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Abstract. Non-Gaussian forecast error is a challenge for ensemble-based data assimilation (DA), particularly for more non-
linear convective dynamics. In this study, we investigate the degree of non-Gaussianity of forecast error distributions at 1-km
resolution using a 1000-member ensemble Kalman filter, and how it is affected by the DA update frequency and observa-
tion number. Regional numerical weather prediction experiments are performed with the SCALE (Scalable Computing for
Advanced Library and Environment) model and the LETKF (Local Ensemble Transform Kalman Filter) assimilating every-
30-second phased array radar observations. The results show that non-Gaussianity develops rapidly within convective clouds
and is sensitive to the DA frequency and the number of assimilated observations. The non-Gaussianity is reduced by up to
40% when the assimilation window is shortened from 5 minutes to 30 seconds, particularly for vertical velocity and radar

reflectivity.

1 Introduction

The Kalman filter (KF) is the minimum variance linear unbiased estimator of the state of a dynamical system. The Ensemble
Kalman Filter (EnKF, Evensen, 2009; Houtekamer and Zhang, 2016) is a Monte Carlo extension to the KF suitable for nonlin-
ear systems with a large number of variables, so that it became a viable choice for data assimilation (DA) in numerical weather
prediction (NWP) and other geoscience applications. The EnKF is optimal in the sense of maximum likelihood estimation
when the error distributions are Gaussian (Evensen, 2009), but it becomes sub-optimal when the observational and forecast
error distributions depart from the Gaussian (Lei et al., 2010). Miyoshi et al. (2014); Miyoshi et al. (2015) and Kondo and
Miyoshi (2018) investigated non-Gaussianity in forecast error distributions using a 10,240 member EnKF with global atmo-
spheric models. They showed that large non-Gaussianity measured by the Kullback-Leibler divergence is found frequently in

the tropics mainly due to abundance of deep moist convection and also in other active areas with a real-world NWP model at
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relatively low 112-km resolution. In those experiments, temperature and moisture show generally more non-Gaussian distribu-
tions than winds.
Recently the horizontal resolution of operational NWP systems reached the order of 1 km, fine enough to resolve convective

phenomena explicitly. Obtaining appropriate initial conditions at such high resolution is a challenge (Sun et al., 2014). The

EnKF has been successfully applied to mesoscale s-assimilation of radar and satellite
data (e.g., Stensrud et al., 2013). However, previous studies (Jacques and Zawadzki, 2014; Kawabata and Ueno, 2020) revealed
that the underlying assumptions such as linear error dynamics and Gaussian error distributions are much more challenging
questionable in mesoscale than in synoptic and larger scales.

Miyoshi et al. (2016a, b) developed a so-called Big Data Assimilation (BDA) system assimilating observations every 30
seconds at 100-m resolution, taking advantage of new-generation technologies like the phased array weather radar (PAWR)
which provides observations at unprecedented high temporal and spatial resolution. With the BDA configuration under an
idealized Observing System Simulation Experiment (OSSE) framework, Maejima and Miyoshi (2020) showed that every-1-
minute DA cycles resulted in better analyses than every-15-minute cycles. However, the impact of the DA frequency upon the
forecast error distribution has not been investigated in real-case convective scale NWP.

This study investigates how the DA frequencies affect non-Gaussianity using a 1000-member, 1-km-mesh EnKF. 1000
ensemble members would be useful to detect non-Gaussian forecast error distributions as suggested by Kondo and Miyoshi
(2019). Necker et al. (2020a, b) performed similar experiments and investigated the covariance structure and the effect of
sampling noise at the mesoscale in a heavy rain-rainfall event over Germany. Although the previous research employed data
assimilation with only conventional observations at a 3-hourly DA frequency, this study is fundamentally different in the
convection-resolving rapid DA cycles with PAWR data as frequently as every 30 seconds. The high frequency data allows us
to investigate the sources of non-Gaussian distributions at the kilometer scale in the presence of rapidly-evolving deep moist
convection. The paper is organized as follows: Section 2 describes methodological aspects. Results are presented in Section 3,

and Section 224 provides concluding remarks and discussion.

2 Methodology

We use observations from the PAWR at Osaka University, Suita, Japan (Yoshikawa et al., 2013, Fig. 1a, red cross). This PAWR
provides a unique dataset suitable for this study with various assimilation frequencies up to every 10 seconds at the fastest.
This study follows the case study of Miyoshi et al. (2016a) focusing on the period between 0400 and 0600 UTC July 13, 2013,
when heavy rains produced flash floods in Kyoto. Individual convective cells moved from west to east within a quasi-stationary
intense rainband (see Fig. 1b for a snapshot at 0530 UTC). For this period, full volume scans of the PAWR are available every
30 seconds with 98 elevation angles, azimuthal resolution of 1.2° , and range resolution of 100 meters up to a maximum range
of 60 km (Fig. 1a, red circle). Unambiguous Doppler velocities are available in the range —50 to 50 ms~'. PAWR reflectivity
data is quality-controlled following Ruiz et al. (2015). A simple quality control algorithm has also been applied to the Doppler

velocity field to remove outliers.



55

60

65

70

75

80

In this study, the regional NWP model known as the Scalable Computing for Advanced Library and Environment model
(SCALE, Nishizawa et al., 2015) is used, coupled with the local ensemble transform Kalman filter (LETKF, Hunt et al., 2007).
Lien et al. (2017) and Honda et al. (2018) describe the SCALE-LETKEF system in detail. The model configuration follows Lien
et al. (2017) with a single-moment bulk microphysics scheme (Tomita, 2008), a level-2.5 boundary layer turbulence scheme
(Nakanishi and Niino, 2004), the Model Simulation Radiation Transfer radiation scheme (Sekiguchi and Nakajima, 2008), and
soil processes represented by a Beljaars-type soil model (Beljaars and Holtslag, 1991).

The SCALE-LETKEF system is implemented over a single domain with horizontal resolution of 1 km, 56-vertical-sigma

levels;-and a size of 180 km by 180 km (Fig. 1a). 50 vertical levels extend up to 18 km elevation with a variable grid spacin,

from 140 m to 790 m in a hybrid sigma-z terrain-following coordinate. A 1000-member ensemble is used to assimilate the
observations. Kondo and Miyoshi (2019) showed significant sampling error contaminations in non-Gaussian measures when

the ensemble size is smaller than 1000. The initial conditions for the first cycle and the boundary conditions are taken from
the National Centers for Environmental Prediction Global Data Assimilation System final analysis (FNL). Using FNL as the

boundary conditions may be overly optimistic for the forecasting purpose, but this is not relevant to the goal of this study

DA frequency. The-beundary-condition-ensemble-is-perturbed

N e A

which focuses on non-Gaussian distributions and the impact of

The initial ensemble at the first assimilation cycle and the boundary condition ensemble are created by adding random
erturbations which preserve the hydrostatic and nearly geostrophic equilibrium (Necker et al., 2020a; Maldonado et al., 2021
. These perturbations are generated by-taking-differeneces-effrom a sample of continuous 6-hourly analysis states provided b

the Climate Forecast System Reanalysis Saha-et-al(2040

X'® (ts) =« [XCFSR(tnl("')) - XCFSR(t”Q(i))

where « is a multiplicative factor ef-6-+-equal to 0.1 so that the amplitude of the perturbations is roughly equivalent to 10% of

the climatological variability. All-variables-includingseil-variables-are-perturbedThe two CFSR analysis states are chosen b
randomly selecting two numbers n(i) and n(i) from the N elements satisfying the condition that ¢, () and ¢, ) correspond
to the same time of the year and time of the day. In the following assimilation cycles at time ¢ > t,, we obtain the boundar

perturbations as:

linear interpolation factor to compute perturbations at arbitrary times (not necessarily a multiple of 6h). In this way we
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obtain perturbations that are smoothly varying in time and consistently with the large scale dynamics of the atmosphere.

This procedure is applied to all atmospheric and soil state variables.
In the SCALE-LETKEF system, radar data can be assimilated using different localization scales for different variables. Based

on preliminary experiments with the SCALE-LETKF using smaller ensemble sizes and every-30-second PAWR data, it was
found that a vertical localization scale of 2km (with a 7.3km cut-off, similarly hereafter) produced good results. For horizontal
localization, better results were obtained using 4 — km localization to assimilate observations with reflectivities > 10dBZ.
Observations of reflectivity values < 10dBZ are assimilated with a fixed value of 10d BZ to avoid large observation-minus-
forecast departures associated with clear air reflectivities (Aksoy et al., 2009). Also, a shorter horizontal localization scale of
2km is used to reduce the impact of ne-rair-non-precipitating observations at the edge of clouds. Doppler velocity observations
are assimilated with horizontal and vertical localization scales of 10km and 3km, respectively. A-For covariance inflation, a
relaxation to prior ensemble spread (RTPS, Whitaker and Hamill, 2012) with a relaxation parameter of 0.9 is applied. This
helps consider the inhomogeneous distribution of observations as in Lien et al. (2017).

Reflectivity and Doppler velocity observations are superobbed to horizontal resolution of 1km and vertical resolution of

500m to approximately match the model resolution. This helps reduce the errors of representativeness due to the gap between
what is represented by the model and observation. This procedure can also reduce the impact of possible spatial correlations in

the observation errors. The observational error standard deviations for these super-observations are set at 5.0d BZ and 3.0ms ™!
for reflectivity and Doppler velocities, respectively. The radar data are assimilated up to a maximum height of 11km.

A spin-up DA experiment with every-5-minute PAWR reflectivity and Doppler velocity data is performed for an hour from
0400 UTC, July 13, 2013. Only a single PAWR volume scan closest to the analysis time is assimilated per analysis. The
1000-member analysis ensemble at 0500 UTC is used as the initial conditions for the DA experiments.

Experiments are performed with different DA update frequeney-frequencies to study the impacts of the DA frequency and
observation number on the forecast error distributions. All experiments share the configuration described above, but the only
differences are the DA frequency and the amount of the data assimilated. First, four experiments with 5, 2, 1, and 0.5 minutes
DA frequencies are performed, hereafter referred to as SMIN, 2MIN, 1MIN, and 30SEC, respectively. Here, only a single
volume scan closest to the analysis time is used per analysis. Namely, more frequent updates assimilate more data. In all cases
the time difference between the observation time (center time of the radar volume scan) and the analysis time do not differ by
more than 15 seconds.

Next, to separate the impact of DA frequency and the amount of data assimilated, two additional experiments are performed
using a S-minute and 1-minute DA frequency, with all radar volumes every 30 seconds assimilated by a 4-dimensional EnKF
approach Hunt et al. (2004). These experiments are referred to as SMIN-4D and 1MIN-4D, respectively, assimilating the same

amount of data as 30SEC but using longer assimilation windows.



115

120

(a) ‘ (b)

35.25

35.0 |

35.00

345

134.75

]

34,0 LI > e F W .

134.5 135. 135.5 136.0 136.5 135.00 13525 13550  135.75  136.00
0 250 500 750 1000 1250 1500 1750 0 10 20 30 40 50 60 70
(c) (d)
S
‘,
- - c o
35.25 <o i 35.25 e -
( = :
1 = 1
o o ; - -
35.00 |- 8 - 35.00 = -
- 4 ' (»
i hfhdatien. e
- o>
34.75 34.75
135.00 135.25 135.50 135.75 136.00 135.00 135.25 135.50 135.75 136.00

Figure 1. (a) Terrain height of the 1-km-mesh SCALE-LETKF domain (shades, m). The red circle indicates the 60-km radar range centered
at the radar site (red cross) in Osaka University, Suita, Japan. The black box indicates the area shown in (b-d). (b) column-maximum PAWR
observation (dBZ) at 0530 UTC, half an hour after the initialization of the data assimilation cycle, (c) SMIN and (d) 30SEC experiments
analysis ensemble-mean-ensemble mean column-maximum radar reflectivity (dBZ) at 0530 UTC. Black lines indicate the locations of the

cross-sections displayed in Fig. 2

To measure the degree of non-Gaussianity of the error distributions we compute the Kullback-Leibler divergence (hereafter

KLD, Kullback and Leibler, 1951) which is defined as follows:

KLD(P|Q) = / p(z)In ——=dx, )]

oo

whereP{aand-Q{x)are-two-where p(z) and ¢(z) are the probability density functions (PDFs) —of P and Q, respectively.

The KLD is 0 if P and @ are the same and takes positive values if P and @ differ. In our case P{a)-is-the-ensemble-based
sample-distribution-of-p(x) is either the first guess or analysis error distribution for the state variable #, and @¢+}-q(x) is a
Gaussian distribution whose mean and standard deviation are given-by-the-ensemble-based-sample-estimates—The KED-1s-0-4f
P-and-Q-are-the-same—equal to the ones of p(x). Therefore, a low KLD value corresponds to the sample-first guess or analysis
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error distribution close to a Gaussian.
do not have access to the continuous PDF p(x) but to its finite, limited sample. For each state variable x (e.g. temperature

wind components, etc) and at each model grid point, we approximate P{z=)-p(x) with the sample histogram pepulated-from
the 1000-member ensemble using 32 equally-sized bins covering the range where 2(z)-p(z) is greater than 0. This range is

defined by the minimum and maximum values of x at each model grid point and time. Hence, we can approximate the KLLD as

follows:_

j=32
KLD(P|Q)~ Y p; m%, @)
j=1 ’

where p; is the empirical frequency of x at the j — th histogram bin. ¢, is the integral over the j — th histogram bin of a
Gaussian PDF whose mean and standard deviation are given by the ensemble-based sample estimates. After implementing this
we end up with an estimation of the KLD of the analysis and first guess error distributions with respect to the Gaussian for
each grid point location, vertical level, and time.

3 Results

All experiments show that the analyzed reflectivity fields are in good agreement with the observation. However, some differ-
ences can be found between the experiments that assimilate different amounts of data and with different assimilation windows.
For example, Figures 1c and d show that 30SEC captures the strong reflectivity areas (>45 dBZ, orange and red shadings)
better than SMIN. SMIN shows noisy patterns of spurious convective cells surrounding the main convective rainband.

First, the impact of data assimilation frequency is explored by the SMIN, 2MIN, 1MIN, and 30SEC experiments. Here, more
observations are assimilated with more frequent data assimilation. Figure 2 top row (a-d) shows that the reflectivity (Z)-patterns

{patterns (Z, shades) are similar among all experiments, but vertical velocity (W, contours) are different. Figure2e-showsstrong
Stronger updrafts are found in DA experiments with shorter assimilation windows. This suggests that DA frequency have a

significant impact upon quantities which are not directly observed.
Strong non-Gaussianity is observed in the first-guess ensemble in W and temperature (F)-—-IED-for-W-and-T-are-consistently

experiment (Figure 2e and i respectively). Non-Gaussianity for W is reduced-significantly from-SMIN-to 2MIN-(Fig2e-h;red
contours)—SMIN-shows-strong-non-Gausstanityfor-W-stronger at the southern edge and the highest peak of the convective

celldFig—2e), which is probably related to the development of a new updraft in the southern edge and the top of the strong

updraft, respectively. Weaker low-level maxima south of the convective line are associated with shallow convective clouds

that are not effectively corrected by radar observations. The KLD maxima for T are approximately collocated as those for W.
KLD maxima in T can be associated with non-Gaussianity in W through vertical advection of scalar quantities such as T and
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moisture. Another KLD maximum for T is found near the surface south of the convective cell, probably associated with the

gust front,
Kondo and Miyoshi (2019) found that in synoptic scales, the ensemble spread maxima are ee-teeated—collocated with the

KLD maxima. At convective scales for W, the ensemble spread maxima (Fig. 2e-he, red contours) are slightly-out-ef phase

for-W-{shadesnot necessarily collocated. For example, larger departures from the Gaussian are found above the ensemble
spread maximum associated with the main updraft in the SMIN experiment, For temperature also there is no clear relation in
the distribution of the ensemble spread and the KLD, although KLD maxima seem to occur within areas of relatively large
ensemble spread. As the assimilation frequency increases it is more difficult to find a relationship between KLD and ensemble
spread either for W or T (Fig. 2 second and third rows). Fhese KED-maxima-can-be-associated-with-

KLD for W and T are consistently reduced with more frequent DA (Fig. 2e-h), although the reduction is smaller for T.
Overall, KLD is reduced more from SMIN to 2MIN than from IMIN to 30SEC. This reduction occurs mainly within the
convective clouds. Non-Gaussianity in W at low levels observed outside the cloud is not significantly affected by more frequent
updates. The ensemble spread for W_is also reduced with more frequent DA and indicates a narrower error distribution.
WMMnon Gaussianity fﬂ%V—fhfeﬁgh—vef&ea}ﬂdvee&efref—se&}aﬁqﬂaﬁﬁﬁeﬁuehﬁ&%aﬂd
since it is expected that smaller
perturbations grow in a more linear regime and contribute to reducing the departures from the Gaussian.

To better investigate the shape of the error distributions and how they are affected by the update frequency, Fig. 3 shows
the sample histograms for the first guess at the location of maximum KLD (indicated with a black cross in Fig. 2). We restrict
the search of the maximum KLD to the grid points at which the ensemble mean reflectivity is over 30 dBZ where radar data
impact would be large. The forecast error distribution for W and for the SMIN experiment shows large departures from the

. 3a). A similar situation is observed for Z (Fi

Gaussian with a strong positive tail (Fi . 3e). This result is consistent since

ensemble members with larger W are probably associated with the-gust-front—larger reflectivity values, so both distributions
become positively skewed. As the update frequency is increased, non-Gaussianity and ensemble spread are reduced for both
IMIN experiment. Note that these error distributions are taken at slightly different locations based on the simulated convection
locations in each experiment and thus the mean of the distribution can change from one experiment to the other.

4D-EnKF experiments allow us to investigate the impact of changing the assimilation frequency while keeping the obser-
vation number unchanged. SMIN-4D shows weaker updrafts (similar to those found in SMIN) compared with experiments
with more frequent updates (Fig. 4a,b). SMIN-4D also shows almost the same ensemble spread for W and T as SMIN (Fig.

4c and e, red contours). KLD for W (Fig. 4c, shades) is lower, indicating that the observation number contributes to reducing
non-Gaussianity. This is not the case for T for which KLD is similar or larger (Fig. 4e;-blue-contourse, shades). IMIN-4D is
close to IMIN and 30SEC in terms of non-Gaussianity and the shape and strength of the convective cell (Figs. 4band-¢-, d and

).

~
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Each column corresponds to SMIN, 2MIN, 1MIN, and 30SEC from left to right, respectively.

We further investigate the non-Gaussianity by averaging the KLD vertically and temporally (Fig. 5). In SMIN, the central
and eastern side-sides of the convective area shews-show relatively low KLD values because the impact of radar DA is generally

bigger in the convective areas (Fig. 5a). The impact of DA frequency on non-Gaussianity is investigated by means of the relative
KLD difference between the SMIN and all the other experiments, computed as:

KLDp— KLDsain

KLDg = —ooB = 005
ars KLDsyrn

. 3)

where K LD, ¢ is the relative difference between the averaged KLLD in the SMIN experiment (K L Ds,7n) and on each of

the other experiments (X LD g), where E can be either SMIN-4D, 2MIN, 1MIN, 1MIN-4D or 30SEC).
KLD consistently decreases with increasing DA frequency (Figs. 5b-d). KLD is reduced by up to 40% in 30SEC with

respect to the SMIN. KLD is reduced more in the convective area, where more observations are assimilated. Increasing the DA
frequency and the observation number preduce-produces a more substantial impact over the western part of the convective line
where KLD maxima are found associated with convective cells entering the radar range from the Westwest.

KLD in IMIN-4D is as low as that in 30SEC and lower than that in 1MIN. This result suggests that both observation number
and DA frequency contribute to reducing non-Gaussianity, at least for high DA frequencies. KLD in SMIN-4D is lower than
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Figure 4. Similarto-As in Fig. 2 a-h-but for (a, ¢ and ) SMIN-4D and (b, d and f) IMIN-4D.

that in SMIN, so that a larger observation number helps to reduce non-Gaussianity. However, KLD in SMIN-4D is larger than
that in 30-SEC or 1MIN-4D, se-indicating that DA frequency is equally important. Moreover, the impact of DA frequency
can be larger in the case of variables like T and moisture. As already found in the vertical cross-sections (Fig. 4), for those
variables, KLLD in SMIN and SMIN-4D is almost the same, while KLD is clearly reduced for IMIN, 1MIN-4D, and 30SEC
205 (not shown).
We also investigate the vertical distribution of non-Gaussianity by the spatially averaged vertical profile of KLD at "rainprecipitating”
grid points, defined by the ensemble-mean column-maximum reflectivity > 30dB Z, and "ne-rainnon-precipitating" grid points,
defined by the ensemble-mean column-maximum reflectivity < 0dBZ. At the rain-""precipitating” grid points (Figures 6a-d)

KLD for temperature and vertical velocity is maximum at mid-levels coinciding with the maximum in latent heat release within

10
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Figure 5. (a) Column-averaged KLD for zonal wind for SMIN, averaged for the experiment period from 0500 to 0600 UTC. Relative KLD
difference (%) from SMIN for (b) 2MIN, (c) IMIN, (d) 30SEC, (e) SMIN-4D, and (f) IMIN-4D. Warm colors correspond to smaller KLD

values.

convective clouds and with the maximum ensemble spread for these two variables (not shown). KLD for temperature, verti-
cal velocity, and specific humidity maximizes at lower heights over the no-rain-non-precipitating area since, as stated before,
at such locations non-Gaussianity is mainly associated with shallow convection. For instance, for the vertical velocity, the
ensemble spread in the shallow convection is usually low, but the KLD can be larger. An upper-level maximum in KLD is
found for the meridional wind (Figs. 6d sand h), also coinciding with the maximum ensemble spread (not shown). Convective
outflows are stronger at the top of convective clouds and can be one of the mechanisms contributing to inerease-the increase
of non-Gaussianity at these levels over the rain-precipitating area. Overall, KLD in 30SEC is lower than that in SMIN with
reductions of more than 40%. The reduction of KLD in the ne-rain-non-precipitating area is smaller because the radar DA

is inherently less effective in these areas (Figs. 6e-h). There are some exceptions to the general reduction in non-Gaussianity
SMIN experiments. This is also the case for the precipitating grid points at upper levels in the second half of the experiment.
To investigate the effect of the analysis update on non-Gaussianity we present the time series of the KLD of the analysis

13

and first guess vertically and horizontally averaged over the “

most times and variables over the “precipitating” and “non-precipitating”’ erid points, KLD is reduced during the assimilation

11
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Figure 6. Time-vertical cross-section of KLD for SMIN (contours, 10~2) and the relative difference for 30SEC (shaded), averaged over the
(a-d) "rainprecipitating” (>30dBZ) and (e-h) "re-rainnon-precipitating” (<0dBZ) grid points for (a,e) temperature, (b,f) specific humidity,

(c,g) vertical velocity and (d,h) meridional wind.

step. Experiments with longer windows show more KLD growth during the forecast as expected, but also a larger reduction
at the analysis step, which is not as effective as the more frequent updates in reducing the analysis KLD. As noted before,
the specific humidity over the “non-precipitating” grid points behaves differently, and KLD increases during the assimilation
step for almost all times and experiments, leading to larger KLD at shorter assimilation windows (Figs. 6b and ). In this area
mostly “non-precipitating” observations are assimilated to suppress spurious clouds. Interestingly in the “non-precipitating”
rid points SMIN-4D is the experiment providing the lowest KLD for all variables (Figs. 7b, d and

potential benefits of treating “non-precipitating” observations differently.

+000-member-

To evaluate the impact of assimilation frequency on the distance between the analysis and first guess to the observations in
a more systematic way, we compute the root mean squared error (RMSE) and bias for reflectivity observations (Fig, 8). The
computation of the RMSE and bias between the model and the observations is done by comparing the column maximum of
the reflectivity for each horizontal grid location and time. The RMSE and bias are computed only over grid points at which
the observed maximum reflectivity is over 5dBZ. The time series of RMSE shows a better fit to the observed reflectivity for
shorter assimilation windows. The impact of 4D DA is not so clear, IMIN-4D slightly outperforms the IMIN but SMIN-4D and
SMIN perform similarly (Fig, 8a). This is partially because in 4D data assimilation the analysis results from the assimilation
of all the observations within the assimilation window, while to construct this figure, only the observations at the analysis time
were considered. The bias, computed as the mean difference between the model and the observations does not seem to be
consistently affected by the assimilation frequency (Fig. 8b). These results are in agreement with those observed in the time
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series of KLD for different variables. However, we should be cautious with the interpretation of these results since increasin

the observation number can lead to both a reduced KLD and a better fit to the observed quantities, not necessarily implying a

causal link between these two effects.

4 Summary and Discussion

One-thousand-member 1-km-resolution ensemble DA experiments were performed using real phased array radar observations
and a mesoscale NWP model to investigate the impact of DA frequency and observation number on the non-Gaussian error
distributions. We found that a DA frequency of 5 minutes, although it was already much faster than the typical DA frequency,
resulted in strong non-Gaussianity possibly affecting the performance of the EnKF. Non-Gaussianity is stronger for vertical
velocity as has been found by Kawabata and Ueno (2020). Non-Gaussianity is also larger at mid-levels within convective
cells, near the level of larger latent-heat release and vertical accelerations associated with convective instability. At convective
scales, some of the local maxima in KLD can be related directly to advection by mesoscale circulations associated with strong
convective cells, but other processes not specifically presented in this study may also possibly contribute to the generation of
non-Gaussianity, such as those not directly associated with clouds, like differential heating circulations or gravity waves.

We found that increasing the analysis update frequency and observation number from 5 minutes to 30 seconds has a huge
impact upon non-Gaussianity in the error distributions for all model variables but particularly for vertical velocity and reflec-
tivity which are the ones showing larger KLD from Gaussianity at these scales. Increasing the assimilation frequency to 30
seconds and assimilating more observations can reduce KLD by up to 40%. Moreover, 4D-EnKF experiments revealed that for
frequent DA of every 1 minute, the observation number explained most of the reduction in non-Gaussianity; in contrast, for a
longer window of 5 minutes, even the experiments using all 30-second-frequency observations presents significant departures
from the Gaussian. While convective clouds are particularly favorable for nonlinear error growth, non-Gaussianity is not nec-
essarily larger within convective clouds. This is mainly due to the convective-scale radar DA is usually most effective within

precipitating clouds. Fhis-
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There are two_possible ways in which more frequent DA can result in error distributions closer to the Gaussian. First,
more frequent DA contributes to a quasi-linear evolution of the forecast error due to forecast lengths which are shorter than
the predictability limit for the resolved scales. This also helps keep the perturbation small and can additionally contribute
to_quasi-linear perturbation dynamics. Second. our results show that the analysis step effectively contributes to reducing
non-Gaussianity for different variables, although this may not be the case for “non-precipitating” reflectivity observations
that produce an increase in KL.D for specific humidity. Non-gaussianity reduction during DA is larger with longer windows.
However, it is not enough to compensate for the effect of more rapid and non-linear error growth during the forecast step in the
lower update frequency experiments.

From the point of view of KLD reduction, the largest impact is found between SMIN and 2MIN updates. This suggests
that non-linear error growth become more important after the first 2 minutes of integration at these scales. This hypothesis
is partially supported by the reduction in RMSE and ensemble spread. A 2-minute update frequency seems to provide a
good compromise between the computational cost and non-Gaussianity of the error distributions. However, from the point of
view of the analysis accuracy more frequent DA provides a better fit to the observed quantities. The specific role of reduced
non-Gaussianity on this is not clear and should be further investigated. Gaussian error distributions may contribute to more

accurate analysis updates, but in the current experimental setting, other factors like the increase in the number of assimilated

observations may also lead to the reduction in the RMSE for observed quantities. Maejima and Miyoshi (2020) investigated

the impact of assimilation frequency at 1-km using observing system simulation experiments. They also found a significant
improvement in the forecast quality when the assimilation window is reduced from 5 minutes to 3 minutes and additional
improvements using 1 minute windows. These results are consistent with what is found in this paper with respect to Gaussianity.
in the error distributions.

Moreover, as has been shown in the previous studies, more frequent assimilation can produce a larger degree of imbalance in
the initial conditions which can degrade the quality of the forecasts (e.g., Lange and Craig, 2014; Bick et al., 2016). Therefore,
despite the potential benefits of a more Gaussian model error distribution on the analysis accuracy, other factors may degrade the
forecasts initialized from more frequent data assimilation cycles. Imbalance may also be an additional source of non-Gaussianity.
Gaussian error distributions can lead to more physically meaningful assimilation updates in the context of an EnKFE and
therefore, more balanced initial conditions. However, a larger imbalance in the initial conditions can contribute to faster error
growth and increased departure from the Gaussian in the forecast distribution. Possible interactions of these mechanisms in a
data assimilation cycle have not been investigated, and are a subject for future research. Qur results suggest that despite the
effect of a larger imbalance, the increase of DA frequency reduce non-Gaussianity in the sample distributions with the EnKE.
This is even true to variables like vertical velocity within convective clouds which are frequently used to measure the effect of

imbalance in the initial conditions.

This study is the first attempt to investigate the impact of assimilation frequency and observation number on non-Gaussianity
using an EnKF employing a large 1000-member ensemble and every-30-second observations from a PAWR. In this first set

of experiments, we evaluate the impact on the non-Gaussianity of the ensemble-based sample distribution. Future experiments
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will be performed to investigate the overall quality of the analysis obtained with different assimilation windows and number of

300 observations and also the impact of assimilation window upon the structure of the error covariance matrix.

Code and data availability. The codes used for the main results of this study can be accessed at a public github repository (https://github.com/takemasa-
miyoshi/letkf). Essential data to reproduce the results of this study are stored for 5 years in RIKEN R-CCS. Due to the large volume of data
and limited disk space, data will be shared online upon request (takemasa.miyoshi@riken.jp). The phased array radar data can be visualized

at https://pawr.nict.go.jp/index_en.html
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