
Response to the first reviewers’ comments (RC1) on the paper “Integrated hydrodynamic and 

machine larning models for compound flooding prediction in a data-scarce estuarine delta”. 

General comments 

This study develops a scheme to integrate physically-based and data-driven approaches as 

proposed in similar studies with either conventional machine learning algorithms (Hosseiny et al., 

2020; French et al., 2017; Kabir et al., 2020b) or more advanced deep learning techniques (Kabir 

et al., 2020a; Muñoz et al., 2021). Yet, the scheme has critical technical flaws and is not well-

aligned with the main goal of this study that consists of reducing computation burden for water 

level prediction in data-scarce regions. At this point, I believe that the manuscript requires major 

improvements to be considered for publication. Nevertheless, please find below a list of suggestions 

that can help improve the proposed scheme as well as my concerns that should be addressed and/or 

clarified. 

Response:  

We want to thank the reviewer for taking the time to review our paper. Their comments are 

beneficial and helped us to improve the article. In what follows, we addressed the comments, where 

the reviewer’s comments are presented in italic type and my response in roman type. 

 

Specific comments 

Title: ‘compound flooding prediction’ certainly draws the reader’s attention, but unfortunately 

there is no formal analysis in this study suggesting that Pontianak experienced such compound 

events in the past. Although the introduction elaborates on the mechanisms triggering compound 

flooding, the authors should conduct preliminary process-based or statistical analyses to confirm 

this. See for example the works of Kumbier et al., (2018), Valle-Levinson (2020), Ward et al., 

(2018), Ghanbari et al., (2021) among others. 

Response:  

We did the assessment of compound flooding over the area using a 2D hydrodynamic model in the 

previous work (Sampurno et al., 2021). The paper related to the work was accepted for publication 

in the journal Biogeosciences and is expected to be available online in due course. So, this work is 

to continue what we have done in the previous work. As a complement, we added these sentences 

in the introduction session: 

This city experienced a compound flooding event on 29 December 2018 (Sampurno et al., 2021), 

and the impact was severe (Madrosid, 2018). At that moment, the water level dynamic is about to 

go down after passing its peak elevation, when suddenly a strong force pushes it to go up again for 

a short moment. The interaction between tides, storm surges, and discharges along the tidal river 

in the Kapuas River delta is responsible for a 30 cm increase in the water level during the event. 

 

 



 

Abstract: ‘Compound flood’ scenarios should be derived from preliminary statistical analysis that 

account for the dependence among flood drivers. See for example Serafin et al., (2019), Moftakhari 

et al., (2019), etc. The abstract should be revised to clearly report the findings of this study. 

Random forest is used to predict water levels only, yet ‘flooding hazards’ and ‘compound flooding’ 

are mentioned repeatedly without presenting any flood maps in Pontianak. A very preliminary 

assessment could be achieved by projecting water level to adjacent areas of the Kapuas-Kecil River 

in case 2D flood modeling is computationally demanding. 

Response:  

We followed the suggestion and modified the abstract. We only focus on flood prediction but not 

yet on a flood hazard assessment. Regarding the "compound flooding" term, the study area has the 

possibility of experiencing three possible flooding types (coastal, urban/flash, and riverine). Since 

these events generally coincide or occur in the near time in the area, therefore, compound flooding 

term is chosen to represent the issues. 

Here is the updated abstract: 

“Flood forecasting based on hydrodynamic modeling is an essential non-structural measure against 

compound flooding over the globe. With the risk increasing under climate change, all coastal areas 

are now in need of flood risk management strategies. Unfortunately, for local water management 

agencies in developing countries, building such a model is challenging due to the limited 

computational resources and the scarcity of observational data.  We attempt to solve this issue by 

proposing an integrated hydrodynamic and machine learning approach to predict water level 

dynamics as a proxy of compound flooding risk in a data-scarce delta. As a case study, this 

integrated approach is implemented in Pontianak, the densest coastal urban area over the Kapuas 

River delta, Indonesia. Firstly, we built a hydrodynamic model to simulate several compound 

flooding scenarios. The outputs are then used to train the machine learning (ML) model. To obtain 

a robust machine learning model, we consider three machine learning algorithms, i.e., Random 

Forest, Multi Linear Regression, and Support Vector Machine. Our results show that the integrated 

scheme works well. The Random Forest (RF) is the most accurate algorithm to model water level 

dynamics in the study area. Meanwhile, the machine-learning model with the RF algorithm can 

predict eleven out of seventeen compound flooding events during the implementation phase. It 

could be concluded that RF is the most appropriate algorithm to build a reliable ML model capable 

of estimating the river water level dynamics within Pontianak, whose output can be used as a proxy 

for predicting compound flooding events in the city.”  

 

 

 

 

 



Introduction: Literature review falls short in content and cohesion. The introduction should 

mention the state-of-the-art techniques for compound flood hazard modeling and assessment. 

(Bevacqua et al., 2019; Couasnon et al., 2020; Ye et al., 2021; Muñoz et al., 2022). 

Response:  

The suggestion has been followed. We mention these references in the introduction. Then, we also 

add a new paragraph as follows: 

A new paradigm that combines deterministic and machine learning components has been proposed 

and implemented to tackle data and computational limitations in environmental modeling 

(Krasnopolsky and Fox-Rabinovitz, 2006; Goldstein and Coco, 2015). However, to the best of our 

knowledge, no previous modeling frameworks have developed a deterministic model to train a 

machine learning model for compound flooding studies. As a common practice, compound flood 

modeling typically uses the coupling of two or more hydrodynamic, hydraulic, or hydrological 

models (Hsiao et al., 2021; Santiago-Collazo et al., 2021; Ikeuchi et al., 2017). The coupling could 

be one-way, two-way, or dynamic coupling. Another approach is deep learning and data fusion 

(Muñoz et al., 2021), and data assimilation (Muñoz et al., 2022).  

 

Material and methods: This section is of major concern since the methodology presented in this 

study is not technically sound. I agree that developed countries might face challenges to implement 

hydrodynamic models due to data scarcity and computational resource limitations. Nevertheless, 

assuming that those countries develop such a model and want to implement the proposed scheme. 

Are 6000 simulations really necessary to train machine learning algorithms? Would not it be better 

to wisely sample a small set of realistic forcing conditions that effectively lead to compound 

flooding? Although machine learning is a ‘data-hungry’ technique, I consider thousand of 

hydrodynamic simulations a bit exaggerated. I suggest the authors train the models with a small 

sample size (e.g., hundred of simulations) and report the results. This can help reduce computation 

time associated with hydrodynamic simulations. How long does it take to run the 2D-model of the 

Kapuas-Kecil in a regular desktop computer? 

Response: 

We are sorry because there is a misunderstanding between what we did and what the reviewer 

thinks we did regarding the term "scenarios." Actually, we only ran ten months of hydrodynamic 

simulations, and then we extracted only 6000 pairs of data points (hourly water level in Pontianak 

vs. its associated input variables). To run the 2D model of the Kapuas-Kecil on a regular desktop 

computer (with 16 GB memory) took about 12 hours. 

 

 

 

 

 

 

 



Section 2.2: There is no information regarding model calibration. This is critical as the authors 

rely on hydrodynamic simulations to train the machine learning algorithms. Referring to a pre-

print/unpublished work (Sampurno et al., 2021) for additional details of the model is not 

acceptable. Please describe the model calibration process in detail. 

Response:  

Actually, the previous work we mentioned has been accepted for publication and will be available 

online soon. However, the suggestion has been followed. We added a new section dedicated to 

model setup and calibration: 

2.3 Hydrodynamic model setup and calibration 

In order to run the hydrodynamic model, we defined a computational domain that covers both the 

river and the ocean parts. Next, we generated an unstructured mesh to cover the domain, with a 

resolution of 50 m over the riverbanks, 400 m over the coast near the river mouth, 1 km over the 

rest of the coastline, and 5 km over the offshore (Fig. 3). The multi-scale mesh was generated using 

an algorithm developed by Remacle and Lambrechts (2018). Next, we set the bathymetry 

constructed from two data sets: first, the river and estuary bathymetry maps, obtained from the 

Indonesian Navy (Kästner, 2019), and second, the Karimata Strait bathymetry, obtained from 

BATNAS (BATimetri NASional, 2021). Furthermore, we set the bulk bottom drag coefficients, 

which are 2.5×10-3 over the ocean (which corresponds to a sandy seabed) and 1.9×10-2 over the 

river bed (Kästner et al., 2018). Lastly, we imposed the rainfall, as observed by the Pontianak 

Maritime Meteorological Station (PMMS). 

The hydrodynamic model simulation is forced by wind and atmospheric pressure from ECMWF 

(Hersbach et al., 2020), and tides from TPXO (Egbert and Erofeeva, 2002). As upstream boundary 

conditions, we imposed discharge from the Kapuas River and the Landak River. The discharge 

data were retrieved from the Global Flood Monitoring System (GFMS) (Wu et al., 2014).  

We also imposed runoff, which was obtained by converting rainfall over the Kapuas Kecil River 

catchment area as an inlet water flux at some channels entering the domain. The runoff of every 

channel was calculated from rainfall data using SWAT+ (Bieger et al., 2017), which considered 

the pressure, the humidity, and other weather parameter input. Unfortunately, during the tuning of 

the SWAT model, the correlation between the output of the model (runoff) and the observation 

data is still low (0.32). However, we decided to use the output as the channels' inlet boundary 

condition in the hydrodynamic model because the channel runoff volume is much less than the 

river discharge. Therefore, we assumed that it does not significantly affect the hydrodynamics of 

the river. 

To evaluate the SLIM model performance, we ran a simulation for January 2019 and compared the 

simulated water elevation with the observations in Pontianak. The model errors correspond to an 

NSE of 0.87 and an RMSE of 0.12 m (Fig. 4). This RMSE is deemed sufficiently small to consider 

model outputs as a good proxy of the real system (Moriasi et al., 2015).  

We simulated the hydrodynamics with oceanic, atmospheric, and river forcings to forecast flood 

events based on the water levels. Based on the Pontianak Maritime Meteorological Station report, 

the city is flooded when the water level exceeds 2.5 m. We, therefore, set this value as the threshold 



of a flood event. We ran the hydrodynamic model for ten months and extracted the output hourly 

to produce the scenarios (see Table 1). Then, we selected 6,000 sample points of the predicted 

water levels at Pontianak with their associated input dataset. We merged the data as a single dataset 

to train the machine learning model, encompassing all possible flood events resulting from the 

combination of the external forcings. The dataset shows that several flooding occurred within the 

simulations, indicated by sample points with water elevations greater than 2.5 m (Fig. 5).  

 

Section 2.4. Another point of major concern is the calibration of machine learning algorithms. It 

is no clear whether the authors tuned random forest and support vector machine in the training 

phase or not. In that regard, the training dataset (e.g., 6000 model outputs with the associated 

input variables) should have been split into training/validation datasets to conduct hyperparameter 

tuning and so prevent overfitting issues. Using all model outputs to train the algorithms (as 

reported here) and relying on default parameter-values is not a wise use of machine learning (e.g., 

Random requires tuning of the number of trees, sample leaf, sample split, etc.). The authors should 

conduct a thorough ‘hyperparameter’ tuning as it substantially improves the performance of 

machine learning algorithms. 

Response:  

The suggestion has been followed. We did the calibration for both algorithms. We searched for the 

optimal value of the number of variables randomly sampled as candidates at each split for Random 

Forest and got 16 as the optimal one. For the SVM algorithm, we tuned it to select the correct 

choice of kernel parameters, which is crucial for obtaining good results. We tested four kernel 

algorithms, i.e., linear, polynomial, radial basis, and sigmoid. We found that the radial basis kernel 

gave the best performance for the SVM algorithm. 

We added these sentences on section 2.4.2, for RF: 

To obtain the optimal parameter for the RF, we first tune the algorithm by searching for the optimal 

value of the number of variables randomly sampled as candidates at each split (mtry). As a result, 

the optimal number is 16 (Fig. 7). 



 

Figure: Tuned randomForest algorithm for the optimal number of variables randomly sampled as 

candidates at each split (mtry) parameter. 

And we added this paragraph for MLR: 

To obtain the best performance of the MLR algorithm, we did a statistical analysis to evaluate the 

multicollinearity among the predictor variables using the Variance Inflation Ratio (VIF). Since 

multicollinearity negatively affects the performance of the MLR model, VIF can help reduce the 

number of predictors (Alipour et al., 2020). Here, we found that some variables have VIF more 

significant than 5, which indicates a potentially severe correlation between these variables in the 

model (Fig. 8). Therefore, combined with the output of MI analysis, we removed some variables 

which have low MI and high VIF.    



 

Figure: Variance Inflation Factor values of all predictor’s variables in 3 months of observational data. 

 

And this paragraph for SVM: 

Since kernel function is critical in SVM, we tuned the SVM algorithm to obtain good results by 

selecting the most appropriate kernel parameter. We tested four kernels, i.e., linear, polynomial, 

radial basis, and sigmoid, as the candidates. We found that the radial basis kernel performed the 

best for the SVM algorithm. 

 

Results. “Even though all algorithms perform very well during the training phase, the 

performances are different during the testing phases”. This is known as overfitting (Ying, 2019) 

and occurs because random forest and support vector machine are not calibrated/tuned in the 

training phase. 

Response:  

As mentioned above, we are following the suggestion. We did the tuning in the training phase for 

all algorithms to avoid overfitting. 

Technical corrections 

L10 and thorough the text: There are odd terms that should be corrected like hydrodynamic 

modeling instead of ‘water level modeling’. 

Response: The suggestion has been followed. 

 



L28: What is the growth rate in the last decade? 

Response: In the Low Elevated Coastal Zone, the population will increase from 638 million in 

2000 by 58% to 71% by 2050 (Merkens et al., 2016). 

 

L38: Please elaborate more on non-structural measures. This sentence is not clear. 

Response: The suggestion has been followed. We added more sentences in the paragraph: 

Non-structural measures mean any actions to manage the risk of compound flooding without 

involving a physical construction (UNDRR, 2022), including land-use regulations, flood 

forecasting, warning systems, floodproofing and disaster prevention, and preparedness and 

response mechanisms. 

 

L40: Which issue? Please explain clearly. 

Response: We replaced word “the issue” with “the water-level prediction issue” 

 

L45-47: ‘Machine learning can enable us…’ How? Please, elaborate more on this. More 

references are needed discussing the benefits of machine learning for water level prediction and/or 

flood forecasts. 

Response: The suggestion has been followed. We added more details after this sentence: 

For instance, by assuming that flood events are stochastic, machine learning can predict major 

flood events based on certain probability distributions from the historical discharge data (Mosavi 

et al., 2018). In some cases, their performance is even more accurate than traditional statistical 

models (Xu and Li, 2002). In other words, we can prepare strategies to mitigate the flood risks 

using a machine learning model. 

 

L96: Please locate Pontianak in Figure 2. 

Response: Figure 2 updated. We added the perimeter of Pontianak on the map. 

 

L97: Section 2.3 is very short (4 lines) and should be included in the previous section. 

Response: The suggestion has been followed. 

 

L65: More details of the study area are needed. What is the catchment size, average river flow, 

tidal regime, rate of local sea level rise at the Kapuas River? 

Response: The suggestion has been followed. We added these sentences on the paragraph: 

Its water catchment area spreads over about 93000 km2 (about 12.5% of the Borneo Island area, 

Fig. 1), with about 66.7% of it consisting of forests (Wahyu et al., 2010). Its topography comprises 

hills over its upstream, covered mainly by Acrisol soils (Fig. 2). In contrast, its downstream 

comprises plains with more heterogeneous soil types (Fig. 2), such as Humic Gleysols (derived 

from grass or forest vegetation) and Dystric Fluvisols (young soil in alluvial deposits). 

And, create a new paragraph in this section: 

As a tidal river, the tidal regime within the Kapuas River downstream area is mixed but mainly 

diurnal (Kästner, 2019). The dominant tidal constituent is K1, O1, P1, M2, and S2  (Pauta, 2018). 

The average tidal amplitude downstream is set in a microtidal regime, with a mean spring range of 

1.45 m at its river mouth (Kästner, 2019). 



 

L115: I suggest a more robust statistical analysis to evaluate multicollinearity among the variables 

(e.g., Variance Inflation Ratio (VIF), see Alipour (2020)). Multicollinearity negatively affects the 

performance of support vector machine and multilinear regression models. VIF can help reduce 

the number of predictors. 

Response: The suggestion has been followed. We now test the multicollinearity among the 

predictor variables and found some variables having VIF greater than 5, which indicates a 

potentially severe correlation between these variables in the model. Therefore, we removed some 

variables based on this VIF values combine with MI coefficients, without reducing the model’s 

performance.  

 

L155-156: NSE and RMSE might improve after a thorough hyperparameter tuning of the machine 

learning algorithms. 

Response: We did the tuning and reduced the number of predictors. The NSE and RMSE are better 

in the training and the testing phases but still not too different in the implementation phase. 

 

L158: There are no such inundation scenarios (no flood maps). This should be clarified and better 

replaced for water level scenarios. 

Response:  

The suggestion has been followed. We replace this sentence: 

We then simulated several inundation scenarios to produce datasets used to train the machine 

learning model. 

With the following: 

We simulated the hydrodynamics with different oceanic, atmospheric, and river forcings to forecast 

flood events based on the water levels. Based on the Pontianak Maritime Meteorological Station 

report, the city is flooded when the water level exceeds 2.5 m. We, therefore, set this value as the 

threshold of a flood event. We ran the hydrodynamic model for ten months and extracted the output 

hourly to produce the scenarios (see Table 1). 

 

We also moved this sentence from the result section to the Material and Method section, as 

suggested by Reviewer2. 

 

Table 1. What are the criteria to come up with those range of values? 

Response:  

We set those ranges based on minimum and maximum observation data from 2016 to 2021. 

 

Figure 2. Scale bar and north arrow are missing. 

Response:  

The figure has been updated. We added scale bare and north arrow. We also added grid-coordinates 

and combined it with the bathymetry map (as suggested by Reviewer 2). We changed Figure 2 to 

Figure 3. 

 



Figure 6. Comparison of predicted and ‘simulated’ hourly water levels of training data. There are 

no observed water levels in the training phase. 

Response: The suggestion has been followed. We updated the Figure. 

 

Figure 8. X-axis is not observation but hydrodynamic simulation. 

Response:  The suggestion has been followed. We updated the Figure. 

 

L295. There are references not included in the main text. See for example Rozum et al., 2020. 

Response: Actually, there is no Rozum et al., 2020. It is still the part of Hersbach, et al, 2020. 

We will put more space between references to make them more easily checked. 

The full reference is: 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., 

Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., 

Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, 

M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, 

R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, 

P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. R. 

Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020 
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