
Responses to Reviewers
We thank both Reviewers for their careful reading of our manuscripts and the very
valuable suggestions for improvements. We have done our best to address all of the
Reviewers’ remarks and provide a detailed point-by-point responses in the following.
In the interested of readability, we report each of the Reviewers’ remark followed by
our answers.

We hope the current version of the manuscript meets the high standard expected for
publication on NPG.

Reviewer 1
This paper explores an interesting area of using the DA method to infer some basic
properties of the dynamic system. The hypothesis is investigated on the Vissio-Lucarini
2020 model. The method is sound. However, the authors should address the below
comments.

1. Generally, the length of this manuscript is a bit too long. The authors need to
revise and strengthen the direction of their work. Either has a clear aim and ob-
jectives or poses the main research question with sub-questions. At the moment
your introduction has three parts: “Lyapunov vectors and related measures of
chaos in a nutshell”, “Data assimilation in chaotic systems: the signature and
the use of chaos” and “This paper: data assimilation as a tool to interrogate the
dynamics”. Besides a literature review and introduction of these three topics, the
authors should also explicitly state the correlations of these three topics and con-
nect them smoothly. And finally,have aim and objectives (or research questions)
drive an overall high-level methodology for the paper.

Answer: Thank you for the suggestion. We agree with the reviewer that the
introduction is particularly long. We shortened paragraphs discussing the local
variability of dynamical systems, and the particle filters. However, because our
manuscript combines DA, dynamical systems, and predictability, we believe that
the remaining introduction, though still long, is required to present these topics
for potential readers from various background.

To address the lack of correlations of these topics and the clarity of the objectives
of the manuscript, we added sentences to connect each topic, and strengthened
the main question of the paper in Section 1.3. For example, the title of Section 1.3
now is ”This paper: can data assimilation be used to reconstruct the dynamical
properties of the system?”. Additionally, we have added the following paragraph:

“A major but not exclusive issue is that LEs estimation’ algorithms require com-
puting the tangent space of the dynamical system, a task usually unfeasible for
high-dimensional systems, or impossible when the model equations of are not
explicitly accessible. On the other hand, the existence of a relationship between
the DA and the unstable-neutral subspace suggests reversing the view-angle: use
DA as a tool to estimate the properties of a given system that would be otherwise
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very difficult to compute. As a model agnostic technique, DA, and in particular
ensemble-based methods such as the EnKF, can be applied to any model with-
out the need of computing the tangent space. This makes the EnKF a potentially
powerful instrument to reveal the stability properties of a dynamical system. This
is the goal of this work. Specifically, we shall investigate whether we can use DA
to infer the spectrum of the LEs and the Kolmogorov-Sinai entropy (σKS) of the
system whereby data are assimilated. ”

2. In section 4.2, the authors considered relaxing the observational constraint and
concluded the linear relation is very robust against the level of observational
noise (within a certain range) while it turns quadratic once the interval between
successive measurements gets too large. Could the authors also provide some
insights into these results? Could you explain the potential reasons for the rather
less effect of the observational noise and rather a large effect of the observation
frequency?

Answer: We thank the Reviewer to remark the lack of sufficient explanation.
The effectiveness of the observational interval, as opposed to the observational
noise, is a due to the former being directly related to the magnitude of the non-
linear advection term in the model. This is explained in detail in Bocquet and
Carrassi (2017). We also added a mathematical explanation for the basis of the
linear relationship for the upper bound, which requires frequent observations.
Longer observations breaks the condition of such linear relationship. We have
modified the text in section 4.2 (line 388) of the new version of the manuscript
as follows:

“The linear relationship of the upper bound can be explained by its formulation
in Eq. 26, where the exponent e2λ1∆t −1 can be approximated as 2λ1∆t if 2λ1∆t
is sufficiently small.”

and in line 428 of Section 4.2

“The larger sensitivity to the observation frequency than to observation noise
(cf Fig. 9 and Fig. 10) is a direct consequence of the different effects these two
factors have in determining the degree of non-linearity of the error. This is ex-
plained, for the L96 model, in the Appendix of Bocquet and Carrassi (2017)
using a dimensional analysis. The key point is that the observation frequency
modulates directly the magnitude of the nonlinear term in the model, namely
the advection. Decreasing the observation noise, while effectively reducing the
analysis error, is not sufficient to keep the error dynamics linear if ∆t > 0 and
the model is chaotic.”

Reviewer 2
In this article, the authors present a theoretical upper bound for the analysis error of
a chaotic dynamical system under perfect and linear model conditions. This upper
bound considers the properties of the observation network (Spatio-temporal distribu-
tion of the observations) as well as the dynamical properties of the system. Then, the
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authors evaluate the relation between analysis errors and different observing networks
and dynamical properties using an extension of the Lorenz 96 system. The results are
quite interesting and show the impact of observing different variable types and changes
in the system’s dynamics. The authors also show that the proposed upper bound for the
analysis error holds for this system under weakly non-linear regimes and that the mag-
nitude of the analysis error is linked to fundamental dynamical properties such as the
leading Lyapunov exponent or the Kolmogorov-Sinai entropy.

The paper is well written. The discussion of the motivation, methodology, and
results is clear. I have only some minor comments and questions for the authors.

1. It would be interesting to add a discussion about how these results could change
in the presence of model error. At least some hypotheses (like the convergence
of P f to the unstable subspace) may not hold in this case. Some discussion is
included about the parametric model error, but also structural model errors are
important.

Answer: We thank the Reviewer for raising this important point. There is not
a clear picture in the case of structural model error, whereby the general model
error is intended as per a model following a dynamics different from the one
derived from the observations (and therefore with a generally different phase
space). However, this type of complex, albeit unavoidable, model error is often
and conveniently treated as additive noise. In this case, the convergence of the
Kalman filter error covariance, P f , onto the unstable subspace has been studied
in Grudzien et al. (2018a) and Grudzien et al. (2018b). We briefly recalled these
results in Sect. 1.2 of the original version of the manuscript. The essential point is
that, for hyperbolic dynamics, with stochastic model noise, the error covariance
will no longer be fully confined within the unstable-neutral subspace, but will
have probability one to project everywhere and thus also on the stable modes.
By doing so, the error along those directions, while being continuously dampen
by the dynamics is also constantly kept alive by the injection of noise.

While this remains to be investigated, we argue that the existence of a clear
monotonic relationship between analysis error and λ1 will still hold in the pres-
ence of model error. The relation to σKS might also still stand because the correc-
tion would come from weakly stable modes. However, the conjecture need to be
validated by numerical experiments that are out of the scope of this manuscript.

We have modified the text as follows in line 495:

“The linear relation between error and λ1 and σKS will certainly be more com-
plicated with model errors. From Grudzien et al. (2018a) and Grudzien et al.
(2018b) we know that the KF error covariance will no longer be fully confined
within the unstable-neutral subspace, but will maintain projections with prob-
ability one everywhere, and thus also on the stable modes. Those projections
would be asymptotically zero in the absence of model noise. While this remains
to be investigated, we argue that the existence of a clear monotonic relationship
between analysis error and λ1 will still hold in the presence of model error. The
relation to σKS might also still stand because the correction would come from
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weakly stable modes. However, the conjecture need to be validated by numerical
experiments that are out of the scope of this manuscript.”

2. L473 In this paragraph an idea on how to use DA to estimate λ1 or σKS is pre-
sented. Results suggest that this is possible but requires investigating the be-
havior of the system under different dynamics. Can we estimate λ1 if we have
only one DA system with a particular observing network (like in operational
DA)? Can the relations obtained for this particular system be extended to other
systems?

L474 It is stated that using the analysis error and n0, an estimate of λ1 can be
obtained. This is unclear for me. The relation between λ1 and the analysis error
seems to be empirically obtained in this paper. Are the authors assuming that the
analysis error is equal to its upper bound (which is theoretically linked with λ1
and n0)?

Answer: We thank the reviewer for raising the issues. We believe these issues
arise from the lack of clarity of the manuscript. We hope our added content can
amend the issue.

The estimate of λ1 depends on n0, and the existence of the quasi-linear relation
between the DA skill and λ1 in the log-log space. The observing network should
be able to provide these information, which requires frequent observations. One
of the benefits of our proposed approach is to efficiently estimate λ1 or σKS when
the model parameter changes.

In the revised manuscript, we further clarify two approaches to estimate λ1 or
σKS. One approach is based on the upper bound, the other on the linear relation
between the nRMSE and the dynamical properties. Details of our description
can be found in the conclusion (line 477 Sect. 5) stated as follows:

“The error bound and the linear/quasi-linear relation between the error and λ1
or σKS represent two direct ways to infer λ1 and σKS by looking at the output
of a DA exercise. First, we can use the bound (Eq. 26.) to estimate λ1 for a
specific dynamical model, based on (normalised) error output of a DA exercise.
This requires the unstable-neutral subspace dimension, n0, that can be obtained
, in the case of EnKF-like methods, by looking at the analysis error convergence
for increasing ensemble size, N: n0 will be equal to N∗−1 where N∗ being the
smallest ensemble size for which the error reaches is minimum. This procedure
will give us an underestimate of λ1. Nevertheless, our results (cf Fig. 7) seem
to suggest that the amount of the underestimation is small and, notably, constant
across a range of different model configuration (and thus possibly quantifiable).

Our numerical experiments indicate a second way to estimate λ1 or σKS from
the skill of DA. The linear/quasi-linear relationship between normalised DA er-
ror and λ1 or σKS (cf Fig. 7) exists for both the derived upper bound in Eq. 26
and numerical experiments, and is tested under various observation constraint.
The existence of the relationship for the upper bound implies that the relation-
ship may exist for other dynamical systems as long as the time between analysis
∆t is sufficiently frequent because the upper bound is based on the assumption
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of a (quasi-)linear model. To utilize the relationship for a specific dynamical
system, a few DA experiments using different set of parameters of the dynamical
system is required. A linear relation can be obtained by linear regression from
the selected data, by which a relatively accurate λ1 or σKS for other parameters
of the dynamical system can be inferred. Unavoidably, for the selected set of
parameters, the method requires the λ1 or σKS to be known, which possibly can
be obtained by computational methods such as the one proposed by Wolfe and
Samelson (2007). However, the resulting linear relation can lead to a computa-
tionally efficient approach for other sets of parameters of the dynamical system
with an estimate more accurate than the one from the upper bound in Eq. 26.”.

3. L26 Kolmogorov-Sinai entropy (or metric)

Answer: Corrected in line 28 with “Kolmogorov-Sinai entropy (or metric en-
tropy)”.

4. L26 and can be identified as?

Answer: Corrected in line 30 as “can be estimated as”.

5. L83 asymptotic unstable-neutral modes?

Answer: The sentence is removed.

6. Equation 7, please check the correctness of this equation.

Answer: The equation is correct. The equation follows from Bocquet and Car-
rassi (2017) to ensure a positive-definite information matrix, and we add an ex-
planation for it in line 146:

“which implies that each term of the information matrix should be positive-
definite,”

7. L227 Please revise the definition of the potential energy (the summation index
and the definition that should include θ )

Answer: Thank you. Corrected in line 226.

8. L261 signifies

Answer: Thank you. Corrected in line 260.

9. Figure 1 Does this figure corresponds to the fully observed case?

Answer: Yes, and the information is added to the caption:

“Time series of nRMSEa over the first 100 time units (2,000 DA cycles) using
α = γ = 1 on n/2 = 18 grid points with an ensemble size of N = 40 with the
entire state vector observed at every time step.”

10. L267 The last 500 DA cycles or model time units?

Answer: Thank you. We added this information (500 time units) in line 267.

11. L285 very low values?

Answer: We replace low level to low values in line 284 now.
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12. L292 Please revise the sentence starting with ”Although these processes ...”

Answer: Thank you. We rephrased the sentence in line 291:

“Although these processes all participate the evolution of the model, the nonlin-
ear interplay cannot be straightforwardly disentangled. ”.

13. Caption Figure 3: ... where all variables, or only X, or only θ are observed? Also
describing each color line in the caption would be better. Also for Figure 5.

Answer: Done. We added:

“... where all variables, only X or only θ is observed. The blue dashed line
indicates the nRMSE of the X variable, the dashed red line represents the nRMSE
of the θ variable, and the dashed green line shows the nRMSE of the entire state
vector. ”

14. L319 The description of Figure 4 is unclear. Variable can refer to a grid point
or different variable types. Maybe better to say variable type instead of just
variable.

Answer: Done. We write “variable type” instead of variable in line 319.

15. Figure 4: Are the variables normalized before the respective CLV amplitude is
computed? Results, in this case, are reasonable, but I wonder how this analysis
can be extended to more complex systems with variables with different ranges
of variability and possibly different units.

Answer:
Thank you for the question. To make variables comparable we had to normalise
them. We did so by using the CLVs total amplitude. When working with more
realistic scenarios where variables are also expressed in different units with pos-
sible very different ranges, the aforementioned normalisation needs to follow an
adimensionalisation.

16. Figure 7: In the caption, it is not clear if σKS represents the stable configurations
or the weakly unstable model configurations.

Answer: We corrected a mistake in the caption. σKS < 0 should be stable con-
figurations.

17. L388 errors normalized?

Answer: Corrected.
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