

::::::::
Informed

::
by

:::
the

::::
true

:::::::
forecast585

::::
error

::::::::::
correlations,

:::
we

::::
pick

::::::::::
RXX = 45.

:::::
Now

:::
we

:::
turn

:::
to the cross-localization radiusfor .

:::
For

:
Gaspari-Cohn and Bolin-Wallin

is RXY = 30, while for
:::::
RXY ::

is
:::::::::
determined

:::
by

:::::
RXX :::

and
:::::
RY Y ,

::::
with

::::::::::::::::::::::
RXY = 1

2 (RXX +RY Y ).
:::
For

:
Askey and Wendland we

haveRXY = 15. Note that with
::::::
require

::::::::::::::::::::::
RXY ≤min{RXX ,RY Y }::

to
:::::::
maintain

:::::::
positive

::::::::::::::
semidefiniteness.

:::::
From

:::
the

:::
true

:::::::
forecast

::::
error

::::::::::
correlations

:::
we

:::
see

:::
that

:::
the

:::::::::
correlation

:::::
length

:::::
scale

:::
for

::
X

::
is

:::::
larger

::::
than

:::
the

::::::::::::::
cross-correlation

:::::
length

:::::
scale,

:::::
which

::
is

::
in

::::
turn

:::::
larger

::::
than

:::
the

:::::
length

:::::
scale

::
for

:::
Y .

::::
This

:::::::
intuition

::::
tells

::
us

::::
that,

::::::
ideally

:::
we

::::::
would

::::
have

:::::::::::::::::::
RY Y <RXY <RXX .

::::::::
However,

:::::::
because590

::
of

:::
the

::::::::::
requirement

:::
for

:::::::
positive

::::::::::::
semidefinitess

::
in Askey and Wendland we

:::
the

::::::
closest

:::
we

:::
can

:::::
come

::
is

:::::::::::::::::::
RY Y =RXY <RXX .

:::
We could choose to use a smaller cross-localization radius, but the true forecast error correlation indicates that this would be a

mistake, as there are non-negligible cross-correlations out past 15 units.
::::
Thus,

:::
we

::::::
choose

:::::::::::::::::::::::::::::
RXY =RY Y = min{RY Y ,RXX}.:

:::::
Using

::
all

::
of

:::
the

:::::::::
previously

::::::::
estimated

::::::::::
multivariate

::::::::::
localization

::::::::::
parameters,

:::
we

:::
now

::::::::
estimate

:::
γij ,:::

for
::
all

::::::::
processes

::::::::::
i, j =X,Y

::
for

::::
both

::::::
Askey

:::
and

:::::::::
Wendland.

:::
For

::::::
Askey

:::
we

:::::::
consider

:::
all

:::::::::::
combinations

::
of

::::::::::::
γY Y ∈ [0,1,2]

:::
and

:::::::::::::::
γXX ∈ [0,1,2,3].

:::
For

:::::::::
Wendland595

::
we

::::::::
consider

:::
all

:::::::::::
combinations

:::
of

::::::::::::
γY Y ∈ [0,1,2]

::::
and

::::::::::::::::::::::
γXX ∈ [0,1,3,4,5,6,7,9].

::::
The

::::::::
guarantee

:::
of

:::::::
positive

::::::::::::::
semidefiniteness
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::::::
restricts

::::
our

:::::
search

:::
for

:::::
γXY ::

to
::::::::::::::::::::::::
γXY ≥ RXY

2

(
γXX

RXX
+ γY Y

RY Y

)
.
::::
For

:::::::::
simplicity,

:::
we

::::
take

::::
γXY ::

to
:::
be

::
at

:::
the

::::
edge

::
of

:::
the

:::::::::
allowable

:::::
range,

::::::::::::::::::::::::
γXY = RXY

2

(
γXX

RXX
+ γY Y

RY Y

)
.
::::::

While
:::::::::::
investigating

::
γ,

:::
we

:::
use

:::
the

:::::::::
maximum

::::::::
allowable

:::::::::::::::
cross-localization

::::::
weight

::::::
factor.

:::
For

::::::
Askey

:::
we

:::
find

::::
that

:::
the

::::
best

:::::::::::
performance

::::::
comes

::::
with

::::::::
γXX = 1

::::
and

::::::::
γY Y = 0.

::::
For

:::::::::
Wendland

:::
we

:::
see

::::
that

:::::::::::
performance

:::::::
improves

:::
as

::::
γXX:::::::::

increases,
::
all

:::
the

::::
way

::::
out

::
to

::::::::
γXX = 5.

::::
We

::::::::::
hypothesize

:::
that

::::
this

::
is

:::::::
because

:::::::::
increasing

::::
γXX::::::

allows
:::
for

:::
an600

::::::::
increased

::::::::::::::
cross-localization

::::::
weight

::::::
factor.

:::
We

:::
use

::::::::
γXX = 5

:::
and

::::::::
γY Y = 0

:::
for

:::::::::
Wendland.

B1 Impact of cross-localization weight factor

The
:::
The

::::
final

::::::::::
localization

:::::::::
parameter

::
to

:::::::
estimate

::
is
:::
the

:
cross-localization weight factor, β, .

:::::
This

::::::::
parameter

:
determines how

much cross-domain information propagation occurs between the X and Y processes. This parameter is investigated for the

Askey localization function with the same support for both processes by Roh et al. (2015). Each multivariate localization605

function has a different upper bound on β, which depends on a ratio of localization radii, as shown in Table 2 and Fig. B3.

When
::::
Note

:::
that

::::::
setting

:
β = 0 no information is shared in the update step between the observed Y process and the unobserved

X process. In our setup, this leads to no updates of the X variables and eventually to catastrophic filter divergence. In principle

the system might be able to synchronize the unobserved (“long”) process through dynamical couplings with the observed

(“short”) process, but in our setup this does not happen. The
::::
leads

::
to

::
a

::::::
weakly

:::::::
coupled

:::::::
scheme,

:::
so

::
to

:::::::::
distinguish

::::::::
between610

::::::::::
multivariate

:::
and

::::::
weakly

:::::::
coupled

:::
we

:::::::
consider

::::
only

:::::
value

::
of

::
β
::::::
greater

::::
than

::::
0.1.

:::
For

::::
each

::::::::::
multivariate

::::::::::
localization

::::::::
function,

:::
we

::::
vary

:
β
::::::::

between
:::::
βmax :::

and
:::
0.1

:::::
while

:::::::
holding

:::
all

::::
other

::::::::::
parameters

:::::
fixed.

::
In

::::
this

:::::
setup,

:::
the

:
best performance generally comes

when the cross-correlation is at or near its maximum allowable value, as shown in Fig. B3. Figure B3 shows visually that

the Gaspari-Cohn
:::
GC cross-correlation is always greater than the Bolin-Wallin

:::
BW

:
cross-correlation, which is easily verified

analytically since κ−3 ≤ 5
2κ
−3− 3

2κ
−5 for all κ≥ 1 (true by the definition of κ). Similarly we see that the cross-localization615

weight factor for Askey is greater than cross-localization weight factor for Wendland across the range of parameters considered

here.

B1 Technical details of Askey and Wendland functions

For the multivariate Askey we must choose the parameters RXY ,γXX ,γY Y ,γXY , and ν. Both RXY and γXY have bounds

restricting the possible range of values to ensure positive semidefiniteness. For simplicity, we take these values to be at the620

edge of the allowable range, RXY = min{RXX ,RY Y }:::
The

::::::::::
localization

:::::::::
parameters

:::
for

:::
the

:::::
other

:::
two

::::::::::
observation

::::::::
operators

:::
are

::::::::
estimated

::::::::
following

:::
the

:::::
same

:::::::::
procedure.

::::
The

::::::::::
localization

:::::::::
parameters

:::
for

:::
the

::::::::::
experiment

::::::
where

:::
we

::::::
observe

:::::
only

:::
the

::::::
“long”

::::::
process

:::
are

:::::
given

::
in

:::::
Table

::::
B1.

:::
The

::::::::::
localization

::::::::::
parameters

::
for

:::
the

::::::::::
experiment

:::::
where

:::
we

:::::::
observe

::::
both

:::::::::
processes

:::
are

:::::
given

::
in

::::
Table

::::
B2.

For univariate Askey we need only choose the parameter ν in equation (9). For positive semidefiniteness, we require ν ≥ 1.625

Smaller values of ν allow for larger cross-localization weights and longer effective cross-localization radii (Fig. ??), both of

which are desirable and improve performance in sensitivity experiments (not shown). We choose to use
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:::::::
Function

::::
name

::::::::
Univariate

::::::::
parameters

: :::::::::
Multivariate

::::::::
parameters

:

::::::::::
Gaspari-Cohn

::::::
R= 20

::::::::
RY Y = 20, γXY = RXY

2

(
γXX
RXX

+ γY Y
RY Y

)
. Note that the values of γ enter into the multivariate Askey function (10) as sums with ν. Since ν is constant across all processes, we demand that either

:::::::::
RXX = 40,

:::::::::
RXY = 30,

:::::::
β ≈ 0.62

:

:::::::::
Bolin-Wallin

::::::
R= 20

:::::::::
RY Y = 20,

:::::::::
RXX = 40,

:::::::::
RXY = 30,

:::::::
β ≈ 0.35

:::::
Askey

::::::
R= 20,

:::::
ν = 1

:::::::::
RY Y = 20,

:::::::::
RXX = 40,

:::::::::
RXY = 20,

:::::::
β ≈ 0.41

::::
ν = 1,

::::::::
γY Y = 2, γXX = 0or γY Y = 0. Increasing γXX while keeping γY Y = 0 serves to decrease the effective localization radius of process X and increase the cross-localization weight factor (Fig. ??). Meanwhile, increasing γY Y while keeping

:
,
:::::::
γXY = 1

:::::::
Wendland

::::::
R= 20,

:::::
ν = 2,

:::::
k = 1

:::::::::
RY Y = 20,

:::::::::
RXX = 40,

:::::::::
RXY = 20,

:::::::
β ≈ 0.14

::::
ν = 2,

::::::::
γY Y = 2, γXX = 0decreases the effective localization radius of process Y and hence decreases the cross-localization weight factor. Thus it is no surprise that sensitivity experiments (not shown) indicate that fixing γY Y = 0 leads to better results than fixing γXX = 0. Sensitivity experiments also show that the best performance comes with γXX = 1, shown in Fig. ??. ,

::::::::
γXY = 1,

::::
k = 1

:

Table B1.
:::::::::
Localization

::::::::
parameters

:::
for

::
the

:::::::::
experiment

:::::
where

::
we

::::::
observe

::::
only

::
the

::::::
“long”

::::::
process.

:::::::
Function

::::
name

::::::::
Univariate

::::::::
parameters

: :::::::::
Multivariate

::::::::
parameters

:

::::::::::
Gaspari-Cohn

::::::
R= 15

:::::::::
RY Y = 15,

:::::::::
RXX = 40,

::::::::::
RXY = 27.5,

:::::::
β ≈ 0.44

:

:::::::::
Bolin-Wallin

::::::
R= 15

:::::::::
RY Y = 15,

:::::::::
RXX = 40,

::::::::::
RXY = 27.5,

:::::::
β ≈ 0.23

:

:::::
Askey

::::::
R= 15,

:
ν = 1

::::::::
RY Y = 15, which is as small as possible while still ensuring a positive semidefinite function. Impact of increasing γXX in Askey and Wendland functions. Left panel shows that increasing γXX allows for larger cross-localization weights for Askey (solid blue) and Wendland (dashed blue). The effective cross-localization radius, the distance at which LXY (d)< 0.05, for Askey (solid red) peaks at γXX = 1, and increases steadily for Wendland (dashed red). Sensitivity experiments for Askey and Wendland are shown in the right two panels. The optimal value for Askey is γXX = 1 and for Wendland is γXX = 5. Impact of increasing ν in Askey and Wendland functions. Increasing ν leads to smaller cross-localization weight factors for Askey (solid blue) and Wendland (dashed blue). The effective cross-localization radius, the distance at which L(d)< 0.05, also decreases for both Askey (solid red) and Wendland (dashed red). Now Wendland comes with further parameters to estimate. In particular, we must choose k, which determines the smoothness of the function. We choose to work with

:::::::::
RXX = 40,

:::::::::
RXY = 15,

:::::::
β ≈ 0.46

::::
ν = 1,

::::::::
γY Y = 2,

:::::::
γXX = 1,

:::::::::
γXY = 19

16

:::::::
Wendland

::::::
R= 15,

:::::
ν = 2,

:
k = 1here as higher values lead to unreasonably small cross-localization weight factors and hence degraded performance. For k = 1

:::::::::
RY Y = 15,

:::::::::
RXX = 40,

::::::::
RXY = 15, we require ν ≥ 2. As with the Askey function, sensitivity experiments (Fig. ??) indicate that the best performance comes when ν is as small as possible. Hence we pick

:::::::
β ≈ 0.07

:

ν = 2. Again, as with the Askey function we fix γY Y = 0 and investigate γXX > 0. Interestingly, we see that performance improves as γXX increases, all the way out to γXX = 5 (Fig. ??). We hypothesize that this is because increasing γXX allows for an increased cross-localization weight and effective localization radius (Fig. ??).
:
,
:::::::
γY Y = 2,

::::::::
γXX = 0,

::::::::
γXY = 1,

::::
k = 1

:

Table B2.
:::::::::
Localization

::::::::
parameters

:::
for

::
the

:::::::::
experiment

:::::
where

::
we

::::::
observe

::::
both

::::::::
processes.
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Histograms of RMSE for the X process with different localization functions. In each plot the blue histogram shows the distribution of

RMSE when univariate localization is used. The red histogram shows the distribution when multivariate localization is used. Insets in each

panel show the cross-localization functions in the case of univariate (blue) and multivariate (red) localization. All four univariate

localization functions perform similarly with median RMSE ranging from 0.034 to 0.036, while there is a greater range in performance for

the multivariate versions of these functions. Multivariate Gaspari-Cohn shows improvement over its univariate counterparts. Univariate and

multivariate Bolin-Wallin and Askey functions appear to perform similarly. For Wendland, the multivariate function performs significantly

worse than the univariate function.

Figure 3.
::::
Violin

::::
plots

:::::
show

:::
the

:::::::::
distribution

::
of

:::::
RMSE

:::
for

:::
the

::
X

:::
and

::
Y
:::::::

process
:::
with

:::::::
different

:::::::::
localization

::::::::
functions

:::::::::::::
(Hoffmann, 2015)

:
.

::
All

::::
four

::::::::
univariate

:::::::::
localization

:::::::
functions

::::::
perform

::::::::
similarly,

::::
while

::::
there

::
is
::
a

:::::
greater

:::::
range

::
in

:::::::::
performance

:::
for

:::
the

:::::::::
multivariate

:::::::
versions

::
of

::::
these

:::::::
functions.

::::::::::
Multivariate

:::::::::::
Gaspari-Cohn

:::::
shows

::::::::::
improvement

:::
over

:::
its

:::::::
univariate

::::::::::
counterparts.

::::::::
Univariate

::::
and

:::::::::
multivariate

::::::::::
Bolin-Wallin

:::
and

:::::
Askey

:::::::
functions

:::::
appear

::
to

:::::::
perform

:::::::
similarly.

:::
For

::::::::
Wendland,

:::
the

:::::::::
multivariate

::::::
function

:::::::
performs

::::::::::
significantly

:::::
worse

:::
than

:::
the

::::::::
univariate

::::::
function.

:
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Figure 4.
::::
Violin

::::
plots

:::::
show

::
the

:::::::::
distribution

::
of

::::::
RMSE

::
for

:::
all

::::::
versions

::
of
:::

the
:::::::::::
Gaspari-Cohn

:::::::::
localization

:::::::
function

:::::::::::::
(Hoffmann, 2015)

:
.
::::
Left:

:::::
results

::::
from

::
the

:::::::::
experiment

:::::
where

:::
we

::::::
observe

:::
only

:::
the

:::::
“long”

:::::::
process.

::
All

::::::::
functions

::::::
perform

:::::::
similarly.

:::::
Right:

:::::
results

::::
from

:::
the

:::::::::
experiment

::::
where

:::
we

::::::
observe

::::
both

:::::::
processes.

::::
The

:::::
weakly

::::::
coupled

:::::::::
localization

:::::::
functions

:::::
appear

::
to
::::
lead

::
to

::
the

::::
best

:::::::::
performance,

:::
but

:::
are

:::::
highly

:::::::
unstable.
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Figure B1. True forecast error correlations for variables in the middle of each sector, Xk and Y5,k. Correlations between Y variables (
:::

dark

blue) decay to zero after about 5 spatial units, while correlations between X variables (
:::
dark

:
red) are significant up to 40 spatial units away.

Cross-correlations (yellow
:::
pink and purple

:::
light

::::
blue) are small everywhere, but still significant out to at least 20 spatial units.
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Figure B2.
::::

RMSE
:::
for

:::::::
different

:::::::
univariate

:::::::::
localization

::::
radii.

:::::::::
Considering

:::
all

:::::::
functions,

:::
the

:::
best

::::::::::
performance

:::::
comes

::::
when

:::::::
R= 15.
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Figure B3. Left: Maximum cross-localization weight factor as a function of RXX/RY Y . Right:
::::::
Average RMSE for the X process is shown

on the y-axis for different multivariate functions.
:::
The

:::
top

:::::::
(bottom)

:::
plot

::::::
shows

:::::
RMSE

:::
for

:::
the

::
X

::::
(Y )

::::::
process.

:
For all functions, as the

cross-localization weight factor increases, the
::::::
analysis

:::::
errors

:
(RMSEdecreases)

:::::::
decrease.
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