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Abstract. Data assimilation (DA) aims at optimally merging observational data and model outputs to create a coherent statis-

tical and dynamical picture of the system under investigation. Indeed, DA aims at minimizing the effect of observational and

model error, and at distilling the correct ingredients of its dynamics. DA is of critical importance for the analysis of systems

featuring sensitive dependence on the initial conditions, as chaos wins over any finitely accurate knowledge of the state of

the system, even in absence of model error. Clearly, the skill of DA is guided by the properties of dynamical system under5

investigation, as merging optimally observational data and model outputs is harder when strong instabilities are present. In this

paper we reverse the usual angle on the problem and show that it is indeed possible to use the skill of DA to infer some basic

properties of the tangent space of the system, which may be hard to compute in very high-dimensional systems. Here, we focus

our attention on the first Lyapunov exponent and the Kolmogorov-Sinai entropy, and perform numerical experiments on the

Vissio-Lucarini 2020 model, a recently proposed generalisation of the Lorenz 1996 model that is able to describe in a simple10

yet meaningful way the interplay between dynamical and thermodynamical variables.

1 Introduction

We split the introduction in three parts. The first two are proper introductory discussions providing the context. In part three

we provide the motivations and describe the goals of the present work.

1.1 Lyapunov vectors and related measures of chaos in a nutshell15

The dynamics of several natural systems, including the atmosphere and the ocean, are characterised by chaotic conditions

which, roughly speaking, describe the property that a system has sensitivity to initial states. This means that, even in the

presence of a perfect model, small errors in the initial conditions will grow in size with time, until the forecast becomes

de facto useless (Kalnay, 2002)1. A mathematically-sound technique for studying the sensitivity to initial conditions of a

system amounts to studying the properties of its tangent space. In particular, under fairly general mathematical conditions20

1In the words of Ed Lorenz: "Chaos: When the present determines the future, but the approximate present does not approximately determine the future",

see https://tinyurl.com/faf3pnda.
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for a deterministic n−dimensional system whose asymptotic dynamics takes place in a compact attractor, one can define

n Lyapunov exponents (LEs) λ1, . . . ,λn, which are the asymptotic rates of amplification or decay of infinitesimally small

perturbations with respect to a reference trajectory. Usually, the LEs are ordered according to their value, with λ1 being the

largest. Unless the system feature symmetries, all the LEs are distinct, and in the case of continuous time dynamics, one of

them vanishes correspondingly to the direction of the flow and defines the neutral tangent space. Once ordered from the largest25

to the smallest, the sum of the first k LEs gives the asymptotic growth rate of a k−volume element defined by k displaced

infinitesimally nearby the reference trajectory plus the reference trajectory itself. Additionally, if λn0
denotes the smallest

non-negative LE, in many practical applications one can estimate the Kolmogorov-Sinai entropy (or metric entropy) σKS ,

which defines the rate of creation of information of the system due to its instabilities. The Kolmogorov-Sinai entropy can be

estimated as σKS =
∑n0

i=1λi (Pesin’s identity). Finally, it is possible to use the spectrum of LEs to define a notion of dimension30

for the attractor of a chaotic systems. The Kaplan-Yorke conjecture, which follows from the estimate of the rate of growth of the

infinitesimal k−volume, indicates that the information dimension of a chaotic attractor is given byDKY = p+
∑p
i=1λi/|λp+1|,

where p is the largest index such that
∑p
i=1λi ≥ 0. In systems where the phase space contracts (the large class of dissipative

systems), one has DKY < n. Roughly speaking, larger values of λ1, of σKS and of DKY are associated with conditions of

high instability and low predictability for the flow. This is clearly an extremely informal presentation of some of the features35

and properties of the LE; see Eckmann and Ruelle (1985) for a now-classic discussion of these topics.

It is possible to associate each LE with a physical mode. Ruelle (1979) proposed the idea of performing a covariant splitting

of the tangent linear space such that the basis vectors are actual trajectories of linear perturbations. The average growth rate of

each of the covariant Lyapunov vector (CLVs) equals one of the LE. This idea was first implemented by Trevisan and Pancotti

(1998) for studying the properties of the Lorenz 1963 model (Lorenz, 1963). Separate algorithms for the computation of CLVs40

were proposed in Ginelli et al. (2007) and Wolfe and Samelson (2007); see the recent comprehensive review by Froyland et al.

(2013). Note that the CLVs corresponding to the positive (negative) LEs span the unstable (stable) tangent space. Recently,

Lyapunov analysis of the tangent space was the subject of a special issue edited by Cencini and Ginelli (2013) and the book by

Pikovsky and Politi (2016). Detailed Lyapunov analyses of geophysical flows on models of various levels of complexity have

been recently reported (e.g., Schubert and Lucarini, 2015; Vannitsem and Lucarini, 2016; Vannitsem, 2017; De Cruz et al.,45

2018).

1.2 Data assimilation in chaotic systems: the signature and the use of chaos

The properties of the dynamical models have large implications on data assimilation (DA; Asch et al., 2016). Data assimilation

refers to the family of theoretical and numerical methods that optimally combines data with a dynamical model with the

goal of improving the understanding of the phenomenon under study, enhancing the prediction skill, and quantifying the50

associated uncertainty. Data assimilation has long been studied and developed in the geosciences. It is an unavoidable piece of

the operational numerical weather prediction workflow but it is nowadays used in a growing range of scientific areas (Carrassi

et al., 2018).
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Numerical and analytic evidences have emerged recently showing that under certain observational conditions (data types,

spatio-temporal distribution, and accuracy), the performance of DA with chaotic dynamics relates directly to the instability55

properties of the dynamical model where data are assimilated. One can thus in principle use the knowledge of the dynamical

features to inform not only the design of the DA that better suits the specific application - e.g., how many model realizations

for the Monte Carlo based DA methods, or the length of the assimilation window in variational DA - but also the best-possible

observational deployment.

A stream of research has shed light on the mechanisms driving the response of the ensemble-based DA (Evensen, 2009),60

i.e. its functioning and suitability, when applied to chaotic systems. A recent comprehensive review can be found in Carrassi

et al. (2021), while we succinctly recall the main findings in the following. In the deterministic linear and Gaussian case with

Kalman filter (KF) and smoother (KS), it has been analytically proved that the error covariance matrices converge in time onto

the model’s unstable–neutral subspace, i.e. the span of the backward Lyapunov vectors (BLVs), or of the covariant Lyapunov

vectors (CLVs), associated to the non-negative LEs (LEs, Bocquet et al., 2017; Bocquet and Carrassi, 2017). These results65

have been shown numerically to hold for the ensemble Kalman filter/smoother in weakly nonlinear regimes (EnKF/EnKS;

Evensen, 2009) by Bocquet and Carrassi (2017). In practice, for sufficiently well observed scenarios, the error of the state

estimate is fully confined within the unstable-neutral subspace. Because this subspace is usually much smaller than the full

system’s phase space, the above convergence results imply that an ensemble size as large as the unstable-neutral subspace

dimension, n0, suffices to achieve satisfactorily performance, i.e. to track the “true” and effectively reduce the estimation error70

along with a substantial computational saving. The impact of instabilities on nonlinear DA, in particular particle filters (PFs,

see e.g. Van Leeuwen et al., 2019) has been recently elucidated in Carrassi et al. (2021): the number of particles needed to

reach convergence depends on the size of the unstable-neutral subspace rather than the observation vector size.

The picture above slightly changes in the presence of a degenerate spectrum of LEs, which often arises in systems with

multiple scales, associated with the presence of coupling between subsystems with different characteristic dynamical timescales75

(Vannitsem and Lucarini, 2016; De Cruz et al., 2018). The degeneracy is usually concentrated on the unstable-neutral portion of

the LE spectrum. In these cases it is necessary to increase the ensemble size to account for all of the degenerate modes (Tondeur

et al., 2020; Carrassi et al., 2021). The necessity for going beyond the number of asymptotic unstable-neutral modes is also

connected to the local variability of the instantaneous instabilities along a system’s trajectory (Lucarini and Gritsun, 2020).

The large heterogeneity of the atmospherics’s predictability is due to the presence of substantial variability in the number80

of unstable dimensions (Lai, 1999) of the unstable periodic orbits (UPOs) populating the attractor and defining the skeletal

dynamics of the system (Auerbach et al., 1987). As a result of the fact that the orbit of a chaotic system shadows the UPOs

supported on the attractor in some of its regions , certain directions of the stable space experience finite-time error growth due

to locally important instabilities, causing the need for a larger ensemble size than the dimension of unstable-neutral.

In the stochastic scenario, noise is usually injected irrespective of the flow-dependent modes of instabilities. Consequently,85

with a non-zero probability, error is also injected onto stable directions that would not have been otherwise influential in the

long term. The trade-off between the frequency of the noise injection and its amplitude on the one hand, and the dissipation rate

of stable modes on the other, determines the amplitude of the long term error along stable modes (Grudzien et al., 2018a). This
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mechanism implies the need to include additional members in the ensemble to encompass weakly stable modes that experience

instantaneous growth Grudzien et al. (2018b).90

The knowledge of the LEs and its associated Lyapunov vectors (LVs) can be used to operate key choices in the implemen-

tation of ensemble-based DA schemes aimed at enhancing accuracy with the smallest possible computational cost. This point

of view is at the core of DA algorithms that operates a reduction in the dimension of the model (e.g., the assimilation in the

unstable subspace, AUS, Palatella et al., 2013), of the data (Maclean and Van Vleck, 2021) or both (Albarakati et al., 2021).

1.3 This paper: can data assimilation be used to reconstruct the dynamical properties of the system?95

While extremely theoretically appealing and practically useful in low-to-moderate dimensional problems, the use of the dy-

namically informed DA approaches is difficult in high dimensions, where even just computing the asymptotic spectrum of

LEs, let alone the very relevant state-dependent local LEs (LLEs), is very difficult or just impossible. A major but not exclusive

issue is that LEs estimation’ algorithms require computing the tangent space of the dynamical system, a task usually unfeasible

for high-dimensional systems, or impossible when the model equations of are not explicitly accessible. On the other hand,100

the existence of a relationship between the DA and the unstable-neutral subspace suggests reversing the view-angle: use DA

as a tool to estimate the properties of a given system that would be otherwise very difficult to compute. As a model agnostic

technique, DA, and in particular ensemble-based methods such as the EnKF, can be applied to any model without the need

of computing the tangent space. This makes the EnKF a potentially powerful instrument to reveal the stability properties of a

dynamical system. This is the goal of this work. Specifically, we shall investigate whether we can use DA to infer the spectrum105

of the LEs and the Kolmogorov-Sinai entropy (σKS) of the system whereby data are assimilated.

The paper is structured as follows. In Sect. 2, an upper bound of the root mean squared error of the Kalman filter for the

linear dynamics in the asymptotic limit is derived. In Sect. 3 we present the Vissio and Lucarini (2020) (VL20) model and

its DA setup. The VL 2020 model is a recently proposed generalisation of the Lorenz (1996) model that is able to describe

in a simple yet meaningful way the interplay between dynamical and thermodynamical variables. Additionally, the presence110

of qualitatively distinct set of spatially extended variables allows one to consider non-trivial cases of partial observations for

DA exercises. Sect. 4 presents the main results of the paper by comparing the skill of the performed DA exercises with some

fundamental measures of instability of the VL20 model. Finally, in Sect. 5 we discuss our results and present perspectives for

future investigations.

2 Kalman filter error bounds and Lyapunov spectrum115

We are interested in searching for a further relation between the skill of EnKF-like methods applied to perfect (no model error)

chaotic dynamics and the spectrum of LEs. We shall build our derivations on the results mentioned in Sect. 1.2 and reviewed in

Carrassi et al. (2021). In this section we set ourselves in a linear and Gaussian context, whereby the Kalman filter (KF) yields

the exact solution of the Gaussian estimation problem. Linear results will guide the interpretation of the findings in the general

nonlinear setting with the EnKF.120
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At time tk, let xk ∈ Rn and yk ∈ Rd be the state and observation vector, respectively. The (linear) model dynamics Mk ∈
Rn×n and observation model Hk ∈ Rp×n read

xk = Mkxk−1, (1)

yk = Hkxk + vk. (2)

The observation noise, vk, is assumed to be a zero-mean Gaussian white sequence with statistics125

E[vkv
>
l ] = δk,lRk, (3)

with E[ ] being the expectation operator, δk,l the Kronecker’s delta function, and Rk the error covariance matrix of the observa-

tions at time tk. For the sake of notation clarity, we assume that the model dynamics is non-degenerate so that all its Lyapunov

exponents are distinct; we note that the extension to the general degenerate case is possible.

The singular vector decomposition (SVD) of the model dynamics between tk > tl reads:130

Mk:l = Uk:lΛk:lV
T
k:l, (4)

where Uk:l and Vk:l are non-degenerate orthogonal matrices and Λk:l the diagonal matrix of singular values. For tl→−∞
the left singular vectors, Uk:l, converge to the backward Lyapunov vectors (BLVs) at tk, and, similarly for tk→∞ the right

singular vectors, Vk:l, converge to the forward Lyapunov vectors (FLVs) at tl. The singular values (SVs) in Λk:l converge to n

distinct values of the form diag(Λk:l)i = exp(λi(tk− tl)), in which λi are the Lyapunov exponents (LEs) in descending order,135

λ1 > λ2 > .. .λn0
= 0> λn−1 > λn. The n0 non-negative LEs identifies the n0 unstable-neutral modes.

Let define the information matrix:

Γk =

k−1∑
l=0

M−T
k:l HT

l R−1
l HlM

−1
k:l =

k−1∑
l=0

M−T
k:l ΩlM

−1
k:l , (5)

which measures the “observability” of the state at tk, with Ωl = HT
l R−1

l Hl being the precision matrix of the observations

mapped to the model space. Moreover, let UT
+,k be a matrix whose columns are the n0 unstable and neutral BLVs of the140

dynamics Mk. Bocquet and Carrassi (2017) have shown that, if the following three conditions hold, (i) the unstable-neutral

modes are sufficiently observed, such that

UT
+,kΓkU+,k > εIn ε > 0, (6)

with In ∈ Rn being the identity matrix, (ii), the neutral modes, u, are subject to the stronger observation constraint,

liminf
k→∞

uT
kΓkuk =∞, (7)145

which implies that each term of the information matrix should be positive-definite, and, (iii) confining the initial error covari-

ance matrix to the space of FLVs at time t0, then the KF forecast error covariance matrix, Pf
k, converges asymptotically to the

sequence

Pk = U+,k(UT
+,kΓkU+,k)−1UT

+,k. (8)
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In real applications, the convergence (within numerical accuracy) occurs in long-but-finite times (Bocquet et al., 2017).150

The asymptotic mean squared error of the forecast (MSEF) of the KF solution is given by the trace of Eq. (8),

nMSEF = Tr(Pk) = Tr[U+,k(UT
+,kΓkU+,k)−1UT

+,k] (9)

= Tr[(UT
+,kΓkU+,k)−1], (10)

where, for last equality, we made use of the cyclic property of the matrix trace and the orthogonal relation of the BLVs,

UT
+,kU+,k = In0

. Equation (9) puts in evidence that the asymptotic MSEF depends on the observation constraint through the155

information matrix (data accuracy, encapsulated in R, while data type and deployment encapsulated in H) , but also on the

unstable-neutral BLVs. Despite this, it is particularly involved to use Eq. (9) to derive a direct relation between the MSEF and

the spectrum of LEs. This is because U+,k is not invertible in general, and because one needs to make specific (often overly

simplified) assumptions on the model dynamics and observations, i.e. on Mk:l, Hl and Rl, in order to get a treatable expression

of the information matrix. In alternative, rather than a direct relation, we shall seek for informative bounds for the MSEF in160

terms of the LEs.

Let substitute the SVD of Mk:l, Eq. (4), in the information matrix,

Γk =

k−1∑
l=0

U−T
k:l Λ−1

k:lV
−1
k:lΩlV

−T
k:l Λ−1

k:lU
−1
k:l . (11)

For every tl, the individual terms in the summation can be written as:

[Uk:lΛk:lV
T
k:lΩ

−1
l Vk:lΛk:lU

T
k:l]
−1. (12)165

We now define the maximum projection of the precision matrix onto the FLVs as:

βl = max
h∈Im(Vk:l),‖h‖=1

hTΩ−1
l h, (13)

with ‖.‖ being the Euclidean norm, and use it to get an upper bound for the inverse of each term, Eq. (12), in the information

matrix summation,

Uk:lΛk:lV
T
k:lΩ

−1
l Vk:lΛk:lU

T
k:l ≤ βlUk:lΛ

2
k:lU

T
k:l. (14)170

The inequality is based on the Löwner partial ordering of Rn×n (i.e. the partial order defined by the convex cone of positive

semi-definite matrices; see e.g., Bocquet et al. (2017) their Appendix B). We shall use this partial ordering in the following

derivations.

By defining the maximum of βl across all 0≤ tl ≤ tk−1 as

βk = max
l=0,...,k−1

βl, (15)175

we get the following lower bound for the information matrix:

β−1
k

k−1∑
l=0

(Uk:lΛ
2
k:lU

T
k:l)
−1 ≤

k−1∑
l=0

[Uk:lΛk:lV
T
k:lΩ

−1
l Vk:lΛk:lU

T
k:l]
−1 (16)

= Γk. (17)
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The bound reflects the effect of assimilating observations (the rhs) compared to the unconstrained free model run (the lhs) -

note that Uk:lΛ
2
k:lU

T
k:l = Mk:lM

T
k:l.180

Given that Uk:lΛ
2
k:lU

T
k:l is symmetric positive definite, we can invoke the aforementioned partial ordering for this class of

matrices, and further develop the lower bound of the information matrix as

Uk:lΛ
2
k:lU

T
k:l ≤ e2λ1(tk−tl)I = Dl, (18)

where e2λ1(tk−tl) is the largest eigenvalue of Uk:lΛ
2
k:lU

T
k:l. The lower bound of the information matrix in Eq. (16) then

becomes185

β−1
k

k−1∑
l=0

D−1
l ≤ Γk. (19)

Under the assumption that the assimilation cylcle is uniform in time, e.g. ∆t= tk − tk−1 = tk−1− tk−2 = · · ·= t1− t0, the

summation of the diagonal matrices D−1
l coincides with a geometric series with known sums:

s−1
i =

k−1∑
l=0

D−1
l,ii =


e−2λ1∆t−e−2λ1(k+1)∆t

1−e−2λ1∆t λ1 > 0

k λ1 = 0
. (20)

By using the lower bound, Eq. (19), and the orthogonality of the BLVs, UT
+,kU+,k = In0

, we get a lower bound for the190

information matrix projected onto the unstable-neutral subspace:

β−1
k s−1

i In0
= β−1

k s−1
i UT

+,kInU+,k ≤UT
+,kΓkU+,k. (21)

We can thus finally use Eq. (21) in the expression of the MSEF, Eq. (9), and derive the following upper bound:

nMSEF = Tr[(UT
+,kΓkU+,k)−1] (22)

≤ Tr(βksiIn0) (23)195

= βk

n0∑
i=1

1− e−2λ1∆t

e−2λ1∆t− e−2λ1(k+1)∆t
(24)

→ βk

n∑
i=1

1− e−2λ1∆t

e−2λ1∆t
k→∞ (25)

= βkn0(e2λ1∆t− 1). (26)

This upper bound incorporates the key players shaping the relation between the KF estimation error and the model dynamics.

The presence of βk and ∆t reflects the observation modulation of the MSEF: the stronger the data constraint the smaller βk200

and ∆t. The signatures of the model instabilities are in the term n0, the size of the unstable-neutral subspace, and in λ1, the

error growth rate along the leading mode of instability, both related directly to the amplitude of the bound. Under a Bayesian

interpretation, the factor βk can be seen as the likelihood of data, and the remaining terms in the bound altogether as the prior
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distribution. Note that, if the dynamical model is stable (and independently of the data), λ1 = 0, si = 1
k and the MSEF goes to

zero asymptotically.205

As alluded at the beginning of the section, a direct expression (e.g. an equality in place of a bound) relating the model insta-

bilities and the error can be obtained under strong simplified and somehow unrealistic assumptions on the form of the model

dynamics and of the data. For example, if the linear dynamics M, the observation covariance matrix R, and the observation

operator H are all scalar matrices. With no need of those assumption, and with more generality, the upper bound, Eq. (26),

indicates that the MSEF is determined by a convolution of model dynamics and observation error.210

In the next sections we will perform numerical experiments under controlled scenarios to investigate the conditions for which

the bound holds. In particular, we will study the conditions leading to the smallest possible upper bound, such that the output

of a converged DA, i.e. its asymptotic MSEF, can be used to infer the LEs spectrum of the model dynamics.

3 Experimental setting

3.1 The Vissio-Lucarini 2020 model215

Our test-bed for numerical experiments is the low-order model recently developed by Vissio and Lucarini (2020), hereafter

referred to as the VL20. The VL20 model is an extension of the classical Lorenz 96 model (Lorenz, 1996) that includes

additional thermodynamic variables. The model is given by the following set of n ODEs (with n being an even integer):

dXi

dt
=Xi−1(Xi+1−Xi−2)−αθi− γXi +F (27)

dθi
dt

=Xi+1θi+2−Xi−1θi−2 +αXi− γθi +G (28)220

where X represents the momentum, θ is the thermodynamic variable, and the subscript 1≤ i≤ n/2 is the gridpoint index. The

model is spatially periodic, and the boundary condition is expressed as:

Xi−n/2 =Xi+n/2 =Xi (29)

θi−n/2 = θi+n/2 = θi (30)

In the VL20 model it is possible to introduce a notion of kinetic energy K =
∑n/2

=1 X
2
j /2 and potential energy P =225 ∑n

=n
2
θ2
j/2. Additionally, the model features an energy cycle that allows for the conversion between the kinetic and poten-

tial forms and for introducing a notion of efficiency. The parameter α modulates the energy transfer between the two forms,

while γ controls the energy dissipation rate and F and G are external forcing defining the energy injection into the system.

The model’s evolution can be written as the sum of a quasi-symplectic term, which conserves the total energy, and of a gradi-

ent term, which describes the impact of forcing and dissipation. In the turbulent regime, the VL20 allows for propagation of230

signals in the form of wave-like disturbances associated with unstable waves exchanging energy in both potential and kinetic

form with the background. In terms of energetics, the difference between the L96 and the VL20 model mirror the one between

a one-layer and a two-layer quasi-geostrophic model, because the former features only barotropic processes, while the latter,
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Table 1. Instabilities features of the VL20 model for the three forcing configurations; n= 36, and α= γ = 1.

(F, G) (10, 10) (10, 0) (0, 10)

λ1 1.587 1.340 1.475

n0 10 7 10

σKS 6.248 3.917 6.103

DKY 20.037 15.742 19.510

features the coupling between dynamical and thermodynamic processes via baroclinic conversion, which makes its dynamics

much more complex (Holton and Hakim, 2013). The VL20 model is thus a very good test-bed for research in DA, a further235

step toward realism from the very successful L96. Further details on the model as well as an extensive analysis of its dynamical

and statistical properties can be found in Vissio and Lucarini (2020).

In all the following experiments, we set n= 36 implying both model variables X and θ have 18 components, and consider

three model configurations differing in the values of the external forcings: F =G= 10, F = 10,G= 0, and F = 0,G= 10.

Unless otherwise stated, the model runs with the default parameters α= γ = 1, and it is numerically integrated using the240

standard 4-th order Runge-Kutta time stepping method with a time step ∆t= 0.05 time units. A summary of the model

instability properties with the chosen configurations is given in Tab. 1.

3.2 Data assimilation setup

Synthetic observations are generated according to Eq. (2) by sampling a “true” solution of the VL20 model, Eqs. (27), and then

adding simulated observational error from the Gaussian distribution N (0,R). Observational error is assumed to be spatially245

uncorrelated thus that the error covariance, R, is a diagonal matrix, and we observe the model components directly, implying

that the observation operator is linear and under the form of a matrix, H ∈ Rp×n. The observation error variance is set to be

5% of the variance (i.e. the squared temporal variability) of the climatology of the corresponding state vector component such

that:

diag(R)i = 5%V ar(X), i= 1, . . . ,
n

2
; (31)250

diag(R)i = 5%V ar(θ), i=
n

2
+ 1, · · · ,n. (32)

By linking the observation error to the model variance makes the setup more realistic, but it ties the error amplitude to the

choice of the model parameters. For example, the model’s state vector variance gets very small when the dissipation is strong,

potentially making the R matrix degenerate. Under such circumstances, the corresponding entries in R are set to 5× 10−6.

In line with previous studies (e.g., Carrassi et al., 2021), we work with deterministic EnKFs, whereby it is possible to study255

the filter performance in relation to the model instabilities without the inclusion of additional noise that is inherent to stochastic

versions of the EnKFs (Evensen, 2009). In particular we choose to use the finite-size ensemble Kalman filter (EnKF-N, Bocquet

et al., 2015) because it automatically computes the required covariance inflation thus saving us from running many inflation
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tuning experiments. The initial conditions for the ensemble are sampled from the Gaussian distribution N (xt0,R) with the xt0

being the “truth” at t0: this choice signifies that the initial condition error is taken to be equal to the observational error.260

The performance of DA experiments will be assessed primarily by using the root mean square error of the analysis, nor-

malised by the observation variance:

nRMSEa =

√√√√ 1

n

(∑n/2
i=1(Xi−Xi,truth)2

diag(R)i
+

∑n/2
i=1(θi− θi,truth)2

diag(R)i+n/2

)
. (33)

The nRMSEa measures the analysis error independent from observation error, allowing for a multivariate assessment of the

performance. Unless otherwise stated, observations are taken at every time step, and the experiments last 2,000 model time265

units. With this setting, an experiment comprises 40,000 DA cycles, and when computing time-averages of the nRMSEa,

we only consider the last 500 model time units. Finally, and again unless otherwise stated, we shall adopt N = 40 ensemble

members in the EnKF-N.

4 Numerical results

Our analysis focuses on the relation between observational design and filter accuracy, and the relation between the model270

instabilities and the filter accuracy. By exploiting the novel dynamical-thermodynamical feature of VL20 over its L96 precursor,

we will also study the EnKF-N under observational scenarios that alternatively measure the dynamical variable, X, or, the

thermodynamical one, θ.

4.1 Data assimilation with the VL20 model: general features

Fig. 1 shows the time series of the nRMSEa over the first 100 time units, for the three main model configurations under consid-275

eration. In all cases, the error drops to below 20% of the observational error after approximately 10 time units (corresponding

to 200 DA cycles), and then fluctuates with oscillations that only sporadically lead the error to exceed 0.3. The configuration,

(F,G) = (10,0) (red line), attains the smaller error, while the other two configurations (blue and purple lines respectively) show

comparable error levels slightly larger than configuration (F,G) = (10,0). Recall that in the configuration of (F,G) = (10,0),

the model is not thermodynamically forced (G= 0), and is also slightly stabler than in the other two configurations (cf. Tab. 1).280

The first connection between the filter performance and the model instabilities is drawn from Fig. 2 that shows the nRMSEa

as a function of the number of the ensemble members. In line with previous findings for uncoupled univariate (Bocquet and

Carrassi, 2017) and with coupled models (Tondeur et al., 2020), Fig. 2 shows that, even with a multivariate model, the error

converges to very low values as soon as the ensemble size exceeds the number of unstable-neutral modes, n0, and that it does

not further decreases by adding more members. This behaviour is possible because error evolution is bounded to be linear285

or weakly nonlinear. This means that one can in principle induce linearity intentionally in the error evolution to meet the

aforementioned relation between filter accuracy and ensemble size and use it to infer the number of unstable-neutral modes.

In a DA experiment, a “practical” way to achieve this is by strengthening the observational constraint (i.e., by increasing the

measurements spatial and temporal density); here we observe the full system’s state at every time-step.
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Figure 1. Time series of nRMSEa over the first 100 time units (2,000 DA cycles) using α= γ = 1 on n/2 = 18 grid points with an ensemble

size of N = 40 with the entire state vector observed at every time step.
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Figure 2. The time-averaged nRMSEa for all experiment configurations. The vertical dashed lines indicate the dimension of unstable-neutral

subspace, n0. The n0 under the forcing F = 10,G= 10 is the same as the forcing condition F = 0,G= 10, which shows overlapped vertical

lines. For the sake of numerical errors, the neutral mode is chosen as the LE that is closest to 0.
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The VL20 model represents four main physical mechanisms: i) the transition from kinetic to potential energy; ii) the energy290

injection from external forcing; iii) the advection; and iv) the dissipation. Although these processes all participate the evolution

of the model, the nonlinear interplay cannot be straightforwardly disentangled. Nevertheless, we shall try to refer to them when

interpreting the outcome of the DA experiments. In particular, in each experiment we will attempt to identify the prevailing

mechanism over the aforementioned four. We perform three experiments, where we observe the full system state (i.e., H = I36),

or alternatively X or θ alone (implying in both cases H ∈ R18×36). Results are given in Fig. 3, that displays the time averaged295

nRMSEa (global or for the dynamics or thermodynamics only) over a range of the coefficient α that modulates the energy

transfer rate.

Overall, and as expected, the analysis error is smaller in the observed variables (cf the left and mid columns and corre-

sponding color lines), and attains the smallest level when X and θ are simultaneously observed (right column). Nevertheless

a few remarkable points can be raised. First, when the system is fully observed, for large α (i.e. for large conversion between300

available potential energy and kinetic energy) the skills in X and θ get very similar (right column): we conjecture this to be

a consequence of the system getting more evenly turbulent with all variables sharing a similar internal variability as energy is

exchanged efficiently between the kinetic and potential form. Second, for small α (i.e., small energy conversion), the effect of

external forcing becomes dominant and determines the analysis error of X and θ (last column in Fig. 3). For instance, when-

ever the momentum is externally forced (F = 10), the error in X is systematically smaller than in θ (first and second rows of305

the last column): DA is more effective in controlling the dynamics than the thermodynamics even when they are subject to the

same observational constraint. The situation is somehow reversed when only the thermodynamics is forced (F = 0,G= 10):

the analysis error of the momentum and the thermodynamic variable is undifferentiated. With small α and no forcing for the

momentum, the nonlinear momentum advection is limited by the small magnitude of the momentum that is not able to acti-

vate much the dynamical variables, so that we observe similar analysis error between the thermodynamics variable and the310

momentum.

Finally, the effect of the energy transfer and advection can be revealed by looking at the partially observed experiments (left

and mid columns). Both mechanisms involve the momentum, making it more efficacious to observe X than θ especially in the

energy transfer dominated regime (large α). However, in an advection-dominated regimes (small α), if θ is unobserved, X has

limited capability to constrain the error in θ due to the weak feedback from θ to X. On the other hand, observing θ reduces315

error in X via the accurate estimate of the advection process of θ (see mid column).

Further insight on the role of the driving (unstable) variable, and on the interplay between the prevailing physical mechanisms

and the analysis error is given by looking at the CLVs (Kuptsov and Parlitz, 2012). In Fig. 4 we show at (normalized time-

averaged) absolute amplitude of CLVs components along the state vector: it tells us which variable type/component have the

larger influence on each CLVs, thus indicating what processes participate more to a specific direction of error growth/decay.320

As discussed above, the change of α induces the shift from the advection dominated regime to an energy mixing one, where

the thermodynamics and the kinetic energy mixes with each other: these two regimes are portrayed in Fig. 4, by selecting

α= 0.4 and α= 2.2. Moreover, these two values of α correspond roughly to those giving the largest differences in nRMSEa

between the momentum and the thermodynamic variables (cf left and mid panels of Fig. 3). For small energy exchange (α= 0.4

12
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Figure 3. The nRMSEa with varying energy transfer coefficient α ∈ (0,3) (with an interval of 0.1) and dissipation coefficient γ = 1. The left

axis represents nRMSEa while the right axis shows the σKS and the λ1 (solid grey line) scaled by a factor of 3. The results come from perfect

model assumption with observations at each time step where all variables, only X or only θ is observed. The blue dashed line indicates the

nRMSE of the X variable, the dashed red line represents the nRMSE of the θ variable, and the dashed purple line shows the nRMSE of the

entire state vector.
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Figure 4. Normalized time-averaged amplitude of CLV components (the absolute value) for α= 0.4 and α= 2.2. In both cases γ = 1. The

vertical lines indicate the corresponding dimension of the unstable-neutral subspace, n0.

- left column in Fig. 4), the model instabilities are driven by the external forcing, with the driving variable being the one where325

energy is injected. This is clearly visible when comparing the amplitudes of CLVs between X and θ on the left column

of Fig. 4: larger amplitudes of the unstable-neutral CLVs are found in the forced variables. When the momentum and the

thermodynamics are equally forced (blue lines), the amplitude of the unstable-neutral CLVs for X and θ are close to each other.

The nonlinear advection process intensifies the error growth, especially for X. The nonlinear advection and the momentum is

of lesser importance if the momentum is not forced (F = 0,G= 10 - purple lines) while the thermodynamic processes control330

dominantly both the stable and unstable subspace. The thermodynamic variable on the stable subspace acts as an energy sink

to stabilize the dynamical system. The effect of the thermodynamics is shown noticeably by the large relative amplitude of

the CLVs of the thermodynamic variable in the stable subspace when the momentum is directly forced (F = 10 - blue and red

line).

The situation changes sensibly when the energy exchange is the dominant physical mechanism (α= 2.2 - right column).335

This causes a stronger mixing across the model variables so that both X and θ play a comparable role in the unstable-neutral

components of the CLVs leading to similar amplitude of the CLVs for all types of forcing. Remarkably, the effect of the energy

conversion also applies to the stable components of the CLVs leading to similar amplitude of the CLVs between X and θ.

The results in Fig. 4 reveal the effect of the prevailing physical mechanisms on determining the driving unstable variables.

The figure suggests what variables should in principle be controlled by targeting measurements on the portion of the system’s340

state vector with larger amplitude on the unstable-neutral CLVs.
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Figure 5. The nRMSEa with varying dissipation coefficients γ ∈ [0.3,1.8) (with an interval of 0.05) and α= 1. The left axis represents

nRMSEa (dashed lines) while the right axis shows the σKS (solid black line) and the λ1 (solid grey line) scaled by a factor of 3. The results

come from perfect model assumption with observations at each time step where all variables, only X or only θ is observed. The blue dashed

line indicates the nRMSE of the X variable, the dashed red line represents the nRMSE of the θ variable, and the dashed purple line shows

the nRMSE of the entire state vector.
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Figure 6. Normalized time-averaged amplitude of CLV components for γ = 0.4 and γ = 1 with α= 1. The vertical lines indicates the

dimension of the unstable-neutral subspace.

Along with α, the energy in the system is modulated by the dissipation, γ: larger values of γ implies an efficient removal

of energy from the system, and thus reducing the system’s variability of both the potential and kinetic energy. At dynamical

level, the parameter γ controls the contraction of the phase space as the sum of all Lyapunov exponents (equal to the average

flow divergence) is −nγ. Hence, one expects that larger values of γ correspond to weaker instability for the model, as in345

the case of the classical L96 model (Gallavotti and Lucarini, 2014). Fig. 5 is the same as Fig. 3 but for the dissipation, γ.

Overall, we see that, with large γ, the system’s internal variability reduces and we find similar small errors in both X and

θ. For weaker dissipation, the momentum is better controlled than the thermodynamics. With partial observations (left and

mid columns), the error is much larger than in the corresponding fully observed cases. Similar to Fig. 3, the momentum is

generally better reconstructed by the DA than the thermodynamics, although observing the latter appears more efficacious (i.e.350

it leads to smaller analysis error) than observing the momentum. We think that this is due to the prevailing mechanism being

the advection of the thermodynamics given that α= 1 in these experiments (cf. also Fig. 3). The amplitudes of the CLVs along

the state vector is studied in Fig. 6. We consider the cases γ = 0.4 and γ = 1.0 for which the difference in the nRMSEa between

X and θ is roughly the largest (cf Fig. 5).

With the leading CLVs strongly affected by the external forcing, the amplitude of the CLVs along the system’s components355

is similar to the pattern of low energy exchange rate in Fig. 4 where α= 0.4 even though here, α= 1. This confirms that the

dynamical regime of our experiments lies in the regime dominated by advection, and dissipation does not mix the kinetic and

potential energy diffusely as the energy exchange, but rather it uniformly removes both types of energy without changing the

prevailing physical mechanism. This is also reflected in the consistently low nRMSEa for the observed variable when varying
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dissipation rates in the partially observed experiments (see Fig. 5). The decreasing analysis error in Fig. 5 corresponds to the360

increases of γ, which reduces the dimension of the unstable-neutral subspace with increased relative importance of forced

variables in the unstable-neutral subspace as the fast energy removal reduce the amount of energy mixing.

The results of Sect. 4.1 confirm the relation between the performance of DA (in terms of analysis error) and the dimension

and characteristics of the unstable-neutral subspace. In particular, we conclude that successful DA relies on controlling the

error in the unstable-neutral subspace by observing the variable that drives the error growth. The VL20 model enabled the365

investigation of the relation between the DA and the specific physical mechanisms such as the advection, the energy transfer

among dynamics and thermodynamics as well as the dissipation. The effect of DA (i.e. its efficacy) is strongly influenced by

the form of the coupling between the unobserved and the observed variables that is in turn shaped by the prevailing physical

mechanisms.

4.2 Inferring the degree of model instability with data assimilation370

The derivation in Sect. 2 shows that, in the linear setting, the assimilation error is asymptotically bounded from above by a

factor dependent on the observation error, the first LE and the number of unstable-neutral modes of the underlying forecast

model. In this section we explore the extent to which this result holds in a nonlinear scenario whereby the observational

constraint is strong enough such that the error evolution is maintained approximately linear or weakly-nonlinear. We shall

make use of numerical experiments with the VL20 model.375

A first insight on the existence of a direct relation between the model instabilities and the skill of the EnKF-N is already

provided in Fig. 3 and 5. They display the Kolmogorov-Sinai entropy, σKS (black line) and the first LE, λ1 (amplified by

a factor of 3 - gray line), along with the nRMSEa (discussed in Sect. 4.1). Even just by visual inspection the figures clearly

evidence the high correlation between the analysis error and both the σKS and λ1.

The nature of this relation is further studied in Fig. 7 that shows scatter plots between the nRMSEa (with black markers) and380

σKS /λ1 in a log-log scale. Points are relative to experiments the forcing values given in the panels’ legends and with varying

energy exchange and dissipation rates in the range (α× γ) ∈ [0.1,3)× [0.3,1.8). Here, the EnKF-N assimilates the full state

vector at each time step. The analysis error appears in a linear relationship with either σKS or λ1, as long as ln(nRMSEa)≥
−4. The existence of such a quasi-linear relationship provides the possibility to infer σKS and/or λ1 based on the outcome of

DA.385

The scatter plots also demonstrate the validity of the upper bound (red markers) of Eq. (26) in Sect. 2. To compute the bound

we set the coefficient related to observation, β = 1, as it is compared to analysis errors normalized by observational error. The

nRMSEa is bounded by the theoretical upper bounds for most of the model configurations considered. The linear relationship

of the upper bound can be explained by its formulation in Eq. 26, where the exponent e2λ1∆t−1 can be approximated as 2λ1∆t

if 2λ1∆t is sufficiently small. The spread of upper bounds points for given λ1 (left panel) reflect the various values of n0 under390

similar λ1. The better correspondence (narrower spread of the scattered points) in the plane nRMSEa with σKS (right panel)

shows the importance of including both the dominant error growth rate, λ1, and the unstable-subspace dimension, n0, - both

present in σKS - to better characterise the system’s instabilities. The correspondence between σKS and the theoretical upper
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Figure 7. Scatter plots of λ1 (left) and σKS (right) against the nRMSEa for experiments with observations of the entire state vector at each

time step. The theoretical analysis error upper bound are also displayed (red markers). The log scale is used on both axes. The experiments

use the model forcing given in the legend and the energy rate and dissipation in the range (α× γ) ∈ [0.1,3)× [0.3,1.8) with an interval of

0.1×0.05. The stable configurations (σKS ≤ 0) have been excluded. The inset shows the weakly unstable model configurations (0< σKS ≤

1).

bound could also be a result of the relation between λ1 and σKS as in highly turbulent case, there is a linear relation between

λ1 and σKS in (Gallavotti and Lucarini, 2014).395

The linear relation does not hold for numerical experiments when ln(nRMSEa)<−4 (see the black markers distribution

in the panels’ inset). We explain this behaviour in the following way. The wide clouds of points in correspond all to model

configurations with very small σKS and λ1. In these quasi-stable dynamics, the error growth in between successive analysis is

very little, with occasional error decay. The observational error, which is random and white-in-time, will be often larger than

the forecast error and will dominate the analysis error, thus breaking its direct dependence on the instability-driven forecast400

error. In addition, in the weakly unstable model configurations, the most unstable direction behaves almost like a neutral mode

which also breaks the assumptions of the theoretical upper bound for unstable models. In fact, we do not show the weakly

unstable results with σKS < 1 for both σKS and λ1.

The error bounds in Sect. 2 relies on the assumption of linear error evolution, a condition that we met in our experiments

thanks to a strong observational constraint, with (synthetic) measurements covering the full state vector at each time-steps.405

These conditions are rarely achievable in practice, so it is relevant to explore how results will change with lighter observational

constraint. There are three direct ways to achieve this by acting on (i) the number/type of measurements, (ii) the measurement

error, and/or, (iii) the temporal frequency.
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Figure 8. Scatter of σKS (left) and λ1 (right) against nRMSEa for experiments where either the momentum or the thermodynamic variable

alone is observed. The log-log scale is used in both axes, and points represent experiments with the same model parameter values used in

Fig. 3 and 5, excluding weakly unstable cases with σKS < 1, and hence excluding cases where ln(nRMSEa)<−4 similar to Fig. 7.

The effect of the first is studied in Fig. 8 that is similar to Fig. 7 but for DA experiments whereby only one of each variable

in the VL20 is observed.410

The impact of partially observing the system causes the emergence of a weakly quadratic relationship between the analysis

error and either σKS or λ1. However, the analysis error is still uniquely and monotonically related to them especially for σKS .

A quadratic law requires one additional coefficient to be determined compared to a linear law, yet the mere existence of such

a law suggests again that one could in principle infer σKS and/or λ1 based on the analysis error. With the relaxed observation

constraint, the analysis error can (and indeed do so in several instances) exceed the theoretical upper bound. However, the415

general trend of the numerical experiments still follow the theoretical upper bound.

We study the effect of changing the amplitude of the observational error in Fig. 9. Results reveal that varying the observation

error in the range of 5%− 10% does not break the quasi-linear relationship between the analysis error and σKS or λ1. The

nRMSEa is quite insensitive to the observation variance due to the normalization. Nevertheless, the upper bound is not violated

as in Fig. 7 and the slope of the nRMSEa from the numerical experiment is remarkably similar to the slope of the theoretical420

bound.

Finally, the impact of varying the observation frequency is explored in Fig. 10. It is patent that decreasing the frequency leads

to blurring the linear relation between the analysis error and the σKS or λ1. There is a clear deviation from the trend of the

theoretical upper bound and from the uniqueness of the relation between analysis error and σKS , as soon as the observational

time interval exceeds the error doubling time (that is inverse related to λ1), and DA error evolves beyond the linear regime.425
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Figure 9. Scatter plots of σKS (left) and λ1 (right) against nRMSEa. The log-log scale is used on both axes. The different points refer to

experiments with different observation error given in the legend and model parameter as in Fig. 3 and 5 and excluding weakly unstable cases

with σKS < 1, and hence excuding cases where ln(nRMSEa)<−4 similar to Fig. 7.
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to experiments with different observation interval given in the legend and model parameter as in Fig. 3 and 5 and excluding cases when

σKS < 1. The filled circle represents the cases where the observation interval exceeds the doubling time of the error.
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However, for frequent enough observations a linear relation similar to the upper bound appears and, again, one could in

principle deduce σKS and/or λ1 based on DA.

The larger sensitivity to the observation frequency than to observation noise (cf Fig. 9 and Fig. 10) s a direct consequence

of the different effects these two factors have in determining the degree of non-linearity of the error. This is explained, for

the L96 model, in the Appendix of Bocquet and Carrassi (2017) using a dimensional analysis. The key point is that the430

observation frequency modulates directly the magnitude of the nonlinear term in the model, namely the advection. Decreasing

the observation noise, while effectively reducing the analysis error, is not sufficient to keep the error dynamics linear if ∆t > 0

and the model is chaotic.

5 Conclusions

It is sometimes of great importance to be able to obtain information on the instability of a system of interest by performing435

data analysis of suitably defined observables. This is of key importance when one does not have direct access to the evolution

equations of the system or when the analysis of its tangent space is too computationally burdensome. As an example, quanti-

tative information on the degree of instability of a chaotic system can be extracted using extreme value theory by studying the

statistics of close dynamical recurrences as well as of extremes of so-called physical observables (Lucarini et al., 2014, 2016).

The use of such a strategy has shown a great potential for the analysis of geophysical fluid dynamical models in a highly440

turbulent regime (Gálfi et al., 2017) as well for the understanding of the properties of the actual atmosphere (Faranda et al.,

2017; Messori et al., 2017).

In this study, we have addressed this problem by taking the angle of DA. The relation between DA and the instability of

the dynamical system where it is applied has long been studied (see e.g. Miller et al., 1994; Carrassi et al., 2008), and has

been used to design DA techniques in various field of geosciences (Carrassi et al., 2021; Albarakati et al., 2021). Here, we have445

reversed this viewpoint and investigated the possibility of using DA to infer fundamental quantities of the underlying dynamics,

in particular the Lyapunov exponents, λi, or the Kolmogorov-Sinai entropy (σKS). The basic idea is to look at DA as a control

problem, and relate our ability to control the system, ceteris paribus, to its underlying instability. We have leveraged on a

stream of previous works that set the theoretical foundation and that proved the convergence of the error covariance of the

Kalman filters onto the unstable-neutral subspace of the dynamical system. Based on this, we derived here an upper bound of450

the Kalman filter forecast error, i.e. under the assumptions of a linear model dynamics and a linear observation operator. The

upper bound is very informative as it relates the error’s amplitude to all of the essential descriptors of the model instabilities

on the one hand and of the DA on the other. These are the dimension of the unstable-neutral subspace, n0, the first Lyapunov

exponent, λ1, the frequency of the observation assimilation, ∆t, and the observation error, βk. By properly normalising the

bound by the observation error, it can be written as a function of the model dynamical properties exclusively.455

The existence of a relation between λ1 or σKS and the DA skill, as well as the validity of the bound, has then been investi-

gated in a nonlinear scenario using numerical experiments. We have used the EnKF-N (Bocquet et al., 2015) as a prototype of

deterministic EnKF (Evensen, 2009) and the new model developed by Vissio and Lucarini (2020). The VL20 is an extension
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of the widely used Lorenz 96 model that includes a thermodynamic component. While maintaining all of the virtues of a low-

dimensional model suitable for investigations on new methods at low computational cost, VL20 is conceptually much richer460

than the original L96 model. In particular it allows for the exchange of energy between a kinetic and potential form, which,

together with forcing and dissipation, provides the fundamental framework for the Lorenz (1955) energy cycle. Additionally,

as advection impacts temperature-like variables, one can observe the emergence of more complex dynamical behaviors. By

changing the value of its key parameters, and in particular of those determining its forcing and dissipation, the model explores

various dynamical regimes, ranging from fixed point, periodic, quasi-periodic, and chaotic behaviour. In terms of DA, the465

VL20 model has the attractive feature that it includes two qualitatively different set of variables, associated with dynamics and

thermodynamics, respectively. Hence, it is possible to explore the problem of having partial observation beyond focusing of

the spatial extent of the observations only.

We demonstrate that the skill of the EnKF-N is directly linked to both λ1 and σKS . Whenever the error within the EnKF-N

cycles are kept sufficiently linear via a strong observational constraint, the relation is clearly linear too. By relaxing the ob-470

servational constraint (by either reducing the frequency of measurements or by increasing their noise) deviation from linearity

emerge. Nevertheless, the linear relation is very robust against the level of observational noise (within certain range) while it

turns quadratic once the interval between successive measurements gets too large and it exceeds the system’s doubling time.

Similarly, we found out that the theoretical upper bounds for the errors, derived for linear system, still holds as long as the

observational constraint is strong enough, but are then violated.475

The error bound and the linear/quasi-linear relation between the error and λ1 or σKS represent two direct ways to infer λ1 and

σKS by looking at the output of a DA exercise. First, we can use the bound (Eq. (26).) to estimate λ1 for a specific dynamical

model, based on (normalised) error output of a DA exercise. This requires the unstable-neutral subspace dimension, n0, that

can be obtained , in the case of EnKF-like methods, by looking at the analysis error convergence for increasing ensemble

size, N : n0 will be equal to N∗− 1 where N∗ being the smallest ensemble size for which the error reaches is minimum. This480

procedure will give us an underestimate of λ1. Nevertheless, our results (cf Fig. 7) seem to suggest that the amount of the

underestimation is small and, notably, constant across a range of different model configuration (and thus possibly quantifiable).

Our numerical experiments indicate a second way to estimate λ1 or σKS from the skill of DA. The linear/quasi-linear

relationship between normalised DA error and λ1 or σKS (cf Fig. 7) exists for both the derived upper bound in Eq. (26)

and numerical experiments, and is tested under various observation constraint. The existence of the relationship for the upper485

bound implies that the relationship may exist for other dynamical systems as long as the time between analysis ∆t is sufficiently

frequent because the upper bound is based on the assumption of a (quasi-)linear model. To utilize the relationship for a specific

dynamical system, a few DA experiments using different set of parameters of the dynamical system is required. A linear relation

can be obtained by linear regression from the selected data, by which a relatively accurate λ1 or σKS for other parameters of

the dynamical system can be inferred. Unavoidably, for the selected set of parameters, the method requires the λ1 or σKS490

to be known, which possibly can be obtained by computational methods such as the one proposed by Wolfe and Samelson

(2007). However, the resulting linear relation can lead to a computationally efficient approach for other sets of parameters of

the dynamical system with an estimate more accurate than the one from the upper bound in Eq. (26).
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The linear relation between error and λ1 and σKS will certainly be more complicated with model errors. From Grudzien

et al. (2018a) and Grudzien et al. (2018b) we know that the KF error covariance will no longer be fully confined within the495

unstable-neutral subspace, but will maintain projections with probability one everywhere, and thus also on the stable modes.

Those projections would be asymptotically zero in the absence of model noise. While this remains to be investigated, we argue

that the existence of a clear monotonic relationship between analysis error and λ1 will still hold in the presence of model

error. The relation to σKS might also still stand because the correction would come from weakly stable modes. However, the

conjecture need to be validated by numerical experiments that are out of the scope of this manuscript.500

We are currently considering how these results will change when performing DA for state and parameter estimation. In this

context, a relevant recent study has shown how the minimum number of ensemble members, N∗, will need to be increased to

include as many members as the number of parameters to be estimated (Bocquet et al., 2020). By modifying its parameters,

the model’s instabilities properties will change too, potentially inducing a catastrophic change (a tipping point) of its long term

behavior. Data assimilation will then need to infer the best parameter values to track the data signal and keep the DA solution505

on its same region of the bifurcation diagram.
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