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Abstract. The multiple equilibria are an outstanding characteristic of the Atlantic meridional overturning circulation (AMOC) 

that has important impacts on the Earth climate system appearing as regime transitions. The AMOC can be simulated in 15 

different models but the behavior deviates from the real world due to the existence of model errors. Here, we first combine a 

general AMOC model with an ensemble Kalman filter to form an ensemble coupled model data assimilation and parameter 

estimation (CDAPE) system, and derive the general methodology to capture the observed AMOC regime transitions through 

utilization of observational information. Then we apply this methodology designed within a “twin” experiment framework 

with a simple conceptual model that simulates the transition phenomenon of AMOC multiple equilibria, as well as a more 20 

physics-based MOC box model to reconstruct the “observed” AMOC multiple equilibria. The results show that the coupled 

model parameter estimation with observations can significantly mitigate the model deviations, thus capturing regime 

transitions of the AMOC. This simple model study serves as a guideline when a coupled general circulation model is used to 

incorporate observations to reconstruct the AMOC historical states and make multi-decadal climate predictions. 

1 Introduction 25 

The Atlantic meridional overturning circulation (AMOC), the core of the thermohaline circulation, is an essential component 

of the World Ocean circulations (e.g., Delworth and Greatbatch, 2000). One of its important characteristics is the existence of 

multiple equilibria (Mu et al., 2004). The research addressing this characteristic originates from Stommel (1961) who used 

two boxes with uniform temperature and salinity to simulate the equatorial ocean and the polar ocean respectively. This box 

model simulates multiple equilibria of thermohaline circulation including three steady solutions: a stable thermal mode, an 30 

unstable thermal mode (mainly driven by heat), and a stable haline mode (mainly controlled by salinity). Using an idealized 

box model has since become one of the most efficient approaches in the studies of AMOC simulations. 
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    The idealized box model, although of limited applicability in simulating the entire Atlantic circulation or even the global 

circulation, provides the most basic explanation for some of the important characteristics of the AMOC (Scott et al., 1999). 

Besides Stommel's box model, which places two boxes side by side, Welander (1982) placed one box on top of the other to 35 

simulate the vertical structure of the real ocean. Then, the two-box model is extended to three boxes, and different three-box 

hemispheric models result in multiple equilibrium solutions (Birchfield, 1989; Guan and Huang, 2008; Shen et al., 2011). Also 

based on Stommel's box model, in some studies an additional box is added to simulate interhemispheric flows, constructing 

an idealized double-hemisphere model consisting of two high-latitude boxes and a low-latitude box. Multiple equilibria appear 

in such box models, and the transition between multiple equilibrium states is related to salt flux or freshwater flux (Rooth, 40 

1982; Rahmstorf, 1996; Scott et al., 1999). Extending Rooth's box model, with the equatorial box and the polar box connected 

at depth, results in nine equilibrium solutions, four of which are stable (Welander, 1986). The double-hemisphere model is 

closer to the real AMOC than the hemispheric model regarding the cross-equatorial flow in the Atlantic and upwelling flows 

in the Southern Ocean. 

    The multiple equilibrium states of the AMOC have been confirmed not only in simple idealized box models but also in 45 

comprehensive ocean general circulation models (Fürst and Levermann, 2012). In addition to the four different equilibrium 

states obtained in ocean circulation models with two basins representing the idealized Atlantic and Pacific oceans (Marotzke 

and Willebrand, 1991), it is even more encouraging that multiple equilibria are first simulated in a complex ocean general 

circulation model (Bryan, 1986), followed by two steady states in a global model of the coupled ocean-atmosphere system 

(Manabe and Stouffer, 1988). While such a phenomenon of AMOC multiple equilibria as a reverse haline mode cannot be 50 

directly simulated in general circulation models (e.g., Stouffer et al., 2006; Weijer et al., 2019), it is instead replaced by a weak 

positive circulation or a collapsed AMOC state (e.g., Liu et al., 2013), generally referring to regime transitions. 

    Constrained by the limited measurement technique and time length, the direct observation of AMOC is in general scarce, in 

terms of its nature of rich spectrum especially addressing low-frequency (e.g., Delworth et al., 1993). The direct observation 

of AMOC is mainly from the RAPID-MOC/MOCHA (Meridional Overturning Circulation and Heatflux Array) mooring array, 55 

which has been conducted at 26° N since 2004 (Cunningham et al., 2007; Smeed et al., 2014). The scope of direct observation 

is difficult to cover the entire Atlantic Ocean, and it is difficult to achieve long-term continuous direct observation. Ocean 

temperature data could be used to derive a proxy index for the variability of the AMOC, so both observations from satellites 

and ocean temperature measurements from the ARGO program could be used to monitor AMOC, and historical variations of 

AMOC could be reconstructed from historical sea surface temperature (Zhang, 2008). Indicators representing AMOC can be 60 

established based on the physical relationship between AMOC and atmospheric indices or oceanic variables (e.g., Delworth et 

al., 2016; Caesar et al., 2018). Previous studies have compared and evaluated some of these indicators with direct observations 

of AMOC and the results indicate that this approach is feasible for AMOC reconstruction (Sun et al., 2020). However, the 

direct observations from RAPID or the ocean temperature measurements from the ARGO program are only available for about 

the last two decades, and the lack of multi-decadal observations makes it impossible to evaluate the multi-decadal AMOC 65 

variation. Besides, Paleoclimate records from marine sediments or ice cores are often used to investigate AMOC variations 
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(e.g., Rühlemann et al., 2004; Lynch-Stieglitz, 2017). Paleoclimate data can be used as observations of the AMOC on centurial 

and millennial timescales. Analyses of paleoclimate data reveal that the strength and pattern of AMOC changed between the 

glacial and interglacial periods (e.g., Bryan, 1986). The two equilibrium solutions in the work of Birchfield (1989) correspond 

to the modern ocean and the warm saline Cretaceous ocean, respectively. In summary, direct observations of AMOC are so 70 

scarce as to be unrepresentative in studies of multi-equilibria of AMOC at long time scales, and paleoclimate data have 

considerable uncertainty, so numerical simulations using ocean circulation models and coupled climate models are the main 

method to study the multiple equilibria of AMOC at present. 

    The transition between different equilibrium states is related to many factors, one of which is freshwater, the most commonly 

considered, starting with Stommel's box model that illustrates the effect of freshwater input on thermohaline circulation 75 

(Lambert et al., 2016). Changes in freshwater over a range of parameters may trigger shifts between different equilibrium 

states (e.g., Bryan, 1986; Marotzke and Willebrand, 1991; Nilsson and Walin, 2001; Stouffer et al., 2006; Nilsson and Walin, 

2010). In addition to freshwater fluxes, the multiple equilibria may also be influenced by wind-driven gyre. The multiple 

equilibrium solutions in both Stommel's box model and Rooth's box model will be eliminated by a strong enough wind-driven 

ocean gyre (Longworth et al., 2005), and the same result can be obtained by replacing the buoyancy constraint with an energy 80 

constraint (Guan and Huang, 2008). AMOC transitions can occur due to external forcing or internal feedback (Klockmann et 

al., 2020). The external forcing applied in systems may include freshwater forcing (e.g., Cessi, 1994; Castellana et al., 2019), 

wind forcing (e.g., Ashkenazy and Tziperman, 2007; Kleppin et al., 2015), ice sheet forcing (e.g., Zhang et al., 2014; Mitsui 

and Crucifix, 2017), CO2 forcing (e.g., Zhang et al., 2017). The physical processes in the model are changed by external forcing, 

resulting in the transition between different states of the AMOC. For the AMOC model without external forcing, the transition 85 

is triggered by complex internal interactions within the model, such as salt oscillations (Peltier and Vettoretti, 2014), internal 

oceanic processes (Sévellec and Fedorov, 2014), thermohaline oscillations (Brown and Galbraith, 2016), intermittencies in 

the sea-ice cover (Gottwald, 2021). Regardless of whether it is due to external forcing or internal feedback, AMOC transitions 

could be influenced by complex physical processes in models, and the parameters involved in these physical processes are 

usually fixed. However, due to an incomplete understanding of the physical processes and the error of the default parameter 90 

values, the numerical model is problematic in simulating AMOC multiple equilibria. This study addresses the problem that for 

long time scale AMOC reanalysis data, the AMOC multiple equilibrium states simulated by different models are different and 

do not fully represent the “real” AMOC multi-equilibrium transition path. How to simulate regime transition of AMOC with 

a model where influencing factors such as freshwater and wind-driven gyre change over time. Then the next key is how to 

make the simulation results closer to “reality” on the feature of regime transitions by constraining the parameter values with 95 

observation. Observation-constrained model parameters are no longer kept at fixed values but are constantly varying over time. 

The purpose of this paper is to explore whether the variations of observation-constrained parameters that allow the physical 

processes of model to evolve over time can bring the simulation results closer to the “observed” feature of regime transitions. 

The models in this paper are obtained by coupling AMOC box model with Lorenz’s model, similar to the work by Roebber 

(1995) or Gottwald (2021), where the variation of AMOC is driven by the chaotic dynamical system. The thermal mode and 100 
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the reverse haline mode correspond to different equilibrium states of the AMOC. For simplicity, we will refer to these different 

states as the stronger AMOC (on-state) and the weaker AMOC (off-state) in simple conceptual models (e.g., Weijer et al., 

2019). 

    Data assimilation that combines a model with observed data is a feasible approach to study the multi-equilibria of AMOC 

given the situation described above. A popular data assimilation scheme is the Kalman filter (Kalman, 1960; Kalman and Bucy, 105 

1961). The main idea is to adjust the model predictions according to the observational data to obtain an optimal estimation of 

model states. Combining the Kalman filter with the idea of ensemble prediction, the ensemble Kalman filter (EnKF) uses 

ensemble samples of system states to estimate the background error covariance (e.g., Evensen, 1994). As a variant of EnKF, 

the ensemble adjustment Kalman filter (EAKF) derives a linear operator from the product of the observational distribution and 

the prior distribution of the model state to update the model ensemble (Anderson, 2001). EAKF has been applied to climate 110 

models to have developed fully coupled data assimilation systems (e.g., Zhang et al., 2007; Liu et al., 2014b). Tardif et al. 

(2014) implement data assimilation with EnKF to recover the AMOC with observations in a low-order coupled atmosphere-

ocean climate model. They mainly explore the value of data assimilation for the initialization of the AMOC, while the effect 

of parameter errors in AMOC simulations needs further discussion. As another class of ensemble-based assimilation methods, 

particle filters, unlike the EnKF, are applicable to non-Gaussian probability distributions (e.g., Gordon et al., 1993; van 115 

Leeuwen, 2009). A mixture-based implicit particle method is presented and could detect transitions in an example with multiple 

attracting states (Weir et al., 2013a). However, the particle filter is plagued by the curse of dimensionality as the system 

dimension increases (Snyder et al., 2008; Carrassi et al., 2018). 

    The method of parameter estimation is based on the theory of data assimilation, i.e. information estimation theory, or 

filtering theory (e.g., Jazwinski, 1970). Research on the use of observations to estimate model parameters has attracted 120 

extensive attention and has produced encouraging results in the literature (Annan et al., 2005; Aksoy et al., 2006a, 2006b; 

Hansen and Penland, 2007; Kondrashov et al., 2008; Hu et al., 2010). Based on EAKF, a data assimilation scheme for enhanced 

parameter correction is designed to improve parameter estimation using observations (Zhang et al., 2012). Zhao et al. (2019) 

perform this scheme in a simple AMOC box model, and the model parameters are successfully optimized when the model 

errors are caused by only erroneously set parameters. Although the AMOC regime transition is not addressed in their study, 125 

their exploration of model sensitivities regarding parameters serves as a guideline for our research. Many efforts have been 

made to advance the application of data assimilation and parameter estimation in nonlinear systems having multiple 

equilibrium states (e.g., Miller et al., 1994, 1999; Khalil et al., 2009; Weir et al., 2013b; Bisaillon et al., 2015). Although 

numerical simulations of the AMOC eventually exhibit multiple equilibria, the AMOC is not an explicit model variable; rather, 

it is derived from model variables such as atmospheric wind, ocean temperature and salinity. Instead of adjusting AMOC 130 

directly, the model states are adjusted through data assimilation. When constraining model parameters by observational 

information, the parameters that constantly vary with observations may provide more diversity in the physical processes 

involved with AMOC regime transition, so that the model can simulate more AMOC transition paths. 
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    Here we present a method for improving the modeling of AMOC multi-equilibria. The new method is shown to simulate 

the AMOC transition between different equilibrium states accurately in two simple coupled models, the first combining a 135 

three-box overturning simulation model with a five-variable simple climate model, and the second with clearer physical 

meaning. Then, we apply EAKF to both AMOC models to establish an ensemble coupled model data assimilation and 

parameter estimation (CDAPE) system, respectively. Within a “twin” experiment framework, the “observation” information, 

which is from the assimilation model simulation, is used to adjust the parameters of the model, thereby constraining the paths 

of transition between different AMOC equilibrium states, so that the path simulated by the model is close to the “real” path. 140 

    This paper is organized as follows. After the introduction, the methodology is described in Sect. 2, including a general 

proposition of optimizing multi-equilibrium transition path of AMOC, the EAKF algorithm, and the design of twin experiments 

used throughout this study. Section 3 begins with a description of the three-box and five-variable models, and their combination 

to simulate regime transitions of the AMOC, and then describes the optimization of the trajectory for the multi-equilibrium 

transition by CDAPE. In Sect. 4, the method of capturing regime transitions by CDAPE is applied to a similar simple model 145 

with a more explicit physical meaning. Finally, the summary and discussions are given in Sect. 5. 

2 Methodology 

2.1 Simulation and optimization of AMOC regime transitions 

The AMOC, as part of the thermohaline circulation, consists mainly of warmer and saltier water flowing from low to high 

latitudes in the upper ocean of the Atlantic, colder North Atlantic Deep Water (NADW) flowing southward in the deep ocean, 150 

and the corresponding upwelling and downwelling currents (Fig. 1a). Multiple equilibria exist in the system, for example, 

including the thermal mode (active AMOC or on-state) and the reverse haline mode (weak AMOC or off-state). The regime 

transitions of AMOC are simulated in simple idealized box models and complex ocean general circulation models. There are 

many influencing factors involved in the model, such as wind-driven gyre and freshwater flux, etc, and their variations will 

result in different states for AMOC. Their specific values and parameterization schemes are often designed with respect to the 155 

model states x. 

    Generally, an ocean-atmosphere coupled model which contains complex physical processes, can be generally expressed as 

𝜕𝒙

𝜕𝑡
= 𝐹(𝒙, 𝜷), where the model states (vector x) include the atmospheric and oceanic states. The model contains a set of fixed 

standard parameters β, and the values of β might be subject to errors, limited by incomplete understanding of physical processes 

and inadequate modeling experience and measurements, etc. The state of AMOC can be derived from the model state as 160 

𝑀𝑂𝐶 = 𝑓(𝒙). Fixed-value parameters in a single model may result in simulations that do not cover multiple equilibria in the 

real system. On the other hand, errors in the model parameters can result in inconsistent AMOC regime transition between the 

model simulation and reality. Focusing on these issues, our study explores whether it is possible to project observational 
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information onto model states and parameters so that model simulation behavior fits to realistic multiple equilibrium states 

and capture regime transitions by data assimilation and parameter estimation. 165 

    As shown in Fig. 1b, the blue line is the time series of MOC, representing the AMOC from the model control simulation, 

computed from the model states x by the relation f, and the dashed red line represents the “real” multi-equilibrium transition 

path. The dashed black line is a division line between two equilibrium states. The multi-equilibrium transition path (blue line) 

from the simulation control model with fixed parameters β is restricted to one equilibrium state, while the “real” transition 

path is more flexible in transforming between two states. For shorter timescales (at most multi-decadal timescales), limited by 170 

the scarcity of direct observations of AMOC, information on the AMOC variations can only be obtained indirectly, through 

direct observations y in real Earth system, such as atmospheric wind, ocean temperature and salinity, etc. For longer timescales 

(centurial and millennial timescales), the observations of AMOC can be derived from the paleoclimate records y. The red “+” 

signs in Fig. 1b, derived from the direct observations y, represent the indirect “observations” of the AMOC sampled from 

reality. The observations y are projected onto the model parameters β by CDAPE (the red arrow in Fig. 1b) so that β evolves 175 

over time with observation-dependent trend. Since the varying parameters allow the physical process of the model to be more 

flexible and the parameters β constrained by observation y gradually approach their true values, the model CDAPE simulation 

(purple line) results in a more realistic AMOC multi-equilibria (the blue arrow). To explore how likely this idea is to be realized, 

we attempt to capture AMOC regime transitions, in a conceptual model reflecting the characteristic of multi-equilibria and a 

more complex model with simple physical processes, and even planned in a more complex ocean-atmosphere coupled model 180 

representing the real Earth system. 

 

Figure 1. A schematic illustration of capturing AMOC regime transitions by projecting observational information to model states and 

parameters, by a) the illustration of AMOC consisting mainly of upper warmer and saltier northward flow (red) and deep cold southward 

flow (blue), and b) the time series of the “observations” (“+” signs) of the Ocean, the values of model control simulation (blue line) and 185 
observation-constrained simulation by coupled data assimilation and parameter estimation (CDAPE). The red arrow denotes that the 

“observations” sampled from the truth (dashed red line) are projected onto the model states x and parameters β at nearly step 30. The purple 

line represents the model simulation results after CDAPE. The blue arrow represents the process of capturing regime transitions. The 

backgrounds with color of light gray correspond to the “observed” multi-equilibrium transition path. The dashed black line is a division line 

between different equilibrium states of the AMOC. 190 
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2.2 Coupled model data assimilation and parameter estimation (CDAPE) 

The ensemble adjustment Kalman filter (Anderson, 2001) is used for data assimilation and parameter estimation in this study. 

The basic process of the two-step EAKF (Anderson, 2003; Zhang and Anderson, 2003; Zhang et al., 2007) is to project the 

observational increment onto model states (relevant parameters) by calculating the error covariance between the prior ensemble 

of the model variable (parameter) and the model-estimated ensemble. The core of the two-step EAKF is to calculate the 195 

increment of each state variable by a local least squares fit (linear regression), and the calculation of the observational 

increment is related to the scalar application of the equations of EAKF (Anderson, 2003). All observations at time t have the 

observation value 𝒚𝒐 (in 𝑁𝑜𝑏𝑠 dimensions). For a single observation 𝑦𝑘
𝑜 at the k-th observation location (𝑘 = 1~𝑁𝑜𝑏𝑠), the 

standard deviation of observational error is 𝜎𝑜 (assumed to be Gaussian). The model states are mapped onto the observational 

space by applying a linear interpolation, and then the prior (model-estimated) ensemble of the k-th observation 𝒚𝒌
𝒑
 (in 𝑁𝑒𝑛𝑠 200 

dimensions) can be obtained. 𝑦𝑘,𝑖
𝑝

 is the i-th prior ensemble member of the k-th observation. The ensemble mean and standard 

deviation are �̄�𝑘
𝑝
 and 𝜎𝑘

𝑝
, respectively. 

The first step is to compute the observational increment of the k-th observation (𝑘 = 1~𝑁𝑜𝑏𝑠). The observational increment 

Δ𝑦𝑘,𝑖
𝑜  for the i-th ensemble member (𝑖 = 1~𝑁𝑒𝑛𝑠) is formulated by 

Δ𝑦𝑘,𝑖
𝑜 = �̄�𝑘

𝑢 + Δ𝑦𝑘,𝑖
′ − 𝑦𝑘,𝑖

𝑝
 ,           (1) 205 

where �̄�𝑘
𝑢 is the posterior ensemble mean of the k-th observation, representing the shift of the ensemble mean induced by this 

observation, Δ𝑦𝑘,𝑖
′  is the updated ensemble spread of the k-th observation, representing the reshaping of the model ensemble. 

They are respectively computed by 

�̄�𝑘
𝑢 =

(𝜎𝑜)2

(𝜎𝑜)2+(𝜎
𝑘
𝑝
)2
�̄�𝑘
𝑝
+

(𝜎𝑘
𝑝
)2

(𝜎𝑜)2+(𝜎
𝑘
𝑝
)2
𝑦𝑘
𝑜 , and 

Δ𝑦𝑘,𝑖
′ = √

(𝜎𝑜)2

(𝜎𝑜)2+(𝜎𝑘
𝑝
)2
(𝑦𝑘,𝑖

𝑝
− �̄�𝑘

𝑝
) ,          (2) 210 

where the first equation shows whether the ensemble mean shifts closer to the prior model ensemble mean �̄�𝑘
𝑝

 or the 

observation value 𝑦𝑘
𝑜, and whether it is �̄�𝑘

𝑝
 or 𝑦𝑘

𝑜 depends on which has the smaller variance. The second equation denotes that 

the prior probability density function is squashed by a new observation. 

    The second step is to distribute the observational increments Δ𝑦𝑘,𝑖
𝑜  on to the related model states x (a matrix of size 

𝑁𝑒𝑛𝑠 × 𝑁𝑠𝑡𝑎𝑡𝑒) and this assimilation process can be expressed as 215 

Δ𝑥𝑗,𝑖 =
𝑐𝑜𝑣(𝒙𝒋,𝒚𝒌

𝒑
)

(𝜎𝑘
𝑝
)2

Δ𝑦𝑘,𝑖
𝑜  ,           (3) 

where Δ𝑥𝑗,𝑖  is the contribution of the k-th observation to the i-th ensemble member of the j-th model variable 𝑥𝑗,𝑖  (𝑗 =

1~𝑁𝑠𝑡𝑎𝑡𝑒). 𝑐𝑜𝑣( 𝒙𝒋, 𝒚𝒌
𝒑
) is the error covariance between the prior ensemble of the j-th model variable 𝒙𝒋 (in 𝑁𝑒𝑛𝑠 dimensions) 
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and the prior (model-estimated) ensemble of the k-th observation 𝒚𝒌
𝒑
 (in 𝑁𝑒𝑛𝑠 dimensions), and is calculated as 𝑐𝑜𝑣( 𝒙𝒋, 𝒚𝒌

𝒑
) =

∑ (𝑥𝑗,𝑖−�̅�𝑗)
𝑁𝑒𝑛𝑠
𝑖=1 (𝑦𝑘,𝑖

𝑝
−�̄�𝑘

𝑝
)

𝑁𝑒𝑛𝑠
 , where �̅�𝑗 is the ensemble mean of j-th model variable. 220 

    The model parameters are fixed when parameter estimation is not performed. The parameters vary with observational 

information by parameter estimation. The core of the parameter estimation is to obtain the increment of the estimated parameter 

by a linear regression that is based on the error covariance between the prior parameter ensemble and the state ensemble 

(Anderson, 2001, 2003). The error covariance used in regression is flow dependent and temporally varying (Zhang and 

Anderson, 2003). Therefore, for the model parameter estimation, the observational increments are distributed onto a relevant 225 

parameter and the equation is 

Δ𝛽𝑗,𝑖 =
𝑐𝑜𝑣(𝜷𝒋,𝒚𝒌

𝒑
)

(𝜎𝑘
𝑝
)2

Δ𝑦𝑘,𝑖
𝑜  ,           (4) 

where Δ𝛽𝑗,𝑖 is the contribution of the k-th observation to the i-th ensemble member of the j-th parameter being estimated, called 

𝛽𝑗,𝑖 (𝑗 = 1~𝑁𝑝𝑎𝑟𝑎). 𝑐𝑜𝑣(𝜷𝒋, 𝒚𝒌
𝒑
) is the error covariance between the prior ensemble of the j-th model parameter 𝜷𝒋 (in 𝑁𝑒𝑛𝑠 

dimensions) and the prior (model-estimated) ensemble of the k-th observation 𝒚𝒌
𝒑
 (in 𝑁𝑒𝑛𝑠 dimensions), and is calculated as 230 

𝑐𝑜𝑣(𝜷𝒋, 𝒚𝒌
𝒑
) =

∑ (𝛽𝑗,𝑖−�̅�𝑗)
𝑁𝑒𝑛𝑠
𝑖=1 (𝑦𝑘,𝑖

𝑝
−�̄�𝑘

𝑝
)

𝑁𝑒𝑛𝑠
 , where �̅�𝑗 is the ensemble mean of j-th model parameter being optimized. 

    Since the model parameters do not have dynamically supported internal variability, the ensemble spread of an estimated 

parameter will decrease rapidly after several time steps of parameter estimation. In other words, the model parameters are not 

dynamical variables, which leads to a progressively decreasing ensemble variance of a parameter being estimated. The 

parameter ensemble will not be adjusted by new observations if the ensemble spread is too small, so the inflation scheme of 235 

the prior parameter ensemble is necessary for the parameter estimation. A typical inflation scheme is “conditional covariance 

inflation” method (Aksoy et al., 2006a). A predefined standard deviation is first chosen empirically as critical value in this 

scheme. Then the parameter spread is adjusted back to it when the standard deviation of the parameter ensemble is smaller 

than this critical value. To further improve the signal-to-noise ratio of parameter estimation, Zhang (2011a) introduced an 

inflation scheme based on model sensitivity with respect to the parameter being estimated. In this inflation scheme, the inflation 240 

amplitude of a parameter ensemble is inversely proportional to the sensitivity. It is formulated as 𝛽𝑗,𝑖 = �̅�𝑗 +

𝑚𝑎𝑥 (1,
𝛼0𝜎0

𝜎𝑗𝜎𝑡
) (𝛽𝑗,𝑖 − �̅�𝑗) , where 𝛽𝑗,𝑖 denotes the inflated version of the i-th ensemble member of the j-th parameter being 

estimated, 𝜎0 and 𝜎𝑡 are the prior ensemble spreads of this parameter at the initial time and time t, 𝛼0 is a constant tuned by a 

trial-and-error procedure (e.g., Wu et al., 2016), and 𝜎𝑗 is the sensitivity of the model state with regard to j-th parameter. This 

indicates that if the prior ensemble spread of j-th parameter is smaller than 
𝛼0

𝜎𝑗
 times the initial spread, it will be enlarged to this 245 

amount (e.g., Wu et al., 2012; Han et al., 2014; Zhao et al., 2019). In this study, considering that the inflated parameter 

ensemble will influence state variables, for the simplicity and convenience of computation and comparison, no inflation is 
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applied to the model state ensemble, as in Han et al. (2014), Yu et al. (2017) and Zhao et al. (2019). The inflation scheme is 

only used for parameter estimation. 

2.3 Experimental design 250 

To show the contribution of data assimilation and parameter estimation to capture AMOC regime transitions, a twin experiment 

containing a truth model and assimilation models is designed. Since this study focuses on the effect of parameters on multiple 

equilibria, it is assumed that the model bias is originated only from the incorrectly set parameter. The parameter in the truth 

model is set to the truth value β0, and the simulation results represent the real state of AMOC in reality. Similar to the 

observation process in reality, the observations y are obtained by superimposing white noise on the real state and sampling at 255 

a certain frequency. The assimilation models differ from the truth model only in the parameter values, with the same initial 

conditions and other aspects such as the differencing scheme. The parameter in the i-th assimilation model is assumed to be 

incorrectly guessed as βi, and all βi in the assimilation models have the mean of βm (βm ≠ β0) and the variance of βv. The role 

of data assimilation is shown by the model states constrained by the observations y, and furthermore, the role of parameter 

estimation is shown by the model states obtained after the parameters are constrained by the observations y. 260 

3 Capturing regime transitions by observation-constrained model parameters in a conceptual MOC model 

3.1 The MOC3B-5V model 

3.1.1 A three-box MOC model 

In the classic two-box model of Stommel (1961), a buoyancy constraint on the thermohaline circulation was present. Following 

the energy-constraint approach, the thermohaline circulation is driven and maintained by mechanical energy so that buoyancy 265 

constraint is replaced by an energy constraint (Guan and Huang, 2008). On this basis, considering the effect of wind-driven 

gyre, a three-box model is formulated (Shen et al., 2011). 

    The three-box model used in this study has an upper box representing the mid and low latitude surface ocean, a pole box 

representing the high-latitude ocean, and a lower box representing the mid and low latitude deep ocean, as illustrated in Fig. 

2. The three-box model is designed with two different modes which are the thermal mode (driven by temperature) and the 270 

haline mode (driven by salinity). In the thermal mode, water flows from the pole box, passing the lower box, then flowing into 

the upper box by upwelling, and finally returning to the pole box (solid arrows in the boxes), while the circulation is reversed 

in the haline mode (dotted arrows). The horizontal and vertical water flow are represented by the terms u and v, respectively 

(more details are given in Shen et al., 2011). 
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 275 

Figure 2. Schematic illustration of a three-box model for the thermohaline circulation. The volume of upper box is the same as the volume 

of pole box, and their volumes are both a multiplication of a-1 and the volume of lower box. L and H are the width and depth of upper box, 

Ti and Si represent the temperature and salinity in box i. The upper boundary conditions are a temperature relaxation toward the specified 

reference temperature 𝑇1
∗ = 𝑇0

∗, 𝑇2
∗ = 0 and a freshwater flux p. ω represents the wind-driven gyre between the upper box and pole box. u is 

the horizontal water flow and v is the overturning rate. The red terms represent the main influencing factors of v and multiple equilibria, and 280 
which variables in the five-variable model they will be combined with. The solid (dotted) arrows in the three boxes indicate the thermal 

(haline) mode with circulation flowing clockwise (counterclockwise). 

    The heat balance equations and the salinity balance equations in each box are established firstly. By introducing the 

nondimensional variables, after derivation, the simple non-dimensional ordinary differential equations are finally obtained as 

follows: 285 

�̇�1 = 𝑣𝑡𝑇3 − 𝑢𝑡𝑇1 + 𝑇0
∗ − 𝑇1 +𝜔(𝑇2 − 𝑇1)  

�̇�2 = 𝑢𝑡𝑇1 − 𝑣𝑡𝑇2 −
1

𝑎+1
𝑇2 +𝜔(𝑇1 − 𝑇2)  

𝑎�̇�3 = 𝑣𝑡(𝑇2 − 𝑇3)  

�̇�1 = 𝑣𝑡𝑆3 − 𝑢𝑡𝑆1 +𝜔(𝑆2 − 𝑆1)  

�̇�2 = 𝑢𝑡𝑆1 − 𝑣𝑡𝑆2 + 𝜔(𝑆1 − 𝑆2)  290 

𝑎�̇�3 = 𝑣𝑡[(𝑎 + 2)𝑆0
∗ − (𝑎 + 1)𝑆3 − 𝑆1] ,         (5) 

where Ti and Si represent the temperature and salinity in box i, an overdot denotes time tendency, 𝑇0
∗ and 𝑆0

∗ are the mean 

temperature and mean salinity of the box model ocean, the subscript t stands for the thermal mode, ω represents the wind-

driven gyre, and p represents the freshwater flux. The non-dimensional continuity equation is 

𝑢𝑡 = 𝑣𝑡 − 𝑝 .            (6) 295 

Under the energy constraint, the scale of overturning rate in the three-box model satisfies 
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𝑣𝑡 =
𝑒

𝜌0𝛼(𝑇1−𝑇2)−𝜌0𝛽(𝑆1−𝑆2)
 ,          (7) 

where e represents the strength of the external source of mechanical energy sustaining mixing, ρ0 is the mean density of the 

model ocean, α is the thermal expansion coefficient, and β is the saline expansion coefficient. 

    In the haline mode, the influence of wind-driven gyre is the same as it is in the thermal mode, but the circulation in three 300 

boxes is reversed. The governing equations for the haline mode also follow the study of Shen et al. (2011). They didn't show 

those equations, but only described them briefly. In this paper, to describe the construction of MOC3B-5V more clearly later, 

those equations are shown here. Accordingly, the non-dimensional equations in each box are 

�̇�1 = 𝑢𝑠𝑇2 − 𝑣𝑠𝑇1 + 𝑇0
∗ − 𝑇1 + 𝜔(𝑇2 − 𝑇1)  

�̇�2 = 𝑣𝑠𝑇3 − 𝑢𝑠𝑇2 −
1

𝑎+1
𝑇2 + 𝜔(𝑇1 − 𝑇2)  305 

𝑎�̇�3 = 𝑣𝑠(𝑇1 − 𝑇3)  

�̇�1 = 𝑢𝑠𝑆2 − 𝑣𝑠𝑆1 + 𝜔(𝑆2 − 𝑆1)  

�̇�2 = 𝑣𝑠𝑆3 − 𝑢𝑠𝑆2 +𝜔(𝑆1 − 𝑆2)  

𝑎�̇�3 = 𝑣𝑠[(𝑎 + 2)𝑆0
∗ − (𝑎 + 1)𝑆3 − 𝑆2] ,         (8) 

where the subscript s stands for the haline mode. The non-dimensional continuity equation is 310 

𝑢𝑠 = 𝑣𝑠 + 𝑝 .            (9) 

The overturning rate's vs is formulated by 

𝑣𝑠 =
𝑒

𝜌0𝛽(𝑆1−𝑆2)−𝜌0𝛼(𝑇1−𝑇2)
 .          (10) 

    Equations (5)-(7) are governing equations for the thermal mode, and Equations (8)-(10) are governing equations for the 

haline mode of the thermohaline circulation in a hemisphere three-box model. The time derivativestendency in Eqs. (5) and 315 

(8) are set to be zero, and then the governing equations for the thermal mode or the haline mode are solved, respectively. 

Equations (5)-(7) have one stable solution, and Equations (8)-(10) have one stable solution and one unstable solution. Hence, 

the three-box model has a total of three mathematical solutions. This result obtained by solving the equations could be found 

in Shen et al. (2011). By solving the non-dimensional differential equations and the continuity equations, there are two stable 

solutions and one unstable solution, which means that the three-box model has three equilibrium states. A more detailed 320 

description of this model can be found in Shen et al. (2011). Similar equations for the thermal and haline modes could be found 

in Guan and Huang (2008) for Eq. (1) (thermal mode) and Eq. (2) (haline mode), and in Shen and Guan (2015) for Eqs. (1)-

(6) (thermal mode) and Eqs. (7)-(9) (haline mode). The overturning rate (v) and multiple equilibria are affected by energy 

constraint e, freshwater flux p, and wind-driven gyre ω. The haline mode will switch to the thermal mode when e or ω is 

increased or p is decreased beyond the critical value (Shen and Guan, 2015). 325 
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3.1.2 A 5-variable conceptual climate model 

Lorenz (1963) proposed a simple model with only three variables to simulate the chaotic characteristics of the atmosphere, 

where x1 is proportional to the intensity of the convective motion, x2 is proportional to the temperature difference between the 

ascending and descending currents, and x3 is proportional to the distortion of the vertical temperature profile from linearity. 

However, its three variables only reflect the process of atmospheric convection, and they cannot represent the interaction of 330 

the atmosphere and ocean, as well as the low-frequency nature of climate evolution. On this basis, two ocean variables that 

represent the slab ocean variable and the deep ocean pycnocline anomaly are added and coupled with the chaotic “atmosphere” 

to simulate the interactions between the atmosphere and the ocean (Zhang et al., 2012) as well as the upper and deep oceans 

(Zhang, 2011a, 2011b). The model equations are: 

�̇�1 = −𝜎𝑥1 + 𝜎𝑥2  335 

�̇�2 = −𝑥1𝑥3 + (1 + 𝑐1𝑤)𝜅𝑥1 − 𝑥2  

�̇�3 = 𝑥1𝑥2 − 𝑏𝑥3  

𝑂m�̇� = 𝑐2𝑥2 + 𝑐3𝜂 + 𝑐4𝑤𝜂 − 𝑂d𝑤 + 𝑆m + 𝑆s 𝑐𝑜𝑠(2𝜋𝑡/𝑆pd)  

𝛤�̇� = 𝑐5𝑤 + 𝑐6𝑤𝜂 − 𝑂d𝜂 ,          (11) 

where x1, x2, and x3 are the high-frequency variables that represent the atmosphere, w and η are the low-frequency variables 340 

that conceptually simulate the simple variation characteristics of the upper ocean and the deep ocean, respectively. 

    The original σ, κ, and b sustain the chaotic nature of the atmosphere. The coupling between the fast atmosphere and the slow 

ocean is reflected by c1 and c2. The coefficient c1 represents the oceanic forcing on the atmosphere and c2 represents the 

atmospheric forcing on the ocean. To ensure that the time scale of the ocean is slower than the atmosphere, the heat capacity 

Om must be much larger than the damping rate Od. For w, the parameters Sm and Ss define the magnitudes of the annual mean 345 

and seasonal cycle of the imposed external forcing, and the period of the seasonal cycle is defined by Spd. The interactions and 

nonlinear interactions of upper ocean and deep ocean are represented by coefficients c3, c4, c5, and c6. The terms c3η and c4wη 

(c5w and c6wη) represent the linear exchange flux and the nonlinear role from deep (upper) ocean to upper (deep) ocean. The 

ratio of the constant of proportionality Γ and Od determines the time scale of variation of η. The standard values of these 

parameters in the model are set to (σ, κ, b, c1, c2, Om, Od, Sm, Ss, Spd, Γ, c3, c4, c5, c6) = (9.95, 28, 8/3, 10-1, 1, 1, 10, 10, 1, 10, 350 

100, 10-2, 10-2, 1, 10-3). 

3.1.3 The 3-box MOC model coupled with the 5-variable model (MOC3B-5V) 

The construction of the MOC3B-5V model starts with the three-box model of the previous study of Shen and Guan (2015), 

including the non-dimensional temperature and salinity differential equations, the continuity equations, and the equation for 

the overturning rate (Eqs. 5-10). To obtain the time series of overturning rate and simulate the AMOC transition between 355 

different equilibrium states in the time series, we no longer set the time derivatives in Eqs. (5) and (8) to be zero, instead using 

a leapfrog time differencing scheme to forward the temperature and salinity so as the overturning rate.The first aim of this 
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study is to simulate the AMOC transition between different equilibrium states in the time series. However, a time series of 

overturning rate cannot be obtained by solving the governing equations after setting the time tendency in Eqs. (5) and (8) to 

zero. Therefore, without setting the time tendency to zero, we use a leapfrog time differencing scheme to forward the 360 

temperature and salinity to obtain the time series. For an unstable solution obtained by setting the time tendency to zero, a 

small perturbation on the solution will grow exponentially (Shen et al., 2011), so it cannot be obtained by using the time 

differencing scheme. Thus, the equilibrium states resolved through integrating time tendency equations in this study do not 

include the unstable solution described by Shen et al. (2011). 

    To test the feasibility of the time differencing scheme, the values of e, p, ω in the three-box model are changed respectively 365 

from small to large, and the overturning rate is calculated when the temperature and salinity in the three boxes are almost 

steady, which means that the AMOC reaches a quasi-equilibrium state. By using a leapfrog time differencing, the three-box 

model is first spun up for 105 TUs (Time units, 1 TUs = 100 steps) starting from (T1, T2, T3, S1, S2, S3) = (20.0, 0.0, 15.0, 35.5, 

35.0, 34.5) with the values of relevant parameters described in the previous study (Shen and Guan, 2015). The initial values 

of temperature and salinity at the equilibrium state are obtained. Then the value of e (from 0.0 to 3.0 × 10-7 kg m-2 s-1), p (from 370 

1.0 to 0.0 m yr-1) or ω (from 0.0 to 5.0 Sv, 1 Sv = 106 m3 s-1) is changed within a certain range. Each time it changes, the three-

box model is integrated for another 500 TUs for spin-up to reach an equilibrium state, and the overturning rate corresponding 

to different values of e, p, ω is calculated. To distinguish the overturning rate in the haline mode from that in the thermal mode, 

the overturning rate in the haline mode can be represented by -vs, which means that the circulation is reversed. 

    The results are consistent with previous results from the research on model stability in Shen et al. (2011). Figure 3a shows 375 

the effects of e on the circulation in the three-box model. The corresponding threshold of e exists in the haline mode. When e 

is less than the critical value, the overturning rate is less than zero. When the value of e is increased beyond the threshold, the 

haline mode switches to the thermal mode. Similarly, when p is decreased beyond the corresponding critical value (in Fig. 3b), 

or when ω is increased beyond the corresponding critical value (in Fig. 3c), the AMOC transition from the haline mode to the 

thermal mode. 380 
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Figure 3. Variations of overturning rates in the space of a) energy constraint parameter e, b) freshwater flux p and c) wind-driven circulation 

ω in the three-box model with a) p = 0.5 m yr-1 and ω = 1.5 Sv, b) e = 2.5 × 10-7 kg m-2 s-1 and ω = 0.0 Sv, c) e = 2.5 × 10-7 kg m-2 s-1 and p 

= 1.0 m yr-1. The red line indicates the stable thermal mode and the blue line indicates the stable haline mode. The dashed black line is a 

division line between the thermal mode equilibrium state and the haline mode equilibrium state. 385 

    To simulate the transition between different states of AMOC and achieve the shift from the thermal mode to the haline mode, 

the non-dimensional differential equations for temperature and salinity balance are adjusted by adding a term Qa which 

represents an additional freshwater flux from the atmosphere to the upper box and the pole box. Similar to the parameterization 

scheme in Roebber (1995), a simple and more idealized parameterization scheme for Qa is devised, which assumes that the 

additional freshwater flux from the atmosphere to the ocean is divided into mean transport components and transient 390 

components. The transient components are assumed to be linearly related to x2. Then, the term Qa can be defined as Qa = Q0 + 

α0x2, where Q0 and α0 are constants. Since the additional freshwater flux Qa should be much smaller than the freshwater flux 

p, the values of Q0 and α0 are set to 0.02 and 0.000125 considering the magnitude and variation of p and x2. The calculation 

result of the overturning rate in the thermal mode (denoted by vt) is different from that in the haline mode (denoted by vs). To 

unify Eqs. (5)-(7) for the thermal mode and Eqs. (8)-(10) for the haline mode, “-vs” and “-us” are introduced in the haline mode. 395 

Thus, v or u greater (less) than zero represents the thermal (haline) mode with circulation flowing clockwise (counterclockwise) 

in the three boxes in Fig. 2. 
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    Hence, the non-dimensional differential equations are 

�̇�1 = 𝑣[𝜃(𝑣)𝑇3 + 𝜃(−𝑣)𝑇1] − 𝑢[𝜃(𝑣)𝑇1 + 𝜃(−𝑣)𝑇2] + 𝑇0
∗ − 𝑇1 +𝜔(𝑇2 − 𝑇1)  

�̇�2 = 𝑢[𝜃(𝑣)𝑇1 + 𝜃(−𝑣)𝑇2] − 𝑣[𝜃(𝑣)𝑇2 + 𝜃(−𝑣)𝑇3] −
1

𝑎+1
𝑇2 +𝜔(𝑇1 − 𝑇2)  400 

𝑎�̇�3 = 𝑣[𝜃(𝑣)𝑇2 + 𝜃(−𝑣)𝑇3] − 𝑣[𝜃(𝑣)𝑇3 + 𝜃(−𝑣)𝑇1]  

�̇�1 = 𝑣[𝜃(𝑣)𝑆3 + 𝜃(−𝑣)𝑆1] − 𝑢[𝜃(𝑣)𝑆1 + 𝜃(−𝑣)𝑆2] + 𝜔(𝑆2 − 𝑆1) + 𝑄a  

�̇�2 = 𝑢[𝜃(𝑣)𝑆1 + 𝜃(−𝑣)𝑆2] − 𝑣[𝜃(𝑣)𝑆2 + 𝜃(−𝑣)𝑆3] + 𝜔(𝑆1 − 𝑆2) + 𝑄a  

𝑎�̇�3 = 𝑣[𝜃(𝑣) − 𝜃(−𝑣)][(𝑎 + 2)𝑆0
∗ − (𝑎 + 1)𝑆3] − 𝑣𝜃(𝑣)𝑆1 + 𝑣𝜃(−𝑣)𝑆2 ,     (12) 

where the function θ(x) is a step function, which has the value 1 for a positive argument and the value zero otherwise. Through 405 

this function, we can represent the different circulation given by different sign of v. The continuity equation is 

𝑢 = 𝑣 − 𝑝 ,            (13) 

and the overturning rate can take a form as 

𝑣 =
𝑒

𝜌0𝛼(𝑇1−𝑇2)−𝜌0𝛽(𝑆1−𝑆2)
 ,           (14) 

so that the sign of v will represent where equilibrium state the AMOC is. The intensity of overturning rate and the state of 410 

AMOC are mainly affected by e, p, and ω in the circulation control equations. A similar AMOC box model with many switches 

could be found in Castellana et al., (2019). 

    In reality, the circulation intensity and the AMOC state are affected by many factors, such as mechanical energy, which is 

directly used to sustain the vertical mixing in stratification, freshwater flux, and wind-driven circulation. These factors change 

irregularly in the earth system. To make the variations of e, p, and ω in the model have chaotic characteristics, which is similar 415 

to reality, these three influencing factors and the five-variable model are combined. Since the energy constraint e is related to 

the upper ocean and the deep ocean, the freshwater flux p is related to the atmosphere and the upper ocean, and the wind-

driven circulation ω is directly related to the atmosphere, it is possible to conceptually idealize a simple equation for the 

relationship between e, p, ω with x2, w, η. 

    The energy constraint e reflects the strength of the external mechanical energy that sustains mixing, the main sources of 420 

which are the energy provided by the wind and tidal dissipation. In this process, kinetic energy is converted to potential energy 

through turbulence and internal waves (Huang, 2004). Such external mechanical energy is estimated to be about 2 TW 

(terawatts), with about 1.2 TW as the contribution of wind to mixing, including the generation of internal waves in the surface 

ocean (Munk and Wunsch, 1998), and the energy from the wind can radiate throughout the ocean (Wunsch and Ferrari, 2004). 

Besides, a previous study has estimated the energy provided by wind at 1 TW, which is also about half of the total external 425 

energy to sustain mixing (Wunsch, 1998). The other half of the total energy comes mainly from the tidal dissipation in the 

deep ocean, and to a lesser extent from the interactions of the eddy with the ocean bottom topography (Wunsch and Ferrari, 

2004; Kuhlbrodt et al., 2007). The energy parameter e varies continuously with climate conditions, but it is difficult to establish 

the connection between them accurately, due to the large uncertainty in the estimation of these energy sources (Guan and 

Huang, 2008). 430 
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    For the idealized three-box model coupled with the simple conceptual climate model, the energy constraint e can only be 

conceptually constructed by approximate estimation. However, this paper focuses primarily on capturing regime transitions of 

the AMOC, so it will not be affected by the inaccurate energy constraint e that is conceptually established. The main sources 

of external energy to sustain mixing are tide and wind, so e is defined as e = Et + Ew, where Et represents the kinetic energy 

originating from the abyssal tidal flow and Ew represents the energy from wind contribution to the ocean. Et is primarily 435 

associated with the deep ocean, so the equation is simply established as Et = a1 (η + b1). Since the wind affects the upper ocean 

directly and radiates throughout the ocean through the interaction of the upper ocean with the deep ocean, the equation is 

established as Ew = a2 (w + b2) + a3 (w + b2) (η + b1), where a1, a2, a3, b1, b2 are constants to be determined. The range of e has 

been estimated to be roughly 1 × 10-7 to 3 × 10-7 kg m-2 s-1 (Guan and Huang, 2008), and considering that the threshold for the 

equilibrium state transition is near 1.0 × 10-7 kg m-2 s-1 (in Fig. 3a), the mean value of e is taken to be about 1.5 × 10-7 kg m-2 440 

s-1, with wind and tidal contributing half of the total, respectively. Scaling w and η based on the mean and range of variation 

of them, the values for a1, a2, a3, b1, b2 can be readily derived. 

    The freshwater flux mainly consists of river runoff (denoted by Pr), evaporation, and precipitation (jointly denoted by Pep), 

so p is formulated by p = Pr + Pep. Since Pr is primarily associated with the upper ocean, establish the equation Pr = a4 (w + 

b2). Pep are related to the interaction of the upper ocean with the atmosphere, so the equation Pep = a5 (x2 + b3) + a6 (x2 + b3) (w 445 

+ b2) is established. The river runoff accounts for a major portion of the total freshwater flux in the northern part of the Atlantic 

(Broecker et al., 1990), and concerning Fig. 3b, where the threshold for the equilibrium state transition is approximately 0.5 m 

yr-1, the values of a4, a5, a6 and b3 can be readily derived. The wind-driven circulation is mainly related to the atmospheric 

forcing, and the equation is simply established as ω = a7 (x2 + b3). Based on the fact that the equilibrium state transition point 

is near 2.5 Sv (in Fig. 3c) and scaling is performed on x2, the values of a7 can be estimated. Then, the relationships between e, 450 

p, ω from the three-box model and x2, w, η (red terms in Fig. 2) are established as follows 

𝑒 = 𝑎1(𝜂 + 𝑏1) + 𝑎2(𝑤 + 𝑏2) + 𝑎3(𝑤 + 𝑏2)(𝜂 + 𝑏1)  

𝑝 = 𝑎4(𝑤 + 𝑏2) + 𝑎5(𝑥2 + 𝑏3) + 𝑎6(𝑥2 + 𝑏3)(𝑤 + 𝑏2)  

𝜔 = 𝑎7(𝑥2 + 𝑏3) .           (15) 

    A set of parameter values (a1, a2, a3, a4, a5, a6, a7, b1, b2, b3) = (3-1, 10-1, 30-1, 9-1, 800-1, 7200-1, 16-1, -11, -7, 40) are used as 455 

simulating the variation of e, p and ω in the air-sea system. Therefore, the three-box model and the five-variable model are 

combined. The time series of overturning rate can be calculated, which can simulate the transition between different states of 

AMOC. 

3.2 Experimental design 

For the MOC3B-5V model, the model states (vector x) are the five variables, the ocean temperature variables, and the ocean 460 

salinity variables. The physical processes 
𝜕𝒙

𝜕𝑡
= 𝐹(𝒙, 𝛃) are represented by Eqs. (11) and (12), where the influencing factors e, 

p, ω are calculated by Eq. (15). The AMOC states are obtained by Eq. (14). Assuming that there is an error between the true 
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value of a parameter and the value in the model, a twin experiment framework is set. The MOC3B-5V model is set with 

standard parameter values, where the standard value of original κ in Eq. (11) is 28. Starting from the conditions (x1, x2, x3, w, 

η) = (0, 1, 0, 0, 0), the model is integrated for 300 TUs to obtain the initial values of the five variables. The initial values of 465 

temperature and salinity at the equilibrium state in three boxes are obtained as described in Sect. 3.1.3. When using 

observations of x1, x2, x3, and w for estimation, κ = 28 is the “true” solution of the parameter. The truth model is run forward 

for 5000 TUs to establish the “truth” (see dashed line in Fig. 4 with x2 as a case). To simulate the observation errors, white 

noise is added to the true value, and the standard deviations of these observation errors are set to 2 for x1, x2, x3, and 0.5 for w. 

Then, the true value with white noise is sampled at a certain frequency (5 time steps for x1, x2, x3, and 20 time steps for w) as 470 

observations. The “+” signs in Fig. 4 show an example of observations (x2). 

 

Figure 4. Time series of the observations (“+” signs) of x2, and the x2 values of the control model simulation (solid line) with κ = 32 without 

data assimilation and parameter estimation. The “observations” are taken from the “truth” simulation (dashed line as the reference) at an 

interval of 0.05 TU and superimposed by a white noise with a standard deviation of 2. 475 

    For the assimilation model, the initial conditions are the same as the above “observation”. 20 model ensembles are set with 

different κ to simulate the transitions of AMOC in different models. 20 Gaussian random numbers are drawn for the parameter 

κ to be estimated, with the mean (�̄�𝑖 = 32) and the guessed standard deviation (𝜎0
2 = 0.1). The 20 models are spun up from the 

same initial conditions for another 5000 TUs with different values of κ and standard values for other model parameters. 

3.3 Sensitivity of model parameters 480 

Several numerical models have shown that multiple equilibria exist in the thermohaline circulation, but the AMOC regime 

transitions obtained in different models are different. Changes in freshwater flux, energy constraint, wind-driven circulation, 

and other factors will cause the AMOC to switch between different equilibrium states. By combining the three-box model with 

the five-variable model, it is simulated that AMOC switches between different equilibrium states in the time series. 

    As described in Sect. 3.2, the parameter κ, which affects the variation of e, p, and ω in the model, is erroneously guessed as 485 

32. The errors of AMOC transitions caused by model parameters grow rapidly. For the twenty different ensemble members in 
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the free model control ensemble simulations, although the values of κ are all close to 32 with a small difference and their 

variance is only 0.1, the simulation results (orange lines in Fig. 5a) are quite different which means that the equilibrium states 

of AMOC are different. Meanwhile, the path of transition between different equilibrium states is also different and does not 

converge to the truth (red lines). The overturning rate greater than zero means that AMOC is in the thermal mode. By contrast, 490 

the value of overturning rate is negative because of the reversed direction of water flow in the three boxes. 

3.4 Data assimilation and parameter estimation 

AMOC simulation results of twenty ensemble members along different transition paths, which are different from the 

“observations”. To adjust the model to make the simulation results closer to the truth, the “observations” are assimilated into 

the model. Based on the method in Sect. 2.2, the observational increment and the covariance between the prior ensemble of 495 

model variable and the model-estimated ensemble are calculated first, after which each observational increment is applied to 

Eq. (3) to update the model variable ensemble. Obtain an updated prior ensemble of the variable in preparation for the next 

cycle of data assimilation. The results show that after data assimilation, although the twenty ensemble members (orange lines 

in Fig. 5b) are in the same path of transition, where AMOC switches between different equilibrium states at the same pace, 

their transition paths are still different from the “observational” path (red lines). This is because there is a deviation between 500 

the parameter value in the model and its best estimate. 

    Parameterization can approximate many physics in the model, but the values of parameters are usually estimated roughly 

by summing up experiences in a large number of experiments. To reduce the error caused by parameter errors between model 

simulation results and the truth, parameter estimation is performed next. The observational increment is applied to the error 

covariance between the model-estimated ensemble and the prior parameter ensemble by Eq. (4). Parameter estimation starts 505 

at 300th-unit. The result shows that after 300th-unit, the overturning rate in twenty ensemble members all follow the same 

transition path (orange lines in Fig. 5c), which is the same as the “observational” path (red lines). Meanwhile, the parameter κ 

is adjusted to around the best-estimated value 28 (Fig. 6). As an example of capturing regime transitions of the AMOC, Figure 

7 shows the results in one of the twenty ensemble members in the free model control ensemble simulations with or without 

CDAPE. From Fig. 7, we learned that although the model parameter κ is erroneously guessed, constraining κ with observational 510 

data can change the path of AMOC transition between different equilibrium states. The model deviations are mitigated 

significantly. 
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Figure 5. Time series of the overturning rate in the “truth” simulation with κ = 28 (red) and the individual ensemble members (orange) in 

the free model control ensemble simulations a) without data assimilation and parameter estimation, b) with data assimilation or c) with data 515 
assimilation and parameter estimation using erroneously-guessed κ values with a Gaussian perturbation that has a mean value of 32 and a 

standard deviation of 0.1. The dashed black line denoting v = 0 is a division line between the thermal mode equilibrium state and the haline 

mode equilibrium state. The dotted-dashed black line denoting 300th-unit marks the start of parameter estimation. 
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 520 

Figure 6. Time series of the estimated κ values with a Gaussian perturbation that has a mean value of 32 and a standard deviation of 0.1 in 

the individual ensemble members (orange) in the free model control ensemble simulations with data assimilation and parameter estimation. 

The solid red line denoting κ = 28 marks the true value of κ being estimated. The dotted-dashed black line denoting 300th-unit marks the 

start of parameter estimation using x2, w, and η observations. 

 525 

 

Figure 7. Time series of the overturning rate in one of the ensemble members in the free model control ensemble simulations with (red) or 

without (orange) data assimilation and parameter estimation, where κ is erroneously guessed as 31.87768. The dashed black line denoting v 

= 0 is a division line between the thermal mode equilibrium state and the haline mode equilibrium state. 

    The 5-variable conceptual climate model could simulate the interactions between the atmosphere and ocean, and coupling 530 

it with the three-box MOC model could accurately address the main questions in this paper. The transferring of the uncertainty 

of the MOC3B-5V model is particularly simple and easily understood. With the help of this model, we found that the coupled 

model parameter estimation with observations can significantly mitigate the model deviations, thus capturing regime 

transitions of the AMOC. As such, the main outcome of this paper can be more readily demonstrated with this simple model. 

However, The MOC3B-5V model is just a simple conceptual model, and the model states x2, w, and η simply conceptually 535 



21 

 

simulate the variation characteristics of the atmosphere and the ocean. Although the transitions of AMOC are simulated by the 

MOC3B-5V model, the specific physical meaning of the model is not explicit enough. The method of capturing regime 

transitions in Sect. 2 is proved to be feasible in the simple model, and the next step is to apply the method to a physics-based 

MOC box model. 

4 Capturing AMOC regime transitions by parameter estimation in a physics-based MOC box model 540 

4.1 The MOCBM 

After proving that it is feasible to capture regime transitions by constraining parameters in an idealized conceptual model, we 

also use a MOCBM (Tardif et al., 2014; Zhao et al., 2019) with a better physical basis to study the problem of AMOC transition. 

The MOCBM is a coupled lower-order ocean-atmosphere climate model constructed by Roebber (1995), which reflects the 

chaotic variability in the atmosphere and the oscillation or multi-equilibria in the ocean (Roebber, 1995; Taboada and Lorenzo, 545 

2005). The atmospheric part of the model is represented by the wave-mean-flow atmospheric circulation model of Lorenz 

(1984). In contrast to Lorenz's 1963 model describing convection, Lorenz's 1984 model simulates the general atmospheric 

circulation at mid-latitudes (Lorenz, 1984). The ocean part of the model is represented by another three-box model of the 

Northern Atlantic Ocean at mid-latitude (Birchfield, 1989). A schematic illustration of this MOCBM can be found in Fig. 1 of 

Tardif et al. (2014). 550 

    In MOCBM, the model states (vector x) include atmospheric states X, Y, and Z, and oceanic states T1, T2, T3, S1, S2, and S3. 

The governing equations of atmosphere model are: 

�̇� = −(𝑌2 + 𝑍2) − 𝑎𝑋 + 𝑎𝐹  

�̇� = 𝑋𝑌 − 𝑏𝑋𝑍 − 𝑌 + 𝐺  

�̇� = 𝑋𝑍 + 𝑏𝑋𝑌 − 𝑍 ,           (16) 555 

where X represents the intensity of the westerly wind current, Y and Z represent the magnitudes of cosine and sine phases of 

large-scale eddies, respectively. The terms XY and XZ represent the amplification of the eddies through interaction with the 

westerly current. This amplification is at the expense of the westerly current, which is denoted by the term –(Y2 + Z2). The 

terms -bXZ and bXY represent the displacement of the eddies by westerly current, while -aX, -Y, and -Z represent mechanical 

damping. Finally, F represents the diabatic heating contrasts between the low- and high-latitude ocean, and G represents the 560 

longitudinal heating contrast between land and sea. 

    The simple non-dimensional ordinary differential equations are 

𝑟1�̇�1 =
1

2
𝑞(𝑇2 − 𝑇3) + 𝐾T(𝑇A1 − 𝑇1) − 𝐾Z(𝑇1 − 𝑇3)  

𝑟2�̇�2 =
1

2
𝑞(𝑇3 − 𝑇1) + 𝐾T(𝑇A2 − 𝑇2) − 𝐾Z(𝑇2 − 𝑇3)  

𝑟3�̇�3 =
1

2
𝑞(𝑇1 − 𝑇2) + 𝐾Z(𝑇1 − 𝑇3) + 𝐾Z(𝑇2 − 𝑇3)  565 
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𝑟1�̇�1 =
1

2
𝑞(𝑆2 − 𝑆3) − 𝐾Z(𝑆1 − 𝑆3) − 𝑄S  

𝑟2�̇�2 =
1

2
𝑞(𝑆3 − 𝑆1) − 𝐾Z(𝑆2 − 𝑆3) + 𝑄S  

𝑟3�̇�3 =
1

2
𝑞(𝑆1 − 𝑆2) + 𝐾Z(𝑆1 − 𝑆3) + 𝐾Z(𝑆2 − 𝑆3) ,        (17) 

where KT represents the coefficient of heat exchange between the ocean and the atmosphere, KZ represents the coefficient of 

vertical interaction between the upper ocean and the deep ocean, TA1 and TA2 are the air surface temperature, and QS is the 570 

volume averaged equivalent salt flux. The non-dimensional variables r1, r2 and r3 are defined as rj = Vj / (V1 + V2 + V3), where 

Vj represent the volume of box j. The meridional overturning circulation q satisfies 

𝑞 = 𝜇[𝛼(𝑇2 − 𝑇1) − 𝛽(𝑆2 − 𝑆1)] ,          (18) 

where α and β are the thermal and haline expansion coefficients of seawater, respectively, and µ is a proportionality constant. 

    The coupled interaction between the ocean box model and the atmosphere model is accomplished by the terms F, G, TA1, 575 

TA2, and Qs. Superimposing background value and the variation in a seasonal cycle, as well as long-term variation associated 

with changes in upper ocean temperatures, F and G are defined as 

𝐹 = 𝐹0 + 𝐹1 𝑐𝑜𝑠 𝜔 𝑡 + 𝐹2(𝑇2 − 𝑇1)  

𝐺 = 𝐺0 + 𝐺1 𝑐𝑜𝑠 𝜔 𝑡 + 𝐺2𝑇1 ,          (19) 

where F0, F1, F2, G0, G1, and G2 are constants, and ω is the annual frequency. Since X in the atmosphere model is directly 580 

related to the temperature, the temperature is defined as 

𝑇A1 = 𝑇A2 − 𝛾𝑋 ,            (20) 

where TA2 and γ are constants. Finally, the equivalent salt flux is formulated by 𝑄S = 𝑄runoff + �̄�WV + 𝑄′WV , where 𝑄runoff 

is the runoff into the ocean from the rivers, �̄�WV and 𝑄′WV are the mean and transient eddy components of the atmospheric 

water vapor transport, respectively. 𝑄runoff and �̄�WV are assumed to be constant and 𝑄′WV is postulated to be linearly related 585 

to the eddy sensible heat flux (Y2 + Z2) (Stone and Yao, 1990). Finally, Qs is obtained as follows: 

𝑄S = 𝑐1 + 𝑐2(𝑌
2 + 𝑍2) ,           (21) 

where c1 and c2 are constants to be determined. 

    The parameters in this MOCBM are set to (a, b, r1, r2, r3, KT, Kz, TA2, α, β, µ, F0, F1, F2, G0, G1, G2, γ,) = (0.25, 4.00, 16.495, 

5.295, 1.332, 0.35, 0.05276, 1, 9.622 × 10-5 K-1, 7.755 × 10-4 psu-1, 4 × 1010 m3 s-1, 6.65, 2.0, 47.9, -3.60, 1.24, 3.81, 0.06364). 590 

As in Roebber (1995), the value of Qs affects the solution of the thermohaline circulation, and Qs above a critical value will 

eventually lead to a complete reversal of the flow. To obtain this critical value of Qs, the equilibrium solution for the 

thermohaline circulation is calculated as the value of Qs varies from 0.5 × 10-3 to 4.0 × 10-3. As shown in Fig. 8, this critical 

value is near 2.05 × 10-3. Considering the mean and the range of variation of (Y2 + Z2), and also referring to the values taken 

in Roebber (1995) and Tardif et al. (2014), c1 and c2 are set here to 1.94 × 10-3 and 4.05 × 10-5, respectively. 595 



23 

 

 

Figure 8. Variation of meridional overturning circulation q in the space of salt flux Qs. The dashed black line denoting q = 0 Sv is a division 

line between two equilibrium states. 

4.2 Parameter estimation with observational information 

A twin experimental framework is designed to perform the study of capturing regime transitions using the MOCBM. Using a 600 

fourth-order Runge–Kutta time differencing scheme with a time step of 3 h, the MOCBM is specified with parameter values 

described above. The truth model is spun up for an initial 105 years starting from an initial value of q equal to 15 Sv. Then, 

another 60000 years are run forward to produce the “truth” states. The states of the atmosphere and the temperature and salinity 

of the surface ocean are considered as the variables to be observed. The white noise is added to the “truth” states, and the 

standard deviations of the observation errors are set to 0.1 for X, Y, Z, 0.5 K for T1, T2, and 0.1 psu for S1, S2. The “observations” 605 

are eventually obtained by sampling these variables at a frequency of one year. In the twin experimental framework, the 

assimilation model is similar to the truth model except that parameter 𝛾 in the box model is assumed to be incorrectly estimated, 

with error that is 10% greater than the standard value 0.06364. Thus, the mean value of all parameters from the twenty 

assimilation models is 0.070004 and their standard deviation is 10% of the standard value. The parameters in the atmosphere 

model or in the ocean model could be selected for parameter estimation to address the points in this paper. Given that we have 610 

experimented with the parameter in the atmosphere model before, here we show the experiment with the parameter of the 

ocean model. Again, the parameter being estimated is based on the model sensitivities regarding all parameters in the box 

model (Zhao et al., 2019). 
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Figure 9. Time series of the meridional overturning circulation q in the “truth” simulation with γ = 0.06364 (red) and the individual ensemble 615 
members (orange) in the free model control ensemble simulations a) without data assimilation and parameter estimation, b) with data 

assimilation or c) with data assimilation and parameter estimation using erroneously-guessed γ values with a Gaussian perturbation that has 

a mean value of 0.070004 and a standard deviation of 10% times the standard value. The dashed black line denoting q = 0 is a division line 

between two equilibrium states. 

    Figure 9 shows the time series of meridional overturning circulation q, where the positive and negative aspects of q reflect 620 

the reversed circulation, which represents the transition between two different states. The simulation results of the twenty 

assimilation models (orange line in Fig. 9a) are different, and they all have significant errors with the results from the truth 

model (red line). Then, the “observations” from the truth model are used to adjust the model states (Fig. 9b), as well as to 

further constrain the parameter 𝛾 (Fig. 9c). Figure 9b shows the time series of the MOC value in the “truth” simulation (red 
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lines) and in the free model control ensemble simulations with only data assimilation. Due to the existence of parameter error, 625 

inaccurate analyses are obtained when only data assimilation was performed without parameter estimation. The results of data 

assimilation and parameter estimation are shown in Fig. 9c, where the simulation results of the twenty assimilation models 

(orange lines) are constrained by “observations”, and the more accurate reconstructed transition path (red lines) is obtained. 

Since the behavior of the MOCBM and MOC3B-5V models are very similar, the figures corresponding to Fig. 6 and Fig. 7 

are not shown here. 630 

    The box model in the MOCBM is based on the classical approach of adopting a buoyancy constraint, and the circulation is 

regulated by the surface buoyancy difference, implying that surface thermohaline forcing drives AMOC (Birchfield, 1989). In 

contrast, for the box model in the MOC3B-5V model, the constraint is based on mechanical energy sustaining diapycnal mixing, 

and the circulation is maintained by mechanical energy from wind stress and tides (Shen et al., 2011). The AMOC is driven 

differently in the two box models. Compared with the buoyancy constraint (MOCBM), the energy constraint (MOC3B-5V) 635 

can offer a significant advantage on rational interpretations of the transitions between thermal and haline modes (Guan and 

Huang, 2008). Compared to the MOC3B-5V model, the MOCBM is more explicit in physical meaning, which is mainly 

reflected in the meaning of the model states. The meaning of the state variables in the atmospheric part of the MOCBM is 

more explicit, such as X for westerly wind current and Y and Z for large-scale eddies. The MOC3B-5V model, however, only 

describes the chaotic characteristic of the atmosphere starting from a simple heating disturbance problem. It further describes 640 

the basic variation characteristic of the ocean by the coupled interaction between the atmosphere and the ocean. Besides, the 

coupling of ocean and atmosphere in the MOCBM is sufficiently accomplished by several variables such as F, TA1, and Qs. 

The MOC3B-5V model and the MOCBM, although both are simple models, can reveal the characteristic of AMOC multi-

equilibria and thus can be used to test the feasibility of the methodology in Sect. 2. By constraining the model parameters with 

observations, both models result in capturing regime transitions of the AMOC. 645 

5 Summary and discussions 

A method for combining general AMOC simulation model with ensemble Kalman filtering is designed to form a CDAPE 

system. Given that the discrepancy exists between the influencing factors of AMOC in the real world and the corresponding 

parameters of models, parameter estimation is used to estimate the model parameters. Using the CDAPE system, within a 

“twin” experiment framework, twenty assimilation models are set with an incorrectly estimated parameter, while a model 650 

representing the “truth” that uses the parameters as the standard values. The assimilation models simulate twenty different 

transition paths between AMOC states with disturbing parameters. The observational information from the “truth” is 

assimilated into the assimilation models, and the transition path of AMOC is optimized by parameter estimation, so that regime 

transitions of AMOC are captured correctly. Our results suggest that guided by estimation theory, appropriately constraining 

coupled model parameters with observed data can make a climate model capture regime transitions of the AMOC. The research 655 

methodology is applied to simple climate models that can simulate AMOC multi-equilibria. The first model in this study 
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provides conceptual proof that the methodology is feasible, and the second model with more explicit physical meaning provides 

further demonstration through simulation results. 

    A simple model that consists of a 3-box ocean model and a 5-variable climate model (the MOC3B-5V model) has been 

developed to simulate the basic characteristic of AMOC that transits between different equilibrium states. The parameters in 660 

the three-box model are linked to the atmospheric variables, the upper ocean variable, and the deep ocean variable in the 5-

variable model to construct energy constraint, wind-driven circulation, and freshwater flux, which dynamically change within 

a reasonable range. By projecting observational information of model states to the parameters, the AMOC regime transitions 

simulated by the model are much closer to reality. It has to be noted that after the change in the three-box model from the 

stable haline mode to the stable thermal mode, a catastrophic change occurs in the system, which results in the disappearance 665 

of the stable haline mode (Guan and Huang, 2008). It is impossible to change the state from the thermal mode to the haline 

mode by changing parameters. Therefore, to adjust the transition between the thermal mode and the haline mode, additional 

atmospheric forcing (additional freshwater flux from the atmosphere) is added to the two boxes that have contact with the 

atmosphere. The effect of this forcing is small and does not affect the overall balance of the model. Although we acknowledge 

that the effect of additional forcing still needs to be further investigated, the disappearance of the haline mode is not addressed 670 

in this study so that we may focus on capturing regime transitions by observation-constrained model parameters. It is important 

to emphasize that the simple conceptual model is not attempting to simulate a specific oceanic and atmospheric physical 

process, but rather the opposite: our objective is to explore whether the error between models and reality in terms of the AMOC 

transition can be reduced by incorporating observational information into the model parameters. 

    The MOCBM (Roebber, 1995) with clearer physical meaning is used in this study. Since the circulation is driven only by 675 

the meridional gradients of the upper ocean temperature and salinity in the buoyancy-constraint MOCBM model, AMOC 

regime transitions can be captured to some extent when the upper ocean temperature and salinity are directly adjusted by data 

assimilation only, but the simulation results are not accurate enough. In this simple model, since the data assimilation has 

worked well, the contribution of parameter estimation is relatively small but still indispensable. The AMOC regime transitions 

are captured more accurately by parameter estimation. The degree of contributions of data assimilation or parameter estimation 680 

to the optimization of simulation results is different in these two models. Compared with the MOCBM model, the energy-

constraint MOC3B-5V model is more representative for the role of parameter estimation because the circulation is maintained 

by mechanical energy. When leaving out the parameter estimation steps and constraining the model states only by data 

assimilation, the accuracy of state estimation is not high due to the existence of parameter errors. Given the fact that the 

circulation is driven in a more complex way in the real world, this simple model study only provides a conceptual understanding 685 

and guideline for more complex real systems such as Coupled General Circulation Model (CGCM). Although both the 

MOCBM and the MOC3B-5V model are simple idealized hemispheric models, our concerns can be illustrated more clearly 

through them. Our effort here is to make the AMOC multiple equilibrium states from model simulations better reflect the 

features in reality. Our focus is on adjusting the model parameters by sampling the observations so that the simulation of the 

model is closer to the truth on the feature of regime transitions. The conceptual model, albeit simple, has demonstrated the 690 
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importance of data assimilation and parameter estimation. It is hoped that such a simple model study on AMOC transition will 

inspire the hypotheses and the optimization of parameters in CGCMs. Taking a study by Ashkenazy and Tziperman (2007) as 

an example, to understand the ocean general circulation model results, they constructed a simple three-box model to understand 

the behavior of the thermohaline circulation in more realistic parameter regimes (Ashkenazy and Tziperman, 2007). 

    We have already captured regime transitions of the AMOC in a conceptual model as well as in a simple model with clearer 695 

physical meaning and will apply this method to more complex real systems such as CGCMs. The characteristic of AMOC 

multi-equilibria has been simulated in box models (e.g., Stommel, 1961; Rooth, 1982; Welander, 1986; Birchfield, 1989), 

ocean circulation models (e.g., Marotzke and Willebrand, 1991), and coupled ocean-atmosphere models (e.g., Manabe and 

Stouffer, 1988). However, it should also be noted that AMOC multiple equilibria have not been directly simulated by some 

CGCMs. Tremendous research efforts thus have been put to tackle this issue. One focus was on the CGCM presentation of 700 

Stommel's salt advection feedback (Rahmstorf, 1996). It has been suggested this feedback is distorted in CGCMs due to salinity 

biases (Huisman et al., 2010; Jackson, 2013; Liu et al., 2017). Another argument is on ocean eddies. It has also been suggested 

that CGCMs with an eddy-permitting ocean allow for a simulation of AMOC multiple equilibria (Jackson and Wood, 2018) 

since ocean eddies modify the overall freshwater balance (Mecking et al., 2016). In follow-up studies, we will explore the 

contribution of a CDAPE system to AMOC multi-equilibrium using different resolutions, ranging from a coarse-resolution 705 

CGCM with the ability to simulate AMOC multi-equilibrium characteristic, and eventually to a high-resolution and more 

realistic Earth system model. In a recent study, two types of AMOC transitions were described, with a temporary cessation of 

the downwelling (called F-type transition) or a full collapse of the AMOC (called S-type transition), and the F-type transitions 

might have been found in the direct observation (Castellana et al., 2019, 2020). The general methodology of this study could 

be used for both S-type transition and F-type transition. The S-type transition with centurial and millennial timescales could 710 

use observations from paleoclimate records, and the methodology can be applied to paleoclimate models for capturing AMOC 

regime transitions. In current climate system, the F-type transition with very high transition probabilities on multi-decadal 

timescales (Castellana et al., 2019; Castellana and Dijkstra, 2020) could use direct observations from RAPID or indirect 

observations from satellites or ARGO program. 

    Although the observation-constrained model simulates the transition between different equilibrium states of AMOC, this 715 

study only serves as the first step of capturing regime transitions and many challenges still exist. First, the deviations of AMOC 

transition paths simulated in different models are caused by not only parameter errors but also mismatches between real 

physical processes and model simulations (Zhang et al., 2012). Therefore, the performance of parameter estimation still needs 

further experimentation with more realistic models. Second, the mechanism of AMOC transition needs further investigation. 

The effect of stochastic forcing has been taken into account in previous work. Cessi (1994) studied the transition from one 720 

equilibrium to another in a modified Stommel model and she found that the transition could occur under stochastic white-noise 

forcing. In our study, the transition phenomenon of AMOC is ultimately affected by the model parameters. Usually, traditional 

state estimation with data assimilation has limited usage to detect the mechanism. Here, we aim at constraining the model 

parameters through utilization of observational information, which eventually results in a more realistic model behavior in 
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terms of the AMOC transitions. A future effort is needed on how the effect of the stochastic component will manifest in the 725 

AMOC system. Third, Aksoy et al. (2006b) proposed a spatial updating technique that recovers the globally uniform parameter 

value using a spatial average of the entire spatially varying parameter field. Wu et al. (2012, 2013) explored the impact of the 

geographic dependence of observing system on the parameters. The adjustment of the parameters is based on the spatial 

distribution of the model state sensitivity to parameters. Liu et al. (2014a, b) proposed the adaptive spatial average method that 

obtains the final global uniform posterior parameter based on spatially varying posterior estimated parameter values. In this 730 

study, considering that the simple box models are used as a first step to explore AMOC transitions, it is more appropriate to 

use the identity model. The impact of geographic-dependent parameter optimization on climate estimation and prediction can 

be considered in future studies for complex systems such as CGCMs. 

    Besides, in the study of two simple models, the observational information, which is used for data assimilation and parameter 

estimation, only comes from the atmosphere and surface ocean. In the real Earth system, the flow of seawater located in the 735 

deep ocean is an important part of AMOC, its measurement is difficult. The changes in each component of AMOC will affect 

the entire circulation. AMOC reconstruction heavily relies on comprehensive observational data. In the future, with the 

improvement of the Earth observing system, the coupled climate system model will be improved continuously, and the results 

of numerical simulation will have a higher credibility. These could lead to significant improvement of the reanalysis and 

prediction of the AMOC. 740 
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