
Response to Reviewer #2 
 
Comments from Reviewer #2: 
 
General Comments: 
 
This paper addresses regime transition in AMOC though state and parameter estimation, via application of the EAKF. 
While the idea of parameter estimation is not new in ensemble-based data assimilation and there are many published 
papers addressing it, I believe that the novelty of the paper is the application of EAKF to regime transition in AMOC. 
Still, the paper needs to explain what the main findings are and how those findings could improve our knowledge about 
AMOC. In addition, I have some specific comments requiring clarification of the parameter estimation approach and 
the EAKF equations. 
 
RE: A few conferences of all co-authors have been held to discuss the comments of reviewer #2. All authors appreciate greatly 
for the encouragements and comments. All the comments are very important and useful for authors to improve the quality of 
this manuscript. The paper is renewed as the reviewer's suggestions. Thanks for your encouragement. In this revision, a more 
detailed explanation has been added to the Introduction section. We have expressed better what the main findings of this paper 
are (L96-103, L664-675) and how these findings could improve our knowledge about AMOC (L128-133). All specific 
comments are replied point-by-point as below. We hope the whole manuscript has been essentially improved. 
 
L96-103: 
Observation-constrained model parameters no longer keep fixed values but are constantly varying over time. The purpose of 
this paper is to explore whether the variations of observation-constrained parameters that allow the physical processes of model 
to evolve over time can make the simulation results closer to the “observed” feature of regime transitions. The models in this 
paper are obtained by coupling AMOC box model with Lorenz’s model, similar to the work by Roebber (1995) or Gottwald 
(2021), where the variation of AMOC is driven by the chaotic dynamical system. The thermal mode and the reverse haline 
mode correspond to different equilibrium states of the AMOC. For simplicity, we will refer to these different states as the 
stronger AMOC (on-state) and the weaker AMOC (off-state) in simple conceptual models (e.g., Weijer et al., 2019). 
 
L664-675: 
Since the circulation is driven only by the meridional gradients of the upper ocean temperature and salinity in the buoyancy-
constraint MOCBM model, AMOC regime transitions can be captured to some extent when the upper ocean temperature and 
salinity are directly adjusted by data assimilation only, but the simulation results are not accurate enough. In this simple model, 
since the data assimilation has worked well, the contribution of parameter estimation is relatively small but still indispensable. 
The AMOC regime transitions are captured more accurately by parameter estimation. The degree of contributions of data 
assimilation or parameter estimation to the optimization of simulation results is different in these two models. Compared with 



the MOCBM model, the energy-constraint MOC3B-5V model is more representative for the role of parameter estimation 
because the circulation is maintained by mechanical energy. When leaving out the parameter estimation steps and constraining 
the model states only by data assimilation, the accuracy of state estimation is not high due to the existence of parameter errors. 
Given the fact that the circulation is driven in a more complex way in the real world, this simple model study only provides a 
conceptual understanding and guideline for more complex real systems such as Coupled General Circulation Model (CGCM). 
 
L128-133: 
Although the AMOC model eventually exhibits multiple equilibria, the AMOC is not a direct model state but is indirectly 
derived from model states such as atmospheric wind, ocean temperature and salinity. Instead of adjusting AMOC directly, the 
model states are adjusted through data assimilation. When constraining model parameters by observational information, the 
parameters that constantly vary with observations may provide more diversity in the physical processes involved with AMOC 
regime transition, so that the model can simulate more AMOC transition paths. 
 
Specific Comments: 
 
(1) Please explain how equations (1)-(4) were derived from the EAKF. 
 
RE: Good suggestion! In this revision, a detailed derivation process is shown below. Given the length limitation, these 
derivations are not added to the manuscript. However, a concise description and the corresponding references have been added 
in L192-197. 
 
L192-197: 
The ensemble adjustment Kalman filter (Anderson, 2001) is used for data assimilation and parameter estimation in this study. 
The basic process of the two-step EAKF (Anderson, 2003; Zhang and Anderson, 2003; Zhang et al., 2007) is to project the 
observational increment onto model states (relevant parameters) by calculating the error covariance between the prior ensemble 
of the model variable (parameter) and the model-estimated ensemble. The core of the two-step EAKF is to calculate the 
increment of each state variable by a global least squares fit (linear regression), and the calculation of the observational 
increment is related to the scalar application of the equations of EAKF (Anderson, 2003). 
 
Based on the EAKF (Anderson, 2001), Anderson (2003) described a two-step data assimilation procedure for ensemble 
filtering under a local least squares framework. 
 
The joint state-observation space is defined by the joint space state vector: 𝐳𝐳 = [𝐱𝐱, 𝐲𝐲], where 𝐱𝐱 is the model state vector; 𝐲𝐲 =
ℎ(𝐱𝐱), where ℎ is the forward observation operator. Using Bayesian statistics, the distribution of the posterior (or updated) 
distribution can be computed from the prior distribution, as 
𝐩𝐩(𝐳𝐳𝑢𝑢) = 𝐩𝐩(𝐲𝐲𝒐𝒐|𝐳𝐳𝑝𝑝)𝐩𝐩(𝐳𝐳𝑝𝑝)/(norm) .                 (S1) 
At the heart of the ensemble Kalman filter is the fact that the product of the joint prior Gaussian with mean 𝐳𝐳�𝑝𝑝, covariance 



𝚺𝚺𝑝𝑝, and the Gaussian observation distribution with mean 𝐲𝐲𝒐𝒐 and error variance 𝐑𝐑 has covariance 
𝚺𝚺𝑢𝑢 = [(𝚺𝚺𝑝𝑝)−1 + 𝐇𝐇T𝐑𝐑−1𝐇𝐇]−1 ,                  (S2) 
and mean 
𝐳𝐳�𝑢𝑢 = 𝚺𝚺𝑢𝑢[(𝚺𝚺𝑝𝑝)−1𝐳𝐳�𝑝𝑝 + 𝐇𝐇𝑇𝑇𝐑𝐑−1𝐲𝐲𝒐𝒐] .                 (S3) 
The EAKF constructs an updated ensemble with a mean and sample variance that satisfy Eq. (S2) and Eq. (S3). In Anderson 
(2001), this is done by shifting the mean of the ensemble and then adjusting the spread of the ensemble around the updated 
mean using a linear operator A: 
𝐳𝐳𝑖𝑖𝑢𝑢 = 𝐀𝐀�𝐳𝐳𝑖𝑖

𝑝𝑝 − 𝐳𝐳�𝑝𝑝� + 𝐳𝐳�𝑢𝑢                     (S4) 
where 𝐀𝐀 satisfies 𝚺𝚺𝑢𝑢 = 𝐀𝐀𝚺𝚺𝑝𝑝𝐀𝐀T. 
In everything that follows, results are presented only for assimilation of a single scalar observation. Define the joint state space 
forward observation operator for a single observation as the order 1 × 𝑘𝑘 linear operator 𝐇𝐇 = [0,0, … ,0,1], where 𝑘𝑘 is the 
joint state space size. The updated probability for the marginal distribution of the observation joint state variable y can be 
formed: 𝑝𝑝𝑦𝑦(𝑦𝑦𝑢𝑢) = 𝑝𝑝(𝑦𝑦𝑜𝑜|𝑦𝑦𝑝𝑝)𝑝𝑝𝑦𝑦(𝑦𝑦𝑝𝑝)/(norm), where the subscript on the probability densities indicates a marginal probability 
on the observation variable. Note that this equation does not depend on any of the model state variables. This suggests a 
partitioning of the assimilation of an observation into two parts. The first determines updated ensemble members for the 
observation variable given the observation. To update the ensemble sample of 𝑦𝑦𝑝𝑝, an increment is computed for each ensemble 
member: 
∆𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑢𝑢 − 𝑦𝑦𝑖𝑖

𝑝𝑝 ,                    (S5) 
where 𝑖𝑖 = 1, … ,𝑁𝑁, and 𝑁𝑁 is the ensemble size. The second step computes corresponding increments for i-th ensemble sample 
of j-th state variable ∆𝑥𝑥𝑖𝑖,𝑗𝑗. This requires assumptions that the prior distribution is Gaussian. This equivalent to assuming that 
a least squares fit to the prior ensemble members summarizes the relationship between the joint state variables. 

 

Figure S1. An idealized representation showing the relation between update increments for a state variable 𝑥𝑥  and an 
observation variable 𝑦𝑦 for a five member ensemble represented by asterisks. The projection of the ensemble on the 𝑥𝑥 and 𝑦𝑦 
axes is represented by a plus sign and the observation 𝑦𝑦𝑜𝑜 is represented by “∗”. The gray dashed line shows a global least 
squares fit to the ensemble members. Update increments for ensemble members 1 and 4 for y are shown along with 
corresponding increments for the ensemble as a whole (thin vectors parallel to least squares fit) and for the x ensemble. From 
Anderson (2003) 



 
Figure S1 depicts the simplest example in which there is only a single state variable x. The observation variable y is related to 
x by the operator h, which is nonlinear in the figure. Increments for each ensemble sample of y have been computed. The 
corresponding increments for x are then computed by a global least squares fit (linear regression) so that 

∆𝑥𝑥𝑖𝑖 = 𝑐𝑐𝑜𝑜𝑐𝑐(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
(𝜎𝜎𝑝𝑝)2

∆𝑦𝑦𝑖𝑖  ,                    (S6) 

where 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) is the prior covariance of 𝑥𝑥 with 𝑦𝑦, (𝜎𝜎𝑝𝑝)2 is the prior variance of 𝑦𝑦. 
 
Equation (S1) implies that the observation variable can be updated independently of the other joint state variables. Using a 
scalar application of Eq. (S2), the updated variance for y can be written 

(𝜎𝜎𝑢𝑢)2 = [((𝜎𝜎𝑝𝑝)2)−1 + ((𝜎𝜎𝑜𝑜)2)−1]−1 = (𝜎𝜎𝑜𝑜)2(𝜎𝜎𝑝𝑝)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
 .             (S7) 

Applying a scalar version of Eq. (S3) to compute the updated mean  
𝑦𝑦�𝑢𝑢 = (𝜎𝜎𝑢𝑢)2[((𝜎𝜎𝑝𝑝)2)−1𝑦𝑦�𝑝𝑝 + ((𝜎𝜎𝑜𝑜)2)−1𝑦𝑦𝑜𝑜]  

   = (𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
𝑦𝑦�𝑝𝑝 + (𝜎𝜎𝑝𝑝)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
𝑦𝑦𝑜𝑜 .                (S8) 

Using a scalar application of Eq. (S4), the updated value of y can be written 
𝑦𝑦𝑖𝑖𝑢𝑢 = 𝛼𝛼�𝑦𝑦𝑖𝑖

𝑝𝑝 − 𝑦𝑦�𝑝𝑝� + 𝑦𝑦�𝑢𝑢 ,                   (S9) 

where 𝛼𝛼 = �(𝜎𝜎𝑢𝑢)2/(𝜎𝜎𝑝𝑝)2 = � (𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
 . 

 
Hence, the observational increment from Eq. (S5) can be written 
∆𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑢𝑢 − 𝑦𝑦𝑖𝑖

𝑝𝑝 = 𝛼𝛼�𝑦𝑦𝑖𝑖
𝑝𝑝 − 𝑦𝑦�𝑝𝑝� + 𝑦𝑦�𝑢𝑢 − 𝑦𝑦𝑖𝑖

𝑝𝑝  

    = � (𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
�𝑦𝑦𝑖𝑖

𝑝𝑝 − 𝑦𝑦�𝑝𝑝� + (𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
𝑦𝑦�𝑝𝑝 + (𝜎𝜎𝑝𝑝)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑝𝑝)2
𝑦𝑦𝑜𝑜 − 𝑦𝑦𝑖𝑖

𝑝𝑝 .         (S10) 

 
For more details, please see Sect. 2c and 3b in Anderson (2003). 
 
Also, please explain exact meaning of each variable. For example, is 𝜟𝜟𝜷𝜷𝒑𝒑 a value of the parameter β, or prior ensemble 
perturbation of the parameter β? Is 𝜟𝜟𝒚𝒚𝒊𝒊

𝒑𝒑  prior ensemble spread or prior ensemble perturbation? In addition, all 
vectors and matrices need to have clearly defined space (e.g., observation or state space) and dimensions (e.g., Nobs, 
Nstate, Nens, Nobs x Nens, ...). 
 
RE: Excellent suggestion! To fully address this comment, we have substantially rewritten Section 2.2. The meaning of each 
variable has been explained more exactly, and the space and dimensions of all vectors and matrices have been clearly defined. 
We believe that the new Section 2.2 has been considerably improved (L197-220). 
 



L197-220: 
All observations at time t have the observation value 𝒚𝒚𝒐𝒐  (in 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜  dimensions). For a single observation 𝑦𝑦𝑘𝑘𝑜𝑜  at the k-th 
observation location (𝑘𝑘 = 1~𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜), the standard deviation of observational error is 𝜎𝜎𝑜𝑜 (assumed to be Gaussian). The model 
states are mapped onto the observational space by applying a linear interpolation, and then the prior (model-estimated) 
ensemble of the k-th observation 𝒚𝒚𝒌𝒌

𝒑𝒑 (in 𝑁𝑁𝑒𝑒𝑒𝑒𝑜𝑜 dimensions) can be obtained. 𝑦𝑦𝑘𝑘,𝑖𝑖
𝑝𝑝  is the i-th prior ensemble member of the k-

th observation. The ensemble mean and standard deviation are �̄�𝑦𝑘𝑘
𝑝𝑝 and 𝜎𝜎𝑘𝑘

𝑝𝑝, respectively. 
The first step is to compute the observational increment of the k-th observation (𝑘𝑘 = 1~𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜). The observational increment 

Δ𝑦𝑦𝑘𝑘,𝑖𝑖
𝑜𝑜  for the i-th ensemble member (𝑖𝑖 = 1~𝑁𝑁𝑒𝑒𝑒𝑒𝑜𝑜) is formulated by 

Δ𝑦𝑦𝑘𝑘,𝑖𝑖
𝑜𝑜 = �̄�𝑦𝑘𝑘𝑢𝑢 + Δ𝑦𝑦𝑘𝑘,𝑖𝑖

′ − 𝑦𝑦𝑘𝑘,𝑖𝑖
𝑝𝑝  ,                  (1) 

where �̄�𝑦𝑘𝑘𝑢𝑢 is the posterior ensemble mean of the k-th observation, representing the shift of the ensemble mean induced by this 
observation, Δ𝑦𝑦𝑘𝑘,𝑖𝑖

′  is the updated ensemble spread of the k-th observation, representing the reshaping of the model ensemble. 
They are respectively computed by 

�̄�𝑦𝑘𝑘𝑢𝑢 = (𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑘𝑘
𝑝𝑝)2

�̄�𝑦𝑘𝑘
𝑝𝑝 + (𝜎𝜎𝑘𝑘

𝑝𝑝)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑘𝑘
𝑝𝑝)2

𝑦𝑦𝑘𝑘𝑜𝑜 , and 

Δ𝑦𝑦𝑘𝑘,𝑖𝑖
′ = �

(𝜎𝜎𝑜𝑜)2

(𝜎𝜎𝑜𝑜)2+(𝜎𝜎𝑘𝑘
𝑝𝑝)2

�𝑦𝑦𝑘𝑘,𝑖𝑖
𝑝𝑝 − �̄�𝑦𝑘𝑘

𝑝𝑝� ,                 (2) 

where the first equation shows that the ensemble mean shifts toward the prior model ensemble mean �̄�𝑦𝑘𝑘
𝑝𝑝 or the observation 

value 𝑦𝑦𝑘𝑘𝑜𝑜, and whether it is �̄�𝑦𝑘𝑘
𝑝𝑝 or 𝑦𝑦𝑘𝑘𝑜𝑜 depends on who has the smaller variance. The second equation denotes that the prior 

probability density function is squashed by a new observation. 
    The second step is to distribute the observational increments Δ𝑦𝑦𝑘𝑘,𝑖𝑖

𝑜𝑜  on to the related model states x (a matrix of size 
𝑁𝑁𝑒𝑒𝑒𝑒𝑜𝑜 × 𝑁𝑁𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒) and this assimilation process can be expressed as 

Δ𝑥𝑥𝑗𝑗,𝑖𝑖 = 𝑐𝑐𝑜𝑜𝑐𝑐(𝒙𝒙𝒋𝒋,𝒚𝒚𝒌𝒌
𝒑𝒑)

(𝜎𝜎𝑘𝑘
𝑝𝑝)2

Δ𝑦𝑦𝑘𝑘,𝑖𝑖
𝑜𝑜  ,                   (3) 

where Δ𝑥𝑥𝑖𝑖,𝑗𝑗  is the contribution of the k-th observation to the i-th ensemble member of the j-th model variable 𝑥𝑥𝑗𝑗,𝑖𝑖  (𝑗𝑗 =
1~𝑁𝑁𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 ). 𝑐𝑐𝑐𝑐𝑐𝑐( 𝒙𝒙𝒋𝒋,𝒚𝒚𝒌𝒌

𝒑𝒑)  is the error covariance between the prior ensemble of the j-th model variable 𝒙𝒙𝒋𝒋  (in 𝑁𝑁𝑒𝑒𝑒𝑒𝑜𝑜 
dimensions) and the prior (model-estimated) ensemble of the k-th observation 𝒚𝒚𝒌𝒌

𝒑𝒑 (in 𝑁𝑁𝑒𝑒𝑒𝑒𝑜𝑜 dimensions), and is calculated as 

𝑐𝑐𝑐𝑐𝑐𝑐( 𝒙𝒙𝒋𝒋,𝒚𝒚𝒌𝒌
𝒑𝒑) =

∑ �𝑥𝑥𝑗𝑗,𝑖𝑖−�̅�𝑥𝑗𝑗�
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖=1 �𝑦𝑦𝑘𝑘,𝑖𝑖

𝑝𝑝 −�̄�𝑦𝑘𝑘
𝑝𝑝�

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
 , where �̅�𝑥𝑗𝑗 is the ensemble mean of j-th model variable. 

 
(2) What dynamical model was used to propagate parameters in time? Was it identity model? 
 
RE: Thanks for this comment. There is no dynamical model used to propagate parameters in this paper and it is identity model. 
Addressing this comment, we have added more description and discussion about the parameter estimation in L96-97 and L221-
231. 
 
L96-97: 
Observation-constrained model parameters no longer keep fixed values but are constantly varying over time. 



 
L221-231: 
The model parameters are fixed when parameter estimation is not performed. The parameters vary with observational 
information by parameter estimation. The core of the parameter estimation is to obtain the increment of the estimated parameter 
by a linear regression that is based on the error covariance between the prior parameter ensemble and the state ensemble 
(Anderson, 2001, 2003). The error covariance used in regression is flow dependent and temporally varying (Zhang and 
Anderson, 2003). Therefore, for the model parameter estimation, the observational increments are distributed onto a relevant 
parameter and the equation is 

Δ𝛽𝛽𝑗𝑗,𝑖𝑖 = 𝑐𝑐𝑜𝑜𝑐𝑐(𝜷𝜷𝒋𝒋,𝒚𝒚𝒌𝒌
𝒑𝒑)

(𝜎𝜎𝑘𝑘
𝑝𝑝)2

Δ𝑦𝑦𝑘𝑘,𝑖𝑖
𝑜𝑜  ,                   (4) 

where Δ𝛽𝛽𝑗𝑗,𝑖𝑖 is the contribution of the k-th observation to the i-th ensemble member of the j-th parameter being estimated, 
called 𝛽𝛽𝑗𝑗,𝑖𝑖  (𝑗𝑗 = 1~𝑁𝑁𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠). 𝑐𝑐𝑐𝑐𝑐𝑐(𝜷𝜷𝒋𝒋,𝒚𝒚𝒌𝒌

𝒑𝒑) is the error covariance between the prior ensemble of the j-th model parameter 𝜷𝜷𝒋𝒋 
(in 𝑁𝑁𝑒𝑒𝑒𝑒𝑜𝑜 dimensions) and the prior (model-estimated) ensemble of the k-th observation 𝒚𝒚𝒌𝒌

𝒑𝒑 (in 𝑁𝑁𝑒𝑒𝑒𝑒𝑜𝑜 dimensions), and is 

calculated as 𝑐𝑐𝑐𝑐𝑐𝑐(𝜷𝜷𝒋𝒋,𝒚𝒚𝒌𝒌
𝒑𝒑) =

∑ �𝛽𝛽𝑗𝑗,𝑖𝑖−𝛽𝛽�𝑗𝑗�
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖=1 �𝑦𝑦𝑘𝑘,𝑖𝑖

𝑝𝑝 −�̄�𝑦𝑘𝑘
𝑝𝑝�

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
 , where �̅�𝛽𝑗𝑗 is the ensemble mean of j-th model parameter being optimized. 

 
Is there a more suitable model than identity? Please provide a brief reference review about different models used so far 
in literature and justify your choice. 
 
RE: Good suggestion! We have added a brief review and discussion about different models in L715-722. 
 
L715-722: 
Aksoy et al. (2006b) proposed a spatial updating technique that recovers the globally uniform parameter value using a spatial 
average of the entire spatially varying parameter field. Wu et al. (2012, 2013) explored the impact of the geographic dependence 
of observing system on the parameters. The adjustment of the parameters is based on the spatial distribution of the model state 
sensitivity to parameters. Liu et al. (2014a, b) proposed the adaptive spatial average method that obtains the final global 
uniform posterior parameter based on spatially varying posterior estimated parameter values. In this study, considering that 
the simple box models are used as a first step to explore AMOC transitions, it is more appropriate to use the identity model. 
The impact of geographic-dependent parameter optimization on climate estimation and prediction can be considered in future 
studies for complex systems such as CGCMs. 
 
 
(3) Have you applied any covariance inflation? Please explain. 
 
RE: Thanks for this suggestion! In this revision, a more detailed description of the covariance inflation scheme has been added 
in L239-246. 
 



L239-246: 
To further improve the signal-to-noise ratio of parameter estimation, Zhang (2011a) introduced an inflation scheme based on 
model sensitivity with respect to the parameter being estimated. In this inflation scheme, the inflation amplitude of a parameter 

ensemble is inversely proportional to the sensitivity. It is formulated as 𝛽𝛽�𝑗𝑗,𝑖𝑖 = �̅�𝛽𝑗𝑗 + 𝑚𝑚𝑚𝑚𝑥𝑥 �1, 𝛼𝛼0𝜎𝜎0
𝜎𝜎𝑗𝑗𝜎𝜎𝑡𝑡

� �𝛽𝛽𝑗𝑗,𝑖𝑖 − �̅�𝛽𝑗𝑗� , where 𝛽𝛽�𝑗𝑗,𝑖𝑖 

denotes the inflated version of the i-th ensemble member of the j-th parameter being estimated, 𝜎𝜎0 and 𝜎𝜎𝑠𝑠 are the prior 
ensemble spreads of this parameter at the initial time and time t, 𝛼𝛼0 is a constant tuned by a trial-and-error procedure (e.g., 
Wu et al., 2016), and 𝜎𝜎𝑗𝑗 is the sensitivity of the model state with regard to j-th parameter. This indicates that if the prior 

ensemble spread of j-th parameter is smaller than 𝛼𝛼0
𝜎𝜎𝑗𝑗

 times the initial spread, it will be enlarged to this amount (e.g., Wu et al., 

2012; Han et al., 2014; Zhao et al., 2019). 
 
(4) Please address the issue of ensemble spread vs. forecast skill. Are they correlated in your experiments? Is ensemble 
spread over-estimated or under-estimated? Are ensembles collapsing? 
 
RE: Thanks for this comment. Ensemble spread and forecast skill are correlated in our experiments. There are two 
considerations regarding the ensemble spread of the parameter. As shown in the following figure, the ensemble spread is 
affected by the inflation level. On the one hand, overly small inflation factors and small ensemble spread will lead to too long 
fluctuation period of ensemble members, which affects the forecast skill and causes errors. Insufficient inflation may result in 
ensemble collapsing. On the other hand, overly large inflation factors lead the spread to jump out of the reasonable range. 
Considering the length limitation, the experiments on the ensemble spread and inflation factors are not shown in the manuscript. 
However, the relevant literature has been added in L244. Following this suggestion, Fig. 6 has been replaced by a new figure 
(Fig. S2d) in the revised manuscript. Accordingly, Figs. 5 and 7 have been updated due to the adjustment of the inflation 
scheme, and the new figures are almost identical to the original ones. 
 
L244: 
𝛼𝛼0 is a constant tuned by a trial-and-error procedure (e.g., Wu et al., 2016) 



 

Figure S2. Time series of the estimated 𝜅𝜅 values with a Gaussian perturbation that has a mean value of 32 and a standard 
deviation of 0.1 in the individual ensemble members (orange) in the free model control ensemble simulations with data 
assimilation and parameter estimation. The solid red line denoting 𝜅𝜅 = 28 marks the true value of κ being estimated. The 
dotted-dashed black line denoting 300th-unit marks the start of parameter estimation using 𝑥𝑥2, 𝑤𝑤, and 𝜂𝜂 observations. The 
limited inflation value is 0.01 (a), 0.05 (b), 0.10 (c), 0.15 (d), 0.20 (e), 0.40 (f), 0.60 (g), 1.0 (h) and the value used in the paper 
is 0.15. 
 
 
 
 
 
 
 



References 
Aksoy, A., Zhang, F., and Nielsen-Gammon, J. W.: Ensemble-based simultaneous state and parameter estimation with MM5, 

Geophys. Res. Lett., 33, L12801, https://doi.org/10.1029/2006GL026186, 2006. 
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 

https://doi.org/10.1175/1520-0493(2001)129<2884:Aeakff>2.0.Co;2, 2001. 
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 

https://doi.org/10.1175/1520-0493(2003)131<0634:Allsff>2.0.Co;2, 2003. 
Gottwald, G. A.: A model for Dansgaard–Oeschger events and millennial-scale abrupt climate change without external forcing, 

Clim. Dynam., 56, 227–243, https://doi.org/10.1007/s00382-020-05476-z, 2021. 
Han, G. J., Zhang, X. F., Zhang, S., Wu, X. R., and Liu, Z.: Mitigation of coupled model biases induced by dynamical core 

misfitting through parameter optimization: simulation with a simple pycnocline prediction model, Nonlinear Proc. Geoph., 
21, 357–366, https://doi.org/10.5194/npg-21-357-2014, 2014. 

Liu, Y., Liu, Z., Zhang, S., Rong, X., Jacob, R., Wu, S., and Lu, F.: Ensemble-based parameter estimation in a coupled GCM 
using the adaptive spatial average method, J. Climate, 27, 4002–4014, https://doi.org/10.1175/JCLI-D-13-00091.1, 2014a. 

Liu, Y., Liu, Z., Zhang, S., Jacob, R., Lu, F., Rong, X., and Wu, S.: Ensemble-based parameter estimation in a coupled general 
circulation model, J. Climate, 27, 7151–7162, https://doi.org/10.1175/jcli-d-13-00406.1, 2014b. 

Roebber, P. J.: Climate variability in a low-order coupled atmosphere-ocean model, Tellus A, 47, 473–494, 
https://doi.org/10.3402/tellusa.v47i4.11534, 1995. 

Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson, L. C., Liu, W., McDonagh, E. L., Mecking, J. V., and 
Zhang, J.: Stability of the Atlantic Meridional Overturning Circulation: A review and synthesis, J. Geophys. Res.: Oceans, 
124, 5336–5375, https://doi.org/10.1029/2019JC015083, 2019. 

Wu, X., Zhang, S., Liu, Z., Rosati, A., Delworth, T. L., and Liu, Y.: Impact of geographic-dependent parameter optimization 
on climate estimation and prediction: simulation with an intermediate coupled model, Mon. Weather Rev., 140, 3956–3971, 
https://doi.org/10.1175/MWR-D-11-00298.1, 2012. 

Wu, X., Zhang, S., Liu, Z., Rosati, A., and Delworth, T. L.: A study of impact of the geographic dependence of observing 
system on parameter estimation with an intermediate coupled model, Clim. Dynam., 40, 1789–1798, 
https://doi.org/10.1007/s00382-012-1385-1, 2013. 

Wu, X., Han, G., Zhang, S., and Liu, Z.: A study of the impact of parameter optimization on ENSO predictability with an 
intermediate coupled model, Clim. Dynam., 46, 711–727, https://doi.org/10.1007/s00382-015-2608-z, 2016. 

Zhang, S.: A study of impacts of coupled model initial shocks and state-parameter optimization on climate predictions using a 
simple pycnocline prediction model, J. Climate, 24, 6210–6226, https://doi.org/10.1175/jcli-d-10-05003.1, 2011. 

Zhang, S., Harrison, M. J., Rosati, A., and Wittenberg, A. T.: System design and evaluation of coupled ensemble data 
assimilation for global oceanic climate studies, Mon. Weather Rev., 135, 3541–3564, https://doi.org/10.1175/mwr3466.1, 
2007. 

Zhao, Y., Deng, X., Zhang, S., Liu, Z., and Liu, C.: Sensitivity determined simultaneous estimation of multiple parameters in 
coupled models: part I—based on single model component sensitivities, Clim. Dynam., 53, 5349–5373, 
https://doi.org/10.1007/s00382-019-04865-3, 2019. 


