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Responses to review comments (Reviewer 1)

General comments:
The authors extend their previous research from low-dimensional to a relatively higher di-
mensional problem. They include Lorenz-96 model and a two-layer quasi-geostrophic model
as examples of medium-dimensional problem. The analysis is inferred from (optimized) joint
distribution that couples possibly non-Gaussian probability distributions (PD) of the back-
ground PD with observation PD, which, according to authors, enables formal reduction of
systematic biases. The system is compared to particle filter and stochastic Kalman filter,
with results suggesting the mean squared analysis error can be reduced by 20%-30%. The
manuscript is well written, and the figures are adequate.

Reply: We very much appreciate the reviewer for providing us with constructive feedback.
The feedback helped us to improve the manuscript. In the revised manuscript with the track-
change on, the blue colored text is the updated text in response to the reviewer’s feedback.
Please also find item-by-item replies to the comments as follows.

Comments:

1. Title: Including “high-dimensional” in title is presumptuous in my view. There is a
long way between the dimensions considered here and in the realistic NWP system.
The actual state vector dimensions are 40 for Lorenz-96 and 4,290 for QG model, while
a realistic NWP model deals with a state dimension of the order of 108. This is at
least 5 orders of magnitude larger than QG model. Technically they may be correct by
saying “towards highdimensional” but going from Lorenz-63 with state dimension 3 to
Lorenz-96 with state dimension 40 is hardly an important step towards realistic state
dimension 100,000,000. I suggest using words “moderate” or “intermediate” instead of
“high-dimensional”, or completely changing the title to reflect better the experiments
conducted in the manuscript.

Thank you for this comment. We agree that the Numerical Weather Prediction mod-
els often deal with state dimension in order of hundreds of millions. However, the
goal of this paper is to rather provide a proof of concept on the applicability of the
EnRDA to the high-dimensional problems. It is well known that fully nonlinear data
assimilation (DA) methodologies, such as the widely used particle filter (PF), require
the number of particles to grow exponentially with the state dimension (Snyder et al.,
2008). For example, the necessary ensemble size for a PF increases exponentially from
106 to 1011 when state dimension doubles from 100 to 200 (Snyder et al., 2008). How-
ever, this is not the case with the EnRDA. By applying the EnRDA methodology to
40-dimensional Lorenz-96 and 4290-dimensional Quasi-geostrophic model both with
just 50 ensemble members each, we aimed to demonstrate that the EnRDA method-
ology has the potential to be used in high-dimensional Earth system models without
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significant computational burden. For example, in numerous articles (e.g., Poterjoy,
2016; Penny and Miyoshi, 2016), the authors used the word “high-dimensional”, while
testing the proposed DA methodologies on the 40-dimensional Lorenz-96 dynamical
system. Having said that, in response we changed the title to “ Ensemble Riemannian
Data Assimilation: Towards Large-Scale Dynamical Systems”. We are open to any
suggestion from the reviewer as well. At the same time, we have updated the text to
made this clear in the introduction that there is still a long way to make this approach
available for large-scale Earth system models. Please see lines 70–72.

2. Multivariate aspect: All problems considered in this (and previous) manuscript are
univariate. This clearly reduces the complexity of the problem and does not address
the possibility of extending this methodology to more realistic situation. Unless the
authors want to include multivariate experiments and results, they should clearly state
these systems are univariate and elaborate on potential difficulties of applying the
system to multivariate problems.

Thank you for this comment. A possible solution to this problem can be obtained
by rather utilizing the Mahalanobis or the weighted Euclidean distance (Olver et al.,
2006, p.133) in lieu of the Euclidean distance in the ground transportation cost matrix

{C̃ ∈ RM×N : c̃ij = ||xi − yj||2T−1}, where T ∈ RM×N represents a covariance ma-
trix that allows cross-dimensional penalization of the mismatch between multivariate
representation of the state space. Future research is needed to test such an extension
of the ground cost matrix on DA problems. Please see lines 389–393, where we have
updated the text in response to this feedback.

3. Non-Gaussian probability distribution of errors: Although authors imply throughout
the manuscript that the presented methodology is suitable for non-Gaussian errors,
they use only Gaussian probability distribution in the Lorenz-96 and QG-model ex-
periments (e.g., p.14, L.324-326; p.5, L.142; p.16, L.354-355, etc). I believe that in-
cluding experiments with skewed non-Gaussian probability distributions, such as Log-
normal, Gamma, or Beta, would strengthen the authors’ arguments and improve the
presentation of the new method. Skewed distributions would automatically address
the systematic bias and non-Gaussian errors. If the authors would like to postpone
such experiments for the future, that is okay, but they need to clearly state this as a
limitation of the current experimental setup.

We appreciate the comment. We would like to clarify that by non-Gaussianity through-
out the manuscript, we were referring to the non-Gaussian distribution of the prior,
posterior and observations, and not necessarily the associated errors. Please see lines
68–70. It is known that any nonlinear dynamics, such as Lorenz-63, would result
in a non-Gaussian distribution of the state regardless of the error distribution (Boc-
quet et al., 2010). However, we agree that an additional implementation of the En-
RDA under the presence of non-Gaussian observation errors will enrich the presenta-
tion. Therefore, we have conducted additional DA experimentation using an additive
Laplace-distributed observation error similar to the study conducted by Lei and Bickel
(2011); Spantini et al. (2019). Please note that using non-symmetric distributions
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(e.g., gamma), for representation of errors, renders the classic DA such as EnKF sub-
optimal and does not let us to have a level field for comparing EnRDA with classic
methods, which are minimum mean squared estimator under Gaussian error. Please
see lines 285–289 and 352–355 (new version) where we have added the details of the
experimentation (also copied below for convenience).

To further test the efficiency of EnRDA, another configuration of the Lorenz-96 is
implemented using a Laplace-distributed observation error at each assimilation interval
of 10∆t with variance σ2

obs = 2 (Lei and Bickel, 2011; Spantini et al., 2019). Similar
to the setting implemented earlier in the case of Gaussian observation error, 50 (5000)
ensemble members (particles) for the SEnKF and EnRDA (PF) are generated. On
average, the EnRDA reduces the rmse by 26% (47%) compared to the SEnKF (PF)
using 50 random realizations.

4. I feel that possible benefits of bias correction in SEnKF have not been sufficiently
explored to make a more realistic comparison between the experiments. While the
authors acknowledge this, I think implementing some basic bias correction methodology
(e.g., moving average etc) in SEnKF would make the strength of EnRDA method
clearer.

Thank you. We agree that adding a bias correction to SEnKF or PF will enrich
the paper. However, currently the message is that unlike the Euclidean distance, the
Wasserstein metric is geodesic and can naturally account for the mismatch between
all moments of two probability distributions and thus can correct for systematic biases
without any ad hoc bias correction methodologies. Future research can be devoted to
comparing bias corrected SEnKF/PF with the DA over Wasserstein space. Please see
lines 374–376, where we addressed this comment.

5. p.1, L. 11: Although in NWP practice DA is mostly about optimizing the initial
conditions, I do not agree that DA “science” is only about initial conditions: it is
about estimating the probability Density Function (PDF) or its discrete equivalent
(e.g., probability mass function). I am not requesting this, only suggesting.

We appreciate the feedback. Looking at the geophysical forecast models as an initial
value problem, the goal of DA (Kalnay, 2003, p.12) is to reduce uncertainty of geophys-
ical forecasts by improving the initial condition of the geophysical models. Certainly
we agree with the reviewer that in a much broader sense, DA falls into a larger group
of class of methodologies for optimal estimation of the probability distribution of the
state given observations and previous time model forecasts. Please see the lines 10–12
where we have updated the text to address this.

6. p.1, L.14-15: Not sure that Is DA formulation is a “penalization of second-order statis-
tics”? It is a penalization of the cost function, which defines weighted (Euclidian)
distances, as authors mention. However not sure why/how a penalization of (Euclid-
ian) distances is a “penalization of second-order statistics” as it could be implied from
text. Please explain.

Thank you for this comment. The text should read “penalization based on second-
order statistics of error”. The cost function is comprised of the weighted Euclidean
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distances with respective inverse of the error covariance matrices (second-order error
statistics). Indeed, if we assume that the error covariance matrices are diagonal, we
are minimizing sum of squared error or variance of the analysis error. Please see the
updated text in lines 12–16.

7. p.9, L.220: the model error term omega-t has zero bias (p.8, L.213). Why is there a
systematic error in prediction? Please explain.

The systematic error in our DA experiments for Lorenz-96 is introduced through an
incorrect model forcing of Fm = 6 (instead of the true model forcing F = 8) as noted
in lines 215–216 (old version) and 220–221 (revised version).

8. p.13, L. 318; p.14, L.325: “heteroscedastic” implies that variance (second-order feature)
depends on the point. However, systematic bias is a first order feature. Please explain.

We agree with the reviewer’s comment that the heteroscedasticity and bias are different-
order features. By heteroscedastic biased Gaussian noise (line 318 and 325 (old ver-
sion)), we meant a Gaussian noise which has a pre-specified bias and a variance that
changes depending on the magnitude of the state variable at that particular instance
of time. We have modified the text to improve readability, please see the revised text
in lines 328–329.

We would like to take this opportunity and once gain thank you for taking the time and
providing us a thorough review of the manuscript. We did our best to incorporate your
comments into the new revision. We hope that the replies and changes we made in the
manuscript meet your expectations.
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Responses to review comments (Reviewer 2)

The authors extend their recent work on Ensemble Riemannian Data Assimilation (En-
RDA) to high-dimensional systems. Specifically, “high” here refers to a dimension size where
optimal mass transport (OMT) would become computationally intractable using standard
approaches with OMT to approximate the resulting probability distributions. The numer-
ical experiments considered have DA test problems with dimensions of 40 and 4290, and
each uses 50 ensemble members for the EnRDA implementation. The EnRDA results in the
numerical experiments demonstrate an improvement over a stochastic EnKF when both are
applied to DA test problems that are constructed to have strong systematic bias.

This paper is clear and well written. In particular I commend the authors for their nice
introduction to OMT which will be accessible to readers familiar with DA, but not with
OMT.

Reply: We very much appreciate positive review feedback and comments on the
manuscript. We have included a track-change color coded version in which red colored text
is the updated text in response to the reviewer’s feedback. Please also find item-by-item
replies to your comments as follows.

I think the word “towards” in the title demands a more extensive “Summary and Con-
cluding Remarks” section. Clearly the issue of OMT’s need to observe all dimensions is
a serious challenge for EnRDA to be applied to assimilate real data into high-dimensional
models. Although you do discuss this, the discussion is rather brief. Further, for systems
of dimensions 106 − 108, it seems that for EnRDA to be applied, some kind of dimension
reduction would have to be introduced. How might EnRDA and dimension reduction work
together? What are the challenges? A paragraph or two thinking about what might be tried
on this front would be useful.

Thank you for this comment. One of the major advantages of the EnRDA is that un-
like the fully-nonlinear data assimilation (DA) methodologies, such as the particle filter
(PF), the computational complexity does not scale exponentially with the dimension of the
problem. We utilized the same ensemble size of 50 for both 40-dimensional Lorenz-96 and
4290-dimensional Quasi-geostrophic model and consistently performed better than both PF
and stochastic Ensemble Kalman filter. We aimed to present this as a proof of concept and
certainly further research is needed to expand the approach to large-scale Earth system mod-
els. We also share your view that conducting a dimensionality reduction prior to EnRDA
is a great idea and needs to be addressed in future research efforts. Please see the added
paragraph in lines 394–399 in Conclusion Section.
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Minor comments:

1. Would M and N typically be different in practice? For presentation, it totally makes
sense to keep them distinct. Yet if M=N in practice for EnRDA, you might want to
mention this explicitly to the reader.

Thank you for this comment. The EnRDA methodology allows M and N to be dif-
ferent, however, one can also choose them equal based on the problem at hand. The
optimal transportation plan matrixU can therefore, be a rectangular matrix. However,
since the computational cost of the EnRDA methodology is tied to the size of U, M
and N needs to be chosen to adjust the trade-off between accuracy and computational
cost. Please see lines 167–169 where we have responded to this feedback in the text.

2. There seems to be a word missing on line 255, “..enables to obtain”.

Thank you for this comment. We have corrected the typo.

Once again, we would like to take this opportunity and thank the reviewer for providing us
constructive feedback. The feedback helped us to improve the presentation and readership
of the manuscript.
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