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ABSTRACT. Most observational data sequences in geophysics can be interpreted as resulting from the interaction 16 
of several physical processes at several time and space scales. In consequence, measurement time series often have 17 
characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at different time-scales. 18 
The application of decomposition methods is an important step in the analysis of time series variability, allowing 19 
patterns and behaviour to be extracted as components providing insight into the mechanisms producing the time 20 
series. This study introduces Empirical Adaptive Wavelet Decomposition (EAWD), a new adaptive method for 21 
decomposing non-linear and non-stationary time series into multiple empirical modes with non-overlapping 22 
spectral contents. The method takes its origin from the coupling of two widely used decomposition techniques: 23 
empirical mode decomposition (EMD) and empirical wavelet transformation (EWT). It thus combines the 24 
advantages of both methods and can be interpreted as an optimization of EMD. Here, through experimental time 25 
series applications, EAWD is shown to accurately retrieve different physically meaningful components concealed 26 
in the original signal. 27 
       28 
KEY-WORDS: Variability Analysis, Complex Dynamics, Adaptive Filtering, Empirical Mode Decomposition 29 
(EMD), Empirical Wavelet Transformation (EWT), Non-Linear and Non-Stationary time series, Wavelet, 30 
Atmospheric observation. 31 
 32 
1 Introduction   33 
 34 
Most geophysical systems are complex and the variability of the corresponding observation time series is 35 
characterized by large fluctuations at different time scales. To analyse these fluctuations and the associated multi-36 
scale dynamics, some specific methods have been developed. Empirical mode decomposition (EMD) is part of a 37 
more general signal processing method called the Hilbert-Huang transform (HUANG et al., 1998) and consists in 38 
decomposing a signal in a self-adaptive way, into a sum of oscillating components named IMFs (Intrinsic Mode 39 
Functions). Each IMF captures the repeating signal behaviour at some particular time scale. Like the wavelet 40 
transform, the EMD techniques reduce a time signal to a set of basis signals; unlike the wavelet transform, the 41 
basic functions are derived from the signal itself. The main advantages of the EMD method are that it is fully 42 
adaptive, data-driven and, indeed, close to the observed dynamics. As the EMD acts as a bank of bandpass filters 43 
(FLANDRIN et al., 2004), the main limiting factor is the frequency resolution, which may give rise to the mode 44 
mixing phenomenon where the spectral contents of some IMFs overlap each other (GAO et al., 2008). 45 
Although several techniques exist to overcome this problem (FOSSO et al., 2017, DELAGE et al., 2019), Gilles 46 
(2013) proposed an alternative one entitled “Empirical Wavelet Transform” (EWT), which builds a wavelet filter 47 
bank from the segmentation of the original signal’s Fourier spectrum. This approach is similar to that used in the 48 
construction of both Littlewood-Paley and Meyers wavelets (MEYER, 1997). The heart of the EWT method is the 49 
segmentation of the Fourier spectrum based on the detection of local maxima, in order to obtain a set of non-50 
overlapping segments. Because it is linked to the Fourier spectrum, the frequency resolution provided by the EWT 51 
is higher than that provided by the EMD and therefore allows the mode mixing problem to be overcome. Although 52 
the EWT technique enables detection of the relevant frequencies involved in the original time series fluctuations, 53 
such a technique does not enable the detected frequencies to be associated to a specific mode of variability as EMD 54 
does. Because the EMD is closer to the observed dynamics than EWT, in the present work, we developed a new 55 
approach called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and 56 
EWT techniques. We use the spectral content of the IMFs retrieved by EMD to optimize the segmentation of the 57 



 2 

original time series Fourier spectrum required by EWT. This document is structured around four sections. The 1 
first section is devoted to the EMD and EWT techniques. In the second one, the new adaptive decomposition 2 
EAWD is described and explains why such a method can be considered as an optimization of the EMD. In the 3 
third section, two observation time series are analysed by using EMD and EAWD techniques and the 4 
corresponding results are presented. Finally, the results obtained respectively with the EMD and EAWD 5 
techniques are compared and discussed. 6 
 7 
2-The existing approaches. 8 
 9 
2.1 Empirical Mode Decomposition (EMD). 10 

 11 
In 1998, HUANG et al. proposed an original method called Empirical Mode Decomposition (EMD), which 12 
adaptively decomposes any signal into oscillatory contributions. In a nutshell, EMD can be summarized as an 13 
iterative method where the signal is considered as the superimposition of high and low-frequency oscillations. At 14 
each iteration, high-frequency oscillation components are separated from the low-frequency oscillations, then 15 
reinjected as a new signal in the following iteration. The EMD is thus directly controlled by the signal itself and 16 
not by some filtering operations as in the wavelet decomposition. More precisely, the decomposition is carried out 17 
at the scale of local oscillations, the low-frequency modes being obtained as the mean value of an upper and a 18 
lower envelope computed as cubic spline interpolations between maxima and minima, respectively. By subtracting 19 
this component from the original signal, we obtain what is called an “Intrinsic Mode Function” (IMF). The 20 
procedure is then applied to the low-frequency part as a new signal to be decomposed and successive oscillatory 21 
components are iteratively extracted from the original signal. The original time series x(t) can finally be expressed 22 
as the sum of a finite number, N, of IMFs and a residual term, R, which cannot be assimilated to an oscillation.  23 

 24 
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The interesting fact about this algorithm is that it is highly adaptable and is able to extract the non-stationary part 26 
of the original signal. However, in practice, the EMD technique presents some limiting factors. For example, some 27 
problems appear when a certain amount of noise is present in the signal. To deal with this problem, (WU and 28 
WANG, 2009) introduced an EMD optimization entitled Ensemble Empirical Mode Decomposition (EEMD). The 29 
principle behind EEMD is to average the modes obtained by EMD after several realizations of Gaussian white 30 
noise that are added to the original signal. This approach seems to stabilize the decomposition obtained. 31 
 32 
2.2 Wavelet approaches. 33 

 34 
Wavelets are commonly used to analyse the variability of a signal. In the temporal domain, a wavelet basis is 35 
defined as the mother wavelet y of zero-mean, dilated with a parameter s >0 and translated by uÎR: 36 
 37 
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 39 
For the wavelet decomposition of a time series x(ti), the most widely used case is the dyadic one, s=2j. Then the 40 
wavelet decomposition of x is obtained by computing the inner products 𝑊((𝑘, 𝑗) as: 41 
 42 
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 44 
where j represents the resolution level. The decomposition is then similar to a multiresolution analysis carrying 45 
out successive projections of x on a sequence of nested subspaces 𝑉* ∈ 𝐿,(ℝ)	𝑗 = [0, 𝑛], which leads to 46 
increasingly coarse approximations of x as j increases. The difference between two successive approximations, 47 
resulting from projections of x on Vj-1 and Vj, contains the information of “details”, which existed at the scale 2j-1 48 
but which is lost at the scale 2j. This information is contained in the subspace Wj orthogonal to Vj such that 𝑉*.$ =49 
𝑉* ⊕𝑊*, where ⊕ denotes the direct sum of vector subspaces. The orthogonal projection of x on Wj gives the 50 
information of “details” at the resolution level j. Wavelets I𝜓),*(𝑡), 𝑘 ∈ ℤJ form a basis of Wj. According to the 51 
definition of a multiresolution analysis, there exists a function j(t), called a scaling function, such that 52 
{𝜑(𝑡 − 𝑘), 𝑘 ∈ ℤ} form a basis of V0 corresponding to the coarsest approximation of x. The reconstruction of x is 53 
obtained from: 54 
 55 
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 3 

where 〈 〉 represents the inner products. The approximation coefficients corresponding to the coarsest resolution 1 
level are given by 〈𝑥, 𝜑〉 and the detail coefficients corresponding to the successively decreasing resolution level 2 
∆𝑠* =

∆𝑠*.$
2O  are given by 〈𝑥, 𝜓),*〉 as follows: 3 

 4 
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2.3  Empirical wavelets- The Empirical Wavelet Transformation (EWT). 6 
 7 

The essence of EMD is that the functions into which a signal is decomposed are all in the time domain of, and 8 
have the same length as, the original signal, allowing time-varying frequencies to be preserved. In this context, 9 
Rilling et al. (2004) described the EMD as behaving as a dyadic filter bank like those involved in the 10 
multiresolution analysis. This can be interpreted as the presence of several filters of overlapping frequency content 11 
that may give rise to the mode mixing phenomenon, which is defined as a single IMF consisting either of widely 12 
disparate scales, or of similar scales residing in different IMFs. In that case, the spectral contents of some IMFs 13 
overlap each other. To overcome this problem, Gilles (2013) proposed an alternative named the “Empirical 14 
Wavelet Transform” (EWT). As the EMD technique acts as a filter bank in the spectral domain, so the method 15 
proposed by Gilles (2013) designs an appropriate wavelet filter bank from the segmentation of the original signal’s 16 
Fourier spectrum. The Fourier support [0,p] is segmented into N contiguous segments denoted Dn=[wn-1,wn]. 17 
The filter bank (MEYER, 1997; JAFFARD et al., 2001) is defined by the empirical scaling function and the 18 
empirical wavelets on each Dn through Equations 6 and 7, respectively: 19 
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The function b(x) is an arbitrary Ck([0,1]) function defined as: 23 

𝛽(𝑥) = p
0		𝑖𝑓	𝑥 ≤ 0

𝛽(𝑥) + 𝛽(1 − 𝑥) = 1	∀𝑥 ∈ [0,1]
1	𝑖𝑓	𝑥 ≥ 1

                                                                                     (8) 24 

Many functions satisfy this property and the one most used in the literature (DAUBECHIES, 1992) is: 25 
 26 
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 28 
The parameter 𝛾 is chosen to satisfy the following criterion: 29 
 30 
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 32 

The details and approximation coefficients are calculated by using Eqs. 6 and 7 and are respectively given by inner 33 
products with the empirical wavelets 𝜓0 and the scaling function 𝜙$ 34 
 35 
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 38 
where X is the Fourier transform of the original signal x, |  represents the complex conjugate, and IFFT represents the 39 
inverse Fourier transform, and 𝜓0	and	𝜙$ are the results of the inverse Fourier transforms of 𝜓0V	𝑎𝑛𝑑	𝜙$V, respectively. 40 



 4 

The heart of the empirical wavelet transform is the segmentation of the original signal’s Fourier spectrum.  In order to 1 
obtain a set of non-overlapping segments, the Fourier spectrum local maxima are detected.  Each segment is centred around 2 
a group of one or more local maxima. The limit between two contiguous segments, each of them characterized by a group 3 
of local maxima, is determined as the local minimum closest to the midpoint between the two local maxima groups. Many 4 
of the detected local maxima are irrelevant as their contributions to the variability of the original time series are negligible. 5 
Selecting the relevant local maxima requires the setting of a threshold, which is not always possible. 6 
 7 
3 The Empirical Adaptive Wavelet Decomposition (EAWD). 8 
 9 
The EMD enables an observation data sequence to be decomposed into multiple empirical modes of variability, each of 10 
them reflecting the observed dynamics at a specific time scale. However, in some cases, the frequency resolution provided 11 
by EMD does not allow IMFs with disjoint spectral support to be retrieved. 12 
The adaptive wavelet transform (EWT) is one of several interesting methods pursuing the same goal as EMD, which allows 13 
the mode-mixing problem to be overcome. This method relies on robust pre-processing for peak detection, then performs 14 
original signal Fourier spectrum segmentation based on detected maxima, and constructs a corresponding wavelet filter 15 
bank.  16 
The main idea of the proposed EAWD method is to combine EMD and EWT techniques by setting non-overlapping groups 17 
of local maxima from the spectral contents of the IMFs returned by the EMD technique. 18 
 19 
Each IMF local maxima group will be associated with a segment of the original signal Fourier spectrum segmentation. The 20 
boundaries of each of these segments will be set as the local minima located between local maxima groups of two 21 
consecutive IMFs. As the EMD acts like a bank of dyadic band-pass filters, the result of each of these filters, in the 22 
frequency domain, is composed of a set of local maxima relative to a specific timescale in which the resolution is divided 23 
by two in comparison with the timescale immediately above it. Considering that a timescale is characterized by the set of 24 
values in the range of [2n,2n+1], to carry out a segmentation of the Fourier spectrum, it is necessary to distribute the local 25 
maxima groups relatively to a grid [2i,2i+1], 𝑖 ∈ 	 [2, 𝐽]	with 𝐽 = 𝑖𝑛𝑡 =89:(")

89:(,)
> − 1 , where N is the size of the original time 26 

series. 27 
The proposed Fourier spectrum segmentation algorithm is based on two main points: 28 

1- The spectrum of two consecutive IMFs contains at most two different dominant frequencies. Relative to the 29 
spectral content of an IMF, the frequency with the greatest spectral density is called the dominant frequency.  30 

2- The local maxima list of the spectra of two consecutive IMFs is subdivided into three groups: the local maxima 31 
belonging to IMFi spectrum, ML1; the local maxima belonging to the intersection of IMFi and IMFi+1spectra, 32 
MLINTER; and the local maxima belonging to IMFi+1 spectrum, ML2. 33 
 34 

The proposed EAWD algorithm is composed of three steps as described in the diagrams below (see Figure 1, Figure 2, 35 
Figure 3). 36 
 37 

 38 
 39 

Figure 1: Estimation of the spectral density for each IMF spectrum and selection of significant local maxima whose 40 
energy contribution > 1%. 41 
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   1 
 2 
Figure 2: Calculation of the matrix MLTAB. Each row of MLTAB contains the list of significant local maxima present 3 

in the spectrum of an IMF. The rows of MLTAB have no common elements and therefore MLTAB can be seen as a set of 4 
non-overlapping local maxima groups and represents a segmentation of the original signal Fourier spectrum.  5 

 6 
“size” represents the length of list1 and “cut” is the boundary between two consecutive local maxima groups MLi and 7 
MLi+1.      8 
The parameter k can be interpreted as the ratio between the number of scales contained in list1 and the number of scales in 9 
the interval [fdi, fdi+1] of two consecutive dominant frequencies. 10 
 11 
 12 
 13 
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  1 
Figure 3: Calculation of the BOUNDARY vector representing the boundaries between the local maxima groups 2 

contained in the matrix MLTAB. The EWT technique is run from BOUNDARY.  3 
 4 
4 Time series analysis and results. 5 
 6 
The EMD and EAWD techniques presented above have been applied to two experimental time series of 7 
observations. The first time-series was a series of monthly Total Columns of Ozone (TCO) in Dobson units, 8 
recorded over 41 years, from January 1979 to December 2019, by a SAOZ (Zenithal Observation Analysis System) 9 
spectrometer on the Moufia University Campus, Saint-Denis, Reunion Island (21°S, 55.5°E).   10 

This TCO time series was elaborated by merging satellite data (OMI and TOMS) and ground-based observations recorded 11 
by a SAOZ spectrometer (Pommereau and Goutail, 1988) installed at Saint Denis, Réunion Island in 1993. The method 12 
used for merging satellite and ground data to obtain a homogeneous series is explained in Pastel et al., 2014. 13 
Despite its low abundance, ozone plays an important role in the Earth's atmosphere. It is mainly produced in the tropical 14 
stratosphere and transported to higher latitudes by the large-scale circulation called the Brewer-Dobson circulation. In the 15 
stratosphere, ozone acts like a filter and prevents incident solar ultraviolet (UV) radiation from reaching the ground, thus 16 
protecting the biosphere. The significant depletion of the ozone layer since the late 1970s has revealed the importance of 17 
ozone in the climate system and the associated environmental and health risks. The TCO is a parameter that measures the 18 
abundance of ozone over a given location. It is given in Dobson Units (DU) and consists of ~90% stratospheric ozone and 19 
~10% tropospheric ozone. 20 



 7 

The second time-series comprised 57 years of monthly rainfall measurements recorded at Conakry (Guinea) 1 
meteorological station from 1961 to 2017.  2 

The resulting original time series of total ozone columns and rainfall measurements are displayed in Figure 4 and 3 
Figure 5, respectively.  4 

 5 
Figure 4: Monthly time-series of total ozone columns in Dobson Units (DU) over Réunion Island from 1979 to 2019. 6 

Time axis is expressed in years. 7 
 8 

 9 
Figure 5: Monthly Rainfall records time series recorded at Conakry (Guinea) from 1960 to 2019. Time axis is 10 

expressed in years. 11 

 12 
Very often, noise is present in the original time series. To deal with this problem, the authors suggest computing 13 
an Ensemble Empirical Mode decomposition (EEMD) (Z.Wu, NE Wang, 2009. This approach seems to reduce 14 
the noise present in the original signal. Generally, some of the IMFs returned by the EEMD technique present poor 15 
correlations with the original signal and therefore make a weak contribution in the variability of the original series. 16 
Such IMFs are qualified as irrelevant. Relevant IMFs are discriminated from the irrelevant ones by means of two 17 
criteria. The first of these criteria uses Pearson’s correlation to estimate the degree of correlation of each IMF with 18 
the original signal by setting a threshold. A threshold commonly used in the literature (Ayenu-Prah et al., 2010) 19 
can be expressed as: 20 

 21 
 22 
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 24 
In Equation (13), Cor(IMFi,x) stands for the Pearson’s correlation coefficient between the ith IMF and the original signal 25 
x(t), i.e.: 26 
 27 
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 8 

 1 
where sd represents the standard deviation and cov(.,.) the covariance. 2 
The second criterion determines the energy contribution of each IMF compared to the energy contained in the original 3 
signal. The energy contribution of each IMF is calculated as a percentage as follows: 4 
 5 
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𝑣𝑎𝑟(𝑥 − 𝑥̅	). 9 
The threshold set for this second criterion is 1%. 10 
IMFs having a degree of correlation less than t and for which the energy contribution is less than 1% are said to be 11 
irrelevant. The irrelevant IMFs are added to the residual mode R returned by the EEMD to form the trend of the original 12 
signal. For such IMFs to be part of the trend of the observed dynamics, they must not be too oscillating and are therefore 13 
contiguous to the residue.  14 
When EEMD was applied to the Reunion TCO time series presented in Figure 4, seven IMFs were found in addition to the 15 
residual mode. The results obtained are displayed in Figure 6 below. 16 
 17 
 18 
When EEMD was applied to La Reunion TCO time series presented in Figure 4, seven IMFs were found. Taking account 19 
of the selection procedure mentioned above, the first five of the seven IMFs initially identified were relevant and IMFs 6 20 
and 7 were added to the residual mode. Results are displayed in Figure 6 below. 21 
 22 

   23 
Figure 6: Relevant IMFs and Trend from the EEMD applied to time series of La Reunion total columns of ozone from 24 

1979 to 2019. 25 
 26 
 27 
For each IMF, the cycle defined as the period associated with the dominant frequency is specified. Mode mixing occurs in 28 
IMF2 and IMF3 as they have the same 1year oscillation cycle. As shown in Figure 7, IMF2 spectrum contains F1=1/6 and 29 
F2=1/12 frequencies and F2 is contained in both IMF2 and IMF3. 30 

 31 
Figure 7: TCO IMF1 (black line), IMF2 (green line) and IMF3 (blue line) spectral contents. 32 



 9 

To estimate the accuracy of the residual returned by the EEMD, it is compared with the trend of the original signal obtained 1 
from a moving window having a size set at the maximum of the relevant IMF cycles i.e. 125 months (10.4 years). 2 

  3 
 4 

Figure 8: Trend obtained from the EEMD technique (black curve). The trend of the original signal obtained from a 5 
moving window (blue curve) with a 125-month size (i.e. 10.4 years). 6 

 7 
The accuracy of the residual, R, returned by the EEMD and compared with the trend of the original signal by using a 8 
moving window, Tmb was estimated using the following expression: 9 

𝑃𝑟MMEP = �(∑ (R(!).STU(!))')/"(
%)$

STUWWWWWWW ∗ 100 = 0.7%																																																																																																																											(16) 10 
 11 
where N is the original time-series length and  . ̅ represents the mean operator. 12 
To overcome the mixing mode occurring in IMFs 2 and 3 returned by the EEMD technique, we applied the EAWD 13 
technique to the Reunion TCO time-series. The results obtained with EAWD are displayed in Figure 9 below. 14 
 15 

   16 
Figure 9: Réunion total ozone time-series EAWD decomposition results. 17 

 18 
As shown in Figure 10 below, the 6 month and 1year cycles relating respectively to EAWD1 and EAWD2 are correctly 19 
separated and the mode mixing occurring in the EEMD results has been removed. 20 
 21 



 10 

 1 
 2 

Figure 10: TCO EAWD1 (black line), EAWD2 (green line) spectral contents. 3 
 4 
Similarly, the accuracy of the residual returned by the EAWD technique was estimated and compared to that returned by 5 
the EEMD. 6 
 7 

 8 
Figure 11: The residual 𝑇𝑟𝑒𝑛𝑑MXYP returned by the EAWD technique (red curve), the trend of the original signal 9 

obtained from a moving window (blue curve) having a size fixed at 125 (i.e. 10.4 years), and the residual returned by the 10 
EEMD technique (black curve). 11 

Likewise, the accuracy of the residual returned by the EAWD technique was estimated using Equation (16): 12 
PrEAWD=0.3%. 13 
The EAWD trend expressed in DU/decade is shown in the figure below: 14 
 15 

 16 
Figure 12: The DU/decade trend returned by the EAWD technique 17 

 18 
Results in Fig. 12 show that ozone levels in Réunion Island decreased from 1981, stopped decreasing in 1992 and started 19 
rising again from 2002. 20 
The accuracy of the DU/decade EAWD trend in Fig.12 was calculated as 2*PrEAWD, i.e., 0.6%. 21 



 11 

EEMD was applied to the rainfall time series measurements and relevant IMFs were selected. Results are 1 
represented in Figure 13 below. 2 

  3 

Figure 13: Relevant IMFs and Trend from the EEMD applied to Conakry rainfall time-series, from 1960 to 2019. 4 
 5 

Mode mixing occurs in IMF2 and IMF3 as they have the same 1year oscillation cycle. As shown in Figure 15 below, 6 
frequency F1=1/6 is contained in both IMF1 and IMF2 while F2=1/12 is contained in IMF1, IMF2, and IMF3. 7 

 8 
Figure 15: Rainfall IMF1 (black line), IMF2 (green line) and IMF3 (blue line) spectral contents. 9 

 10 
The accuracy of the trend calculated from EEMD results is compared below with the trend of the original signal obtained 11 
from a moving window having its size set at the maximum of the relevant IMFs cycles i.e. 144 months (12 years). 12 
 13 



 12 

 1 
Figure 16: Trend obtained from the EEMD technique (black curve) with the trend of the original signal obtained from a 2 

moving window (blue curve) with a size of 144 months (i.e. 12 years). 3 
 4 

The accuracy of the residual returned by the EEMD technique was estimated using Equation (16): PrEEMD=15%. 5 
Results obtained with EAWD are displayed in Figure 17 below. 6 
 7 

 8 
 9 

Figure 17: Rainfall time-series EAWD decomposition results. 10 
 11 

The 6 month and 1year cycles relating respectively to EAWD1 and EAWD2 are correctly separated and the mode mixing 12 
occurring in the EEMD results has been removed (see Figure 18). 13 

 14 
Figure 18: Rainfall EAWD1 (black line), EAWD2 (green line) spectral contents. 15 

 16 
The accuracy of the residual returned by the EAWD technique was estimated at PrEAWD=1.9%. 17 
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Figure 19: The residual 𝑇𝑟𝑒𝑛𝑑MXYP returned by the EAWD technique (red curve), the trend of the original signal 3 
obtained from a moving window (blue curve) having a size fixed at 144 (i.e. 12 years), and the residual returned by the 4 

EEMD technique (black curve). 5 
The EAWD trend represented by an annual average of rainfall (in millimetres) is shown in Figure 20 below. 6 
 7 

 8 
Figure 20: The EAWD trend as a function of the average rainfall per year 9 

 10 
The results reported in Figure 20 show that the rainfall average amount decreased by 2.3 mm per year in the period 11 
[1960,1984] then increased by 1 mm per year in the period [1984,2003], and decreased again, by 0.7 mm per year, in the 12 
period [2003,2020]. 13 
  14 
5 Consistency of the EAWD method. 15 
 16 
The method commonly employed in atmospheric physics to determine the variability and trend of observation 17 
time-series is to use a multilinear regression model. This type of approach has been used very often (Randel and 18 
Thompson, 2011; Nair et al., 2013; Bourassa et al., 2014; Gebhardt et al., 2014; Eckert et al., 2014 or Toihir et al., 19 
2018). 20 
The main requirement of this method is the a priori knowledge of the atmospheric climate forcings that control the 21 
variability of the time series studied. The ozone-QBO relationship has been discussed in several papers, as has the 22 
influence of ENSO on ozone variability (Butchart et al. (2003); Brunner et al. (2006); Randel and Thompson, 23 
(2011)). Other papers have shown the role played by solar flux in the temporal variability of ozone (Randel and 24 
Wu, 2007). 25 
To validate results obtained with the EAWD method on the TCO time series for La Reunion, we used the 26 
multilinear regression model “Trend-Run” developed at the University of Reunion and already applied in many 27 
studies (Bencherif et al., 2006; Bègue et al., 2010; Toihir, 2018). 28 
Climate forcings used as input to the TREND-RUN model were QBO, ENSO and solar flux. A linear function 29 
was used to estimate the long-term linear trend of the series. The trend was then estimated by calculating the slope 30 
of the normalized linear function. As the variability of ozone is also affected by the annual and semi-annual 31 
oscillations (AO and SAO), these two analytic oscillations were also used as input to the model. The TREND-32 
RUN model and the climate forcings used (such as ENSO, QBO, solar flux at 10.7 cm) are described in detail in 33 
Toihir et al., 2018.  34 
The results obtained here with TREND-RUN on the 1979-2019 La Reunion TCO time-series are consistent with 35 
those obtained by Toihir et al., 2018, on a shorter total ozone series at Réunion Island (1998-2013). 36 
The trend obtained from the TREND-RUN model over the whole monthly mean ozone series from 1979 to 2019 37 
is -1.11 ± 0.19 %/decade. The error is estimated from the standard deviation of the residual found by the model.  38 



 14 

The variability components returned by the EAWD method are in agreement with the climatic forcings used as 1 
input to the TREND-RUN model and the energy contributions respectively estimated by the TREND-RUN model 2 
and the EAWD technique are reported in the table below 3 
 4 

 5 
 6 

Table 1: Comparison of total ozone variability in Réunion (from 1979 to 2019) obtained with TREND-RUN 7 
model and the EAWD method. 8 

 9 
The main advantage of the EAWD technique for analysing the ozone variability from an observational time series 10 
is that it auto adaptively extracts the modes of variability implicitly contained in the original time series without 11 
requiring any a priori knowledge of the atmospheric forcings controlling the ozone variability. It can be seen that 12 
the results returned by the EAWD method are in complete agreement with those returned by the TREND-RUN 13 
model. On the other hand, the energy contributions of the various modes of variability obtained with the EAWD 14 
method are compatible with those obtained with the TREND-RUN method (Table 1). 15 
In contrast to the trend returned by the TREND-RUN model, which is linear over the whole duration of the series, 16 
the EAWD technique enables the evolution of the trend to be visualized over the whole period studied. 17 
TREND-RUN has not been applied to the Conakry rainfall time series as it contains intermittent processes, which 18 
makes the use of multilinear methods inappropriate. 19 
  20 
6 Conclusion. 21 
 22 
EMD is a method for breaking down a signal without leaving the time domain. It can be compared to other analysis 23 
methods, such as Fourier transforms and wavelet decomposition, and the process is very useful for analysing raw 24 
signals, which are most often non-linear and non-stationary. On the other hand, the method most commonly used 25 
to analyse the variability of observation time series is a multilinear regression model. If we look at the results 26 
obtained with the TREND-RUN model on La Réunion TCO time series, the variability modes returned by the 27 
EMD are in good agreement with the physics implicitly contained in the observation time series. Even though the 28 
EMD adaptability seems useful for many applications, the major drawbacks with EMD lie in the mode mixing, 29 
where the spectral contents of IMFs overlap each other. To overcome this problem, the EWT technique proposes 30 
a new approach, introducing a way of building adaptive wavelets and thus of extracting the different oscillatory 31 
modes from a signal by designing an appropriate filter bank. At the heart of the EWT technique lies the 32 
segmentation of the Fourier spectrum of the original signal. 33 
The main idea of the EAWD technique is to use the results provided by EMD to segment the Fourier spectrum of 34 
the original signal. The algorithm implemented uses the spectral contents of the IMFs and ensures that their 35 
supports do not overlap, so that they can constitute a segmentation of the Fourier spectrum of the original signal. 36 
Concerning the analysis of the TCO time series for La Réunion, the results obtained using the EAWD technique 37 
are in good agreement with those obtained with the multilinear regression model TREND-RUN. From a 38 
comparison between the results obtained with the EMD and EAWD techniques, it emerges that the EAWD 39 
technique enables the mode-mixing problem to be overcome while providing a trend with better accuracy than that 40 
obtained with the EMD technique. Thanks to the rigour of the EWT, the EAWD keeps the behaviour of the signal 41 
in the timescales returned by the EMD. In this context, the EAWD technique can be seen as an optimization of the 42 
EMD. 43 
 44 
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