We thank S. G. Penny for his time in reading our manuscript and providing a thoughtful critique. His comments
and our responses (in bold) are below.

General Comments:

1. The development of localization schemes for coupled dynamics is an important activity that needs increased
attention as operational forecast centers transition to greater reliance on coupled Earth system forecast models.
The authors provide a promising advancement to address the localization of cross-domain error correlations. I
believe the work should be published after the authors explore a larger parameter space for their experimental
results, as described below. In exploring a larger parameter space, it may be sufficient to focus on one or two
leading methods (e.g. GC and BW).

We have explored a larger parameter space, as described in the responses to general comments 2 and 3.

2. One concern is the choice of model, and how well the results can transfer to more realistic scenarios, given the
near linear relationship between the slow and fast components in this system (e.g. see S. Rasp note referenced
below). Do the authors have confidence that the results can translate in some way to more sophisticated sys-
tems? I would be interested to know how the results change as the coupling strength between the slow and fast
components is weakened or strengthened from the baseline state used by the authors.

The note of S. Rasp is in reference to subgrid-scale parameterization with this model, so it is not directly
relevant. The coupling between scales is almost always nonlinear, unlike the coupling between fast and
slow in the Lorenz-96 model. However, important couplings between atmosphere and ocean can be lin-
ear, e.g. their exchange of sensible heat, which is approximately linearly propotional to the temperature
difference. We do agree that the two-scale Lorenz-96 model is certainly highly idealized though, and we
appreciate the need for further testing in more realistic coupled ocean-atmosphere models and are work-
ing on this in a current project. We are testing the performance of multivariate Gaspari-Cohn in ¢q-gcm:
http://www.q-gcm.org/

We have repeated the experiment observing only the “short” Y process using coupling strengths 7 =
1/2, 1,4 (Figs. 1-3) The coupling strength is /2 = 2 in the figure in the paper. The biggest change we saw is
that the magnitude of the analysis errors in the unobserved X process increased with decreasing /. This
is not surprising since it just confirms the intuition that the cross-assimilation decreases as the strength of
the dynamical coupling decreases. The relative performance of the different localization functions did not
change. Multivariate Gaspari-Cohn still led to better performance than any of the other functions and
multivariate Wendland led to the worst performance.
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Figure 1: Observe only the Y process with coupling strength # = 1/2. UV stands for univariate and MV stands for

multivariate.
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Figure 2: Observe only the Y process with coupling strength 2z = 1. UV stands for univariate and MV stands for
multivariate.
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Figure 3: Observe only the Y process with coupling strength 7 = 4. UV stands for univariate and MV stands for
multivariate.



3. A second concern is the restriction to observing only the fast dynamics. I would like to see a complete inves-
tigation examining the observation of fast-only, slow-only, and the full slow-fast coupled system. I'd like to
see Figure 3 repeated for a few different scenarios, including those just mentioned, but also potentially vary-
ing parameters of the EnKF, such as the frequency of observations, the density of observations, the amount
of observation noise, the length of the analysis cycle, etc. Not all results need to be reported in figures, but
some indication that the authors have explored more variations in the problem specification would help to build
confidence in the robustness of the final reported results.

We have included experiments observing only the “long” X process and the full coupled system. When
we observed only the long process, all localization functions led to very similar performance (Fig. 4). Note
that since weak coupling is stable in this configuration we have included results from weakly coupled
runs. In the paper we showed only the performance for univariate, multivariate, and weakly coupled
Gaspari-Cohn and stated that all other localization functions performed similarly.

Observing both processes, at least in our configuration, was quite unstable and often led to filter di-
vergence. About 80% of the trials with weakly coupled localization functions led to catastrophic filter
divergence. Trials with univariate and multivariate localization diverged less often, but still diverged
about 20% of the time. However, in this configuration the precise shape of the localization function ap-
pears to have little impact. We did see differences between univariate, weakly coupled, and multivariate
localization functions. Figure 5 shows results from only the trials (out of 50 total) which did not diverge.
Weakly coupled localization appears to lead to the best performance, when the filter does not diverge.
There is some variation in the results across the different localization functions. In particular, multivari-
ate Askey appears to lead to better performance than weakly coupled Askey, but this may be attributable
to the issues with stability. The complicated story with the weakly coupled schemes indicates that, in this
configuration, filter performance is highly sensitive to the treatment of cross-domain background error
covariances. The small ensemble size combined with small true forecast error cross-correlations can lead
to spuriously large estimates of background error cross-covariances. Meanwhile, we have nearly complete
observations of both processes, so within-component updates are likely quite good. Thus, zeroing out the
cross terms, as in weakly coupled schemes, may improve state estimates. On the other hand, inclusion of
some cross-domain terms appears to be important for stability.

We varied the frequency of observations, length of analysis cycle, and density of observations between
the ‘“short”-only, ‘“long”-only, and both “short’” and “long” setups. In addition, we varied the observation
noise in all setups. For both the “short”’-only and the ‘“long”-only we chose the observation error variance
to be 5% of the climatological variance for the observed process. In Figs. 6 & 7 we bump up the obser-
vation error variance and use 20% of the climatological variance. The magnitude of the analysis errors
changes, but the relative performance of the different localization functions is the same.
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Figure 4: Observe only the X process. UV stands for univariate, WC stands for weakly coupled, MV stands for
multivariate.
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Figure 5: Observe both processes.



Observe Y: 20% obs err variance
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Figure 6: Observe “short” process only with larger observation error variance.
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4. Minor issue: There are a few instances where the present tense is used when it should be past tense.

We have corrected this.
Specific Comments:

1. L 8: “The functions produce non-negative definite localization matrices, which are suitable for use in variational
data assimilation schemes.” I think the term ‘positive semidefinite’ is more common, and the one originally used
by Gaspari and Cohn (1999). I would suggest changing all instances of this throughout the manuscript.

We changed non-negative definite to positive semidefinite throughout the manuscript.

2. L 14-16: “The background error covariance statistics stored in B dictate how information from observations
propagates through the domain during the assimilation step (Bannister, 2008)” The term ‘propagates’ seems
appropriate for 4D-Var, but perhaps not for all DA methods. More generally, the background error covariance
provides a structure function that determines how observed quantities affect the model state variables, which is
of particular importance when the state space is not fully observed.

We changed the discussion of the impact of the background error covariance matrix on the analysis
increment following the suggestion.

3. L 25: “Localization is typically incorporated into an ensemble estimate of B through a Schur (or element-wise)
product.” I would change this to say that localization is typically incorporated into the data assimilation in one
of two ways - either through the B matrix using a Shur product, or through the observation error covariance R
(e.g. Greybush et al., 2011). You are focusing on the localization applied directly to the B matrix.

Greybush et al., 2011: Balance and Ensemble Kalman Filter Localization Techniques.

https://journals.ametsoc.org/view/journals/mwre/139/2/2010mwr3328.1.xml

We changed the description of B and R matrix localization and added a reference to Greybush et al., 2011.
4. L 32-33: “In Earth system modeling in particular, coupled DA shows improvements over single domain analyses

(Penny et al., 2017; Zhang et al., 2020)” Additional sources that determined this point clearly are Sluka et al.
(2016) and Penny et al. (2019):

Sluka, T., S.G. Penny, E. Kalnay, and T. Miyoshi, 2016: Using Strongly Coupled Ensemble Data Assimilation
to Assimilate Atmospheric Observations into the Ocean. Geophys. Res. Lett., 43, doi:10.1002/2015GL067238.

Penny, S.G., E. Bach, K. Bhargava, C-C. Chang, C. Da, L. Sun, T. Yoshida, 2019: Strongly coupled data
assimilation in multiscale media: experiments using a quasi-geostrophic coupled model. Journal of Advances
in Modeling Earth Systems, 11. https://doi.org/10.1029/2019MS001652

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001652
We changed the references for this statement.

5. L 35-37: “Schemes that include cross-domain [error] correlations in the B matrix are broadly classified as
strongly coupled, which is distinguished from weakly coupled schemes where B does not include any nonzero
cross-domain [error] correlations. The inclusion of cross-domain [error] correlations in B offers advantages” To

be more precise, the term “cross-domain error correlations” should be used if referred to the error covariance
matrix B.

We changed ““‘cross-domain correlations” to “cross-domain error correlations”.

6. L 55: I’ll note that Lorenz himself cited this as (Lorenz, 1996). See comment below regarding line 461.

We changed all relevant references to Lorenz, 1996.

7. L 57-58: “We find that, in our set up, artificially decreasing the magnitude of the cross-domain correlation
hinders the assimilation of observations.” This is a positive sign for the advancement strongly coupled DA, but I
wonder if this could be partly due to the use of the Lorenz system II, which has some highly linear relationships
between the small and large scale systems. Some discussion was given, for example, in this blog post by Stephan
Rasp:
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10.

11.

12.

13.

14.

15.

16.

17.

https://raspstephan.github.io/blog/lorenz-96-is-too-easy/

The linked blog post specifically refers to the need for more realistic models when parameterizing subgrid-
scale processes. Coupling between scales is typically nonlinear so the linear coupling between X and Y
in the Lorenz-96 model is not a good proxy. But coupling between fast and slow components of a system
can still be approximately linear, as in the sensible heat exchange between ocean and atmosphere that is
approximately linearly proportional to the temperature difference. It remains to be seen how an inter-
mediate complexity model interacts with the design of methods for data assimilation, like localization. To
address the limitations of the bivariate Lorenz system we have verified our results with different coupling
strengths. See response to general comment 2.

L 61: “localization function[s] from the literature.”
Fixed.
L 77-78: “A fundamental difficulty in localization for strongly coupled DA is how to propose a cross-localization

function LXY to populate both LXY and LYX” It might be useful to explain at this point which term controls
the effect of system X on Y, and Y on X.

. PR . b b
We added an explanation of this in the first paragraph where we introduce Py, and Py,.
L 102: “we define two processes Zj , j = X,Y” I understood this on the third read through. Perhaps the authors

could reword this sentence slightly to make it more clear. For example, “we define two processes Zj, where j
can represent either X or Y Or simply, “we define two processes Zj, with j=X,Y”

Changed following suggestion.
L 105-106: “ Thus LXX, LYY ,LXY form a multivariate covariance function, and hence a multivariate, non-

negative definite function” Based on the terminology defined so far, I'm not sure how to interpret the triple
(LXX,LYY,LXY) forming a single function. Perhaps a line or two could be added to explain this step.

{Lxx, Lyy, Lxy} are components of a single multivariate function R — R>*2, We expanded the introduc-
tion of multivariate positive semidefinite functions and put brackets around the collection of component
functions to emphasize their interpretation as a single multivariate function.

L 118: The way I am interpreting the notation is that the term (1 — r/c), is zero when the term in parentheses
is less than or equal to 0, which would occur when r >= c¢. Can the authors explain the comment about the
convolution being zero at distances greater than 2c in line 120, it is not immediately obvious.

The kernel k(r) = (1 — r/c), is zero when r > c. The convolution [k * k] is zero at distances greater than
the sum of the kernel radii, i.e. r > 2c. Two kernels separated by this distance are never overlapping and
hence the convolution is 0. We have changed some of the language in the paper to clarify this point.

L 139: “who perform[ed] the”

Changed.

L 140: “in never develop[ed] multivariate”
Changed.

LT3

L 156: “Porcu et al. (2013) develop[ed] a multivariate version” “et al.” is short for the Latin term “et alia,”
meaning “and others.” It is strange to reference the actions of Porcu “and others” in the year 2013 using present
tense.

Changed.

L 157: “Roh et al. (2015) [found] that”
Changed.

L 159: “Daley et al. (2015) extend[ed] the work”
Changed.
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18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

L 166: “with B the beta function” Could you define this here for clarity.
We defined the beta function.

L 168: “Daley et al. (2015) [gave]”
Changed.

L 184: “This approach leads to a “weakly” coupled scheme, which is not the focus of this work.” I understand
this may not be the focus, but it seems that it would be appropriate to compare to this approach given that the
weakly coupled DA scheme is the standard approach for current operational forecast systems.

In the original manuscript, when we observed only the “short” process, weak coupling led to catastrophic
filter divergence, so there wasn’t much else to say. We now compare all localization functions to their
weakly coupled counterparts in our new experiments. In the “long”’-only and both “short” and ‘“long”
experiments we present results from weakly coupled schemes that do not blow up.

L 184-186: “Additionally, in our setup we observe only one of the two processes and we find that when the
assimilation is not allowed to update the unobserved process the result is prone to catastrophic divergence”
It might be appropriate to perform a few experiments where both components are observed, and results are
compared using weakly and strongly coupled DA.

Done. See comment directly above.

L 200/202/205: “ Lorenz (199[6])” See comment below for line 461.
Changed.

L 203: “using an adaptive fourth-order Runge-Kutta method” Perhaps provide a citation for the method.
Added citation for the method.

L 204-205: “The solutions are output with a time interval of 0.005 nondimensional units, or 36 minutes” It
seems strange to say there are non-dimensional units and then indicate that it is the same as 36 minutes. Perhaps
repeat some of the justification from Lorenz to indicate the relative error growth rates and its relation to more
realistic applications that would be approximately equivalent to 36 minutes in operational prediction in the early
1990’s.

We replaced ‘‘nondimensional units” with ‘“model time units” and clarified that Lorenz found 0.005 model
time units to be similar to 36 minutes in more realistic settings.

Figure 2 caption: “setup” is a noun that means “the way in which something... is organized, planned, or
arranged.” This should probably be used in most places where the authors current use two words: “set up*.

Changed.

L 209: “Increasing the coupling strength leads to larger covariances between the forecast errors in processes X
and Y, thereby making the effect of cross-localization more pronounced and easier to study.” I believe this is the
case. However, I would like to see some sensitivity study of how the benefit of strongly coupled DA paradigm
breaks down as the coupling strength between the two components weakens and asymptotes to 0.

When we vary the coupling strength the magnitude of the analysis errors changes, but the relative per-
formance of the different localization functions does not change. See response to general comment 2.

L 213: “We choose to place the variable Xk in the middle” Does the placement of the X variable have any
influence on the results of localization? Is there any sensitivity here, or are the results generally the same
regardless of how the placement of the X and Y variables are interpreted?

Placing X at the beginning of the sector, as in Roh et al. (2015), means that half of the nearby Y variables
are nearly uncorrelated with X;. The analysis errors are larger when X is placed at the beginning of
the sector rather than the middle of the sector. However, the relative performance of all the localization
functions is the same in both cases. Figure 8 shows the distribution of analysis errors when we observe
the “short” process with X; placed at the beginning of the sector.
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Observe Y: X located at beginning of sector
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Figure 8: Move the location of X; to the beginning of the sector, instead of the middle of the sector.
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28.

29.

30.

31.

32.

33.

34.

35.

36.

L 218: “We develop localization functions for EnVar schemes where non-negative definiteness of the local-
ization matrix is essential to ensure convergence of the numerical optimization. Since the minimizer of the
3D-EnVar objective function is the same as the EnKF analysis mean in the case of linear observation (Lorenc,
1986), in this experiment we make use of the EnKF rather than implement an ensemble of 3D-EnVar assimi-
lation scheme (Evensen, 1994; Houtekamer and Mitchell, 1998; Burgers et al., 1998)” This discussion is a bit
confusing. I think it could be cleaned up with a little reorganization, e.g.

We develop localization functions for data assimilation schemes that rely on Schur product modification of
the background error covariance matrix B. In our experiments we use the stochastic EnKF (Evensen, 1994;
Houtekamer and Mitchell, 1998; Burgers et al., 1998). However, because the minimizer of the 3D-EnVar
objective function is the same as the EnKF analysis mean in the case of linear observations (Lorenc, 1986), our
results translate to EnVar schemes as well. The positive semi-definiteness of the localization matrix is essential
to ensure convergence of the numerical optimization methods used to implement EnVar [cite].

The section on equivalence between EnKF analysis mean and the 3D-EnVar minimizer in the case of
linear observations has been rewritten following the suggestion and has been moved to the conclusions.

L 230-231: “In this experiment we use the adaptive inflation scheme of El Gharamti (2018) and apply the
inflation to the prior estimate.” Can this be added to the EnKF equations above for clarity?

We expanded the description of the inflated ensemble.

L 233-234: “We run each DA scheme for 3,000 time steps, discarding the first 1,000 time steps and reporting
statistics from the remaining 2,000 time steps.” Is this referring to model time steps, or the number of analysis
cycles?

This is referring to the number of analysis cycles. We changed ‘“‘time steps” to “analysis cycles” in the
manuscript to clarify this.

L 235-237: “The observation operator H is such that all of the Y variables are observed, and none of the X
variables are observed. In this way we can isolate the effect of the localization on the performance of the filter
for the X variable.” This means you are observing the fast dynamics and using this to update the slow dynamics
through the error covariance statistics. This has been shown effective in a number of studies exploring strongly
coupled DA. Penny et al. (2019) showed that the reverse was also possible, particularly if the size of the analysis
window is decreased (or the frequency of observation updates is increased).

We have included an experiment that observes only the ‘“long” process. See response to general comment
3.

L 256: “, so that we hypothesize that GC allows” Change to: , so we hypothesize that GC allows”

Changed.

L 266-267: “ By contrast, the BW and Askey functions show virtually no difference between the multivariate
and univariate versions” The BW method looks slightly improved, and the Askey method slightly degraded.
This is true, however the difference is not statistically significant. This sentence has been updated to reflect

this distinction.

L 280: It is up to the authors, but generally the conclusions reads more clearly if this is now written in past
tense. E.g. “In this work, we develop[ed]...” “We compare[ed] multivariate GC to three...” “We [found] that,
in a toy model...” “In this work we investigate[d]...” “We [found] that this...”

Changed to past tense in the conclusions.

L 284: “the localized estimate of the background [error] covariance matrix”

Fixed.

L 294: “A natural application of this work is localization in a coupled atmosphere-ocean model. Multivariate
GC allows for within component covariances to be localized with GC exactly as they would be in an uncoupled

setting, using the optimal localization length scale for each component Ying et al. (2018). In this work we
discuss the importance of the cross-localization radius in determining performance. However, this work does
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37.

not address the question of optimal cross-localization radius selection, which is an important area for future
research”

This is certainly of interest - are there any conjectures that can be made about the applicability of the results
here extending to an application like a coupled atmosphere-ocean model?

We do not have any conjectures at this moment, but we are actively working on testing the multivariate
Gaspari-Cohn and Bolin-Wallin functions in a coupled atmosphere-ocean model.

While the interpretation of localization is clear in the within-component covariances, how would you interpret
localization on the cross-component covariances?

Could you clarify your interpretation of within-component localization? In our minds, within- and cross-
component localization have very similar interpretations. They are both tapering a covariance between
variables based on distance, with the only difference being that in cross-component localization the two
variables are in different model components.

Could a situation in which it might be desirable for an atmospheric observation to have an influence on the ocean
state but not vice versa create difficulties with the symmetry relied on above in forming LXX, LYY, and LXY
as a triple, and the need for maintaining positive semi-definiteness?

A setup where the atmosphere influences the ocean state, but not vice versa would necessarily be as-
sociated with a background error covariance matrix which is not symmetric (which is not possible).
Variational methods require symmetric B matrices (in any case, the objective function ignores the an-
tisymmetric component of B) and hence this setup would not be possible with a variational scheme. This
kind of asymmetric setup is possible by using asymmetric localization of the Kalman gain in EnKF-type
methods though.

L 461: The full citation for Lorenz-96 is not given. It should be Lorenz (1996): Lorenz, E.N., 1996: Predictabil-
ity—A problem partly solved.Proc. Seminar on Predictability,Vol. 1, Reading, Berkshire, UnitedKingdom,
ECMWE, 1-18. Note that Lorenz cited it himself this way in:

Lorenz, E.N., 2005. Designing chaotic models. J. of the Atmos. Sci. 62, 1574—-1587. DOI:10.1175/JAS3430.1.

Full citation is now correctly given.
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