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Abstract. Flood forecasting based on hydrodynamic modeling is an essential non-structural measure against compound 10 

flooding over the globe. With the risk increasing under climate change, all coastal areas are now in need of flood risk 

management strategies. Unfortunately, for local water management agencies in developing countries, building such a model 

is challenging due to the limited computational resources and the scarcity of observational data.  We attempt to solve this issue 

by proposing an integrated hydrodynamic and machine learning approach to predict water level dynamics as a proxy of 

compound flooding risk in a data-scarce delta. As a case study, this integrated approach is implemented in Pontianak, the 15 

densest coastal urban area over the Kapuas River delta, Indonesia. Firstly, we built a hydrodynamic model to simulate several 

compound flooding scenarios. The outputs are then used to train the machine learning (ML) model. To obtain a robust machine 

learning model, we consider three machine learning algorithms, i.e., Random Forest, Multi Linear Regression, and Support 

Vector Machine. Our results show that the integrated scheme works well. The Random Forest (RF) is the most accurate 

algorithm to model water level dynamics in the study area. Meanwhile, the machine-learning model with the RF algorithm can 20 

predict eleven out of seventeen compound flooding events during the implementation phase. It could be concluded that RF is 

the most appropriate algorithm to build a reliable ML model capable of estimating the river water level dynamics within 

Pontianak, whose output can be used as a proxy for predicting compound flooding events in the city.  

1 Introduction 

Compound flooding in low-lying coastal areas is a recognized hazard that can be exacerbated by global warming (Hao and 25 

Singh, 2020; Santiago-Collazo et al., 2021; Gori et al., 2022; Hsiao et al., 2021; Ghanbari et al., 2021). Compound flooding 

hazard is derived from the interaction of storm surge penetration, riverine flooding, and intense rainfall over the areas (as the 

impact of extreme meteorological events) that coincide or nearly coincide (Bilskie and Hagen, 2018; Ikeuchi et al., 2017; Wahl 

et al., 2015). This natural hazard can endanger the population and the coastal area's infrastructures, which have been growing 

fast in the last decade (Bhaskaran et al., 2014). Without appropriate mitigation, the consequences of the hazard can be severe 30 
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for the coastal environment (Costabile et al., 2013) and the coastal communities both economically (Karamouz et al., 2014) 

and socially (Comer et al., 2017). 

There are various mechanisms driving compound flooding in low-lying urban coastal areas (Santiago-Collazo et al., 2019). 

First, the water level increases with the tide, and the sea level rises due to climate change. On top of this, a storm surge may 

occur. The water can get into the dry land by wave overtopping. Second, extreme precipitation and a high upstream flow 35 

discharge can also elevate water in a low-lying delta. In this case, water can overflow and cause flooding as well. These flood 

pathways are often naturally correlated, so those mechanisms occur coincidentally (or in close succession), creating a 

compound event and worsening the hazard. 

Flood forecasting based on water-level prediction in a tidal river area is an essential non-structural measure against compound 

flooding (Chan, 2015; Tucci and Villanueva, 1999; Mosavi et al., 2018). Non-structural measures mean any actions to manage 40 

the risk of compound flooding without involving a physical construction (UNDRR, 2022), including land-use regulations, 

flood forecasting, warning systems, floodproofing and disaster prevention, and preparedness and response mechanisms. The 

water level could be predicted using a process-based or data-based approach. The process-based approach is more commonly 

used to tackle the water-level prediction issue (Costabile and Macchione, 2015; Ye et al., 2021), but it requires many 

assumptions to reduce the complexity—making it computationally tractable. The data-based approach, e.g., machine learning 45 

and statistical models, can also predict water level changes and compound flooding without the underlying physical attributes 

and high computational resources (Choi et al., 2020; Wang and Wang, 2020; Assem et al., 2017; Couasnon et al., 2020; 

Bevacqua et al., 2019). Machine learning involves developing a model that can improve task performance over time by learning 

from examples, with minimal human efforts instructing them how to do so. Machine learning allows users to test hypotheses 

and generate confidence bonds for mitigation strategies. Machine learning models can capture and represent a complex input 50 

and output relationship using only historical data (Chen and Asch, 2017). For instance, by assuming that flood events are 

stochastic, machine learning can predict major flood events based on certain probability distributions from the historical 

discharge data (Mosavi et al., 2018). In some cases, their performance is even more accurate than traditional statistical models 

(Xu and Li, 2002). In other words, we can prepare strategies to mitigate the flood risks using a machine learning model. 

However, building a flood forecasting model in developing countries can be challenging. Implementing a process-based 55 

approach requires expensive computational resources (Nayak et al., 2005). Meanwhile, resources owned by local agencies are 

often limited, so local operational management may not have access to it. Additionally, building a robust machine learning 

model requires a sufficient amount of data for the training (Naqa et al., 2018), but the availability of observational data in these 

areas is also limited. Some studies proposed remote sensing techniques (optical and SAR images) as a solution (Mokkenstorm 

et al., 2021; Kabenge et al., 2017; Haq et al., 2012). Nevertheless, due to the limitation of its time resolution, the technique 60 

cannot always detect compound flooding. Therefore, a remote sensing technique is more suitable for detection, monitoring, 

validation, and mitigation purposes instead of for prediction. 

A new paradigm that combines deterministic and machine learning components has been proposed and implemented to tackle 

data and computational limitations in environmental modeling (Krasnopolsky and Fox-Rabinovitz, 2006; Goldstein and Coco, 
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2015). However, to the best of our knowledge, no previous modeling frameworks have developed a deterministic model to 65 

train a machine learning model for compound flooding studies. As a common practice, compound flood modeling typically 

uses the coupling of two or more hydrodynamic, hydraulic, or hydrological models (Hsiao et al., 2021; Santiago-Collazo et 

al., 2021; Ikeuchi et al., 2017). The coupling could be one-way, two-way, or dynamic coupling. Another approach is deep 

learning and data fusion (Muñoz et al., 2021), and data assimilation (Muñoz et al., 2022).  

This study attempts to fill the gap by combining the process-based and data-based approaches as a state-of-the-art framework 70 

to predict water level dynamics, a proxy for compound flooding in a data-scarce delta. Firstly, we build a hydrodynamic model 

to run some flood scenarios in a data-scarce estuary. Then, we create machine learning models trained using the hydrodynamic 

model's outputs to predict the water level and forecast future floods. To obtain a robust machine learning model, we evaluate 

three machine learning algorithms and select the most accurate one for our application. As a case study, the integrated 

framework is implemented in the city of Pontianak, whose population density is the highest within the Kapuas River delta. 75 

This city experienced a compound flooding event on 29 December 2018 (Sampurno et al., 2021), and the impact was severe 

(Madrosid, 2018). At that moment, the water level dynamic is about to go down after passing its peak elevation, when suddenly 

a strong force pushes it to go up again for a short moment. The interaction between tides, storm surges, and discharges along 

the tidal river in the Kapuas River delta is responsible for a 30 cm increase in the water level during the event. The finding is 

expected to assist the local water management agency in assessing their compound flood hazards and mitigating their risk 80 

despite the limited data and computational resources.  

2 Material and method 

2.1 Study area 

The Kapuas River is the longest inland river in Indonesia (Goltenboth et al., 2006). The basin is located in the western part of 

Borneo Island (Fig. 1). The water catchment area spreads over about 93,000 km2 (about 12.5% of the Borneo Island area, Fig. 85 

1), with about 66.7% of it consisting of forests (Wahyu et al., 2010). The upstream topography comprises hills covered mainly 

by Acrisol soils (Fig. 2), and the downstream consists of plains with more heterogeneous soil types (Fig. 2), such as Humic 

Gleysols (derived from grass or forest vegetation) and Dystric Fluvisols (young soil in alluvial deposits). The river is vital for 

the local communities as a source of fresh water and a transportation system.  

In the last decades, palm oil cultivation and forest fires expanded massively in the Kapuas water catchment (Semedi, 2014; 90 

Jadmiko et al., 2017). These circumstances changed the Kapuas hydrological regime and triggered more intense flooding in 

the river's floodplains. Combined with global sea-level rise, these phenomena could lead to more intense and severe flood 

events, particularly in the river delta. 

The delta of the Kapuas River is still mostly natural, with no dams, dykes, or groins on its downstream. Therefore, the 

hydrodynamics of the river significantly influences the flood occurrences in the delta. The most populated area over the delta 95 

is Pontianak, a city located in the Kapuas Kecil—the middle stream of the second-largest branch of the Kapuas River.  
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As a tidal river, the tidal regime within the Kapuas River delta is mixed but mainly diurnal (Kästner, 2019). The dominant 

tidal constituent is K1, O1, P1, M2, and S2  (Pauta, 2018). The average tidal amplitude within the delta is set in a microtidal 

regime, with a mean spring range of 1.45 m at its river mouth (Kästner, 2019). 

2.2 Hydrodynamic model description  100 

To simulate hydrodynamics within the Kapuas River delta, we use the multi-scale hydrodynamic model SLIM 2D 

(Lambrechts et al., 2008; Gourgue et al., 2009; Remacle and Lambrechts, 2016). The model can simulate hydrodynamic 

processes along the land-sea continuum, from the river to the ocean (Vallaeys et al., 2018, 2021; Frys et al., 2020; Le et al., 

2020b). We simulate compound flooding events based on the water level dynamics for different forcing scenarios using the 

model. The model solves the 2D Shallow Water Equations (SWE):  105 
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+ 𝛻 ⋅ U = R,                         (1) 
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where 𝐻 is the water column height, 𝛻 is the horizontal gradient operator, U = 𝐻𝐮̅ is the horizontal transport, R is the rainfall, 

𝑡 is the time, 𝐮̅ = (𝑢, 𝑣) is the depth-averaged horizontal velocity, f is the Coriolis parameter, 𝒆𝒛 is the vertical unit vector 

pointing upward, 𝜐 is the horizontal eddy viscosity, 𝛼 is a constant to define a dry elements (𝛼 = 0) and wet elements (𝛼 = 1) 110 

(Le et al., 2020a), h is the bathymetry, 𝑔 = 9.81 m/s2 is the gravitational acceleration, 𝐶𝑑 is the bulk drag coefficient, 𝜏𝑤𝑖𝑛𝑑  is 

the wind stress and  𝛻𝑃𝑎𝑡𝑚is the atmospheric pressure gradient.  

2.3 Hydrodynamic model setup and calibration 

In order to run the hydrodynamic model, we defined a computational domain that covers both the river and the ocean parts. 

Next, we generated an unstructured mesh to cover the domain, with a resolution of 50 m over the riverbanks, 400 m over the 115 

coast near the river mouth, 1 km over the rest of the coastline, and 5 km over the offshore (Fig. 3). The multi-scale mesh was 

generated using an algorithm developed by Remacle and Lambrechts (2018). Next, we set the bathymetry constructed from 

two data sets: first, the river and estuary bathymetry maps, obtained from the Indonesian Navy (Kästner, 2019), and second, 

the Karimata Strait bathymetry, obtained from BATNAS (BATimetri NASional, 2021). Furthermore, we set the bulk bottom 

drag coefficients, which are 2.5×10-3 over the ocean (which corresponds to a sandy seabed) and 1.9×10-2 over the river bed 120 

(Kästner et al., 2018). Lastly, we imposed the rainfall, as observed by the Pontianak Maritime Meteorological Station 

(PMMS). 

The hydrodynamic model simulation is forced by wind and atmospheric pressure from ECMWF (Hersbach et al., 2020), and 

tides from TPXO (Egbert and Erofeeva, 2002). As upstream boundary conditions, we imposed discharge from the Kapuas 

River and the Landak River. The discharge data were retrieved from the Global Flood Monitoring System (GFMS) (Wu et 125 

al., 2014).  
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We also imposed runoff, which was obtained by converting rainfall over the Kapuas Kecil River catchment area as an inlet 

water flux at some channels entering the domain. The runoff of every channel was calculated from rainfall data using SWAT+ 

(Bieger et al., 2017), which considered the pressure, the humidity, and other weather parameter input. Unfortunately, during 

the tuning of the SWAT model, the correlation between the output of the model (runoff) and the observation data is still low 130 

(0.32). However, we decided to use the output as the channels' inlet boundary condition in the hydrodynamic model because 

the channel runoff volume is much less than the river discharge. Therefore, we assumed that it does not significantly affect 

the hydrodynamics of the river. 

To evaluate the SLIM model performance, we ran a simulation for January 2019 and compared the simulated water elevation 

with the observations in Pontianak. The model errors correspond to an NSE of 0.87 and an RMSE of 0.12 m (Fig. 4). This 135 

RMSE is deemed sufficiently small to consider model outputs as a good proxy of the real system (Moriasi et al., 2015).  

We simulated the hydrodynamics with different oceanic, atmospheric, and river forcings to forecast flood events based on the 

water levels in Pontianak. Based on the Pontianak Maritime Meteorological Station report, the city is flooded when the water 

level exceeds 2.5 m. We, therefore, set this value as the threshold of a flood event. We ran the hydrodynamic model for ten 

months and extracted the output hourly to produce the scenarios (see Table 1). Then, we selected 6,000 sample points of the 140 

predicted water levels at Pontianak with their associated input dataset. We merged the data as a single dataset to train the 

machine learning model, encompassing all possible flood events resulting from the combination of the external forcings. The 

dataset shows that several flooding occurred within the simulations, indicated by sample points with water elevations greater 

than 2.5 m (Fig. 5).  

2.4 Machine learning model  145 

2.4.1 Dependent and predictor variables 

To develop the machine learning models, we used the river water level at Pontianak as the dependent variable. Then, we 

considered atmospheric, oceanic, and riverine variables as predictors of the water level in the city. Atmospheric variables 

include average and maximum wind speed, wind direction, precipitation, and average atmospheric pressure. Oceanic variables 

cover tides at the river mouth, and the riverine variables consist of the Kapuas River, and the Landak River discharges. To 150 

evaluate the impact of each predictor before the flood event, we imposed the prior state (one and two hours before) of these 

parameters (see Table 2). The datasets were recorded hourly and combined with the SLIM output (used in the training and 

testing phases) and the observational data (used in the implementation phase).   

Mutual Information (𝑀𝐼), a statistic tool that can measure the degree of relatedness between variables in a dataset, was 

implemented to evaluate the relation between each predictor and the dependent variable (Fig. 6). The greater the 𝑀𝐼 value 155 

between two variables, the stronger the relatedness, regardless of how nonlinear its dependency is (Kinney and Atwal, 2014). 

𝑀𝐼 between two variables (𝑋 and 𝑌) is obtained from Choi et al. (2020): 
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𝑀𝐼 = ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 (
𝑝(𝑥,𝑦)

𝑝(𝑥)−𝑝(𝑦)
)𝑦∈𝑌𝑥∈𝑋      (3) 

 

where 𝑝(𝑥, 𝑦) is the joint probability distribution. 160 

All predictors considered in the machine learning model have an MI coefficient greater than zero, which means all predictor 

variables impact the river water level in Pontianak (Fig. 6). The relationship between these predictors and the water level could 

be linear or non-linear (as shown by the MI capturing both relation types). Here, we found that the tidal elevations in the river 

mouth (X1, X2, and X3) have the most decisive impact on the river water level in the city (MI > 0.5), while tidal elevation is 

observed one hour before (X2) is the strongest one. Next, the wind speed (max and average), the discharges (from both the 165 

Kapuas and the Landak river), and the pressure have a moderate relatedness. In contrast, the wind direction and the rainfall 

have only a weak relatedness (MI < 0.1). This means that both parameters have no significant impact. 

2.4.2 Machine learning algorithm  

Here, we consider three different machine learning algorithms, i.e., random forest (RF), multiple linear regression (MLR), and 

support vector machine (SVM). RF is a supervised learning algorithm that operates by constructing many decision trees during 170 

the training (Breiman, 2001). The algorithm can be implemented for classification or regression. The model aggregates its 

multiple decision tree outcomes to generate the ultimate output, which is called the sub-sample outcomes (Han et al., 2012). 

The technique was enhanced by combining bootstrap in its aggregating processes (Breiman, 2001). Using this strategy, the 

algorithm became an effective tool for classification and regression. In this study, the RF algorithm was obtained from the R 

randomForest library (Liaw and Wiener, 2002). To obtain the optimal parameter for the RF, we first tune the algorithm by 175 

searching for the optimal value of the number of variables randomly sampled as candidates at each split (mtry). As a result, 

the optimal number is 16 (Fig. 7). 

MLR is a statistical technique that uses several explanatory variables to predict the outcome of a response variable (James et 

al., 2013). This method fits the linear relationship between input features and the target (observed data) using the least-squared 

approach. In the least-squared approach, the best relationship model will be obtained by minimizing the sum of the squared 180 

distance between the calculated values (as model outputs) and the target values (James et al., 2013). This algorithm is the most 

straightforward approach in machine learning models and is generally used as the baseline method. The MLR algorithm 

implemented in this study was obtained from the R RWeka library (Hornik et al., 2008). 

To obtain the best performance of the MLR algorithm, we did a statistical analysis to evaluate the multicollinearity among the 

predictor variables using the Variance Inflation Ratio (VIF). Since multicollinearity negatively affects the performance of the 185 

MLR model, VIF can help reduce the number of predictors (Alipour et al., 2020). Here, we found that some variables have 

VIF more significant than 5, which indicates a potentially severe correlation between these variables in the model (Fig. 8). 

Therefore, combined with the output of MI analysis, we removed some variables which have low MI and high VIF.    

SVM is a supervised machine learning algorithm based on statistical learning frameworks (Gholami and Fakhari, 2017). This 

method is robust for modeling a complex non-linear relationship. The kernel function transforms the input features into a high-190 



7 

 

dimensional space to tackle the complexity. This transforms the non-linear relationship of input features into linear ones. 

Finally, linear regression is carried out to obtain the ultimate output. Compared with the other algorithms, SVM needs less 

computational resources because it can be trained only by a few features (Gholami and Fakhari, 2017). Previously, SVM was 

only implemented for classification purposes, but it has also been implemented for regression purposes after some 

enhancement. The SVM algorithm implemented in this study was obtained from the R MARSSVRhybrid library 195 

(MARSSVRhybrid: MARS SVR Hybrid, 2021).  

Since kernel function is critical in SVM, we tuned the SVM algorithm to obtain good results by selecting the most appropriate 

kernel parameter. We tested four kernels, i.e., linear, polynomial, radial basis, and sigmoid, as the candidates. We found that 

the radial basis kernel performed the best for the SVM algorithm. 

2.4.3. Metrics for machine learning model performance evaluation 200 

We use the Nash–Sutcliffe efficiency (NSE) measure to evaluate the models' performance. NSE is used to assess the 

performance of the machine learning models in producing the predicted water level. A perfect model corresponds to NSE = 1, 

while a model that has the same predictive skill as the mean of the observed data represents by NSE = 0. Meanwhile, NSE<0 

implies that the mean value of observed data predicts better than the model. The closer the NSE value to 1, the better the 

predictive skill of the model. The NSE coefficient is calculated as follows: 205 

𝑁𝑆𝐸 = 1 −
∑ {H𝑚

𝑡 −𝐻0
𝑡}

2𝑇

𝑡=1

∑ (𝐻0
𝑡−H0̅̅ ̅̅ )

2𝑇

𝑡=1

     (4) 

 

where H𝑚
𝑡  represents the water level model at time 𝑡, 𝐻0

𝑡 represents the observed water level at the same time, and H0
̅̅̅̅  is the 

mean of the observed water level.  

Root Mean Square Errors (RMSE) of peaks between predicted water level and observation during the flood events are also 210 

used as an additional performance indicator. RMSE is used to represent the model’s ability to predict flood events. The RMSE 

between the model outputs and the observations is calculated by: 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑖−𝑦𝑖)2𝑛
𝑖=1

𝑁
        (5) 

where 𝑥𝑖 is the water level as the model's output at the i-th peaks, and 𝑦𝑖 is the observed water level at the same time. 𝑁 is the 

number of the total peak data. 215 

3 Results 

During the training and testing phases, all NSE coefficients are greater than 0.8 both in the training and testing phases, which 

means that all algorithms perform very well. The most accurate algorithm is RF, followed by SVM and MLR (Fig. 9). As such, 
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we know that all the tested machine learning algorithms are promising and need to be evaluated in the implementation phase 

using observational data. 220 

Therefore, we implemented the machine learning models on the selected observational data, which were obtained during the 

high discharge season for three months in three years when inundations occurred (Dec 2018, Jan 2020, Jan 2021). Fig. 10 

shows each proposed algorithm's predicted water levels compared to the observational data. Subsequently, the accuracy of 

models to predict flooding events, marked by points in Fig. 10, is evaluated. 

Even though all algorithms performed very well during the training and testing phases, the performances differed during the 225 

implementation phase (Table 3). However, the RF showed high accuracy in three different implementation phases. From the 

three different observational datasets, RF’s NSE values range from 0.61 to 0.72, which is a good performance.  

While the MLR algorithm succeeded in the training and testing phases, it only succeeded in the first and third implementation 

phases, with NSE of 0.72 and 0.65, respectively. The model was less successful in the second implementation phase, with NSE 

hitting only 0.35 for this implementation dataset.  230 

Next, the SVM algorithm’s performance is similar to the MLR algorithm. It succeeded in the training and testing phases but 

only succeeded in the first and third implementation phases, with NSE reaching 0.71 and 0.63, respectively. However, it failed 

in the second implementation dataset, with an NSE of only 0.41, which is slightly better than MLR.  

Regarding flood events prediction, the RF algorithm also performed better than the other algorithms. It could predict eleven 

out of seventeen events (65% accuracy). On the other hand, MLR and SVM could only predict six and ten events (35% and 235 

59% accuracy, respectively). Therefore, we know that the RF is the most accurate machine-learning algorithm to predict floods 

for our test case.  

Unfortunately, these three algorithms also predicted false-positive events, i.e., flood events that never occurred during 

implementation (Table 3). While the RF predicted four false events, the MLR and the SVM predicted three false events. This 

false event prediction is the shortcoming of the algorithm, which should be addressed in future studies. 240 

4 Discussion  

The two main issues that have been tackled in this study are data scarcity and low computational resources for building flood 

forecasting models based on the water level dynamics in developing countries (Brocca et al., 2020; Singh et al., 2021). Here, 

we showed that using an approach that combines hydrodynamic and ML models is promising for obtaining a reliable and 

robust water level model. We succeeded in building and evaluating ML models trained by the hydrodynamic model output; 245 

hence, they did not require extensive observational data in their training phase and did not need high computational costs in 

their implementation. Therefore, the proposed model is reliable for areas where observational data are scarce and 

computational resources are limited. 

Since the proposed model can accurately forecast water levels, local water management agencies can rely on the model outputs 

for flood forecasting. Since machine learning does not require high computational resources, limited computational resources 250 
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will not hinder the assessment and mitigation of compound flooding hazards. Using the model, agencies can re-assess their 

compound flood hazards and predict future events. Moreover, once they have more observation data, they can use it to re-

adjust the proposed model or build a more robust one (Muñoz et al., 2021).  

Next, we found that the RF algorithm is the best ML algorithm to predict water level as a proxy for compound flooding in the 

area of interest. In general, the performances of all tested ML algorithms for water level prediction are reasonable and 255 

acceptable. However, considering the NSE values in all implementation phases, the number of flood events that are accurately 

predicted, and how close the predicted water level is during the events, it could be concluded that the RF performs better than 

other algorithms. The superiority of the RF algorithm in predicting water levels has also been shown in previous studies in the 

Upo Wetland (Choi et al., 2020) and the Poyang Lake (Li et al., 2016). Therefore, we proposed a machine learning model with 

the RF algorithm as the most appropriate model for the study area. 260 

In addition, we found that the tidal elevation measured one-hour prior at the river mouth is the main parameter controlling the 

river water level in Pontianak. Even though the city is located 20 km from the river mouth, the tidal dynamics still strongly 

affect the river water level in the city. This result confirms previous studies, revealing that the tide propagation on the Kapuas 

River dominantly controls the river water level up to 30 km upstream (Sampurno et al., 2021), and still impacts up to 285 km 

from the river mouth (Kästner et al., 2019). 265 

However, the integrated model proposed in this study also has some limitations. Firstly, the accuracy of the machine learning 

model built depends on the accuracy of the hydrodynamic model. The more accurate the hydrodynamic model in predicting 

observational floods, the better the machine learning model will perform. Therefore, we need to tune the hydrodynamic model 

as accurately as possible. Next, since the rainfall impact on river water level is minor compared to other parameters, the model 

could not optimally capture urban flooding due to excessive rainfall. Based on the field observation, the city is shortly 270 

inundated if rain falls excessively for a few hours. This inundation could be due to the poor quality of the urban drainage 

system. Unfortunately, this phenomenon is not directly captured by the water level observation located within the river. The 

increase in the river water level due to the heavy rain is minor. Furthermore, the model relies on the predicted input parameters 

such as weather parameters and river discharges to predict the future water level. Consequently, the more biased the predictors, 

the higher the uncertainty in the water-level prediction.  275 

Overall, our integrated approach can provide a model to predict compound flooding driven by the interaction of tide, wind 

surge from the oceanward, and high discharge from the river upstream. Regarding the limitation of the chosen indicator’s 

capability to capture flood events, we will look for more data and indicators to enhance the model capability in future studies. 

Moreover, we will reduce the number of predictors to minimize the model output's uncertainty. We will also evaluate mean 

sea-level rise due to climate change to broaden the model implementation and create better flood mitigation. 280 

5 Conclusion 

This study shows that an integrated approach between the hydrodynamic and the machine learning models successfully 

Commented [JS9]: We moved this paragraph to a new 

subsection (2.6. Model limitations). 
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overcomes modeling river water-level and predicting compound flooding hazards in a data-scarce environment with limited 

computational resources. Therefore, the approach is suitable for local water management agencies in developing countries that 

are faced with these issues. However, the accuracy of the machine learning model depends on the accuracy of the 285 

hydrodynamic model. If the hydrodynamic model is inaccurate in predicting real-life floods, the machine learning model’s 

accuracy will also be lower. Besides, it has not yet optimally captured the urban flooding due to excessive rainfall. Considering 

more indicators representing this kind of flooding is essential to enhance the model's capability in the future. Regarding the 

implementation in Pontianak, we found that the machine learning model with the RF algorithm has the most accurate output 

compared to the other algorithms. In addition, the tidal elevation, measured one hour prior, is the main predictor for water level 290 

modeling in the study area. 
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 485 

Figure 1: The region of interest (ROI), where the green enclosed perimeter represents the city of Pontianak. The solid black line represents 

the Kapuas River Watershed in the inset map, and the blue lines represent waterbodies. Background map retrieved from (Planet dump 
retrieved from https://planet.osm.org, 2020). © OpenStreetMap contributors 2017. Distributed under the Open Data Commons Open 

Database License (ODbL) v1.0. 

 490 

 

 

 

 

 495 

 



18 

 

 

Figure 2: Kapuas water catchment area (upper left), Digital elevation map (upper right) retrieved from SRTM (Farr et al., 2007), Land cover 

maps (lower left) retrieved from CGLOPS1 (Buchhorn et al., 2020), and Soil type maps (lower right) retrieved from FAO (Sanchez et al., 

2009) for the Kapuas River catchment area. 500 
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Figure 3: The hydrodynamic model domain is discretized with an unstructured mesh whose resolution is set to 50 m along the riverbanks, 

400 m along the coast near the estuary, 1 km over the rest of the coastline, and 5 km offshore. The bathymetry of the model domain ranges 505 
from ~100 m depth offshore to 1 m in the river mouth.   Commented [JS10]: We added a new Figure after this one:  

Figure 4: The Kapuas River watershed and its sub-basins. Since the 

discharges of the Kapuas River are retrieved at the middle stream, 

only two sub-basins are considered for the SWAT+ model (yellow 

area). The runoffs (channel outlets of the SWAT+ model that enter 

the river stream within the KRD) are set as inlets for the 

hydrodynamic model domain. 
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Figure 4: SLIM model output validation with respect to observational data at Pontianak in January 2019, with NSE = 0.87 and RMSE = 

0.12 m, indicates that the model has satisfactory performance. 

 510 

Figure 5: The Kapuas Kecil River's water level in Pontianak, obtained from the hydrodynamic model. The green dash line is the threshold 

above which the water starts to overflow the riverbanks in Pontianak. 
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Figure 6: Mutual information of all predictor variables to hourly water level dynamics in 3 months of observational data. 

 515 

Figure 7: Tuned randomForest algorithm for the optimal number of variables randomly sampled as candidates at each split (mtry) parameter. 
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Figure 8: Variance Inflation Factor values of all predictor’s variables in 3 months of observational data. 
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Figure 9: Comparison of predicted and simulated hourly water levels of the training data. 520 
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Figure 10: Comparison of predicted hourly water levels models and measured hourly water levels for the implementation phase on: 

(a)December 2018, (b) January 2020, and (c) January 2021 

Table 1. Scenarios used to force the process-based hydrodynamic model   

n-dataset Wind Speed 

(ms-1) 

Wind Direction 

(o) 

Pressure 

(kPa) 

Discharge Kapuas (m3s-1) Discharge 

Landak (m3s-1) 

Rainfall 

(mm) 

1-600 2 - 8  0 – 360 100.5 - 101.5 6 × 103 600 0 

601-1200 4-16 0 – 360 100.5 - 101.5 6 × 103 600 0 

1201-1800 8-32 0 – 360 100.5 - 101.5 6 × 103 600 0 

1801-2400 2 – 8 0 – 360 100.5 - 101.5 104 - 1.5 × 104 600 0 

2401-3000 2 – 8 0 – 360 100.5 - 101.5 6 × 103 800-2100 0 

3001-3600 2 – 8 0 – 360 100.5 - 101.5 104 - 1.5 × 104 800-2100 0 

3601-4200 5 – 20 0 – 360 100.5 - 101.5 104 - 1.5 × 104 800-2100 0 

4201-4800 2 – 8 0 – 360 100.5 - 101.5 3.3 × 103 – 5 × 103 250-700 0 

4801-5400 2 – 8 0 – 360 100.5 - 101.5 3.3 × 103 – 5 × 103 250-700 0 – 150 

5401-6000 8-32 0 – 360 100.5 - 101.5 6 × 103 600 0 – 150 
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Table 2. The variables which used as the predictors in this study. 

Code Variable Description 

X1 Tidal Elevation at Kapuas Kecil river mouth (m) 

X2 Tidal Elevation at Kapuas Kecil river mouth 1 hour before (m) 

X3 Tidal Elevation at Kapuas Kecil river mouth 2 hours before (m) 

X4 Hourly Discharge of the Kapuas River at Rasau Jaya in time (m3s-1) 

X5 Hourly Discharge of the Kapuas River at Rasau Jaya 1 hour before (m3s-1) 

X6 Hourly Discharge of the Kapuas River at Rasau Jaya 2 hours before (m3s-1) 

X7 Hourly Discharge of the Landak River at Kuala Mandor in time (m3s-1) 

X8 Hourly Discharge of the Landak River at Kuala Mandor 1 hour before (m3s-1) 

X9 Hourly Discharge of the Landak River at Kuala Mandor 2 hours before (m3s-1) 

X10 Hourly Precipitation at the time (mm) 

X11 Hourly Precipitation one hour before (mm) 

X12 Hourly Precipitation two hours before (mm) 

X13 Hourly Average Wind Speed at the time (ms-1) 

X14 Hourly Average Wind Speed one hour before (ms-1) 

X15 Hourly Average Wind Speed two hours before (ms-1) 

X16 Hourly Maximum Instantaneous Wind Speed at the time (ms-1) 

X17 Hourly Maximum Instantaneous Wind Speed one hour before (ms-1) 

X18 Hourly Maximum Instantaneous Wind Speed two hours before (ms-1) 

X19 Hourly Average Wind Direction at the time (degree, in the range: 0 - 360) 

X20 Hourly Average Wind Direction one hours before (degree, in the range: 0 - 360) 

X21 Hourly Average Wind Direction two hours before (degree, in the range: 0 - 360) 

X22 Hourly Atmospheric Pressure at the time (millibars) 

X23 Hourly Atmospheric Pressure one hour before (millibars) 

X24 Hourly Atmospheric Pressure two hours before (millibars) 

Table 3. Performance of the three machine learning algorithms on implementation phase 

 

Goodness of Fit RF MLR SVM 

NSE Training 0.99 0.91 0.99 

NSE Testing 0.97 0.96 0.89 

NSE Implementation1 (Dec 2018) 0.72 0.72 0.71 

NSE Implementation2 (Jan 2020) 0.61 0.35 0.41 

NSE Implementation3 (Jan 2021) 0.66 0.65 0.63 

Total of flood predicted (out of 17 events) 11 6 10 

Percent of flood predicted 65% 35% 59% 

False Positive (event) 4 3 3 


