
Response to Reviewer #1 
 
Comments from Reviewer #1: 
 
In this manuscript the authors describe a series of twin experiments in which the Ensemble Adjustment Kalman Filter 
(EAKF) is used for state and parameter estimation in models of the Atlantic Meridional Overturning Circulation 
(AMOC). The models in question are box models, driven by atmospheric input taken from the output of chaotic, rather 
than stochastic systems. The authors demonstrate that their methods allow reliable estimation of unknown parameters 
in the model AMOCs, which exhibit multiple stable equilibria. The results described here will be of interest to a broad 
segment of NPG readers, but the manuscript as it stands needs a great deal of work to make it acceptable. 
 
RE: A few conferences have been held for all co-authors to discuss the comments from reviewer #1. All authors converge to 
the point that the constructive comments and suggestions are extremely thoughtful and important for improving the manuscript 
and enhancing our understanding on the topic. Several extra experiments for addressing the concerns of the reviewer are 
performed. Thanks for your encouragement. All issues are replied point-by-point as below. We hope the whole manuscript has 
been essentially improved. 
 
Application of data assimilation methods to use observations to track the evolution of solutions of systems that exhibit 
multiple stable modes has been described by many authors since the 1990s; see, e.g., Weir et al., Nonlin Proc Geophys 
2013 and references therein. A look through the literature since the 1990s will also turn up examples of simultaneous 
state and parameter estimation in simple systems. The novelty of the present work lies in the specific application to 
regime transitions in the AMOC. I don’t know of other examples of application of optimized methods such as the EAKF 
to joint state and parameter estimation of box models of the AMOC, which have been around since Stommel (1961). 
 
RE: Excellent suggestion! We have added more detailed statements about the application of data assimilation methods (L111-
118) and the examples of simultaneous state and parameter estimation in nonlinear systems having multiple stable modes 
(L122-128). 
 
L111-118: 
Tardif et al. (2014) implement data assimilation with EnKF to recover the AMOC with observations in a low-order coupled 
atmosphere-ocean climate model. They mainly explore the value of data assimilation for the initialization of the AMOC, while 
the effect of parameter errors in AMOC simulations needs further discussion. As another class of ensemble-based assimilation 
methods, particle filters, unlike the EnKF, are applicable to non-Gaussian probability distributions (e.g., Gordon et al., 1993; 
van Leeuwen, 2009). A mixture-based implicit particle method is presented and could detect transitions in an example with 
multiple attracting states (Weir et al., 2013a). However, the particle filter is plagued by the curse of dimensionality as the 
system dimension increases (Snyder et al., 2008; Carrassi et al., 2018). 



L122-128: 
Based on EAKF, a data assimilation scheme for enhanced parameter correction is designed to improve parameter estimation 
using observations (Zhang et al., 2012). Zhao et al. (2019) perform this scheme in a simple AMOC box model, and the model 
parameters are successfully optimized when the model errors are caused by only erroneously set parameters. Although the 
AMOC regime transition is not addressed in their study, their exploration of model sensitivities regarding parameters serves 
as a guideline for our research. Many efforts have been made to advance the application of data assimilation and parameter 
estimation in nonlinear systems having multiple equilibrium states (e.g., Miller et al., 1994, 1999; Khalil et al., 2009; Weir et 
al., 2013b; Bisaillon et al., 2015). 
 
The authors need to be more specific about exactly how their results differ from existing results, and why they are 
interesting. The closest thing that I can find to a statement of purpose appears at the end of the introduction, p4, 
beginning on line 111: “Here we present a method for improving the modeling of AMOC multi-equilibria. The new 
method is shown to simulate the AMOC transition between different equilibrium states accurately in two simple 
coupled models …” As noted above, others have shown the ability to simulate transition between different equilibrium 
states in other systems. If the authors’ methods are novel, they should point out their differences from other methods 
that have been applied to similar systems. 
 
RE: Thank you for this suggestion! In this revision, we have reorganized the existing literature on AMOC transitions (L81-90), 
as well as more specifically illustrated how this study differs from previous studies and pointed out the novelty of this paper 
(L96-103, L128-133). 
 
L81-90: 
AMOC transitions can occur due to external forcing or internal feedback (Klockmann et al., 2020). The external forcing applied 
in systems may include freshwater forcing (e.g., Cessi, 1994; Castellana et al., 2019), wind forcing (e.g., Ashkenazy and 
Tziperman, 2007; Kleppin et al., 2015), ice sheet forcing (e.g., Zhang et al., 2014; Mitsui and Crucifix, 2017), CO2 forcing 
(e.g., Zhang et al., 2017). The physical processes in the model are changed by external forcing, resulting in the transition 
between different states of the AMOC. For the AMOC model without external forcing, the transition is triggered by complex 
internal interactions within the model, such as salt oscillations (Peltier and Vettoretti, 2014), internal oceanic processes 
(Sévellec and Fedorov, 2014), thermohaline oscillations (Brown and Galbraith, 2016), intermittencies in the sea-ice cover 
(Gottwald, 2021). Regardless of whether it is due to external forcing or internal feedback, AMOC transitions could be 
influenced by complex physical processes in models, and the parameters involved in these physical processes are usually fixed. 
 
L96-103: 
Observation-constrained model parameters are no longer kept at fixed values but are constantly varying over time. The purpose 
of this paper is to explore whether the variations of observation-constrained parameters that allow the physical processes of 
model to evolve over time can bring the simulation results closer to the “observed” feature of regime transitions. The models 
in this paper are obtained by coupling AMOC box model with Lorenz’s model, similar to the work by Roebber (1995) or 



Gottwald (2021), where the variation of AMOC is driven by the chaotic dynamical system. The thermal mode and the reverse 
haline mode correspond to different equilibrium states of the AMOC. For simplicity, we will refer to these different states as 
the stronger AMOC (on-state) and the weaker AMOC (off-state) in simple conceptual models (e.g., Weijer et al., 2019). 
 
L128-133: 
Although numerical simulations of the AMOC eventually exhibit multiple equilibria, the AMOC is not an explicit model 
variable; rather, it is derived from model variables such as atmospheric wind, ocean temperature and salinity. Instead of 
adjusting AMOC directly, the model states are adjusted through data assimilation. When constraining model parameters by 
observational information, the parameters that constantly vary with observations may provide more diversity in the physical 
processes involved with AMOC regime transition, so that the model can simulate more AMOC transition paths. 
 
Their presentation of their three box model, equations (5)-(10) is confusing. Why different systems of equations for the 
thermal and saline modes? For details of the model they refer the reader to Shen et al. (2011) and the model described 
there is a single system that exhibits both saline and thermal modes. The model they finally use, defined in equation 
(12), is a complex system with many switches. I don’t understand why this is necessary. Why not just use some form of 
(5) from Shen et al. (2011)? 
 
RE: Sorry we haven’t explained this clearly. Shen et al. (2011) described two different systems of equations for the thermal 
and haline modes, which are exactly the same as the equations (5)-(10) in this paper. They do not show the equations for the 
haline mode, but describe the equations for the thermal mode in detail. The haline mode is described briefly in a sentence 
between equation (2d) and equation (3) in Shen et al. (2011). Following this suggestion, we have added new lines to clarify 
this issue in L301-303, L318-320, and L401-402. 
 
L301-303: 
The governing equations for the haline mode also follow the study of Shen et al. (2011). They didn't show those equations, but 
only described them briefly. In this paper, to describe the construction of MOC3B-5V more clearly later, those equations are 
shown here. 
 
L318-320: 
Similar equations for the thermal and haline modes could be found in Guan and Huang (2008) for Eq. (1) (thermal mode) and 
Eq. (2) (haline mode), and in Shen and Guan (2015) for Eqs. (1)-(6) (thermal mode) and Eqs. (7)-(9) (haline mode). 
 
L401-402: 
A similar AMOC box model with many switches could be found in Castellana et al., (2019). 
 
 
 



The results they get from this model, driven by a chaotic atmosphere, are encouraging. Figures 5-7 show that the data 
assimilation/parameter estimation system works well, reproducing the “true” trajectory quite accurately and 
producing a good estimate of the unknown parameter, while leaving out the parameter estimation steps, and using 
EAKF for state estimation without adjusting the parameter to its true value does not do nearly so well. 
 
RE: Thanks for your encouragement. 
 
At the end of this section the authors state: “The MOC3B-5V model is just a simple conceptual model, and the model 
states x2, w, and η simply conceptually simulate the variation characteristics of the atmosphere and the ocean. Although 
the transitions of AMOC are simulated by the MOC3B-5V model, the specific physical meaning of the model is not 
explicit enough. The method of capturing regime transitions in Sect. 2 is proved to be feasible in the simple model, and 
the next step is to apply the method to a physics-based MOC box model.” The next section describes experiments with 
a “physics-based MOC box model,” which is no more complicated than the MOC3B-5V model in the previous section, 
and the authors do not make clear what conceptual points are made with the MOC3B-5V model that are any less clear 
in the “MOCBM.” It seems to me that the sections dealing with the MOC3B-5V model, i.e., much of section 2 and all 
of section 3 could be left out entirely without any loss of understanding on the part of the reader, however convincing 
figures 5-7 may be. It shouldn’t be too hard for the authors to include additional figures corresponding to figures 5b, 6 
and 7 to illustrate the details of the MOCBM experiment 
 
RE: Thanks for your thoughtful suggestion! In this revision, we address this comment by two parts. In the first part, we like to 
show the details of the MOCBM experiment (additional Figures S1, S2, and S3 below corresponding to Figures 5, 6 and 7 in 
the manuscript). Based on your suggestion, we have added Fig. S1b that shows the assimilation result to the revised manuscript 
(Fig. 9b) and more relevant discussions have been added in L614-616. Given that Figs. S2 and S3 are very similar to the 
behavior of the MOC3B-5V model, they are not shown in the manuscript. However, the corresponding descriptions have been 
added in L619-620. 
 
In the second part, we have added more discussions to justify the necessity of MOC3B-5V and MOCBM models as three 
aspects. First, new lines have been added to emphasize the benefits of the MOC3B-5V model in L520-524. Second, more 
discussions about the important differences between these two models have been added in L621-624. Third, we have added 
more description and discussion about the different behaviors of different models in data assimilation and parameter estimation 
to optimize the simulation results in L665-676. 
 
L614-616: 
Figure 9b shows the time series of the MOC value in the “truth” simulation (red lines) and in the free model control ensemble 
simulations with only data assimilation. Due to the existence of parameter error, inaccurate analyses are obtained when only 
data assimilation was performed without parameter estimation. 
 



L619-620: 
Since the behavior of the MOCBM and MOC3B-5V models are very similar, the figures corresponding to Fig. 6 and Fig. 7 
are not shown here. 
 
L520-524: 
The 5-variable conceptual climate model could simulate the interactions between the atmosphere and ocean, and coupling it 
with the three-box MOC model could accurately address the main questions in this paper. The transferring of the uncertainty 
of the MOC3B-5V model is particularly simple and easily understood. With the help of this model, we found that the coupled 
model parameter estimation with observations can significantly mitigate the model deviations, thus capturing regime 
transitions of the AMOC. As such, the main outcome of this paper can be more readily demonstrated with this simple model. 
 
L621-624: 
The box model in the MOCBM is based on the classical approach of adopting a buoyancy constraint, and the circulation is 
regulated by the surface buoyancy difference, implying that surface thermohaline forcing drives AMOC (Birchfield, 1989). In 
contrast, for the box model in the MOC3B-5V model, the constraint is based on mechanical energy sustaining diapycnal mixing, 
and the circulation is maintained by mechanical energy from wind stress and tides (Shen et al., 2011). 
 
L665-676: 
Since the circulation is driven only by the meridional gradients of the upper ocean temperature and salinity in the buoyancy-
constraint MOCBM model, AMOC regime transitions can be captured to some extent when the upper ocean temperature and 
salinity are directly adjusted by data assimilation only, but the simulation results are not accurate enough. In this simple model, 
since the data assimilation has worked well, the contribution of parameter estimation is relatively small but still indispensable. 
The AMOC regime transitions are captured more accurately by parameter estimation. The degree of contributions of data 
assimilation or parameter estimation to the optimization of simulation results is different in these two models. Compared with 
the MOCBM model, the energy-constraint MOC3B-5V model is more representative for the role of parameter estimation 
because the circulation is maintained by mechanical energy. When leaving out the parameter estimation steps and constraining 
the model states only by data assimilation, the accuracy of state estimation is not high due to the existence of parameter errors. 
Given the fact that the circulation is driven in a more complex way in the real world, this simple model study only provides a 
conceptual understanding and guideline for more complex real systems such as Coupled General Circulation Model (CGCM). 



 
Figure S1. Time series of the meridional overturning circulation q in the “truth” simulation with 𝛾𝛾 = 0.06364 (red) and the 
individual ensemble members (orange) in the free model control ensemble simulations a) without data assimilation and 
parameter estimation, b) with data assimilation or c) with data assimilation and parameter estimation using erroneously-
guessed 𝛾𝛾 values with a Gaussian perturbation that has a mean value of 0.070004 and a standard deviation of 10% times the 
standard value. The dashed black line denoting q = 0 is a division line between two equilibrium states. 



 
Figure S2. Time series of the estimated 𝛾𝛾 values with a Gaussian perturbation that has a mean value of 0.070004 and a 
standard deviation of 10% times the standard value in the individual ensemble members (orange) in the free model control 
ensemble simulations with data assimilation and parameter estimation. The solid red line denoting 𝛾𝛾 = 0.06364 marks the 
true value of 𝛾𝛾 being estimated. The dotted-dashed black line denoting 800th-year marks the start of parameter estimation 
using the observations of the atmosphere states and the temperature and salinity of the surface ocean. 
 

 
Figure S3. Time series of the meridional overturning circulation q in one of the ensemble members in the free model control 
ensemble simulations with (red) or without (orange) data assimilation and parameter estimation, where 𝛾𝛾  is erroneously 
guessed as 0.067419. The dashed black line denoting q = 0 is a division line between the thermal mode equilibrium state and 
the haline mode equilibrium state. 
 
 
 



The two systems dealt with here are highly parameterized, but the parameter the authors chose to estimate, in both 
cases, was a parameter in the atmospheric model, equations (11) and (16). Why didn’t they choose a parameter in the 
box models? 
 
RE: Thanks for your suggestion. We have re-chosen the parameter to be estimated in the second system. The parameter 𝑏𝑏 in 
the atmospheric model is replaced by the parameter 𝛾𝛾 in the box model. Following this suggestion, the first paragraph in 
Section 4.2 has been rewritten (L596-599), and Fig. 9 has been replaced by a new figure (L604-609). The new results are 
similar to the original results for parameter 𝑏𝑏. Both can demonstrate that the AMOC regime transitions can be captured by 
constraining the model parameters with observations. 
 
Besides, the discussion about parameter selection has been added in L599-603. Considering the length limitation, the process 
of investigating the model sensitivity is not shown in the manuscript. However, the relevant literature has been added in L602-
603. The process of investigating the model sensitivity will be described later. The results are shown in Figure S4 and the most 
sensitive parameter is 𝛾𝛾. 
 
L596-599: 
In the twin experimental framework, the assimilation model is similar to the truth model except that parameter γ in the box 
model is assumed to be incorrectly estimated, with error that is 10% greater than the standard value 0.06364. Thus, the mean 
value of all parameters from the twenty assimilation models is 0.070004 and their standard deviation is 10% of the standard 
value. 
 
L604-609: (The same as Fig. S1). 
 
L599-603: 
The parameters in the atmosphere model or in the ocean model could be selected for parameter estimation to address the points 
in this paper. Given that we have experimented with the parameter in the atmosphere model before, here we show the 
experiment with the parameter of the ocean model. Again, the parameter being estimated is based on the model sensitivities 
regarding all parameters in the box model (Zhao et al., 2019). 
 
L602-603: 
Again, the parameter being estimated is based on the model sensitivities regarding all parameters in the box model (Zhao et 
al., 2019). 
 



 
Figure S4. The sensitivity percentage of MOC in the space of the parameters. The sensitivity percentage refers to the ratio of 
the specified parameter sensitivity to the total sum of the sensitivities for the 11 parameters in the box model. The time-
averaged value of the MOC spread is calculated by data over the last 200 years. 
 
Referring to Section 3.2.3 in Zhao et al. (2019), the process of investigating the model sensitivity regarding each parameter is 
as follows. Each parameter is individually perturbed into 20 members from the ensemble as white noise, with a standard 
deviation of 10% of its standard value, while the remaining 10 parameters remain fixed at their standard values. Then, from 
the same initial states, all 20 ensemble members are freely run for 250 years. Only the model outputs of the last 200 years are 
used to quantitatively calculate the relative sensitivities (Owing to the MOC value is a long-time-scale variable). We use the 
standard deviation in the MOC strength to evaluate the model sensitivity regarding each parameter. The time-averaged 
sensitivity percentages of the MOC strength with respect to all parameters are shown in Fig. S4. 
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Response to Reviewer #2 
 
Comments from Reviewer #2: 
 
General Comments: 
 
This paper addresses regime transition in AMOC though state and parameter estimation, via application of the EAKF. 
While the idea of parameter estimation is not new in ensemble-based data assimilation and there are many published 
papers addressing it, I believe that the novelty of the paper is the application of EAKF to regime transition in AMOC. 
Still, the paper needs to explain what the main findings are and how those findings could improve our knowledge about 
AMOC. In addition, I have some specific comments requiring clarification of the parameter estimation approach and 
the EAKF equations. 
 
RE: A few conferences of all co-authors have been held to discuss the comments of reviewer #2. All authors appreciate greatly 
for the encouragements and comments. All the comments are very important and useful for authors to improve the quality of 
this manuscript. The paper is renewed as the reviewer's suggestions. Thanks for your encouragement. In this revision, a more 
detailed explanation has been added to the Introduction section. We have expressed better what the main findings of this paper 
are (L96-103, L665-676) and how these findings could improve our knowledge about AMOC (L128-133). All specific 
comments are replied point-by-point as below. We hope the whole manuscript has been essentially improved. 
 
L96-103: 
Observation-constrained model parameters are no longer kept at fixed values but are constantly varying over time. The purpose 
of this paper is to explore whether the variations of observation-constrained parameters that allow the physical processes of 
model to evolve over time can bring the simulation results closer to the “observed” feature of regime transitions. The models 
in this paper are obtained by coupling AMOC box model with Lorenz’s model, similar to the work by Roebber (1995) or 
Gottwald (2021), where the variation of AMOC is driven by the chaotic dynamical system. The thermal mode and the reverse 
haline mode correspond to different equilibrium states of the AMOC. For simplicity, we will refer to these different states as 
the stronger AMOC (on-state) and the weaker AMOC (off-state) in simple conceptual models (e.g., Weijer et al., 2019). 
 
L665-676: 
Since the circulation is driven only by the meridional gradients of the upper ocean temperature and salinity in the buoyancy-
constraint MOCBM model, AMOC regime transitions can be captured to some extent when the upper ocean temperature and 
salinity are directly adjusted by data assimilation only, but the simulation results are not accurate enough. In this simple model, 
since the data assimilation has worked well, the contribution of parameter estimation is relatively small but still indispensable. 
The AMOC regime transitions are captured more accurately by parameter estimation. The degree of contributions of data 
assimilation or parameter estimation to the optimization of simulation results is different in these two models. Compared with 



the MOCBM model, the energy-constraint MOC3B-5V model is more representative for the role of parameter estimation 
because the circulation is maintained by mechanical energy. When leaving out the parameter estimation steps and constraining 
the model states only by data assimilation, the accuracy of state estimation is not high due to the existence of parameter errors. 
Given the fact that the circulation is driven in a more complex way in the real world, this simple model study only provides a 
conceptual understanding and guideline for more complex real systems such as Coupled General Circulation Model (CGCM). 
 
L128-133: 
Although numerical simulations of the AMOC eventually exhibit multiple equilibria, the AMOC is not an explicit model 
variable; rather, it is derived from model variables such as atmospheric wind, ocean temperature and salinity. Instead of 
adjusting AMOC directly, the model states are adjusted through data assimilation. When constraining model parameters by 
observational information, the parameters that constantly vary with observations may provide more diversity in the physical 
processes involved with AMOC regime transition, so that the model can simulate more AMOC transition paths. 
 
Specific Comments: 
 
(1) Please explain how equations (1)-(4) were derived from the EAKF. 
 
RE: Good suggestion! In this revision, a detailed derivation process is shown below. Given the length limitation, these 
derivations are not added to the manuscript. However, a concise description and the corresponding references have been added 
in L192-197. 
 
L192-197: 
The ensemble adjustment Kalman filter (Anderson, 2001) is used for data assimilation and parameter estimation in this study. 
The basic process of the two-step EAKF (Anderson, 2003; Zhang and Anderson, 2003; Zhang et al., 2007) is to project the 
observational increment onto model states (relevant parameters) by calculating the error covariance between the prior ensemble 
of the model variable (parameter) and the model-estimated ensemble. The core of the two-step EAKF is to calculate the 
increment of each state variable by a local least squares fit (linear regression), and the calculation of the observational increment 
is related to the scalar application of the equations of EAKF (Anderson, 2003). 
 
Based on the EAKF (Anderson, 2001), Anderson (2003) described a two-step data assimilation procedure for ensemble 
filtering under a local least squares framework. 
 
The joint state-observation space is defined by the joint space state vector: 𝐳𝐳 = [𝐱𝐱, 𝐲𝐲], where 𝐱𝐱 is the model state vector; 𝐲𝐲 =
ℎ(𝐱𝐱), where ℎ is the forward observation operator. Using Bayesian statistics, the distribution of the posterior (or updated) 
distribution can be computed from the prior distribution, as 
𝐩𝐩(𝐳𝐳𝑢𝑢) = 𝐩𝐩(𝐲𝐲𝒐𝒐|𝐳𝐳𝑝𝑝)𝐩𝐩(𝐳𝐳𝑝𝑝)/(norm) .                 (S1) 
At the heart of the ensemble Kalman filter is the fact that the product of the joint prior Gaussian with mean 𝐳𝐳�𝑝𝑝, covariance 



𝚺𝚺𝑝𝑝, and the Gaussian observation distribution with mean 𝐲𝐲𝒐𝒐 and error variance 𝐑𝐑 has covariance 
𝚺𝚺𝑢𝑢 = [(𝚺𝚺𝑝𝑝)−1 + 𝐇𝐇T𝐑𝐑−1𝐇𝐇]−1 ,                  (S2) 
and mean 
𝐳𝐳�𝑢𝑢 = 𝚺𝚺𝑢𝑢[(𝚺𝚺𝑝𝑝)−1𝐳𝐳�𝑝𝑝 + 𝐇𝐇𝑇𝑇𝐑𝐑−1𝐲𝐲𝒐𝒐] .                 (S3) 
The EAKF constructs an updated ensemble with a mean and sample variance that satisfy Eq. (S2) and Eq. (S3). In Anderson 
(2001), this is done by shifting the mean of the ensemble and then adjusting the spread of the ensemble around the updated 
mean using a linear operator A: 
𝐳𝐳𝑖𝑖𝑢𝑢 = 𝐀𝐀�𝐳𝐳𝑖𝑖

𝑝𝑝 − 𝐳𝐳�𝑝𝑝� + 𝐳𝐳�𝑢𝑢                     (S4) 
where 𝐀𝐀 satisfies 𝚺𝚺𝑢𝑢 = 𝐀𝐀𝚺𝚺𝑝𝑝𝐀𝐀T. 
In everything that follows, results are presented only for assimilation of a single scalar observation. Define the joint state space 
forward observation operator for a single observation as the order 1 × 𝑘𝑘 linear operator 𝐇𝐇 = [0,0, … ,0,1], where 𝑘𝑘 is the 
joint state space size. The updated probability for the marginal distribution of the observation joint state variable y can be 
formed: 𝑝𝑝𝑦𝑦(𝑦𝑦𝑢𝑢) = 𝑝𝑝(𝑦𝑦𝑜𝑜|𝑦𝑦𝑝𝑝)𝑝𝑝𝑦𝑦(𝑦𝑦𝑝𝑝)/(norm), where the subscript on the probability densities indicates a marginal probability 
on the observation variable. Note that this equation does not depend on any of the model state variables. This suggests a 
partitioning of the assimilation of an observation into two parts. The first determines updated ensemble members for the 
observation variable given the observation. To update the ensemble sample of 𝑦𝑦𝑝𝑝, an increment is computed for each ensemble 
member: 
∆𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑢𝑢 − 𝑦𝑦𝑖𝑖

𝑝𝑝 ,                    (S5) 
where 𝑖𝑖 = 1, … ,𝑁𝑁, and 𝑁𝑁 is the ensemble size. The second step computes corresponding increments for i-th ensemble sample 
of j-th state variable ∆𝑥𝑥𝑖𝑖,𝑗𝑗. This requires assumptions that the prior distribution is Gaussian. This equivalent to assuming that 
a least squares fit to the prior ensemble members summarizes the relationship between the joint state variables. 

 

Figure S1. An idealized representation showing the relation between update increments for a state variable 𝑥𝑥  and an 
observation variable 𝑦𝑦 for a five member ensemble represented by asterisks. The projection of the ensemble on the 𝑥𝑥 and 𝑦𝑦 
axes is represented by a plus sign and the observation 𝑦𝑦𝑜𝑜 is represented by “∗”. The gray dashed line shows a global least 
squares fit to the ensemble members. Update increments for ensemble members 1 and 4 for y are shown along with 
corresponding increments for the ensemble as a whole (thin vectors parallel to least squares fit) and for the x ensemble. From 
Anderson (2003) 



Figure S1 depicts the simplest example in which there is only a single state variable x. The observation variable y is related to 
x by the operator h, which is nonlinear in the figure. Increments for each ensemble sample of y have been computed. The 
corresponding increments for x are then computed by a least squares fit (linear regression) so that 

∆𝑥𝑥𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
(𝜎𝜎𝑝𝑝)2

∆𝑦𝑦𝑖𝑖 ,                    (S6) 

where 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) is the prior covariance of 𝑥𝑥 with 𝑦𝑦, (𝜎𝜎𝑝𝑝)2 is the prior variance of 𝑦𝑦. 
 
Equation (S1) implies that the observation variable can be updated independently of the other joint state variables. Using a 
scalar application of Eq. (S2), the updated variance for y can be written 

(𝜎𝜎𝑢𝑢)2 = [((𝜎𝜎𝑝𝑝)2)−1 + ((𝜎𝜎𝑜𝑜)2)−1]−1 = (𝜎𝜎𝑜𝑜)2(𝜎𝜎𝑝𝑝)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
 .             (S7) 

Applying a scalar version of Eq. (S3) to compute the updated mean  
𝑦𝑦�𝑢𝑢 = (𝜎𝜎𝑢𝑢)2[((𝜎𝜎𝑝𝑝)2)−1𝑦𝑦�𝑝𝑝 + ((𝜎𝜎𝑜𝑜)2)−1𝑦𝑦𝑜𝑜]  

   = (𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
𝑦𝑦�𝑝𝑝 + (𝜎𝜎𝑝𝑝)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
𝑦𝑦𝑜𝑜 .                (S8) 

Using a scalar application of Eq. (S4), the updated value of y can be written 
𝑦𝑦𝑖𝑖𝑢𝑢 = 𝛼𝛼�𝑦𝑦𝑖𝑖

𝑝𝑝 − 𝑦𝑦�𝑝𝑝� + 𝑦𝑦�𝑢𝑢 ,                   (S9) 

where 𝛼𝛼 = �(𝜎𝜎𝑢𝑢)2/(𝜎𝜎𝑝𝑝)2 = � (𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
 . 

 
Hence, the observational increment from Eq. (S5) can be written 
∆𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑢𝑢 − 𝑦𝑦𝑖𝑖

𝑝𝑝 = 𝛼𝛼�𝑦𝑦𝑖𝑖
𝑝𝑝 − 𝑦𝑦�𝑝𝑝� + 𝑦𝑦�𝑢𝑢 − 𝑦𝑦𝑖𝑖

𝑝𝑝  

    = � (𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
�𝑦𝑦𝑖𝑖

𝑝𝑝 − 𝑦𝑦�𝑝𝑝� + (𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
𝑦𝑦�𝑝𝑝 + (𝜎𝜎𝑝𝑝)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
𝑦𝑦𝑜𝑜 − 𝑦𝑦𝑖𝑖

𝑝𝑝 .         (S10) 

 
For more details, please see Sect. 2c and 3b in Anderson (2003). 
 
 
Also, please explain exact meaning of each variable. For example, is 𝜟𝜟𝜷𝜷𝒑𝒑 a value of the parameter β, or prior ensemble 
perturbation of the parameter β? Is 𝜟𝜟𝒚𝒚𝒊𝒊

𝒑𝒑  prior ensemble spread or prior ensemble perturbation? In addition, all 
vectors and matrices need to have clearly defined space (e.g., observation or state space) and dimensions (e.g., Nobs, 
Nstate, Nens, Nobs x Nens, ...). 
 
RE: Excellent suggestion! To fully address this comment, we have substantially rewritten Section 2.2. The meaning of each 
variable has been explained more exactly, and the space and dimensions of all vectors and matrices have been clearly defined. 
We believe that the new Section 2.2 has been considerably improved (L197-220). 
 



L197-220: 
All observations at time t have the observation value 𝒚𝒚𝒐𝒐  (in 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜  dimensions). For a single observation 𝑦𝑦𝑘𝑘𝑜𝑜  at the k-th 
observation location (𝑘𝑘 = 1~𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜), the standard deviation of observational error is 𝜎𝜎𝑜𝑜 (assumed to be Gaussian). The model 
states are mapped onto the observational space by applying a linear interpolation, and then the prior (model-estimated) 
ensemble of the k-th observation 𝒚𝒚𝒌𝒌

𝒑𝒑 (in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 dimensions) can be obtained. 𝑦𝑦𝑘𝑘,𝑖𝑖
𝑝𝑝  is the i-th prior ensemble member of the k-

th observation. The ensemble mean and standard deviation are 𝑦̄𝑦𝑘𝑘
𝑝𝑝 and 𝜎𝜎𝑘𝑘

𝑝𝑝, respectively. 
The first step is to compute the observational increment of the k-th observation (𝑘𝑘 = 1~𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜). The observational increment 

Δ𝑦𝑦𝑘𝑘,𝑖𝑖
𝑜𝑜  for the i-th ensemble member (𝑖𝑖 = 1~𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒) is formulated by 

Δ𝑦𝑦𝑘𝑘,𝑖𝑖
𝑜𝑜 = 𝑦̄𝑦𝑘𝑘𝑢𝑢 + Δ𝑦𝑦𝑘𝑘,𝑖𝑖

′ − 𝑦𝑦𝑘𝑘,𝑖𝑖
𝑝𝑝  ,                  (1) 

where 𝑦̄𝑦𝑘𝑘𝑢𝑢 is the posterior ensemble mean of the k-th observation, representing the shift of the ensemble mean induced by this 
observation, Δ𝑦𝑦𝑘𝑘,𝑖𝑖

′  is the updated ensemble spread of the k-th observation, representing the reshaping of the model ensemble. 
They are respectively computed by 

𝑦̄𝑦𝑘𝑘𝑢𝑢 = (𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑘𝑘
𝑝𝑝)2

𝑦̄𝑦𝑘𝑘
𝑝𝑝 + (𝜎𝜎𝑘𝑘

𝑝𝑝)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑘𝑘
𝑝𝑝)2

𝑦𝑦𝑘𝑘𝑜𝑜 , and 

Δ𝑦𝑦𝑘𝑘,𝑖𝑖
′ = �

(𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑘𝑘
𝑝𝑝)2

�𝑦𝑦𝑘𝑘,𝑖𝑖
𝑝𝑝 − 𝑦̄𝑦𝑘𝑘

𝑝𝑝� ,                 (2) 

where the first equation shows whether the ensemble mean shifts closer to the prior model ensemble mean 𝑦̄𝑦𝑘𝑘
𝑝𝑝  or the 

observation value 𝑦𝑦𝑘𝑘𝑜𝑜, and whether it is 𝑦̄𝑦𝑘𝑘
𝑝𝑝 or 𝑦𝑦𝑘𝑘𝑜𝑜 depends on which has the smaller variance. The second equation denotes 

that the prior probability density function is squashed by a new observation. 
    The second step is to distribute the observational increments Δ𝑦𝑦𝑘𝑘,𝑖𝑖

𝑜𝑜  on to the related model states x (a matrix of size 
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and this assimilation process can be expressed as 

Δ𝑥𝑥𝑗𝑗,𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝒙𝒙𝒋𝒋,𝒚𝒚𝒌𝒌
𝒑𝒑)

(𝜎𝜎𝑘𝑘
𝑝𝑝)2

Δ𝑦𝑦𝑘𝑘,𝑖𝑖
𝑜𝑜  ,                   (3) 

where Δ𝑥𝑥𝑗𝑗,𝑖𝑖  is the contribution of the k-th observation to the i-th ensemble member of the j-th model variable 𝑥𝑥𝑗𝑗,𝑖𝑖  (𝑗𝑗 =
1~𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ). 𝑐𝑐𝑐𝑐𝑐𝑐(𝒙𝒙𝒋𝒋,𝒚𝒚𝒌𝒌

𝒑𝒑)  is the error covariance between the prior ensemble of the j-th model variable 𝒙𝒙𝒋𝒋  (in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 
dimensions) and the prior (model-estimated) ensemble of the k-th observation 𝒚𝒚𝒌𝒌

𝒑𝒑 (in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 dimensions), and is calculated as 

𝑐𝑐𝑐𝑐𝑐𝑐(𝒙𝒙𝒋𝒋,𝒚𝒚𝒌𝒌
𝒑𝒑) =

∑ �𝑥𝑥𝑗𝑗,𝑖𝑖−𝑥̅𝑥𝑗𝑗�
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖=1 �𝑦𝑦𝑘𝑘,𝑖𝑖

𝑝𝑝 −𝑦̄𝑦𝑘𝑘
𝑝𝑝�

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
 , where 𝑥̅𝑥𝑗𝑗 is the ensemble mean of j-th model variable. 

 
(2) What dynamical model was used to propagate parameters in time? Was it identity model? 
 
RE: Thanks for this comment. There is no dynamical model used to propagate parameters in this paper and it is identity model. 
Addressing this comment, we have added more description and discussion about the parameter estimation in L96 and L221-
231. 
 
L96: 
Observation-constrained model parameters are no longer kept at fixed values but are constantly varying over time. 



L221-231: 
The model parameters are fixed when parameter estimation is not performed. The parameters vary with observational 
information by parameter estimation. The core of the parameter estimation is to obtain the increment of the estimated parameter 
by a linear regression that is based on the error covariance between the prior parameter ensemble and the state ensemble 
(Anderson, 2001, 2003). The error covariance used in regression is flow dependent and temporally varying (Zhang and 
Anderson, 2003). Therefore, for the model parameter estimation, the observational increments are distributed onto a relevant 
parameter and the equation is 

Δ𝛽𝛽𝑗𝑗,𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜷𝜷𝒋𝒋,𝒚𝒚𝒌𝒌
𝒑𝒑)

(𝜎𝜎𝑘𝑘
𝑝𝑝)2

Δ𝑦𝑦𝑘𝑘,𝑖𝑖
𝑜𝑜  ,                   (4) 

where Δ𝛽𝛽𝑗𝑗,𝑖𝑖 is the contribution of the k-th observation to the i-th ensemble member of the j-th parameter being estimated, 
called 𝛽𝛽𝑗𝑗,𝑖𝑖 (𝑗𝑗 = 1~𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). 𝑐𝑐𝑐𝑐𝑐𝑐(𝜷𝜷𝒋𝒋,𝒚𝒚𝒌𝒌

𝒑𝒑) is the error covariance between the prior ensemble of the j-th model parameter 𝜷𝜷𝒋𝒋 
(in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 dimensions) and the prior (model-estimated) ensemble of the k-th observation 𝒚𝒚𝒌𝒌

𝒑𝒑 (in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 dimensions), and is 

calculated as 𝑐𝑐𝑐𝑐𝑐𝑐(𝜷𝜷𝒋𝒋,𝒚𝒚𝒌𝒌
𝒑𝒑) =

∑ �𝛽𝛽𝑗𝑗,𝑖𝑖−𝛽𝛽�𝑗𝑗�
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖=1 �𝑦𝑦𝑘𝑘,𝑖𝑖

𝑝𝑝 −𝑦̄𝑦𝑘𝑘
𝑝𝑝�

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
 , where 𝛽̅𝛽𝑗𝑗 is the ensemble mean of j-th model parameter being optimized. 

 
 
Is there a more suitable model than identity? Please provide a brief reference review about different models used so far 
in literature and justify your choice. 
 
RE: Good suggestion! We have added a brief review and discussion about different models in L716-723. 
 
L716-723: 
Aksoy et al. (2006b) proposed a spatial updating technique that recovers the globally uniform parameter value using a spatial 
average of the entire spatially varying parameter field. Wu et al. (2012, 2013) explored the impact of the geographic dependence 
of observing system on the parameters. The adjustment of the parameters is based on the spatial distribution of the model state 
sensitivity to parameters. Liu et al. (2014a, b) proposed the adaptive spatial average method that obtains the final global 
uniform posterior parameter based on spatially varying posterior estimated parameter values. In this study, considering that 
the simple box models are used as a first step to explore AMOC transitions, it is more appropriate to use the identity model. 
The impact of geographic-dependent parameter optimization on climate estimation and prediction can be considered in future 
studies for complex systems such as CGCMs. 
 
 
(3) Have you applied any covariance inflation? Please explain. 
 
RE: Thanks for this suggestion! In this revision, a more detailed description of the covariance inflation scheme has been added 
in L239-246. 
 



L239-246: 
To further improve the signal-to-noise ratio of parameter estimation, Zhang (2011a) introduced an inflation scheme based on 
model sensitivity with respect to the parameter being estimated. In this inflation scheme, the inflation amplitude of a parameter 

ensemble is inversely proportional to the sensitivity. It is formulated as 𝛽𝛽�𝑗𝑗,𝑖𝑖 = 𝛽̅𝛽𝑗𝑗 + 𝑚𝑚𝑚𝑚𝑚𝑚 �1, 𝛼𝛼0𝜎𝜎0
𝜎𝜎𝑗𝑗𝜎𝜎𝑡𝑡

� �𝛽𝛽𝑗𝑗,𝑖𝑖 − 𝛽̅𝛽𝑗𝑗� , where 𝛽𝛽�𝑗𝑗,𝑖𝑖 

denotes the inflated version of the i-th ensemble member of the j-th parameter being estimated, 𝜎𝜎0 and 𝜎𝜎𝑡𝑡 are the prior 
ensemble spreads of this parameter at the initial time and time t, 𝛼𝛼0 is a constant tuned by a trial-and-error procedure (e.g., 
Wu et al., 2016), and 𝜎𝜎𝑗𝑗 is the sensitivity of the model state with regard to j-th parameter. This indicates that if the prior 

ensemble spread of j-th parameter is smaller than 𝛼𝛼0
𝜎𝜎𝑗𝑗

 times the initial spread, it will be enlarged to this amount (e.g., Wu et al., 

2012; Han et al., 2014; Zhao et al., 2019). 
 
(4) Please address the issue of ensemble spread vs. forecast skill. Are they correlated in your experiments? Is ensemble 
spread over-estimated or under-estimated? Are ensembles collapsing? 
 
RE: Thanks for this comment. Ensemble spread and forecast skill are correlated in our experiments. There are two 
considerations regarding the ensemble spread of the parameter. As shown in the following figure, the ensemble spread is 
affected by the inflation level. On the one hand, overly small inflation factors and small ensemble spread will lead to too long 
fluctuation period of ensemble members, which affects the forecast skill and causes errors. Insufficient inflation may result in 
ensemble collapsing. On the other hand, overly large inflation factors lead the spread to jump out of the reasonable range. 
Considering the length limitation, the experiments on the ensemble spread and inflation factors are not shown in the manuscript. 
However, the relevant literature has been added in L243-244. Following this suggestion, Fig. 6 has been replaced by a new 
figure (Fig. S2d) in the revised manuscript. Accordingly, Figs. 5 and 7 have been updated due to the adjustment of the inflation 
scheme, and the new figures are almost identical to the original ones. 
 
L243-244: 
𝛼𝛼0 is a constant tuned by a trial-and-error procedure (e.g., Wu et al., 2016). 



 

Figure S2. Time series of the estimated 𝜅𝜅 values with a Gaussian perturbation that has a mean value of 32 and a standard 
deviation of 0.1 in the individual ensemble members (orange) in the free model control ensemble simulations with data 
assimilation and parameter estimation. The solid red line denoting 𝜅𝜅 = 28 marks the true value of κ being estimated. The 
dotted-dashed black line denoting 300th-unit marks the start of parameter estimation using 𝑥𝑥2, 𝑤𝑤, and 𝜂𝜂 observations. The 
limited inflation value is 0.01 (a), 0.05 (b), 0.10 (c), 0.15 (d), 0.20 (e), 0.40 (f), 0.60 (g), 1.0 (h) and the value used in the paper 
is 0.15. 
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Response to Editorial Comments 
 
Editorial Comments: 
 
L122-128: 
Based on EAKF, a data assimilation scheme for enhancive parameter correction 
Replace “enhancive” with “enhanced” 
 
RE: Thanks. Please see L122-123. 
L122-123: “a data assimilation scheme for enhanced parameter correction”. 
 
L520-524: 
The 5-variable conceptual climate model could simulate the interactions between the atmosphere and ocean, and 
coupling it with the three-box MOC model could accurately address the ideas in this paper. 
Replace “ideas” with “main questions”? 
 
RE: Thanks. Please see L521. 
L521: “address the main questions in this paper”. 
 
L520-524: 
As such, this simple model has more visibility to demonstrate the essence of the problem. 
"As such, the main outcome of this paper can be more readily demonstrated with this simple model." 
 
RE: Thanks. Please see L524. 
L524: “As such, the main outcome of this paper can be more readily demonstrated with this simple model”. 
 
L96-103: 
Observation-constrained model parameters no longer keep fixed values but are constantly varying over time. 
"Observation-constrained model parameters are no longer kept at fixed values…" 
 
RE: Thanks. Please see L96. 
L96: “Observation-constrained model parameters are no longer kept at fixed values”. 
 
L96-103: 
can make the simulation results closer to the “observed” feature of regime transitions. 
“can bring…” 



RE: Thanks. Please see L98. 
L98: “can bring the simulation results closer to the “observed” feature of regime transitions”. 
 
L128-133: 
Although the AMOC model eventually exhibits multiple equilibria, the AMOC is not a direct model state... 
Alternative text: 
Although numerical simulations of the AMOC eventually exhibit multiple equilibria, the AMOC is not an explicit model 
variable; rather, it is derived from model variables such as…” 
 
RE: Thanks. Please see L128-130. 
L128-130: “Although numerical simulations of the AMOC eventually exhibit multiple equilibria, the AMOC is not an explicit 
model variable; rather, it is derived from model variables such as”. 
 
l.197-220: 
where the first equation shows that the ensemble mean shifts toward the prior model ensemble mean 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑝𝑝 or the 
observation value 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, and whether it is 𝑦𝑦𝑦̄𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 or 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 depends on who has the smaller variance. 
Alternative: "where the first equation shows whether the ensemble mean shifts closer to the prior model ensemble mean 
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑝𝑝 or the observation value 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, and whether it is 𝑦𝑦𝑦̄𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 or 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 depends on which has the smaller 
variance." 
 
RE: Thanks. Please see L211-212. 
L211-212: “where the first equation shows whether the ensemble mean shifts closer to the prior model ensemble mean 𝑦̄𝑦𝑘𝑘

𝑝𝑝 or 
the observation value 𝑦𝑦𝑘𝑘𝑜𝑜, and whether it is 𝑦̄𝑦𝑘𝑘

𝑝𝑝 or 𝑦𝑦𝑘𝑘𝑜𝑜 depends on which has the smaller variance”. 
 
RE: Thanks for your careful checking. We have corrected the typos and grammar errors you mentioned above and examined 
the manuscript word for word to make sure that there are no textual errors. 


