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Abstract.

We pursue a simplified stochastic representation of smaller scale convective activity conditioned on large scale dynamics in
the atmosphere. For identifying a Bayesian model describing the relation of different scales we use a probabilistic approach
by Gerber and Horenko (2017) called Direct Bayesian Model Reduction (DBMR). This is a Bayesian relation model between
categorical processes (discrete states), formulated via the conditional probabilities. The convective available potential energy
(CAPE) is applied as large scale flow variable combined with a subgrid smaller scale time series for the vertical velocity. We
found a probabilistic relation of CAPE and vertical up- and downdraft for day and night. This strategy is part of a development
process for parametrizations in models of atmospheric dynamics representing the effective influence of unresolved vertical
motion on the large scale flows. The direct probabilistic approach provides a basis for further research on smaller scale

convective activity conditioned on other possible large scale drivers.

1 Introduction

Complex dynamical processes involving scaling cascades are omnipresent in natural science. Such processes feature different
characteristic scales. The smallest and largest scales are far apart and much of the scale range is involved by scale interactions.
Dynamics in the atmosphere take place across a large range of time- and length scales, from micro-seconds to months and
lengths from 1075 to 10 m. For processes of spatial scale above several kilometers, geostrophic and hydrostatic equilibria
induce a spatial-temporal separation of scales; see Klein (2010). Thunderstorms last a few tens of minutes for example, whereas
hurricanes may last for days. Medium-range weather forecasts are made up to 10 days in advance. Predictions of convection
further in advance cannot be deterministic and are highly uncertain because errors of the variable on small scale at the initial
state are growing.

A new perspective for for weather and climate models came from stochastic parameterizations that represent the small scale
effects of convection on the large-scale dynamics; see Berner et al. (2017); Franzke et al. (2015). For instance, Gottwald et
al Gottwald et al. (2016) parametrize in the tropics convective area fraction conditioned on large scale vertical velocity. Also,
many data-driven approaches consider stochastic parametrization methodologies involving the convective available potential

energy (CAPE) as large scale driver for convection; see Khouider et al. (2010); Dorrestijn et al. (2013a, b). Their approaches
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need high computing capacities and the costs to process large quantities of data can become a limiting factor. Some statistical
analyses of atmospheric dynamics simulations requires dimensionality reduction techniques which yield applicable reduced
models; e.g. Horenko (2008). One way is the Empirical orthogonal function (EOF) analysis which is a tool for data compression
and dimensionality reduction used in meteorology. Since its introduction by Lorenz (1956), EOF analysis—also known as
principal component analysis (PCA) or proper orthogonal decomposition (POD)—has become an important statistical tool
in atmosphere science. For example in Horenko et al. (2008) different sets of EOFs are used for a reduced representation
of meteorological data. Other examples for reduced approximation in terms of relation matrices are covariance matrices
(Scholkopf et al., 1997; Jolliffe, 2003), partial autocorrelation matrices of autoregressive processes (Schmid, 2010), Gaussian
distance kernel matrices (Donoho and Grimes, 2003; Coifman et al., 2005), Laplacian matrices as in the case of spectral
clustering methods for graphs (Von Luxburg, 2007), adjacency matrices in community identification methods for networks
(Zhao et al., 2012); see Gerber and Horenko (2017). A recent algorithmic framework called Direct Bayesian Model Reduction
(DBMR) provides a computationally scalable probability-preserving identification of reduced models and latent states directly
from the data; see Gerber and Horenko (2017); Gerber et al. (2018). The method constructs a directly low-rank transition
matrix, reducing numerical effort and estimation error due to finite data. The approach does not require a distributional
assumption but works instead with a discretized state vector. Our aim is the development of a model combining the deterministic
large scale atmospheric flow with a conceptual stochastic description of small scale convection. Towards this goal, we develop
a conceptual categorical description for smaller scale vertical velocity, which is linked to a large scale flow variable. The
probabilistic description is proposed using DBMR. This Bayesian relation model between large scale and smaller scales
can be formulated categorically via a conditional probabilities in the law of total probability. Various energetic variables are
applicable on large scale. Other potential large scale variables driving the smaller scale stochastics besides CAPE are the
Dynamic State Index (DSI) in Miiller et al. (2020) and Miiller and Névir (2019), available moisture, or vertical wind shear.
The DSI is a scalar diagnostic field that quantifies local deviations from a steady and adiabatic wind solution and thus indicates
non-stationarity as well as diabaticity.

The paper is structured as follows: In Sect. 2 the mathematical methodology of DBMR is presented. Afterwards, in Sect. 3
the set-up for a reduced model in the atmosphere is described. In Sect. 4 the results are discussed with regard to atmospheric
dynamics. Finally, in the conclusion the results and future work towards the direct Bayesian model reduction of smaller scale

convective activity conditioned on large scale dynamics are formulated.

2 Mathematical methodology

Our aim is to study and understand a stochastic relation between two variables X and Y that can take values from two finite
sets. The sets of both variables can be different, as we discuss in our meteorological applications. We assume that the proba-
bilistic dependence of Y on X is time-independent. Whether X; and Y; as t-parametrized stochastic processes are themselves
stationary does not play a role here. The categorical random variables X and Y will later on encode quantitative informa-

tion of the atmosphere on different spatial scales. We will review a novel computational framework for the estimation of a
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reduced (low-rank) Bayesian model from data. This method is called Direct Bayesian Model Reduction (DBMR). Direct refers
to a directly low-rank estimation which is useful for the identification of reduced models, yielding thereby an advantageous

estimation error, especially if data is not abundant; see Gerber and Horenko (2017).
2.1 Full Bayesian model formulation

We are interested in modeling the probabilistic relationship of two potentially random quantities, X and Y. For us, it will be
only relevant that Y is a random function of X—randomness of X itself is irrelevant. Since the observations typically arise as
time series, we consider X and Y as processes X (¢) and Y (¢) with time ¢, however ¢ can denote any parameter ordering the
realizations of the process. We will consider the case where X and Y can only attain a finite number of values, such that we
call the processes discrete-state or categorical. Say, Y () is taking one of the possible values from m categories {y1,y2, .., Ym }
and X (t) from the n categories {z1,%2,...,2, }. The central quantity of interest describing the relationship of X and Y is the

m X n matrix of conditional probabilities, also called transition matrix,

PY=y|[X=a1] - PY=uy|X=u,]
Am 3 ; | 1)

Note that A is a column-stochastic matrix. In practical studies, when the A; ; are estimated from the available observations of

X and Y one needs to guarantee that the data is acceptably randomised; see Holland (1986). We will assume that

Law|[Y (t) | X(1),X(2),...] = Law [Y'(£) | X(1)], @)
i.e., given the input X (¢), the distribution of the output Y (¢) is independent of the other inputs.

2.2 Maximum likelihood approach

Typically, the transition matrix A is not directly available and can only be estimated from observed data. Let S be the number

of observation pairs for the categorical processes X and Y, such that the following observational data is available:
XY ={X(1),X(2),....X(5),Y(1),Y(2),...Y(S)}, 3)

where X () € {z1,...,xn}and Y (¢) € {y1,...,ym}. as above. Given XY, it is reasonable to search for the A for which the to-
tal probability of obtaining the particular sequences of observations (3) is maximized. By the independence assumption (2), the
likelihood of a matrix A of conditional probabilities—i.e., the probability of observing the data if the conditional probabilities
were given by A—is given by

PIXY[A] o [TT]PD =i | X =™ @

i=1j=1

=A;;



85

90

95

100

105

110

where NN;; is the total number of instances in the data when (X (t),Y (t)) = (x;,y;). The optimum can be more easily com-

puted if one considers the log-likelihood log(P[XY | A]) = >712, >0 NjjlogA;j, with which we arrive at the maximum

likelihood problem
A* = argmax g g NijlogAsj; p, such that A;; >0, E Ay =1 5)
A — £ 5
Z:lj:l 1=1

The optimal solution of that constrained optimisation problem can be determined analytically (Gerber and Horenko, 2017),

resulting in the empirical frequency estimator:

N
Af = i
YN

Since we merely have a finite amount of observation at hand, it is essential to be aware of the uncertainty of the statistical

(6)

estimate (6). While we refer the reader interested in exact bounds to Gerber and Horenko (2017, Supplement, Eq. (14)), an
intuition can be gained as follows. To estimate each A;; to a sufficient (statistical) accuracy, the transitions N;; should be, on
average, numerous. As there are nm parameters in A to estimate, this asks for the sample size S to be reasonably large as
compared to nm. In practice, this can be problematic if n and m are large. Thus, next we will discuss a modification of the

above method that can mitigate this problem.
2.3 Model reduction to latent states

In numerous situations the apparent complexity of our observations is an artefact of our measurement procedure, and there are
low-dimensional features that govern the process at hand. Thus, even if we would be able to find a full matrix A of conditional
probabilities, the ultimate goal would be to reduce this through such low-dimensional features.

The following approach, proposed by Gerber and Horenko (2017), achieves both estimation and reduction in one step.
We assume that the output depends on the input through a latent variable Z, which can merely take a small number K <

min{n,m} of different states {z1,...,zx }. In terms of probabilistic influences, we assume the structure

x5z My, )
where A\, I" are matrices of conditional probabilities,

ij:IP’[Z:zHX:ij )\ik:IP’[Y:yi|Z:zk]. 8)

We also assume conditional independence of Y on X given Z, that is, the input-output conditional probability matrix A
satisfies A = AL'. Note that we can interpret I';; as an affiliation of input category x; to the latent state zj, see Fig. 1.

The task is now to determine the pair of column-stochastic matrices (A,I") from the observation data XY, as given in (3).
Again, we wish to solve the problem with a maximum-likelihood approach, which would require solving (5) with replacing

A;; by (AT');; and the constraints by requiring A and I' being stochastic matrices. This, however, is a computationally hard
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Figure 1. Introduction of intermediate latent states in DBMR for efficient and scalable estimation of A

optimization problem, which in Gerber and Horenko (2017) relax to

m n K
(A1) =argmaxd > > NijTejlog {Nir} ©

i=1j=1k=1

subject to

m K
Ak =0, Y Ap=1,  Tp>0,) Tyy=1 (10)
i=1 k=1

While (9) produces suboptimal estimates, its advantage comes from the fact that it is concave in both variables A and T,
respectively, allowing for a very simple alternating maximization as optimization procedure; see Gerber and Horenko (2017).
The resulting algorithm is DBMR. Moreover, the method yields I';; € {0,1}, i.e., the original input categories are assigned
to the reduced system’s (latent) categories in a deterministic fashion (no “fuzzyness” in the affiliations). The binary nature is
a property of the optimal solution; see Gerber and Horenko (2017). Of course, the number K of latent states is not known in
advance, and has to be chosen judiciously by compromising between “expressiveness” (the likelihood of the model, i.e., the
optimal value in (9)) and “effort” (the number of total parameters to be estimated and their statistical error). This can be done
comparing multiple DBMR runs with different K.

The obtained models are also less subject to overfitting issues and are more advantageous in terms of the model quality
measures (Gerber and Horenko, 2017; Gerber et al., 2018). This is expressed in the variance of the estimated parameter
Af., which shows a K/n-times smaller uncertainty than A;;; see Gerber and Horenko (2017, Theorem and eqn. [7]). Again,
intuitively this advantage of DBMR over the full model (6) can be seen by noting that from the same amount of data DBMR

only needs to estimate k(n 4+ m) parameters, while the full model nm parameters.
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Let us emphasize that additionally to all the computational advantages of DBMR that allow it to work with large data sets,
its conceptual strength is that it combines model estimation and model reduction in one step. The latent states often have a

physical meaning—a property that we shall focus on in our application.

3 Meteorological data processing

To apply DBMR, a quantization of the input and output processes into categories has to be performed. First, we discuss the
choice of meteorological variables and scales in view of the categorical processes. As input we use a variable related to large
scale atmospheric flow: Convective Available Potential Energy (CAPE), a measure for the energy an air parcel would gain if

lifted to a specific height in the atmosphere.
3.1 Scales, variables and data preprocessing

CAPE can be seen as a measure for atmospheric stability, first suggested by Weisman and Klemp (1982). It is defined by

ZET

C’APE:g/

ZLFC

6.—0

dz, Y

where 6. is the pseudopotential temperature of the ascending air parcel, 6 is the potential temperature of the surrounding air, and
zrrc 1s the so-called Level of Free Convection (LFC). The LFC is the height at which the rising air parcel becomes significantly
warmer than its environment; zgr denotes the height, where the rising air parcel has the same temperature as its environment
(ET stands for equal temperature). Thus, regarding its definition (11), CAPE becomes large if the temperature difference
between the rising air and the environmental air is large; see Bott (2016, p. 431 ff). For positive CAPE, this difference must
be positive. CAPE is determined by the layer thickness between the starting and ending points in space (height) and by the
integrand in (11). Boundary conditions can vary. 6 can be a function of z, it depends on the difference between the heights and
the potential temperature. As an integral, CAPE is a global variable that we consider as representative variable on the larger
scale. To capture convective activity, characterized by strong up- and downdrafts, on the smaller scale, we regard the vertical

velocity. Parcel theory predicts
2

CAPE ~ % (12)
where w4, 1S the maximum vertical motion in the dimension m/s expected from the release of CAPE in the dimension J/kg;
see Dutton (1976). The relation in Eq. (12) is a kinetic description of a potential which does not have to be released to vertical
updraft. Moncrieff and Miller (1976) were the first to use the term CAPE. The USAF Air Weather Service (which changed
its name to the Air Force Weather Agency in 1997) simply called it positive area; see Blanchard (1998). Fritsch and Chappell
(1980) called it potential buoyant energy (PBE), while variations of this include +BE and net positive buoyant energy. Despite
the abundance of names, it now appears that CAPE is the de facto standard terminology. In Kirkpatrick et al. (2009) over 200
convective storm simulations are analyzed to examine the variability in storm vertical velocity and updraft area characteristics

as a function of basic environmental parameter CAPE.
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For our studies, the COSMO-REAG reanalysis data set is used; see Bollmeyer et al. (2015). This reanalysis is based on
the non-hydrostatic numerical weather prediction model COSMO (COnsortium for Small scale MOdelling) by the German
Meteorological Service (Deutscher Wetterdienst, DWD) using a continuous nudging scheme. It has a horizontal resolution of
6 km and 40 vertical layers; see Bollmeyer et al. (2015). Since we focus on smaller scale convective events conditioned on
large scale dynamics in the atmosphere, we consider the summer months July and August in the years 1995 to 2015. The
summer months are predestinated for convective events. The months from May to August are possible. We only worked with
two months in order not to have too much data. For our analysis the raw data are hourly REA6 data. We first computed CAPE
as REAG variable and then averaged for the respective spatial scale to 12 hours means. The sample size of the reanalysis
data set used in Sect. 2.2 sums up to S = 1302 (2 x 31 x 21). Moreover, REA6 data is available for Germany. In order to
focus our method we started at the top left with the first quadrant; see Fig. 2. Here we expect the relatively flat surface in
the north of Germany to be more homogeneous and different from the pre-alpine southern regions with forced uplifting. The
top left quadrant is bounded by the [45.2° N to 54.7°N, 5.8°E to 15.3° E] and shown in Fig. 2. The Northwest coordinate
is [5.8°F; 54.7°N] and the Southeast coordinate is [15.3° F; 45.2° N]. As vertical layer the 600 hPa surface is considered,

because here the latent heat release takes place and the vertical velocity reaches its maximum; see Miiller et al. (2020).
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Figure 2. REA6 domain that covers Germany consisting of grid boxes 1 to 4; Grid box 1 is applied on the large scale for DBMR and is of
approximately 500 km x 500 km. Image credit of the map: US Geological Survey (USGS).
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3.1.1 Filtering CAPE and vertical velocity

We used the term ‘domain’ for the total region we considered in Fig. 2, ‘quadrant’ for the respective quarters on large scale
of it, and ‘grid boxes’ for the other partitions of the domain on smaller scales. For the large scale, the domain that covers
Germany in Fig. 2 is divided into four 500 km x 500km quadrants. For smaller scales, the quadrants are refined in a,, grid

boxes of different sizes; see Tab. 1.

#Grid boxes a,, | Edge length

=1 1000 km
22 =4 500 km
4> =16 250 km
6% =36 167 km
8% =64 125 km
10% = 100 100 km
122 =144 83 km
16% = 256 63 km
322 = 1024 31 km
642 = 4096 15 km

Table 1. Number of grid boxes a,, and edge length for box discretization of the atmosphere from large synoptic scale (1000 km) across

intermediate scales up to meso-gamma scale with convective activity (2 — 20 km)

3.2 CAPE and vertical velocity as in- and output data

According to the meteorological data described in Sect. 3.1, we will set up applicable categories for in- and output. CAPE
plays the role of an input variable X as defined in Sect. 2, describing the potential for convection. The spatial arithmetic mean
of each of the 500 km x 500 km quadrants such that we obtain one CAPE value for each quadrant as the large scale atmospheric
driver. With energy units, CAPE has a non-negative range of values. The model’s output variable Y is vertical velocity obtained
on a smaller scale. Here, Y can take positive and negative values for updrafts and downdrafts, respectively. We average over

250km x 250km to 15km x 15km according to Tab. 1.
3.2.1 Categorical input

We consider the range of values for CAPE (X) and generate n categories by {x € X; | b;j—1 <z < b; }. For the category
boundaries b;, we consider the following spaced option in probability using empirical 1/n-quantiles as category boundaries
b;. This categorization has the advantage of (almost) equally populated categories. The resulting n categories are denoted by

integers 1,...,n. The chosen categorization depends on the amount of available data. We varied input numbers and choose n =
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10 by subjective physical plausibility. In Sect. 3.1 we set up the meteorological data with a size of the observational data S =

1302. That means we have about 130 data points in each CAPE category.
3.2.2 Categorical output

We map vertical velocities w; at grid box ¢ on a variable Y; € {1,2,3} as
— updraft for Y; =1, if w; > ao,
— nodraft forY; =2, ifa; <w; < asg,
— downdraft for Y; = 3, if w; < ay,

(a1,a2) € R? define a potentially asymmetric interval around zero vertical velocity which we consider as neutral, with a; < 0
and ay > 0. The predefinition of ‘updraft’, ‘downdraft’, ‘no draft’ determines whether there is convection and, if so, how it is
directed (upwards or possibly downwards). The choice of (a1,a2) depends on the scale of the box where Y is averaged over.
In Sect. 4.1 the choice of the interval for our analysis is described. Once this discretization is made, the final output categories
needed can be set up. Let Y;(¢) be the discretized vertical velocities at time ¢ with 1 < ¢ < a,,, numbering the grid boxes on

the corresponding scale, see Tab. 1. We define the following categorical process
V() = (#{Yi(t) =1} #{Yi(t) = 2} #{Yi(t) = 3}) € W, (13)

with #{Y; = k} being the number of grid boxes with vertical velocity mapped onto k € {1,2,3}. Note that 2‘2:1 #{Y, =
k} = m, the number of grid boxes. There are exactly (a,, +1)? ways to decompose a.,, into the (ordered) sum of 3 nonnegative
numbers, thus the number of actually occurring categories ny < (an, +1)?. In DBMR, the numbers of actually occurring
categories are counted. These numbers have impact on the probability distribution of the categories for input and output. We
try to conclude down- and updraft behavior from the Y(t), i.e. the distribution of up- and downdrafts. Note that we have in this
experiment no information on the (spatial) structure, as the category in (13) is a triple of numbers for counts of down-, updraft

and low vertical velocity.
3.2.3 Interval for vertical draft

12h mean data for day and night serve as basis for determining the interval for vertical draft which was chosen symmetrically
with interval limits a; = —0.0048m/s and a5 = 0.0048m/s. In Fig. 3, the histogram of mean vertical velocities for a resolution
of 125km is shown together with the interval that defines the ‘no draft’ category. For the application of DBMR the data for day

and night are split up and will be applied separately with the same interval for vertical velocity.
3.3 Reliability and assessment of performance

The model reduction is a consequence of using the affiliation matrix I', which assigns the n large scale categories to K <n

latent states. In the frame of DBMR we optimize a relaxed log-likelihood, cf. (9). We ran DBMR 100 times (with random
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Figure 3. Histogram of spatial mean vertical velocities for day and night for a resolution of 125 km (64 grid boxes on small scale) is
presented; The red vertical lines show the interval for vertical velocity which was selected on the basis of the 75th-percentile of the data set.

The sample size of the 12h mean data set for day and night sums up to 25 = 2604.

initializations) for every fixed number K of latent states. For each K, the run with the maximum log-likelihood is presented.
We also evaluate the exact log-likelihood, as in Eq. (5) which refers to the case without latent states. A in Eq. (5) was replaced
by AI' to compute the likelihood of the reduced model. Fig. 4 shows the exact in blue and the relaxed log-likelihood in red, both
for the reduced problem, i.e., the one with latent states. The only parameter in the algorithmic procedure introduced above is
the reduced process dimension K for the number of latent states. It can be chosen by comparing results for different X and
selecting the best reduced model according to one of the standard model selection criteria (Cross-validation with a performance
criterion, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) or L curve approach). For an attempt for
model selection, the largest increase in log-likelihood can be found by increasing K = 2 to K = 3, for K = 6, the maximum
value has been reached. Note that as n = 10, choosing K = 10 presents no model reduction. In view of uncertainties and biases
for parameterization vertical velocity can be hard to measure and is likely to be biased in reanalyses. We work with discretize
vertical velocity and thus with a less precise variable. This makes the problem of uncertainty and bias less relevant but is
definitively not a relief. In a stochastic model for the updraft which is to be developed, one can think of including an additional
parameter as factor to the vertical velocity to allow for a tuning with respect to the effect generated by the modelled updraft.

Although quantification of model performance is possible here using, e.g., a cross validation study given an adequate score

10
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Figure 4. Exact log-likelihood value as in (5) (blue) and relaxed log-likelihood value as in (9) (red) of the reduced Bayesian model estimated

by DBMR with K latent states for day for a resolution of 125 km (64 grid boxes on small scale).

of interest, it is probably not very helpful at this stage. We consider our study rather as a proof-of-concept ideally preparing
grounds for a stochastic model for vertical movement to be inserted into a circulation model. Usefulness should be evaluated
then in terms of circulation model simulations. Further work is required to give the latent states a meteorological meaning in

the sense of circulation weather types, regarding all seasons separately.

4 Reduced model for convective activity

4.1 Dynamics separated by day and night

4.1.1 Affiliation to latent states

In Fig. 5 the boxplots show the 12h averaged CAPE data (spatially averaged over the Northwest quadrant of the COSMO-REA6
data) which is assigned to the latent states ‘High’ and ‘Low’ on the left and right of each of the two top panels, respectively.
The left panel shows the ‘Day’ data and the right panel the ‘Night’ data. On each box, the central mark indicates the median,
and the bottom and top edges of the box indicate the 25th and 75th percentiles of the 10 CAPE categories. The 25th percentiles

of the distributions shown for the "High’ latent states overlap the 75th percentiles of distributions shown for the ‘Low’ latent

11
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states. The first latent state includes 5 (for day) and 4 (at night) CAPE categories with ‘High’ values. Five (for day) and 6 (at
night) categories are affiliated to the second latent state, which is denoted with ‘Low’. The structure of the affiliation I'* in
(9) is assigned by minimizing information entropy (the likelihood bound). The question of how the latent states are defined
and what criterion are the affiliations based on, we emphasize that the latent states are found by the algorithm itself. During
daytime the categories reach values up to 386 J/kg, whereas at night the values have a range of 343 J/kg due to less convective
activity; see boxplots in Fig. 5. The affiliations to the latent states have no gaps for day and night. That means the latent states
are separate from each other. The choice of the spatial scale for the categorical output will influence the latent states identified
by the DBMR. The difference between the scales is small (375 km) with 500 km step size on large scale and 125 km step size
on the smaller scale. The scale jump is of factor 4 on the basis of the small scale. The results for three latent states are shown in
Appendix A. There is a third latent state which represents ‘Mean’ CAPE categories; see Fig. Al. In the following, the output
of the DBMR is discussed.

4.1.2 Distributions conditioned on latent states

We discuss probability distributions conditioned on the resulting latent states introduced in Sect. 2.3 in two ways:
- Law[X | Z] gives the distribution of CAPE X within a latent state Z,

- Law[#1,#3 | Z] gives the joint probability distribution of number of grid points with positive and negative vertical
velocity. For updraft, #1 denotes #{Y; = 1} and for downdraft, #3 denotes #{Y; = 3}.

The missing number of neutral grid points #{Y; = 2} follows from #2 = m—#1—#3 with m denoting the total number of
grid points. In order to visualize the probabilities of the small scale conditioned on the latent states of the large scale variable,
the entries of the A matrix in (9) will be displayed dependent on the number of down- and updrafts. In Fig. 6, K = 2 bivariate
histograms are shown for day and night respectively. Here the conditional probabilities of matrix A are displayed for every
latent state dependent on the number of up- and downdrafts (#1 and #3). Since the number of smaller-scale boxes is a,,, only
the lower triangle below the diagonal corresponds to categories. Categories not populated by data are not shown (white). We
noticed that in case the interval for vertical draft in Sect. 4.1 are increased, fewer data points are in the classifications for the
up- and downdrafts (i.e. smaller numbers #1 and #3 change lower triangular probability matrices of Fig. 6). A comparison of
different sizes of intervals for vertical draft is not shown here. Increasing the interval makes less up-/downdrafts, thus moving
probability mass away from the diagonal, where large fractions of up-/downdrafts are sitting. In Fig. 6 the results are shown
for a 4 x 4 grid, that means we have 16 grid boxes with vertical velocities. In the histograms the numbers of up- and downdraft
range from O to 16. Variable Z; represents the latent state ‘High’, latent state Z, the state ‘Low’, as in Fig. 5. The latent states
are stochastically disaggregated in probabilities which describe the chance of number of up- and downdrafts conditioned on
the latent states ‘High’ and ‘Low’. In the top left panel (Z1, day) of Fig. 6 probability adds up for numbers of updrafts below
10 to 81 %. In the top right panel, much of the probability mass is allocated to states with no downdraft, and little updraft. For
Law [#1,#3 | Z2] in the bottom left panel for the day, high conditional probabilities P[#1, #3 | Z2] concentrate in categories
with many boxes with downdraft. Here the probability of numbers of downdrafts of 6 to 16 is 68%. At night in the latent

12
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Figure 5. Top: Boxplots show the 12h averaged CAPE data which is affiliated to the latent states ‘High’ and ‘Low’. The left boxplot presents

‘Day’ data and the right panel the ‘Night’ data; Bottom: Affiliation of CAPE categories to the latent states; CAPE data is spatially averaged

over the Northwest quadrant of the COSMO-REAG6 data and the vertical velocity is averaged for a box discretization of 64 grid boxes; see

Tab. 1.
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state Z5, we observe that a low number of updraft boxes is likely, while the overall up- and downdraft activity seems to be the

least probable here (probability concentrating around (#1, #3) ~ (0,0)). In the bottom left panel (Z5, night) the probability

is accumulated to 82% for the number of updrafts between 0 and 4.
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Figure 6. Histograms show probabilities of numbers of updrafts (#1) and downdrafts (#3) conditioned on latent states ‘High’ (top) and
‘Low’ (bottom); The left histograms present ‘Day’ data and the right histograms the ‘Night’ data; CAPE and vertical velocity data correspond

to the data applied in Fig. 5.
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4.1.3 Output on smaller scale

Note that the number of possible output categories Y scales quadratically with the number m of grid points considered on the
smaller scale. Moving towards the convective scale, m increases, and so does the number of possible output categories, yet the
number of data points (1302) stays the same. To avoid the resulting increase of estimation error, we further reduce the number
of output categories by dividing the respective numbers for up- and downdraft into 3 sections, which leaves 6 categories. We
use 15km x 15km grid boxes on convective scale for the output of DBMR. The large scale remains unchanged compared to
the previous example. In Fig. 7 the distribution of CAPE in terms of latent states based on kernel density estimation (KDE) is
shown. At night, more categories are assigned to the latent state ‘Low’, the first latent state has a larger mean and median than
during daytime.

In Fig. 8 the conditional probabilities are shown for 1024 boxes of vertical velocities. In the histograms the 3 sections of
numbers of up- and downdraft range from 0 to 1024. The 3 categories are divided by the following numbers: 0 to 341, 342 to
683 and 684 to 1024 up- and downdrafts. Variable Z; represents again the latent state ‘High’, and 75 the latent state ‘Low’;
ctf. Fig. 8. The first latent state is represented in the first row. During daytime down- or updraft is likely, and during nighttime
it is most likely to have less downdraft than updraft. The smaller scale analysis gives consistent results with the analysis where
the output is on mesoscale in Fig. 6. There are higher probabilities during daytime for medium to high numbers of up- or
downdraft. At night due to less vertical draft, low to medium numbers of up- or downdraft are higher. For the second latent

state ‘Low’, the distributions concentrate on higher and lower numbers of downdrafts and small numbers of updraft.
4.2 Higher number of latent states

The results for three latent states are considered in Appendix A. Figs. Al and A2 show results using CAPE as input with a
resolution of 500km x 500km on large scale and a grid of 125km x 125km for the output. The scale difference is again of
factor 4 according to the first example in Sect. 4.1 where in- and output are on the synoptic scale. Affiliations without gaps lead
to a separation of the latent states. “No gaps” means that there is no overlap and a clear separation of the latent states regarding
the range of CAPE. This does not apply to every run with DBMR. Here we show the best ML bound estimate of 100 runs, see
Fig. Al. The affiliations have no gaps for day and night. We have again more variance of the conditional probabilities during
daytime. At night there is less variance of the conditional probabilities with a concentration at low numbers of downdraft or
updraft boxes. A hierarchy of three different probability configurations arises for up-, down- and no draft. When the number
of latent states K is further increased, the latent states can be clustered in groups of high, low and medium CAPE categories.
In Fig. Al top boxplots of CAPE categories by 3 latent states for daily mean (left: day and right: night) and in the middle
the affiliation of CAPE categories to the latent states are presented. For higher K, the number of latent states with affiliation

without gaps is higher at night compared to day.
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Figure 7. Top: Distributions based on kernel density estimation show the 12h averaged CAPE data which is affiliated to the latent states
‘High’ and ‘Low’. The left boxplot presents ‘Day’ data and the right panel the ‘Night’ data; Bottom: Affiliation of CAPE categories to the
latent states; CAPE data is spatially averaged over the Northwest quadrant of the COSMO-REAG6 data and the vertical velocity is averaged

for a box discretization of 4096 grid boxes; see Tab. 1.
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to the data applied in Fig. 7.
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4.3 Implications for general atmospheric dynamics

In Sect. 4.1 we discussed the results of the Bayesian model reduction from a mathematical perspective and in Sect. 4.2 we
interpreted the outcomes for a higher number of latent states. The method groups input categories into fewer latent states.
These are interpreted as reduced states for the large-scale atmospheric dynamics with respect to their probabilistic impact
on vertical motion. We applied an energetic variable as the driver on large scale. CAPE is the convective available potential
energy. It does not have to be fully available, meaning that high CAPE values does not necessarily lead to convective activity
on smaller scales but increases the probability of smaller scale convective activity. The release of kinetic energy of a certain
CAPE level to vertical movement needs triggers such as flows over mountains or forests which lead to instabilities of the
hydrostatic equilibrium. The dependence on surface conditions on the earth requires a probabilistic way of thinking. Therefore
the mathematical tool DBMR provides a simple probabilistic description. Using the method, we intend to draw conclusions
about categorical processes in the atmosphere. Since the system can not be in two different categories simultaneously, categories
are disjoint and the relation between the probability for large scale and smaller scales can be formulated via the conditional
probabilities and the conservation of the total probability. The methodology breaks up probability calculations into distinct
parts and relates marginal probabilities to conditional probabilities. The aim of this work is to test the stochastic method
in an meteorological application towards a reduced categorical model of smaller scale convective activity in the atmosphere
depending on large scale drivers.

To analyze the relation of large scale dynamics in the atmosphere to smaller scale categorical processes, the COSMO-REA6
reanalysis data set was applied; see Bollmeyer et al. (2015). We averaged CAPE for 500 km x 500 km and the vertical up-
and downdrafts in 125 km x 125 km domains, as described in Sect. 3.2. Regarding the summer months July and August in
the years 1995 to 2015, CAPE reaches averaged values between 0 and 400 J/kg and the vertical velocities have ranges from
-0.15 to 0.2 m/s on mesoscale and -1.7 to 1 m/s on convective scale. In the meteorological setting we showed how the Bayesian
model reduction performs. We combined large-scale CAPE with a subgrid-mesoscale time series for vertical velocity and count
the numbers of up- and downdrafts. Therefore we mapped vertical velocities as updraft, no draft and downdraft dependent on
an interval around zero vertical velocity. In the preprocessing of Sect. 4.1 we adjusted the interval for vertical draft with range
0.0096 m/s according to the meteorological data. The interval was chosen symmetrically on the basis of the histogram of mean
vertical velocities in Fig. 3. We chose a number of 10 input categories and reduced these to two latent states. This was done for
day and night, respectively.

In Fig. 5 the summary statistics with the affiliation of input categories to the latent states are presented. The affiliations
in Figs. 5 and 7 have no gaps, meaning that the affiliations are interrelated and are not interrupted. The affiliations lead to
a separation of the latent states in the boxplots for day and night. Thus a certain range of CAPE values can be assigned to
every latent states. During daytime the range of values for the latent state ‘High’ is at around 400 J/kg and greater compared
to the corresponding latent state during nighttime. For smaller scales we reduced the number of output categories. In Fig. 7 at
the bottom, 6 high and 4 low CAPE categories for daily mean and 4 high and 6 low CAPE categories at night are affiliated.

As a result of the averaging, the categories are almost evenly distributed over the latent states. The convective activity of the

18



345

350

355

360

365

370

375

atmosphere is stronger during the day than during nighttime. Therefore, the vertical draft is less at night than during the day.
Mean and median are around 100 J/kg for the latent state ‘High’ and 25 J/kg for the latent state ‘Low’. The mean and median
are similar for day and night. There is a difference for the variance. At night the distribution of latent state ‘High’ is sharper
due to less variance, only 4 categories are affiliated compared to the daily mean.

Joint probability distribution of number of grid points with positive and negative vertical velocity conditioned on the resulting
latent states are shown in figs. 6 and 8. The sum of the probabilities of all categories for every box is 1. Increasing the interval
for vertical draft makes less up-/downdrafts, thus moving probability mass away from the diagonal, where large fractions of
up-/downdrafts are sitting. There are higher probabilities during daytime for medium to high numbers of up- or downdraft.
Lots of updrafts during daytime lead to the existence of a lot of downdrafts due to mass conservation. At night due to less
vertical draft, low to medium numbers of up- or downdraft are higher. For the latent state ‘Low’, the distributions in Figs. 6 and
8 concentrate on higher and lower numbers of downdrafts and small numbers of updraft. The representation of probabilities of
numbers of updrafts and downdrafts conditioned on the latent states in Fig. 8 correspond in their distributions to the results on
mesoscale in Fig. 6. The generation of kinetic energy of a certain CAPE level to vertical draft on smaller scales can occur up
to a few hours later. A temporal shift for the in- and output could have an effect on the stochastic relation shown in Fig. 6. We
consider the 12 hours means. For data with a higher temporal resolution, one could realize a shift of 2-4 hours for the input.

This is deferred to future studies.

5 Conclusions

It is of importance to identify stochastic models by using categorical approaches compared to fluid mechanics described by
continuous partial differential equations. In this study, a recent algorithmic framework called Direct Bayesian Model Reduction
(DBMR) is applied which provides a scalable probability-preserving identification of reduced models directly from data; see
Gerber and Horenko (2017). We assume that the output of a Bayesian model depends on the input through a latent variable,
which can merely take a small number of different latent states. In this work, a direct Bayesian model reduction of smaller
scale convective activity conditioned on large scale dynamics is investigated with regard to intermediate latent states. We
combined the convective available potential energy (CAPE) as large scale flow variable with smaller scale subgrids time series
for vertical velocity. Therefore we mapped vertical velocities as updraft, no draft and downdraft dependent on an interval
around zero vertical velocity and count the numbers of up- and downdrafts. Data sets of daily means of 12 hours for day and
night were computed using COSMO-REAG reanalysis over a domain that covers Germany for a period of the summer months
July and August in the years 1995 to 2015. In the analysis the scales from 500km to 125km (mesoscale) and up to 15km were
considered. The categorical data analysis was done for day and night and discussed for different numbers of latent states. We
chose a number of 10 input categories and reduced these to two and three latent states.

The step from the fluid continuum described by partial differential equations to a categorical stochastic description with
DBMR provides a reduced model defined on a set of a few latent variables. These are interpreted as reduced states for the

large scale atmospheric dynamics with respect to their probabilistic impact on vertical motion. For 2 latent states the input is
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separated into categories with high and low CAPE values whereas for 3 latent states we have an affiliation to categories with
high, medium and low CAPE values. The output categories for the vertical velocity describe the number of up- and downdrafts.
In the result, we gain conditional distributions for the numbers of up- and downdrafts conditioned on the latent states for day
and night. In the application we found a probabilistic relation of CAPE and vertical up- and downdraft.

For a resolution of 125km we applied a 4 x 4 grid and had 16 boxes with vertical velocities. During daytime the chance for
updraft is higher conditioned on the latent state with high CAPE values. Probability adds up for numbers of up- or downdrafts
higher than 10 to 81%. The distribution for the latent state with low CAPE values has higher probabilities at high numbers of
downdrafts. Here the probability of numbers of downdrafts of 6 to 16 is 68%. At night probability adds up at small numbers
of downdrafts for the latent state with high CAPE values. For low CAPE values, we observe that a low number of updrafts is
likely. The probability is accumulated to 82% for the number of updrafts between 0 and 4.

On smaller scale with a resolution of 15km we applied a 32 x 32 grid and had 1024 boxes with vertical velocities. We divided
the output into 3 categories of low (0 to 341), medium (342 to 683) and high (84 to 1024) numbers of up- and downdrafts.
During daytime the probability for a medium number of up- and downdrafts is 34% for the latent state with high CAPE values.
Here low and high numbers of up- and downdraft have small probability. For low CAPE values the maximum in the distribution
occurs for a medium number of downdrafts and low number of updrafts at 50%. At night the probability adds up at low to
medium numbers of downdrafts for the latent state with high CAPE values and for low CAPE values, we observe that the
chance of low and medium number of updrafts is 82%. The distribution for the smaller scale resolution (15km) is a stochastic
aggregation of the distribution with resolution of 125km. Therefore the distributions are qualitatively similar. When the number
of latent states is further increased, the latent states can be clustered in groups of high, low and medium CAPE categories.

The model reduction of smaller scale convective activity is part of a development process for a model with a stochastic
component for a conceptual description of convection embedded in a deterministic atmospheric flow model. Various energetic
variable are applicable on large scale. A potential driver to control small scale models is the Dynamic State Index (DSI) in
Miiller et al. (2020) and Miiller and Névir (2019), an “adiabaticity indicator”. Other large scale variables driving the smaller
scale stochastics are the available moisture or vertical wind shear. The presented approach provides a basis for further research

of smaller scale convective activity conditioned on other possible large scale drivers.
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Figure A1l. Boxplots show the 12h averaged CAPE data which is affiliated to the latent states ‘High’, ‘Mean’ and ‘Low’. The left boxplot
presents ‘Day’ data and the right panel the ‘Night’ data; Middle: Affiliation of CAPE categories to the latent states; Bottom: Distribution
of CAPE in terms of latent states based on kernel density estimation; CAPE data is spatially averaged over the Northwest quadrant of the

COSMO-REAG6 data and the vertical velocity is averaged for a box discretization of 64 grid boxes; see Tab. 1.
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