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Abstract. Rejuvenation in particle filters is necessary to prevent the collapse of the weights when the number of particles is

insufficient to properly sample the high probability regions of the state space. Rejuvenation is often implemented in a heuristic

manner by the addition of random noise that widens the support of the ensemble. This work aims at improving canonical

rejuvenation methodology by the introduction of additional prior information obtained from climatological samples; the dy-

namical particles used for importance sampling are augmented with samples obtained from stochastic covariance shrinkage. A5

localized variant of the proposed method is developed. Numerical experiments with the Lorenz ’63 model show that modified

filters significantly improve the analyses for low dynamical ensemble sizes. Furthermore, localization experiments with the

Lorenz ’96 model show that the proposed methodology is extendable to larger systems.

1 Introduction

Ensemble-based data assimilation (Asch et al., 2016; Law et al., 2015; Reich and Cotter, 2015) aims to estimate the state10

of some dynamical system in a Bayesian framework, and describes the uncertainty through an ensemble of possible states.

Describing the distribution of state uncertainty to sufficient accuracy requires very large ensembles, a phenomenon referred

to as the curse of dimensionality (Tan et al., 2018; Snyder et al., 2008). Several techniques such as the principle of maximum

entropy (Jaynes, 2003) attempt to alleviate this burden by prescribing a distribution constrained by known information. The en-

semble Kalman filter (Burgers et al., 1998; Evensen, 1994, 2009), constraints the underlying distributions only by the ensemble15

mean and covariance; the application of Bayes’ rule transforms an assumed prior normal distribution into an assumed posterior

normal distribution. Recent attempts to apply particle filters to high dimensional systems (Bocquet, 2018; Van Leeuwen, 2009;

Van Leeuwen et al., 2019) have seen some success. However, particle filters are not yet competitive with other state-of-the-art

methods such as the ensemble Kalman filter.

Previous work (Popov et al., 2020) has focused on augmenting the information represented by the ensemble with information20

derived from covariance shrinkage through a surrogate ensemble in the ensemble transform Kalman filter. In this paper, we

extend this idea to the ensemble transport particle filter (ETPF, Reich (2013)). ETPF transports a given ensemble that represents

the posterior distribution using importance sampling (Liu, 2008), to another, equally sampled, ensemble whose moments, in
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the limit of infinitely many particles, approach the moments of the correct posterior distribution. Like all particle filters, ETPF

is susceptible to weight collapse.25

This work explores a new approach to particle rejuvenation, which is necessary to prevent weight collapse in particle filters.

Rejuvenation in particle filters is a particular type of stochastic regularization (Musso et al., 2001), and is typically implemented

in a heuristic manner. Instead of heuristics, our approach makes use of prior information to enrich the ensemble subspace. The

new contributions of this work are as follows: (1) we introduce an alternative way of performing particle rejuvenation in

ETPF by incorporating climatological covariance information; (2) we accomplish this by augmenting the dynamical (model)30

ensemble with synthetic anomalies with optimal scaling, accompanied by a statistically correct estimator; and (3) we show that

this rejuvenation method significantly improves the analysis quality for low dynamical ensemble sizes.

This paper is organized as follows. Section 2 reviews the concept of Bayesian inference with the addition of prior informa-

tion, and its implementation in the context of importance sampling. Section 3 discusses the ensemble transform particle filter

and its canonical rejuvenation heuristic. The concept of stochastic covariance shrinkage is proposed in Section 4, and ETPF is35

extended to make use of this shrinkage. Numerical experiment results are reported in Section 5. Concluding remarks are drawn

in Section 6.

2 Optimal coupling with prior information and the ensemble transform particle filter

Bayesian inference (Jaynes, 2003) aims at transforming prior information about the state of a system (represented by the

distribution of a random variable X f), additional qualitative and quantitative information (P ), and information obtained by40

observing the system (Y ), into combined posterior information (Xa):

πXa(X | Y,P ) =
πY |X(Y |X,P )πX f(X | P )

πY (Y | P )
, (1)

where πX f(X | P ) represents the prior state probability density conditioned by all other relevant information, and πY |X f(Y |
X,P ) is the observational likelihood conditioned by the forecast and the prior information. Here we consider the finite di-

mensional case where X f,Xa ∈ Rn, Y ∈ Rm, where the supports of the probability densities πX f and πXa are subsets of the45

respective spaces.

Classical particle filtering (Reich and Cotter, 2015) represents state distributions by collections of particles, i.e., ensembles

of samples. Specifically, consider an ensemble of N f particles Xf = [xf
1, . . .x

f
N f ] ∈ Rn×N f

. The prior distribution density πX f

is approximated weakly by the corresponding empirical measure

πX̂ f(X | P ) =

N f∑

j=1

wf
j δX−Xf

j
, (2)50

where wf
j for 1≤ j ≤N f are the prior importance weights associated with each particle. Similarly, the posterior density is

approximated weakly by an empirical measure based on the same sample values (particle states) but with different posterior
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importance weights wa
j for 1≤ j ≤N f:

πX̂a(X | Y,P ) =

N f∑

j=1

wa
j δX−Xf

j
, (3)

The posterior importance sampling weights are obtained from eq. (1):55

wa
j ∝ πY (Y |X f

j ,P )πP (P |X f
j) = wf

j πY (Y |X f
j ,P ). (4)

The ensemble of weights is denoted by w = [w1, . . .wN f ]T , and wf and wa refer to the forecast and analysis weights respec-

tively. Using (3) and (4) empirical estimates of the posterior mean and covariance,

x̄a =

N f∑

j=1

wa
jX

f
j ,

ΣXa =
1

1−wa,Twa X
f
j

(
diag(wa)−wawa,T )Xf,T

j , (5)

respectively, are obtained by the importance sampling approach (Liu, 2008).60

Our goal is to find an analysis ensemble Xa ∈ Rn×N a
of N a realizations of the random variable Xa that represents the

posterior distribution πXa with equal weights. Specifically, the posterior density is approximated weakly by the empirical

measure

πX̂a(X | P ) =

N a∑

j=1

1

N a δX−Xa
j
, (6)

where the importance sampling weights are uniform and equal to 1/N a (so as to be equally likely), and X̂a is the random65

variable corresponding to this measure. We impose that the empirical mean (5) is preserved by (6):

x̄a =

N a∑

j=1

1

N a X
a
j =

N∑

j=1

wa
jX

f
j =Xfwa. (7)

The optimal coupling (McCann et al., 1995; Reich and Cotter, 2015) between the prior empirical distribution eq. (2) and the

posterior empirical distribution eq. (6), can be defined as an ensemble transformation,

Xa =XfT∗, (8)70
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πXf

πXa

T

Figure 1. A visual representation of the continuous optimal transport procedure. The probability distribution πXf is transported into the
distribution πXa through the optimal transport mapping T. The discrete version of the solution is given by (9).

where T∗ ∈ RN f×N a
is the solution to the optimal transport Monge-Kantorovich problem (Villani, 2003). It is important to see

that each element of T∗ is positive. The discrete optimal transportation problem is

T∗ = argmin
T

∑

1≤j≤N f

1≤k≤N a

Tj,k

∥∥Xf
j −Xf

k

∥∥2
2

subject to T1N a =N awa, TT1N f = 1N a , Ti,j ≥ 0,

(9)

where the distance measure of squared Euclidean distance is taken for a provably unique solution to the Monge-Kantorovich

problem to exist (McCann and Guillen, 2011). The vector of ones of size q is represented by 1q . The problem eq. (9) is a linear75

programming problem. A visualization of the optimal transport between two continuous distributions is given in Figure 1.

The standard ETPF (Reich, 2013) makes the assumption that the prior and posterior ensemble sizes are the same, N :=

N a =N f in (9). The discrete optimal transport eq. (8) formulation begets a mapping Xa =ΨN f,N a(Xf) that, in the limit of

ensemble size (N f =N a→∞), converges weakly to a mapping Ψ, such that Xa =Ψ(X f) has the exact desired distribution

given by eq. (1) (Reich and Cotter, 2015, Theorem 5.19). A second order extension to the ETPF (which we will call ETPF280

here) (Acevedo et al., 2017) modifies the optimal transport equation (8) as follows:

Xa =Xf (T∗ +D) , (10)

where the additional term D is a matrix that ensures that the empirical covariance estimate ΣXa from (5) is preserved by (6).
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=⇒ R−1

Figure 2. A visual representation of R-localization in the ETPF. The left panel represents the localization radius around the ith state variable
represented by the black dot, with the observations represented by the open red dots. The right panel represents the decorrelation of R−1

along the diagonal.

2.1 Localization

In high dimensional geophysical problems, spatial error correlations decrease with increasing spatial distance between states.85

Due to the undersampled nature of the ensemble, these correlations may not be accurately approximated. Localization allows to

strictly enforce the shrinking of correlations between distant states. For localization in the ETPF, we follow the R-localization

formulation given in (Reich and Cotter, 2015; Acevedo et al., 2017). Figure 2 provides an illustration of R-localization, with

the full procedure described below.

Typically, the observation error distribution is assumed to be unbiased and Gaussian, with the probability density used to90

compute the weights in (4) for particular realizations of the observation Y, and of the state X defined as

πY (Y|X,P ) =
1√
|2πR|

e−
1
2 (Y−H(X))TR(Y−H(X)), (11)

where H is the observation operator. In this case it can be fully parametrized by the observation error covariance R ∈ Rm×m,

where m is the number of observations.

We assume that the observations are uncorrelated, making R= diagjRj,j a diagonal matrix. For the ℓth state variable x(ℓ),95

we define the localized observation error covariance matrix Rℓ via:

R−1
ℓ = diagj=1,...,m

{
ρ
(
d(ℓ,j)/r

)}
◦R−1, (12)

where d is some distance function defined between the ℓth state space variable and the jth observation space variable, r is the

localization radius, and ρ is a decorrelation function. In this work we use the Gaspari-Cohn decorrelation function (Gaspari

and Cohn, 1999). The localized inverse of the observation error covariance (12) is then used in the generation of the weight100

ensemble wa
ℓ similar to (4).
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A different transform matrix is computed for each variable. Specifically, consider the ensembles the ℓth state space variables:

xf,(ℓ) =
[
x

f,(ℓ)
1 , . . . , x

f,(ℓ)
N f

]
, xa,(ℓ) =

[
x

a,(ℓ)
1 , . . . , x

a,(ℓ)
N a

]
. (13)

The Monge problem formulation in (9) is replaced by the localized formulation for the ℓth variable,105

T∗
ℓ = argmin

T

∑

1≤j≤N f

1≤k≤N a

Tj,k

∥∥∥xf,(ℓ)
j −x

f,(ℓ)
k

∥∥∥
2

2

subject to T1N a =N awa
ℓ, TT1N f = 1N f , Ti,j ≥ 0,

(14)

with the analysis ensemble of the ℓth state space variable given by:

xa,(ℓ) = xf,(ℓ)T∗
ℓ . (15)

3 Particle Rejuvenation in ETPF

Particle and ensemble-based filters often underrepresent uncertainty (Asch et al., 2016) due to the relatively small number of110

samples when compared to the dimension of the state and data spaces. Over several data assimilation cycles multiple particles

start carrying either unimportant or redundant information, which leads to weight collapse or to ensemble degeneracy (Strogatz,

2018). To alleviate these effects, methods such as inflation (Anderson, 2001; Popov and Sandu, 2020), rejuvenation (Reich,

2013), and resampling (Reich and Cotter, 2015; Attia and Sandu, 2015) have been developed.

In order to avoid ensemble collapse, ETPF employs a particle rejuvenation approach (Acevedo et al., 2017; Reich, 2013;115

Chustagulprom et al., 2016) that perturbs the analysis ensemble by a random sampling from the ensemble of prior anomalies,

Xa←Xa +

√
τ

N − 1
Afη

(
IN −N−11N1T

N

)
, (16)

where η ∼ (N (0,1))N×N is a matrix of i.i.d. samples from the standard normal distribution of size N , the rejuvenation factor

τ (also called the bandwidth parameter) is a hyperparameter that controls the magnitude of the correction, and the ensemble

anomalies120

Af =Xf (IN −N−11N1T
N

)
, (17)
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are defined as the ensemble of deviations from the sample mean. Of note is the fact that the extra term
(
IN −N−11N1T

N

)
in

(16) ensures that the introduction of the random matrix η does not modify the mean of Xa. This is due to the fact that,

(
IN −N−11N1T

N

)
1N = 0N , 1T

N

(
IN −N−11N1T

N

)
= 0T

N . (18)

Note that defining the matrix125

B :=

√
τ

N − 1

(
IN −N−11N1T

N

)
η
(
IN −N−11N1T

N

)
, (19)

allows to write the ETPF with standard rejuvenation (16) as follows:

Xa =XfT∗ +

√
τ

N − 1
Afη

(
IN −N−11N1T

N

)

=XfT∗ +

√
τ

N − 1
Xf (IN −N−11N1T

N

)
η
(
IN −N−11N1T

N

)

=Xf
[
T∗ +

√
τ

N − 1

(
IN −N−11N1T

N

)
η
(
IN −N−11N1T

N

)]

=Xf T̃ with T̃ :=T∗ +B.

(20)

The matrix B acts as a stochastic perturbation of the optimal transport operator T∗. The choice of B preserves the linear

constraints of the Monge-Kantorovich problem eq. (9) since 1T
NB= 0T

N and B1N = 0N due to the property (18). This, of130

course, immediately calls into question the optimality of the transport for a finite ensemble, as adding this type of B matrix is

perturbing the transport mapping T̃ away from the optimum T∗.

4 Particle Rejuvenation Through Stochastic Shrinkage

In the context of ensemble methods, covariance shrinkage (Nino-Ruiz and Sandu, 2018, 2015; Ruiz et al., 2014) is used,

similar to other canonical covariance tapering techniques such as inflation (Anderson, 2001; Popov and Sandu, 2020), localiza-135

tion (Anderson, 2012; Hunt et al., 2007; Nino-Ruiz and Sandu, 2017; Nino-Ruiz et al., 2015; Petrie, 2008; Zhang et al., 2010),

to enrich the information represented by an undersampled covariance matrix.

From a Bayesian perspective, covariance shrinkage seeks to incorporate additional prior information on error correlations

into the analysis, in order to enhance the inference. In many data assimilation models, climatological covariance information

is often available, i.e., it is known prior information. Climatological covariances are typically precomputed or derived from140

climatological models and are often employed in variational data assimilation (Lorenc et al., 2015).

Following (Popov et al., 2020), we describe the stochastic covariance shrinkage technique. Instead of perturbing the trans-

form matrix as in (20), we instead consider enhancing the dynamic ensemble Xf ∈ Rn×N with an M member synthetic en-

semble X f ∈ Rn×M of samples independent of the dynamical ensemble. Each synthetic ensemble member is a biased sample
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Xf =
[
Xf X f

]

Figure 3. A representation of the mixing of the dynamical ensemble Xf with the synthetic ensemble X f. The dynamical ensemble comes from
the propagation of a dynamical system (here the Lorenz ’63 system on the left) while the synthetic ensemble comes from a climatological
distribution (here represented by the bell curve on the right).

distributed as,145

Xf
:,i ∼ πX f(X | P ), (21)

which is the full distribution of the forecast conditioned by the prior information that we have provided to the algorithm. Note

that (21) is not the empirical measure distribution (2), that only has information from the ensemble members, but rather the

‘enhanced’ distribution that is assumed to contain all the information from the forecast and the prior climatological information

P . An illustration of this ensemble combination is shown in Figure 3.150

Augmenting the dynamical with the synthetic ensembles leads to the total N +M members ensemble:

Xf =
[
Xf X f

]
∈ Rn×(N+M) (22)

with weights wf = [wf
1, . . .w

f
N+M ] with respect to π|P |X f .

Taking Af to be the anomalies of the dynamic ensemble (17), and

Af = X f (IM −M−11M1T
M

)
, (23)155

to be the anomalies of the synthetic ensemble, the empirical covariance of the total ensemble can be written as,

ΣXf =ΣXf +ΣX f , (24)
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where the constituent empirical (unbiased) covariances are defined in terms of the weights

ΣXf =

N∑

i=1

wf
i

N

N − 1
Af

:,iA
f,T
:,i , ΣX f =

M∑

i=1

wf
N+i

M

M − 1
Af

:,iAf,T
:,i . (25)

In the covariance shrinkage approach, to ensure that the sample mean of the augmented ensemble is the same as that of the160

dynamic ensemble, the synthetic ensemble is constructed with a mean equal to the sample mean of the dynamic ensemble:

M−1X f1M =N−1Xf1N . (26)

Thus, constructing the synthetic ensemble only requires sampling the synthetic anomalies. Consider a climatological covariance

matrixP . The synthetic anomalies are sampled from some unbiased distribution with covariance µP , where µ is a scaling factor

defined later. In the Gaussian case165

Af
:,i ∼N (0n,µP). (27)

An alternate choice of distribution that we explore is the symmetric Laplace distribution (Kozubowski et al., 2013),

Af
:,i ∼ L(0n,µP), (28)

which is described by the pdf

π(x) =
2

[(2π)nµP] 12

(
xTP−1x

2µ

) 2−n
4

K 2−n
2



√

2xTP−1x

µ


 , (29)170

where K is the modified Bessel function of the second kind (Olver et al., 2010). The choice of Laplace distribution is motivated

by robust statistics techniques (Rao et al., 2017). The resulting sampled covariance would therefore be an estimate of the scaled

climatological covariance,

ΣX f ≈ µP. (30)

Remark 1. In order to stay consistent with the mean estimate, the sampled anomalies are replaced with their mean zero175

counterparts

Af←Af (IM −M−11M1T
M

)
. (31)
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The weights wf are divided into two classes: those that are associated with the dynamic ensemble, and those that are associ-

ated with the synthetic ensemble,

wf
i =




1− γ 1≤ i≤N,

γ N +1≤ i≤N +M,
(32)180

where the parameter γ is known as the covariance shrinkage factor. One choice to calculate γ is the Rao-Blackwell Ledoit-Wolf

(RBLW) estimator (Chen et al., 2009) (Nino-Ruiz and Sandu, 2017, equation (9)),

γRBLW =min

([
N − 2

N(N +2)
+

(n+1)N − 2

Û(P,ΣXf)N(N +2)(n− 1)

]
,1

)
, (33)

where the sphericity factor,

Û(P,ΣXf) :=
1

n− 1

(
ntr(C2)
tr2(C) − 1

)
, with C := P− 1

2ΣXfP− 1
2 , (34)185

represents the mismatch between the climatological covariance (called the “target” in statistical literature) and sample covari-

ance matrices. Note that if ΣXf →P then Û(P,ΣXf)→ 0 and, form (33), γRBLW→ 1. This represents a particular degenerate

case whereby the dynamical ensemble is deemed to not be needed, and the climatological distribution is deemed to perfectly

represent the forecast.

In this framework (Chen et al., 2009) the scaling parameter for the climatological covariance is defined to be190

µ=
tr(C)
n

. (35)

Remark 2. The RBLW estimator (33) makes the assumption that the underlying distribution of the dynamic ensemble is

Gaussian. Typically this assumption is violated for dynamical systems of interest.

Remark 3. In statistical literature, the target covariance is often taken to be the identity, P = I, which implies that C =ΣXf in

(34). The assumption that the target is a climatological covariance is natural generalization in the specific context of sequential195

data assimilation.

Remark 4. The scaling of the target matrix P is not of any consequence. Let P̃ = βP be a scalar scaling of the target matrix,

then C̃i = 1
βCi, implying that µ̃i =

1
βµi, rendering the matrix scaling inconsequential for computing µ. For γRBLW observe that

the trace is linear operation, thus the scaling of C plays no role in computing Û .

Using the prior weight ensemble determined by (32), the importance sampling weights of the total ensemble Xf can be200

computed using (4), begetting the weight ensemble wa. By leveraging this, the resulting analysis ensemble based on prior

states and importance sampling weights of N +M states is transported into an equally weighted posterior ensemble of N
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states through the transformation

Xa = XfT∗, (36)

where the optimal transport matrix T∗ ∈R(N+M)×N is computed by solving (9).205

Recall that in the traditional method of rejuvenation (20), the optimal transport matrix is perturbed randomly into a nearby

transport matrix; no new prior information is introduced. We take a fundamentally different approach by incorporating “unseen”

prior information derived from a climatological covariance. To this end, before the Monge-Kantorovich problem (9) is solved,

we augment of the empirical measure distribution (2) with samples from the climatological distribution, to accommodate the

total ensemble (22),210

πX̂ f(X | P ) =

N f∑

j=1

wf
j δX−Xf

j
, (37)

with X̂ f being the random variable corresponding to this measure, estimating the distribution (21), and the weights (32) coming

from the RBLW shrinkage factor (33). In effect attempt to avoid ensemble collapse by enhancing the empirical measure

distribution (37) with new prior information, as opposed to a reweighing of the old prior information. We denote our method as

FETPF, standing for ‘foresight’ ETPF, as we believe including prior information in the analysis procedure is a type of foresight.215

When this procedure is combined with localization as described in section 2.1, we arrive at the Localizaed FETPF, or LFETPF,

algorithm.

4.1 Convergence of the FETPF

In this section we show that the FETPF reduces to (generalized) variants of the ETPF in two different ways: in the synthetic

ensemble limit, and in the synthetic distribution limit.220

Assume that the synthetic sample distribution is inexact in the mean and covariance, violating the assumption made in (21).

As the dynamical ensemble size N increases, the shrinkage factor γRBLW in (33) approaches 0. This means that in the limit of

an infinite dynamical ensemble, the FETPF reduces to the ETPF.

Assume on the contrary that the synthetic sample distribution is exact, meaning that the climatology produces samples

indistinguishable from the forecast, and that the assumption in (21) is fully satisfied. For a finite dynamical ensemble, the225

shrinkage factor γRBLW in (33) approaches 1, and the synthetic ensemble is taken as the forecast. This reduces to the ETPF in

the case when the dynamical ensemble size is equal to the synthetic ensemble size N =M , and should result in an equivalent

formulation when M >N .

This leaves a gap however, as the shrinkage factor γRBLW only accounts for the covariance, thus if the synthetic ensemble

distribution effectively predicts the covariance, but does not predict the higher order moments well, then the synthetic ensemble230

will still violate (21) even when it is treated as the forecast. Thus, an ideal shrinkage factor superior to (33) that takes into

account more than just the covariance is required, though this is significantly outside the scope of this work.

11



Remark 5. Most ensemble-based methods, including the ETPF, can produce physically unrealistic analysis ensemble members

because of the linear nature of the optimal transport matrix. As the ETPF and FETPF perform inference that converges in

distribution to the exact analysis distribution, as the dynamical ensemble size N grows, the algorithms produce physically235

realistic realizations with probability one.

4.2 Multiple Climatological Covariance Matrices

It is conceivable that multiple climatological models give rise to multiple climatological covariances, or alternatively multiple

candidates for the most ‘common’ behavior of the model is to be chosen.

Given a collection of target covariances, {Pj}j∈J , we must choose the appropriate covariance from which to sample. We240

consider the sphericity of the mismatch between the target and forecast covariances eq. (34). Based on authors’ numerical

experience, we select the target covariance that corresponds to the highest sphericity of the mismatch:

P∗ = argmax
Pj

Û(Pj ,ΣXf), (38)

We can justify this choice by realizing that the smaller the sphericity, the closer our samples are to that of canonical rejuvenation

techniques. The aim of climatological shrinkage is to introduce unknown information into our inference procedure, thus the245

target covariance with the highest mismatch introduces the highest amount of outside information.

Remark 6. It is also possible to construct ‘multi-target’ shrinkage estimators (Lancewicki and Aladjem, 2014) that consider

all target matrices simultaneously.

5 Numerical Experiments

We start with a short introduction to test problems configurations and the numerical experiments setups.250

In order to stay in line with other particle rejuvenation techniques, anomaly inflation is used as a heuristic to try and overcome

deficiencies in the descriptive power of the synthetic ensemble. Formally,

Af←− αAf, (39)

which is equivalent to assuming an inflated scaling factor µ in (35). We therefore have two parameters that can be configured

in the rejuvenation technique: M , the size of our synthetic ensemble, and α, the inflation applied to its realizations. It is255

important that inflation only be applied to the synthetic ensemble, and not the dynamical ensemble, as to not violate the

physical constraints of the dynamics.
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In our experiments we report the error of the analysis mean with respect to the truth (reference), measured by the spatio-

temporal root mean square error (RMSE):

RMSE(xt, x̄a) =

√√√√ 1

nT

T∑

i=1

∥xt
i− x̄a

i∥
2
2, (40)260

where T stands for the relevant measured timeframe of the experiments.

We now describe the three variable Lorenz ’63 model and the 40 variable Lorenz ’96 model that are used in the experiments.

We use the implementation of both these problems from the ODE test problem suite (Computational Science Laboratory, 2020;

Roberts et al., 2019).

5.1 Lorenz ’63 model265

For first set of numerical experiments, we use the Lorenz ’63 system (Lorenz, 1963):

x′ = σ(y−x),

y′ = x(ρ− z)− y,

z′ = xy−βz,

(41)

with chaotic canonical parameter values σ = 10, ρ= 28, and β = 8/3. We observe the first component, with Gaussian unbiased

observation error, with a very large variance of R= 8.

We perform 10,000 assimilation steps, but discard the first 1,000 that are used for spinup. The time interval between succes-270

sive observations is ∆t= 0.12. We perform 20 independent runs and take the mean of the results to obtain an accurate estimate

of the expected error. All reported results are for differences that are two or more standard deviations apart.

This problem setup is challenging for the ensemble Kalman filter, which does not converge even for larger ensemble sizes.

Therefore, this is a relevant test for non-Gaussian algorithms.

5.2 Lorenz ’63 FETPF analysis results275

As discussed previously, the canonical choice for the shrinkage covariance is the identity matrix. It has been the authors’

experience that for most dynamical systems this choice is poor. Moreover, the sequential data assimilation problem typically

provides ways to calculate climatological approximations to the covariance. We take advantage of such techniques in this paper.

The first type of climatological covariance that we investigate is that of the distribution over that of the whole manifold of

the dynamics. The (trace-state normalized) matrix that is obtained by taking the temporal covariance of 50,000 sample points280
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Figure 4. Analysis RMSE versus dynamic ensemble size (N ) of the Gaussian (G) and Laplace (L) covariance shrinkage approaches (FETPF)
to particle rejuvenation for a synthetic ensemble size of M = 100 and for various values of synthetic anomaly inflation, α, from (39),
with respect to a canonical particle rejuvenation approach for first order ETPF and second order ETPF (denoted ETPF2) for an optimal
rejuvenation factor τ = 0.04. The target covariance is taken to be (42). The baseline error is denoted by the ‘true’ SIR filter.

on the attractor of the canonical Lorenz ’63 model is:

P =




0.8616 0.8618 −0.0148
0.8618 1.1149 −0.0035
−0.0148 −0.0035 1.0234


 , (42)

with condition number 15.88.

Our first round of experiments compares the canonical method of rejuvenation in ETPF and ETPF2 with a rejuvenation

factor of τ = 0.04 in (19) (see Acevedo et al. (2017)) to the stochastic covariance shrinkage technique for both Gaussian and285

Laplace samples. A dynamic ensemble size M = 100, the inflation factors α ∈ {1.0,1.2}, and the target covariance (42) are

used. The baseline error is computed using a sequential importance resampling (SIR) filter with an ensemble of N = 105

particles.

The results for the first round of experiments are shown in Figure 4. From the results, all possible ETPF-based algorithms

seem to converge to the SIR baseline for around N = 100 particles. The differences between the various algorithms only290

become apparent at smaller ensemble sizes. As reported in Acevedo et al. (2017), the second-order accurate ETPF2 performs

better than the standard ETPF.

The FETPF without synthetic inflation performs worse than both the ETPF and ETPF2 for Gaussian synthetic samples, while

it performs better when equipped with Laplacian synthetic samples. When the synthetic samples are inflated with inflation

factor α= 1.2, the FETPF performs significantly better than all other algorithms.295
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Figure 5. Analysis RMSE versus dynamic ensemble size (N ) of the Gaussian (G) and Laplace (L) covariance shrinkage approaches (FETPF)
to particle rejuvenation with the multi-target covariances (43) for a synthetic ensemble size of M = 100 and for various values of synthetic
anomaly inflation (α) with respect to a canonical particle rejuvenation approach for first order ETPF and second order ETPF (denoted ETPF2)
for the rejuvenation factor τ = 0.04. The baseline error is denoted by the ‘true’ SIR filter.

The second round of experiments uses multiple values of the climatological covariance P . The rest of the setup is identical

to the previous experiment. For testing multiple covariances, we run an ETPF with N = 100 with 20,000 evenly spaced state

snapshots over a time interval of 2400 time units and calculate the trace-state normalized forecast covariances. Under a square

Frobenius norm distance, we cluster the empirical covariance matrices of the same ensemble at different times using the k-

means algorithm (Tan et al., 2018) into two clusters. The collection of climatological covariances for the Lorenz ’63 thus300

consists of the centroids of each cluster,

P1 =




0.5017 0.5524 −0.4587
0.5524 1.0731 −0.6723
−0.4587 −0.6723 1.4252


 , P2 =




0.5443 0.6830 0.4330

0.6830 1.2748 0.6318

0.4330 0.6318 1.1808


 , (43)

with condition numbers 13.68 and 16.98 respectively. As can be seen, the clusters are mainly split by the correlation factors of

z with respect to the other variables being positive or negative.

The second round of experiments are reported in Figure 5 using the climatological covariances (43). The analysis of the305

results is largely similar to the previous experiment, with the only difference being that the FETPF with multiple covariances

does not seem to require synthetic inflation. As the covariance chosen depends on the dynamical ensemble, these results

indicate that a more detailed climatological distribution that varies seasonally might induce an even greater decrease in error.

The results empirically show that supplementing the ensemble with additional synthetic information during assimilation is

more effective than randomly perturbing the ensemble post-assimilation, for a small problem. The authors hypothesize that the310
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results point strongly towards the need of intelligently, and adaptively choosing the target covariance matrices, and to the need

for better operational calculation of the covariance shrinkage factor γ.

5.3 Lorenz ’63 parameter search
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Figure 6. Analysis RMSE of the covariance shrinkage approach to particle rejuvenation (FETPF) for different values of the synthetic
ensemble size M and synthetic inflation factor α, and for a dynamical ensemble size of N = 5.

Our third round of experiments with the Lorenz ’63 system seeks to understand the effect of selecting the two free parameters,

i.e., the synthetic ensemble size M and the synthetic ensemble inflation factor α. We keep the dynamic ensemble size to a small315

constant size of N = 5, and vary M in the range [0,200], with α varying in the range [1,1.2].

Figure 6 shows the spatio-temporal RMSEfor various values of M and α, with Gaussian synthetic samples using the single

target matrix (42). The results are not surprising. An increase in the synthetic ensemble size M corresponds to a decrease

in error. Similarly, an increase in the inflation factor also corresponds to a decrease in error. Furthermore the factors are

complementary, meaning that increasing both decreases the error even more significantly.320

An interesting effect is that very large synthetic ensemble sizes are required to correspond to a noticeable decrease in error,

relative to the dimension of the system. This might pose a challenge when this algorithm is utilized without further corrections

such as localization.
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Figure 7. The distribution of the γRBLW parameter for the Lorenz ’63 model. Both Gaussian (27) and Laplace (28) assumptions are used for
the synthetic ensemble, with no synthetic inflation (α= 1).

5.4 Lorenz ’63 γRBLW histograms

Our fourth experiment with the Lorenz ’63 equations looks at the distribution of the values of the shrinkage parameter γRBLW325

from (33) that is obtained through the assimilation procedure. We test with the Gaussian (27) and Laplace (28) on the climato-

logical distribution with no synthetic inflation (39) (α= 1).

Figure 7 shows an approximation to the distributions of γRBLW for several choices of the dynamical ensemble size N with

all other settings kept the same as in the previous experiments. As shown in section 4.1, the shrinkage factor γRBLW tends

towards a distribution that starts resembling a degenerate distribution around zero as N increases. For Gaussian samples, this330

happens in a smooth fashion, but for Laplace samples something interesting occurs. For N = 5, the distribution of γRBLW is

significantly much more significantly skewed towards smaller values, meaning that less confidence is placed in the synthetic

ensemble. While the authors do not see a convincing explanation for this behavior, the effect does explain why the Laplace

distributed synthetic samples were an improvement over Gaussian samples in 5.2.

5.5 Lorenz ’96 model335

For numerical experiments with localization, we use the Lorenz ’96 system (Lorenz, 1996; van Kekem, 2018):

x′
i =−xi−1 (xi−2−xi+1)−xi +F, i= 1, . . . ,40, F = 8. (44)
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with x0 = x40, x−1 = x39, and x41 = x1. The Lorenz ’96 system provides a more challenging medium-dimension assimilation

scenario. We perform 5,000 assimilation steps, but discard the first 500 that are used for spinup. The time interval between

successive observations is ∆t= 0.05. We perform 12 independent runs and take the mean of the results to obtain an accu-340

rate estimate of the expected error. For localization, we take the Gaspari-Cohn decorrelation function with a radius of r = 4

variables.

We test with two observation operators. First, we consider a standard linear observation operator

H(x) = x, (45)

that observes all states with an observation covariance of R= I40. Second, we use the nonlinear observation operator (Asch345

et al., 2016),

H(x) = x

2
◦
[
1+

( |x|
10

)◦(ω−1)
]
, (46)

where ◦ stands for element-wise operations (multiplication and exponentiation, and |·| stands for element-wise absolute value.

that observe all states through a non-linear fashion with the observation covariance R= I40. We set the control parameter to

ω = 5 for a moderately non-linear system.350

5.6 Lorenz ’96 localization results

For the Lorenz ’96 experiments we aim to compare LFETPF to the LETPF, and to the Localized ensemble transform Kalman

filter (LETKF). The matrix P is computed in a similar way as (42) for the Lorenz ’63 Model, and is not shown due to space

limitations. We set the synthetic ensemble size to a constant M = 100 and the synthetic ensemble inflation factor to α= 1.05.

The inflation factor α= 1.05 is also used in the LETKF. We vary the dynamical ensemble size in the range N ∈ [2,20], and355

plot the spatio-temporal analysis RMSE over the time interval after spinup.

For rejuvenation in LETPF multiple values of the rejuvenation factor τ were tried, but none lead to convergence.

For the linear observation operator (45), the results of this experiment can be seen in Figure 8. The proposed LFETPF did

converge, for a dynamical ensemble size of as little as N = 4, however it provides an analysis less accurate than the state-of-

the-art LETKF. The authors believe that this is likely due to the highly Gaussian nature of the problem setup, coupled with the360

inexactness that localization brings.

For the non-linear observation operator (46) the results are plotted in Figure 9. This time, the LFETPF and LETKF are nearly

identical in error, suggesting that the problem setup is highly Gaussian, and can be well-accommodated by synthetic Gaussian

samples.

Methods such as hybrid filters Acevedo et al. (2017) might provide for a happy medium between the LFETPF and the365

LETKF, though the exploration of this idea is outside the scope of this work. The authors believe that these results show great

promise in the applicability of the LFETPF for medium-scale data assimilation workloads.
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Figure 8. For the Lorenz ’96 model with the linear observation operator (45): analysis RMSE versus dynamic ensemble size (N ) of the
Gaussian (G) localized covariance shrinkage approach (LFETPF) to particle rejuvenation for a synthetic ensemble size of M = 100 and for
synthetic anomaly inflation, α= 1.05, versus the LETKF (Hunt et al., 2007) method with inflation α= 1.05.

6 Conclusions

This paper introduces a stochastic covariance shrinkage-based particle rejuvenation technique for the ensemble transport par-

ticle filter. Instead of reweighing existing prior information, the approach incorporates additional prior information into the370

ensemble through the use of synthetic anomalies. These synthetic anomalies are sampled from from any chosen distribution

family, such that they are consistent with the climatological covariance information. Numerical experiments show that the use

of climatological prior information to perform rejuvenation leads to reduced analyses errors for significantly smaller dynam-

ical ensemble sizes than the original rejuvenation approach. Further research includes testing FETPF on higher dimensional

operational problems, which could require large synthetic ensemble sizes. This would need computationally viable sampling375

methods.
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Figure 9. For the Lorenz ’96 model with the nonlinear observation operator (46): analysis RMSE versus dynamic ensemble size (N ) of the
Gaussian (G) localized covariance shrinkage approach (LFETPF) to particle rejuvenation for a synthetic ensemble size of M = 100 and for
synthetic anomaly inflation, α= 1.05, versus the LETKF (Hunt et al., 2007) method with inflation α= 1.05.
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