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General comment 
This manuscript focuses on a controversial and challenging question: what can we learn about 
climate dynamics from a laboratory fluid experiment?, and it claims that there is a lot to learn! This 
optimistic answer is argued using a given generality of dynamical systems, more precisely 
stochastic attractors, and turbulence phenomenology, namely cascades and finally multifractal 
intermittency. Moreover, this approach is presented in a nice and elegant way. It certainly helps 
readers to emerge smoothly within the text, despite some sharp theoretical corners that remain 
beyond the present paper considerations. 

The paper is presented as a review, which is basically true as far as the work of the team and its 
laboratories is concerned. However, to my opinion, it would gain from taking into account the 
earlier findings of other teams although they did not start from a laboratory experiment, but, for 
example, from the stochastic interactions between weather and climate, both analysed in a 
multifractal way.   

A certain number of clarifications seem necessary, in particular on the pivotal issue of the energy  
flux conservation. A subsequent question is whether all the conclusions would hold in the absence 
of energy flux conservation. Below is a series of detailed comments and some suggestions which 
will hopefully be useful for a revision of this challenging manuscript. 

Detailed comments and suggestions 
Title 
It is surprising to see « Lewis Fry Richardson Medal Lecture » in the title, at least because the 
lecture was given by the Medalist, whereas the paper is cosigned by 4 other persons (see 
suggestions for L16-28 below).  

Affiliations 
Affiliations 1 and 2 are identical.   

L16-28:  
This paragraph should be rewritten slightly to make it clear that this article is based on the 2021 
Lewis Fry Richardson Medal Lecture presented by B. Dubrulle (avoiding to put it in the title) and 
that both are the result of personal intuitions and collective work. 

L75-78: 
The current "astronomical number" of degrees of freedom is obtained in a 3D isotropic framework, 
while even larger number of degrees of freedom (N≈1027) has been obtained in an anisotropic 
framework (e.g., Schertzer and Lovejoy, 1991), a priori much more relevant for the atmosphere. 

 L89-93: 
It should be mentioned that the eddy viscosity has been known since at least Richardson (1926) to 
be highly scale-dependent, so the quoted estimates are only relevant at given scales that need be 
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specified.  Moreover, the action of small scales on larger ones is not limited to eddy viscosity with 
the presence of a beating / backscatter / renormalized forcing term (e.g., Forster et al, 1977; Frisch 
et al., 1980; Herring et al. 1982, and references therein). 
The introduction of an eddy viscosity is far from being a “procedure [which] may sound foolish and 
bound to failure”, whereas it corresponds to a not so sophisticated renormalisation of the Green 
function that is indispensable to prevent accumulation of energy at the smallest explicit scales and 
the resulting explosion of the model (see references above).  
However, it is far from being sophisticated enough, particularly with regard to the necessity to also 
renormalise forcing and intermittency. So there is no reason to claim that the resulting simulations 
are that close to reality. In particular, without providing the objective metrics that have been 
developed to measure it. (Minor note: the XXX surrounding the reference Flato et al., 2013 must be 
suppressed). 

Fig2 caption and other places 
It would be important to clarify that what is called “angular momentum” is in fact its projection on 
the vertical axis oriented from bottom to top. 

L145-152 
It might be useful to give more specific names to O(2) and SO(2), e.g. "(general) orthogonal group" 
and "special orthogonal group" respectively, instead of just the generic name “symmetry group” for 
both, as well as to recall that  SO(2) is the (connected) component of O(2) whose elements have +1 
determinants, the other component having determinants -1. This can be particularly useful in 
understanding the reduction of O(2) into SO(2) with the breakdown of rotational  symmetry . 

L242 
It would be useful to make the mentioned stochastic Duffing attractor much less mysterious, for 
exemple, that it results from the coupling of the periodic forcing of the classical deterministic 
Duffing attractor (2D) with a Langevin equation (1D). 

L323-325 
The figure reference should point to Fig.11b, not Fig.12b. 
C(h) is rather the (statistical) co-dimension of the support of the singularity h than a multifractal 
spectrum (Halsey et al., 1986), which originally denoted the (geometrical) dimension f(h)= 3-C(h) 
introduced by Parisi and Frisch (1985), where C(h) is then constrained to be ≤ 3 (in a 3D 
embedding space). On the relations between dimension and co-dimension formalisms see, for 
instance, Schertzer and Lovejoy (2011) and references therein. In particular, singularities h such that 
C(h) > 3 are almost surely not observable on a unique sample (Hubert et al. 1973).  
The fact that the minimum of C(h) occurs at h0 = 0.35≈1/3 is rather related to a weak intermittency 
of the mean energy flux, more precisely to a low co-dimension C1 of the later: C1 = 3h0 -1 = 0.05 
with both the assumptions of log-normality and conservation of the energy flux, i.e., the strict scale 
invariance of the mean energy flux density  . However, this 
estimate strongly disagrees with the other estimate C1 = 1 obtained from C(0)=1, which belongs to 
the empirical parabolic fit C(h) plotted in Fig.11b. This is because this adjustment supports the first 
assumption, but not the second.  
Indeed, when obtained from the co-dimension  of a conservative flux: , 
the function C(h) depends on the unique parameter C1, whereas here it requires two independent 
parameters (horizontal shift and rescaling) to obtain a vertically orientated parabola. Although there 
is no obvious theoretical reason compelling that the points (0.35, 0) and (0,1) belong to the curve 

ℛπ

εℓ ≈ δℓu3 /ℓ ≈ ℓ−γ; γ = 1 − 3h

cε(γ) cε(γ) = (γ + C1)2 /4C1
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, this seems to be supported by the empirical extrapolation. Furthermore, the empirical fit is 
precisely in agreement with the conservation of the statistical moment of order  instead of 

 and all statistical moments of order  diverge with increasing resolution, including the 
mean flux ( ). The latter corresponds to the estimate h ≈ 0.17 given by the authors as the 
smallest measurable singularity.   
I think the current failure to conserve the energy flux needs to be stated clearly and whether it is a 
system or a model failure needs to be clarified. A similar clarification should be brought on the 
impossibility to measure singularities h lower/  higher than those of the mean flux, as well as on 
the nature of this impossibility.  

L328-333 
It is important to distinguish the energy flux  from its density  (i.e. it is not just a terminology 
issue):  results from the 3D integration on a volume  of its density  at much smaller scales 

.  Strong fluctuations of  may induce multifractal transitions that cause flux scaling 
deviates from the naive/dimensional scaling  (for instance, Schertzer and Lovejoy (2011) and 
references therein).  

L335-360 
Regarding the above discussion on the conservation of the mean energy flux, the “computational 
nightmare” currently envisaged by the authors seems to be:  
- either overoptimistic if the mean energy flux is effectively conserved. Indeed, the authors bound 
below the necessary range of explicit scales by , which only guarantees the presence of 
singularities that are almost surely present on a unique sample, not the rarest ones that are generated 
by extreme events; 
- or over-pessimistic if the mean energy flux is not conserved: the singularity  will be not 
actually reached. 

Conclusions  
… 
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