
1 
 

Control Simulation Experiment with the Lorenz’s Butterfly 
Attractor 
Takemasa Miyoshi1,2,3,4, Qiwen Sun1,5 
1RIKEN Center for Computational Science, Kobe, 650-0047, Japan 
2RIKEN Cluster for Pioneering Research, Kobe, 650-0047, Japan 5 
3RIKEN interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, 351-0198, Japan 
4Application Laboratory, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236-0001, 
Japan 
5DepartmentGraduate School of Mathematics, Nagoya University, Nagoya, 464-8601, Japan 

Correspondence to: Takemasa Miyoshi (takemasa.miyoshi@riken.jp) 10 

Abstract. In numerical weather prediction (NWP), the sensitivity to initial conditions brings chaotic behaviors and an 

intrinsic limit to predictability, but it also implies an effective control in which a small control signal grows rapidly to make a 

substantial difference. The Observing Systems Simulation Experiment (OSSE) is a well-known approach to study 

predictability, where “the nature” is synthesized by an independent NWP model run. In this study, we extend the OSSE and 

design the control simulation experiment (CSE) where we apply a small signal to control “the nature”. Idealized experiments 15 

with the Lorenz-63 three-variable system show that we can control “the nature” to stay in a chosen regime without shifting to 

the other, i.e., in a chosen wing of the Lorenz’s butterfly attractor, by adding small perturbations to “the nature”. Using 

longer-lead-time forecasts, we achieve more effective control with a perturbation size less than only 3% of the observation 

error. We anticipate our idealized CSE to be a starting point for realistic CSE using the real-world NWP systems, toward 

possible future applications to reduce weather disaster risks. The CSE may be applied to other chaotic systems beyond NWP. 20 

1 Introduction 

The “butterfly effect”, discovered by Lorenz in 1960s (Lorenz 1963; 1993), is a phenomenon that an infinitesimal 

perturbation like “a butterfly flapping its wings in Brazil” causes a big consequence like “a tornado in Texas”. This extreme 

sensitivity brings chaotic behaviors and an intrinsic limit to predictability, but it also allows to design an effective control 

which was explored as “the control of chaos” in 1990s (e.g., a review by Boccaletti et al., 2000). Namely, we could take 25 

advantage of “the butterfly effect” and design an effective control with a series of infinitesimal interventions leading to a 

desired future. The control of weather is human’s long-time desire, and if we know when and where to put a “butterfly”, we 

could lead a better life by, for example, reducing the risks of tornadoes. 

     Predictability has been studied extensively, and we enjoy current high-quality weather prediction being consistently 

improved. However, studies on controllability are limited because we had to first improve the prediction accuracy and 30 

because our engineering power may be insufficient to enforce large enough perturbations to the atmosphere. Based on recent 
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high-quality NWP, this study attempts to explore a computational simulation approach to weather controllability. The 

simulation studies reveal what perturbations are needed to modify and control the weather. Mutual interactions between the 

simulation studies and the intervention techniques would be essential for the future developments toward real-world 

applications. 35 

     Previous efforts on weather modification include rain enhancement studies (e.g., a review by Flossmann et al. 2019) by 

cloud seeding with ground-based facilities and aircraft injecting smokes and dry ices into moist air, so that the aerosols act as 

cloud condensation nuclei and enhance cloud formation. These studies greatly helped advance our knowledge about physical 

processes of clouds and precipitation, but in terms of controlling the weather, we had only limited success with unclear 

implications to high-impact weather events, mainly because this method works only with supersaturated air. In the climate 40 

scale, geoengineering is a widely discussed concept, such as launching mirror satellites to reflect the sunlight and injecting 

dusts into the stratosphere to block the sunlight for cooling the air. Li et al. (2018) performed computational simulations and 

explored potential rain enhancements in the Sahel region by implementing large scale wind and solar farms over Sahara 

Desert and modulating the global atmospheric circulation. However, actual geoengineering operations are controversial 

because they may cause irreversible unexpected side-effects due to our limited knowledge of the earth system. The accepted 45 

and currently ongoing operations to counteract the current climate change may be limited to reduce the greenhouse gas 

emissions and to enhance renewables and recycles. 

     Our focus here is different. We aim to apply “the control of chaos” to the weather. We do not aim to cause a permanent 

irreversible change to the nature, but we would like to control the weather within its natural variability and to aid human 

activities, for example, by shifting the location of an extreme rain region to avoid disasters without causing a side effect to 50 

the global climate. For extreme weather that occurs in a chaotic manner under natural variations, the control of chaos 

suggests that proper infinitesimal perturbations to the nature atmosphere alter the orbit of the atmospheric dynamics to a 

desired direction. If the proper infinitesimal perturbations are within our engineering capability, we could apply the control 

in the real world. However, we cannot be too cautious about potential side effects and must consider and address every 

possible consequence. We will come back to this issue later in conclusion. 55 

     Here we develop a method of the control simulation experiment (CSE). It would be straightforward to extend the method 

to broader fields with chaotic dynamics beyond NWP. Weather prediction has been improved consistently by studying 

predictability and better initial conditions for NWP. Data assimilation (DA) combines the NWP model and observation data 

for optimal prediction. The method of DA shares that of optimal control, such as the Kalman filter (Kalman, 1960), where 

prediction and control are the two sides of a coin. DA has been studied extensively to improve the prediction, and this study 60 

illuminates the control. 

     The OSSE is a powerful method to simulate an NWP system (e.g., Atlas, 1985; Hoffmann and Atlas, 2016). The OSSE 

can be designed to assess the impact of certain observing systems and is useful, for example, to evaluate the potential value 

of a new satellite sensor before launch. The OSSE can also be designed to evaluate DA methods. In the OSSE, an 

independent model run acts as a synthetic “nature run” (NR), and we simulate observations by sampling the NR. The NWP 65 
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system is blind to the NR, takes the simulated observations, and estimates the NR. We compare the estimation accuracy 

among different OSSEs with different observations and different DA methods. 

     Here we extend the OSSE and apply small perturbations to the NR to alter the orbit to a desired direction. Investigating 

effective perturbations would address the controllability. As a proof of concept, we focus on the essence of the problem and 

use the Lorenz’s three-variable model (L63, Lorenz, 1963) instead of using a complex large-scale NWP model. In 70 

predictability studies, OSSEs are often performed with such simple idealized models like L63 to explore new DA methods 

before applying to the real NWP models (e.g., Kalnay et al., 2007; Yang et al., 2012). L63 is often used to focus on the 

essence of the problem since L63 shows typical chaotic behaviors with the solution manifold being a well-known “butterfly 

attractor” (Fig. 1a), which has two regimes or wings corresponding to the positive and negative values for variable x. The 

regime shifts randomly, and the predictability is limited due to chaos. Evans et al. (2004) revealed predictability of the 75 

regime shift from rapidly growing uncertainties given by the growth rate of specific growing perturbations known as the bred 

vectors (Toth and Kalnay, 1993). 

 
Figure 1: Phase space of the 3-variable Lorenz model. (a) Lorenz’s butterfly attractor from the NR without control, (b) the NR 
under control (D=0.05, T=⌈𝟒𝟒𝐓𝐓𝟎𝟎⌉). Each dot corresponds toshows the model states at every time step for 8000 steps. See also a movie 80 
at https://doi.org/10.5446/54893.  

2 Experiments 

We first perform a regular OSSE following the previous studies (Kalnay et al., 2007; Yang et al., 2012). The L63 system 

with the standard choice of the parameters (Lorenz, 1963) is discretized in time by the Runge-Kutta 4th order scheme with a 

time step of 0.01 units. We define 1 step = 0.01 units throughout the paper. We assimilate observations every Ta=8 steps. A 85 

round of the orbit, i.e., from a maximum to the next maximum for variable x, corresponds to T0=75.1 steps on average. We 

use the ensemble Kalman filter (EnKF, e.g., Evensen, 1994; Houtekamer and Zhang, 2016) with three ensemble members, 

which represent equally probable state estimates. For simplicity, we observe all three variables in this study, but any subset 

of observations except for observing only z variable results in the same conclusion, as suggested by the previous study about 
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chaos synchronization (Yang et al., 2006). The observation noise is generated from the normal distribution for each variable 90 

independently with the variance of 2.0. The EnKF results in accurate state estimation of the root mean square error (RMSE) 

of 0.32, consistently with the previous studies. 

 

Figure 2: Control cases with T=⌈𝟒𝟒𝐓𝐓𝟎𝟎⌉ and D=0.05 for (a) NR changed (C), (b) false alarm (FA), (c) NR unchanged (NC). Red ticks 95 
at the beginning (t=1,…,7) shows adding perturbations to the NR. 

 

     Next, we extend the OSSE and design a CSE. The goal of the control is to stay in a wing of the butterfly attractor without 

shifting to the other. It is essential that our prediction and control system is blind to the NR and takes only the imperfect 

observations. The control system finds when and what perturbations to add to the NR as follows (cf. Fig. 2): 100 

1. Perform a DA update using the observations at time t. (t=0 in Fig. 2) 
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2. Run an ensemble forecast for T steps from time t to t+T. (T=⌈4T0⌉ in Fig. 2, where ⌈ ⌉ indicates rounding up to the 

closest integer since the model integration is discretized) 

3. If at least one ensemble member shows the regime shift, activate the control (step 4); otherwise, go to step 1 for the 

next DA at time t+Ta. 105 

4. Add perturbations with Euclidean norm D to the NR at every step from t+1 to t+Ta-1. More precisely, at time t+i 

(i=1,..,Ta-1), the NR state is evolved from the previous NR state at time t+i-1 and is perturbed by adding (dx, dy, dz) 

where �dx2 + dy2 + dz2 = 𝐷𝐷.  (Fig. 2 red ticks indicating perturbations added to the NR with D=0.05) 

5. At time t+Ta, the new NR is used to simulate the observations; go to step 1 for the next DA at time t+Ta. 

Step 4 requires perturbations added to the NR. Investigating different strategies to generate the perturbations addresses 110 

controllability. Randomly chosen perturbations are found ineffective, but instead, we find the following strategy effective. 

We choose an ensemble member “S” showing the regime shift and another ensemble member “N” not showing the regime 

shift. If all three ensemble members show the regime shift, we use the ensemble members from the former initial times for 

an extended forecasting period and identify an ensemble member “N” not showing the regime shift during the period from t 

to t+T. Take the differences of the two ensemble members S-N for every step from t+1 to t+Ta-1 (1 to 7 in Fig. 2) before the 115 

next observations are available at t+Ta (8 in Fig. 2). The differences are used as perturbations added to the NR at appropriate 

time steps. Here, we consider the limitation of our intervention and include only a subset of the three variables (x, y, z) with 

a limited perturbation size. The choice of the variables and norm D (D=0.05 in Fig. 2) are the parameters for intervention. 

     Figure 2 illustrates three different cases with perturbations added to all three variables (x, y, z) with D=0.05 and T=⌈4T0⌉. 

With these settings the control is successful as shown in Fig. 1 (b) for 8000 steps. Figure 2 (a) shows the case in which the 120 

NR is changed by control and stays in the positive-x regime successfully (simply “C” for change). Figure 2 (b) shows the 

case of a false alarm (FA), in which the NR does not show the regime shift, but the ensemble prediction does. Therefore, the 

perturbations are added unnecessarily, but do not hurt. Figure 2 (c) shows the case in which the NR is not changed by control 

and still shows the regime shift (simply “NC” for no change). 
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125 

 
Figure 3: Rates of successful control out of 40 CSEs for perturbations added to variables (a) x, y, z, (b) x, y, (c) x, z, (d) y, z, (e) x, 
(f) y, (g) z. 

 

     To investigate the sensitivity to the parameters T and D, and the choice of the perturbed variables, we perform 40 130 

independent experiments for each setting for 8000 steps (1000 DA cycles, cf. Appendix A for the exact choices of the initial 

conditions) and count the number of successful experiments in which the NR stays in a single regime under control. Higher 

success rates correspond to better controllability. With longer forecasts (larger T), control is generally more effective (Fig. 3). 

With small T<⌈2.5T0⌉, the success rates are very low. The mean transition time for the regime shift is approximately 2.3T0 , 

which may be the minimum forecast length for effective control. With very small perturbations (D=0.02), the control is 135 
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difficult, but larger D does not necessarily improve the success rate. The perturbations are added every step, and the state 

evolves by approximately 0.5 (Euclidean norm) in one step on average (Table 1). This is about a half of the evolution 

without control, suggesting that the perturbations effectively drag the NR states toward more stable regions of the attractor 

(cf. Fig. 1 and a movie at https://doi.org/10.5446/54893). Adding larger perturbations with a similar size to the one-step 

model evolution tends to reduce the effect of control. Although observing only z is not sufficient for DA, it is good for 140 

control. Perturbing only one variable y or z is effective with T=⌈4T0⌉ and D>0.04, only an eighth of the analysis error of 0.32 

or only 3% of the observation error standard deviation of √2. In short, the L63 regime change is well controllable. 

D 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 no control 

OME 0.694 0.608 0.594 0.577 0.536 0.488 0.461 0.422 0.403 0.956 

D/OME 0.029 0.049 0.067 0.087 0.186 0.410 0.651 0.947 1.239 NA 
Table 1: Averaged one-step model evolution in the Euclidean norm (OME) and the relative size of perturbations (D/OME). Only 
successful control cases are considered for CSEs with T=⌈𝟒𝟒𝐓𝐓𝟎𝟎⌉ and perturbations added to variables x, y, z. 

     We further investigate the rateios of false alarms (FA), NR changed (C) and unchanged (NC) by perturbations (Fig. 4a). 145 

With larger D, we find generally lighter colors in Fig. 4 with fewer interventions. With smaller D, we have more 

interventions, mostly by false alarmsFA (Fig. 4, dark orange). With smaller D, more caseshigher rates of NR unchangedNC 

(Fig. 4, dark green) suggest that longer-term small interventions be needed. Additional experiments by not applying FA 

and/or NC perturbations reveal relative importance of these perturbations (Fig. 4b). These experiments require knowing the 

NR T steps in advance and therefore are not practical but are useful to understand the roles of these perturbations. For D=0.2 150 

and smaller, not applying FA perturbations does not significantly contribute to the control (Fig. 4b, yellow), whereas not 

applying NC has significant impact on reducing the effect of control (Fig. 4b, blue, green). Namely, the accumulation of NC 

perturbations would be essential for effective control. With large D>0.2, not applying FA and NC perturbations significantly 

enhances the effect of control (Fig. 4b, green). With the perturbation size similar to or even larger than the one-step model 

evolution (Table 1), a single instance of C perturbations is quite significant. In these cases, FA and NC perturbations are 155 

found harmful. 
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Figure 4: Similar to Fig. 3, but for(a) ratios rates of the cases of NR changed (C, magentared), false alarm (orangeFA, yellow), NR 
unchanged (NC, greenblue) for the successful control experiments with T=⌈𝟒𝟒𝐓𝐓𝟎𝟎⌉ and perturbations added to variables x, y, z. The 160 
ratios rates indicate the number of steps cases for each case out of total 18000 stepsDA cycles. (b) rates of successful control 
experiments with T=⌈𝟒𝟒𝐓𝐓𝟎𝟎⌉ and perturbations added to variables x, y, z for the original CSE (grey, cf. Fig. 3a), CSE without 
applying FA perturbations (yellow), CSE without applying NC perturbations (blue), CSE without applying FA and NC 
perturbations (green).The cases of less than 10% of successful control in Fig. 3 are omitted. 

 165 

     Finally, we perform additional sensitivity experiments with a longer DA interval of Ta=25 steps and with partial 

observations, i.e., only one or two variables are observed. The results generally agree with what has been shown so far (cf. 

Appendix B). 
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3 Conclusions 

     In this study, we proposed the CSE with numerical demonstration using the L63 3-variable model. The OSSE is a well-170 

known, powerful approach to study predictability and to evaluate DA methods and observing systems without having real-

world observation data. The CSE is an extension to the OSSE to study controllability and can be applied to various 

dynamical systems including full-scale NWP models. Our future studies apply the CSE to more complex models and 

investigate different control scenarios such as controlling the occurrences of extreme events. Such studies will address 

critical issues like how manageable interventions in terms of cost and energy can make differences to extreme events. This 175 

study is only a small step toward broad investigations that may lead to effective control of weather events. 

     As we described in introduction, any real-world application requires extensive caution. For the case of the L63 model, 

one side of the attractor may not be desirable for all aspects. We must consider and assess every potential impact caused by 

the control and have proper protocols for social, ethical, and legal agreement about real-world operations. 

Appendix A (The initial conditions of 40 CSEs) 180 

The OSSE with the L63 model follows that of the previous studies (Kalnay et al., 2007; Yang et al., 2012; Miller et al., 

1994; Evensen, 1997). Here we describe the additional details that were not provided in the previous papers but are 

necessary to repeat the experiment in this study. The initial condition for the NR was chosen to be (x, y, z) = (8.20747939, 

10.0860429, 23.86324441) after running the L63 model for 1000 steps initialized by the three state variables taken from 

independent random draws from a normal distribution with mean 0 and variance 2.0. The NR was 8 million steps long, and 185 

the OSSE was performed for the same period as the NR. 

     The CSEs were performed for total 378 combinations of T, D and the choice of the intervention. There were 9, 65, and 7 

choices of T, D, and intervention as shown in Fig. 3. For each combination, 40 independent CSEs were performed for 8000 

steps. The initial conditions for the 40 CSEs were chosen from the analyzed states of the OSSE at different time points as 

shown in Table 1. Figure 1 (b) shows the CSE #1 and Fig. 1 (a) the corresponding period of the NR. 190 
CSE 
index 

Time 
point of 
the NR 

CSE 
index 

Time 
point of 
the NR 

CSE 
index 

Time 
point of 
the NR 

CSE 
index 

Time point of the 
NR 

1 106069 11 126902 21 150056 31 173894 
2 107043 12 128058 22 150796 32 175011 
3 109371 13 130718 23 152308 33 179671 
4 111261 14 132342 24 155048 34 184480 
5 112987 15 133311 25 155666 35 197270 
6 114146 16 138699 26 162753 36 199278 
7 122065 17 140562 27 164411 37 200712 
8 124720 18 144953 28 168461 38 201304 
9 125339 19 147614 29 172109 39 208511 
10 125854 20 149418 30 173399 40 209397 

Initial time point = Time point of the NR – T – [(Time point of the NR – T) mod Ta] 
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Table A1: Time points of the NR providing the initial conditions of the 40 independent CSEs. The initial time point coincides the 
time with observations only every Ta= 8 steps, and the formula underneath the table provides the exact initial time point from the 
value in the table for a given parameter of T. 

Appendix B (Additional sensitivity experiments) 195 

CSEs are performed with a longer DA interval of Ta=25 steps which result in the RMSE of 0.76, consistently with the 

previous studies. The results are generally consistent (Fig. B1 compared with Fig. 3). 

 
Figure B1: Similar to Fig. 3, but for the case with a longer DA interval of Ta=25. 

CSEs are performed with different observing coverages, and the results are summarized in Table B1. Multiplicative inflation 200 

is manually tuned for each observing coverage. 
D obs x obs y obs x, y obs x, z obs y, z obs x, y, z 

0.02 0 0.025 0.05 0.125 0 0.05 

0.03 1 0.95 0.95 0.975 0.975 0.975 

0.04 1 0.975 0.95 1 1 0.925 

0.05 1 1 0.975 1 1 0.975 

0.1 1 1 1 1 1 0.825 

0.2 0.975 0.925 0.85 0.975 0.975 0.825 

0.3 0.95 0.925 0.675 0.975 0.95 0.725 

0.4 0.95 0.8 0.78 0.975 0.875 0.5 

0.5 0.9 0.75 0.65 0.95 0.85 0.525 
Ensemble 

spread 0.807 0.469 0.376 0.477 0.323 0.27 

RMSE 0.908 0.507 0.412 0.564 0.356 0.32 
multiplicative 

inflation 1.065 1.05 1.045 1.09 1.06 1.04 
Table B1: Rates of successful control out of 40 CSEs with different observing coverage. T=⌈𝟒𝟒𝐓𝐓𝟎𝟎⌉ and perturbations are added to 
variables x, y, z. 



11 
 

Code availability 

The code that supports the findings of this study are available from the corresponding author upon reasonable request. 205 

Data availability 

The authors declare that all data supporting the findings of this study are available within the paper. 

Author contribution 

TM is the principal investigator, directed the research and prepared the manuscript with contributions from QS. QS 

performed numerical experiments and visualized the results. 210 

Competing interests 

Takemasa Miyoshi is an editor of NPG. 

Acknowledgements 

This study was partly supported by the RIKEN Junior Research Associate (JRA) program and by the Japan Science and 

Technology Agency (JST) Moonshot R&D Millenia program (grant number JPMJMS20MK). 215 

References 

Atlas, R., Kalnay, E., Baker, W. E., Susskind, J., Reuter, D., and Halem, M.: Simulation studies of the impact of future 

observing systems on weather prediction, Preprints, Seventh Conf. on Numerical Weather Prediction, Montreal, QC, Canada, 

Amer. Meteor. Soc., 145–151, 1985. 

Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H., and Maza, D.: The control of chaos: theory and applications, Phys. Rep., 220 

329, 103-197, doi:10.1016/S0370-1573(99)00096-4, 2000. 

Evans, E., Bhatti, N., Kinney, J., Pann, L., Peňa, M., Yang, S. C., Kalnay, E., and Hansen, J.: RISE undergraduates find that 

regime changes in Lorenz’s model are predictable, Bull. Amer. Meteor. Soc., 85, 521–524, 2004. 

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast 

error statistics, J. Geophys. Res., 99, 10 143–10 162, doi:10.1029/94JC00572, 1994. 225 

Evensen, G.: Advanced data assimilation for strongly nonlinear dynamics, Mon. Wea. Rev., 125, 1342–1354, 1997. 

Flossmann, A. I., Manton, M., Abshaev, A., Bruintjes, R., Murakami, M., Prabhakaran, T., and Yao, Z.: Review of advances 

in precipitation enhancement research, Bull. Amer. Meteorol. Soc., 100, 1465-1480, doi:10.1175/BAMS-D-18-0160.1, 2019. 



12 
 

Hoffmann, R. S., and Atlas, R.,: Future observing system simulation experiments, Bull. Amer. Meteorol. Soc., 97, 1601-

1616, doi:10.1175/BAMS-D-15-00200.1, 2016. 230 

Houtekamer, P. L., and Zhang, F.: Review of the ensemble Kalman filter for atmospheric data assimilation, Mon. Wea. Rev., 

144, 4489-4532, 2016. 

Kalman, R. E.: A new approach to linear filtering and prediction problems, Transactions of the ASME - Journal of Basic 

Engineering, 82, 35-45, 1960. 

Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., and Ballabrera-Poy, J.: 4D-Var or Ensemble Kalman Filter?, Tellus, 59A, 758–235 

773, 2007. 

Li Y., Kalnay, E., Matesharrei, S., Rivas, J., Kucharski, F., Kirk-Davidoff, D., Bach, E., and Zeng, N.: Climate model shows 

large-scale wind and solar farms in the Sahara increase rain and vegetation, Science, 361, 1019-1022, 2018. 

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141, 1963. 

Lorenz, E. N.: The Essence of Chaos, University of Washington Press, Seattle, Washington, United States, 227pp, ISBN: 240 

9780295975146, 1993. 

Miller, R., Ghil, M., and Gauthiez, F.: Advanced data assimilation in strongly nonlinear dynamical systems, J. Atmos. Sci., 

51, 1037–1056, 1994. 

Yang, S.-C., Baker, D., Li, H., Cordes, K., Huff, M., Nagpal, G., Okereke, E., Villafañe, J., Kalnay, E., and Duane, G. S.: 

Data assimilation as synchronization of truth and model: experiments with the three-variable Lorenz system, J. Atmos. Sci., 245 

63, 2340-2354, doi:10.1175/JAS3739.1, 2006. 

Toth, Z., and Kalnay, E.: Ensemble Forecasting at NMC: The Generation of Perturbations, Bull. Amer. Meteorol. Soc., 74, 

2317-2330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2, 1993. 

Yang, S.-C., Kalnay, E., and Hunt, B.: Handling nonlinearity in an ensemble Kalman filter: experiments with the three-

variable Lorenz model, Mon. Wea. Rev., 140, 2628-2646, 2012. 250 

 

 

 


	1 Introduction
	2 Experiments
	3 Conclusions
	Appendix A (The initial conditions of 40 CSEs)
	Appendix B (Additional sensitivity experiments)
	Code availability
	Data availability
	Author contribution
	Competing interests
	Acknowledgements
	References

