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Abstract. Non-Gaussian forecast error is a challenge for ensemble-based data assimilation (DA), particularly for more non-

linear convective dynamics. In this study, we investigate the degree of non-Gaussianity of forecast error distributions at 1-km

resolution using a 1000-member ensemble Kalman filter, and how it is affected by the DA update frequency and observa-

tion number. Regional numerical weather prediction experiments are performed with the SCALE (Scalable Computing for

Advanced Library and Environment) model and the LETKF (Local Ensemble Transform Kalman Filter) assimilating every-5

30-second phased array radar observations. The results show that non-Gaussianity develops rapidly within convective clouds

and is sensitive to the DA frequency and the number of assimilated observations. The non-Gaussianity is reduced by up to

40% when the assimilation window is shortened from 5 minutes to 30 seconds, particularly for vertical velocity and radar

reflectivity.

1 Introduction10

The Kalman filter (KF) is the minimum variance linear unbiased estimator of the state of a dynamical system. The Ensemble

Kalman Filter (EnKF, Evensen, 2009; Houtekamer and Zhang, 2016) is a Monte Carlo extension to the KF suitable for nonlin-

ear systems with a large number of variables, so that it became a viable choice for data assimilation (DA) in numerical weather

prediction (NWP) and other geoscience applications. The EnKF is optimal in the sense of maximum likelihood estimation

when the error distributions are Gaussian (Evensen, 2009), but it becomes sub-optimal when the observational and forecast15

error distributions depart from the Gaussian (Lei et al., 2010). Miyoshi et al. (2014); Miyoshi et al. (2015) and Kondo and

Miyoshi (2018) investigated non-Gaussianity in forecast error distributions using a 10,240 member EnKF with global atmo-

spheric models. They showed that large non-Gaussianity measured by the Kullback-Leibler divergence is found frequently in

the tropics mainly due to abundance of deep moist convection and also in other active areas with a real-world NWP model at
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relatively low 112-km resolution. In those experiments, temperature and moisture show generally more non-Gaussian distribu-20

tions than winds.

Recently the horizontal resolution of operational NWP systems reached the order of 1 km, fine enough to resolve convective

phenomena explicitly. Obtaining appropriate initial conditions at such high resolution is a challenge (Sun et al., 2014). The

EnKF has been successfully applied to mesoscale data assimilation of radars and satellites
:::::::::
assimilation

:::
of

::::
radar

::::
and

:::::::
satellite

:::
data

:
(e.g., Stensrud et al., 2013). However, previous studies (Jacques and Zawadzki, 2014; Kawabata and Ueno, 2020) revealed25

that the underlying assumptions such as linear error dynamics and Gaussian error distributions are much more challenging

::::::::::
questionable

:
in mesoscale than in synoptic and larger scales.

Miyoshi et al. (2016a, b) developed a so-called Big Data Assimilation (BDA) system assimilating observations every 30

seconds at 100-m resolution, taking advantage of new-generation technologies like the phased array weather radar (PAWR)

which provides observations at unprecedented high temporal and spatial resolution. With the BDA configuration under an30

idealized Observing System Simulation Experiment (OSSE) framework, Maejima and Miyoshi (2020) showed that every-1-

minute DA cycles resulted in better analyses than every-15-minute cycles. However, the impact of the DA frequency upon the

forecast error distribution has not been investigated in real-case convective scale NWP.

This study investigates how the DA frequencies affect non-Gaussianity using a 1000-member, 1-km-mesh EnKF. 1000

ensemble members would be useful to detect non-Gaussian forecast error distributions as suggested by Kondo and Miyoshi35

(2019). Necker et al. (2020a, b) performed similar experiments and investigated the covariance structure and the effect of

sampling noise at the mesoscale in a heavy rain
::::::
rainfall

:
event over Germany. Although the previous research employed data

assimilation with only conventional observations at
:
a
:
3-hourly DA frequency, this study is fundamentally different in the

convection-resolving rapid DA cycles with PAWR data as frequently as every 30 seconds. The high frequency data allows us

to investigate the sources of non-Gaussian distributions at the kilometer scale in the presence of rapidly-evolving deep moist40

convection. The paper is organized as follows: Section 2 describes methodological aspects. Results are presented in Section 3,

and Section ??
:
4
:
provides concluding remarks

::
and

:::::::::
discussion.

2 Methodology

We use observations from the PAWR at Osaka University, Suita, Japan (Yoshikawa et al., 2013, Fig. 1a, red cross). This PAWR

provides a unique dataset suitable for this study with various assimilation frequencies up to every 10 seconds at the fastest.45

This study follows the case study of Miyoshi et al. (2016a) focusing on the period between 0400 and 0600 UTC July 13, 2013,

when heavy rains produced flash floods in Kyoto. Individual convective cells moved from west to east within a quasi-stationary

intense rainband (see Fig. 1b for a snapshot at 0530 UTC). For this period, full volume scans of the PAWR are available every

30 seconds with 98 elevation angles, azimuthal resolution of 1.2◦ , and range resolution of 100 meters up to a maximum range

of 60 km (Fig. 1a, red circle). Unambiguous Doppler velocities are available in the range −50 to 50ms−1. PAWR reflectivity50

data is quality-controlled following Ruiz et al. (2015). A simple quality control algorithm has also been applied to the Doppler

velocity field to remove outliers.
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In this study, the regional NWP model known as the Scalable Computing for Advanced Library and Environment model

(SCALE, Nishizawa et al., 2015) is used, coupled with the local ensemble transform Kalman filter (LETKF, Hunt et al., 2007).

Lien et al. (2017) and Honda et al. (2018) describe the SCALE-LETKF system in detail. The model configuration follows Lien55

et al. (2017) with a single-moment bulk microphysics scheme (Tomita, 2008), a level-2.5 boundary layer turbulence scheme

(Nakanishi and Niino, 2004), the Model Simulation Radiation Transfer radiation scheme (Sekiguchi and Nakajima, 2008), and

soil processes represented by a Beljaars-type soil model (Beljaars and Holtslag, 1991).

The SCALE-LETKF system is implemented over a single domain with horizontal resolution of 1 km, 50 vertical sigma

levels, and a size of 180 km by 180 km (Fig. 1a).
::
50

:::::::
vertical

:::::
levels

::::::
extend

::
up

::
to
:::
18

:::
km

::::::::
elevation

::::
with

:
a
:::::::
variable

::::
grid

:::::::
spacing60

::::
from

::::
140

::
m

::
to

::::
790

::
m

::
in

::
a

:::::
hybrid

:::::::
sigma-z

:::::::::::::::
terrain-following

:::::::::
coordinate.

:
A 1000-member ensemble is used to assimilate the

observations. Kondo and Miyoshi (2019) showed significant sampling error contaminations in non-Gaussian measures when

the ensemble size is smaller than 1000. The initial conditions for the first cycle and the boundary conditions are taken from

the National Centers for Environmental Prediction Global Data Assimilation System final analysis (FNL). Using FNL as the

boundary conditions may be overly optimistic for the forecasting purpose, but this is not relevant to the goal of this study65

which focuses on non-Gaussian distributions and the impact of DA frequency. The boundary-condition ensemble is perturbed

by adding balanced large scale random perturbations following (Necker et al., 2020a)

:::
The

::::::
initial

::::::::
ensemble

::
at

:::
the

::::
first

:::::::::::
assimilation

::::
cycle

::::
and

:::
the

:::::::::
boundary

::::::::
condition

::::::::
ensemble

:::
are

:::::::
created

:::
by

::::::
adding

:::::::
random

:::::::::::
perturbations

:::::
which

:::::::
preserve

:::
the

:::::::::
hydrostatic

:::
and

::::::
nearly

::::::::::
geostrophic

:::::::::
equilibrium

::::::::::::::::::::::::::::::::::::::
(Necker et al., 2020a; Maldonado et al., 2021)

. These perturbations are generated by taking differences of
::::
from

::
a

::::::
sample

::
of

:::::::::
continuous

::::::::
6-hourly

:::::::
analysis

:::::
states

:::::::
provided

:::
by70

the Climate Forecast System Reanalysis Saha et al. (2010) fields corresponding to randomly selected dates in the same season

at the same time of the day. The perturbations are scaled by
:::::::::::::::::::::
(CFSR, Saha et al., 2010),

:::::::::::::::::::::::::::::::::::::

[
XCFSR(t1),XCFSR(t2), ....,XCFSR(tN )

]
,

:::::
where

:::::::::
N = 5840

::
(4

::::::
years).

::::
The

::::::::
horizontal

::::
grid

:::::::
spacing

::
of

:::
the

::::::
CFSR

::::
data

::
is

::::
0.5◦.

:::
At

:::
the

::::::::
beginning

:::
of

:::
the

::::::::::
assimilation

:::::
cycle

:::::::
(t= ts),

:::
the

:::::
initial

::::::::
condition

::::::::::
perturbation

::
of

:::
the

:::::
i− th

:::::::
member

:::::
X ′(i)

::
is

::::::::
computed

:::
as:

:

X ′(i)(ts) = α
[
XCFSR(tn1

(i))−XCFSR(tn2
(i))
]

:::::::::::::::::::::::::::::::::::::::

75

:::::
where

::
α

::
is a multiplicative factor of 0.1

:::::
equal

::
to

:::
0.1 so that the amplitude of the perturbations is roughly equivalent to 10% of

the climatological variability. All variables including soil variables are perturbed
:::
The

::::
two

:::::
CFSR

:::::::
analysis

:::::
states

:::
are

::::::
chosen

:::
by

::::::::
randomly

:::::::
selecting

::::
two

:::::::
numbers

::::
n
(i)
1 ::::

and
:::
n
(i)
2 :::::

from
:::
the

::
N

::::::::
elements

::::::::
satisfying

:::
the

::::::::
condition

::::
that

:::::
tn1

(i)
:::
and

:::::
tn2

(i)
::::::::::
correspond

::
to

:::
the

::::
same

::::
time

:::
of

:::
the

::::
year

:::
and

::::
time

:::
of

:::
the

::::
day.

::
In

:::
the

::::::::
following

::::::::::
assimilation

::::::
cycles

::
at

::::
time

::::::
t > ts,

:::
we

::::::
obtain

:::
the

::::::::
boundary

:::::::::::
perturbations

::
as:

:
80

X ′(i)(t) = α
[
(1−β)

(
X(tl1(i))−X(tl2(i))

)
+β
(
X(tu1

(i))−X(tu1
(i)

)]
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

:::::::::::::
l
(i)
1,2 = n

(i)
1,2 +m

::::
and

:::::::::::::::::
u
(i)
1,2 = n

(i)
1,2 +m+1,

:::::
with

::::::::::::::::::::
m= floor[(t− ts)/6h] :::

and
:::::::::::::::::::
β = [(t− ts)/6h]−m:::::

being
::
a
::::::::
temporal

:::::
linear

:::::::::::
interpolation

:::::
factor

::
to
::::::::

compute
::::::::::::

perturbations
::
at

::::::::
arbitrary

:::::
times

::::
(not

:::::::::
necessarily

::
a
::::::::

multiple
::
of

::::
6h).

:::
In

:::
this

:::::
way

:::
we
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:::::
obtain

:::::::::::
perturbations

::::
that

:::
are

:::::::::
smoothly

::::::
varying

:::
in

::::
time

::::
and

::::::::::
consistently

::::
with

::::
the

::::
large

:::::
scale

:::::::::
dynamics

::
of

:::
the

:::::::::::
atmosphere.

::::
This

::::::::
procedure

::
is

::::::
applied

::
to

:::
all

::::::::::
atmospheric

:::
and

::::
soil

::::
state

::::::::
variables.85

In the SCALE-LETKF system, radar data can be assimilated using different localization scales for different variables. Based

on preliminary experiments with the SCALE-LETKF using smaller ensemble sizes and every-30-second PAWR data, it was

found that a
:
vertical localization scale of 2km (with a 7.3km cut-off, similarly hereafter) produced good results. For horizontal

localization, better results were obtained using 4− km localization to assimilate observations with reflectivities > 10dBZ.

Observations of reflectivity values ≤ 10dBZ are assimilated with a fixed value of 10dBZ to avoid large observation-minus-90

forecast departures associated with clear air reflectivities (Aksoy et al., 2009). Also, a shorter horizontal localization scale of

2km is used to reduce the impact of no-rain
::::::::::::::
non-precipitating observations at the edge of clouds. Doppler velocity observations

are assimilated with horizontal and vertical localization scales of 10km and 3km, respectively. A
::
For

:::::::::
covariance

::::::::
inflation,

::
a

relaxation to prior ensemble spread (RTPS, Whitaker and Hamill, 2012) with a relaxation parameter of 0.9 is applied. This

helps consider the inhomogeneous distribution of observations as in Lien et al. (2017).95

Reflectivity and Doppler velocity observations are superobbed to horizontal resolution of 1km and vertical resolution of

500m to
::::::::::::
approximately match the model resolution.

::::
This

:::::
helps

:::::
reduce

:::
the

:::::
errors

:::
of

:::::::::::::::
representativeness

:::
due

::
to

:::
the

::::
gap

:::::::
between

::::
what

::
is

:::::::::
represented

:::
by

:::
the

:::::
model

::::
and

::::::::::
observation.

::::
This

::::::::
procedure

::::
can

:::
also

::::::
reduce

:::
the

::::::
impact

::
of

:::::::
possible

::::::
spatial

::::::::::
correlations

::
in

::
the

::::::::::
observation

::::::
errors. The observational error standard deviations for these super-observations are set at 5.0dBZ and 3.0ms−1

for reflectivity and Doppler velocities, respectively. The radar data are assimilated up to a maximum height of 11km.100

A spin-up DA experiment with every-5-minute PAWR reflectivity and Doppler velocity data is performed for an hour from

0400 UTC, July 13, 2013. Only a single PAWR volume scan closest to the analysis time is assimilated per analysis. The

1000-member analysis ensemble at 0500 UTC is used as the initial conditions for the DA experiments.

Experiments are performed with different DA update frequency
:::::::::
frequencies

:
to study the impacts of

::
the

:
DA frequency and

observation number on the forecast error distributions. All experiments share the configuration described above, but the only105

differences are the DA frequency and the amount of the data assimilated. First, four experiments with 5, 2, 1, and 0.5 minutes

DA frequencies are performed, hereafter referred to as 5MIN, 2MIN, 1MIN, and 30SEC, respectively. Here, only a single

volume scan closest to the analysis time is used per analysis. Namely, more frequent updates assimilate more data.
::
In

::
all

:::::
cases

::
the

:::::
time

::::::::
difference

:::::::
between

:::
the

::::::::::
observation

::::
time

::::::
(center

::::
time

::
of

:::
the

:::::
radar

:::::::
volume

::::
scan)

::::
and

:::
the

:::::::
analysis

::::
time

::
do

:::
not

:::::
differ

:::
by

::::
more

::::
than

:::
15

:::::::
seconds.110

Next, to separate the impact of DA frequency and the amount of data assimilated, two additional experiments are performed

using a 5-minute and 1-minute DA frequency, with all radar volumes every 30 seconds assimilated by a 4-dimensional EnKF

approach Hunt et al. (2004). These experiments are referred to as 5MIN-4D and 1MIN-4D, respectively, assimilating the same

amount of data as 30SEC but using longer assimilation windows.
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Figure 1. (a) Terrain height of the 1-km-mesh SCALE-LETKF domain (shades, m). The red circle indicates the 60-km radar range centered

at the radar site (red cross) in Osaka University, Suita, Japan. The black box indicates the area shown in (b-d). (b) column-maximum PAWR

observation (dBZ) at 0530 UTC, half an hour after the initialization of the data assimilation cycle, (c) 5MIN and (d) 30SEC experiments

analysis ensemble-mean
:::::::
ensemble

::::
mean

:
column-maximum radar reflectivity (dBZ) at 0530 UTC. Black lines indicate the locations of the

cross-sections displayed in Fig. 2

To measure the degree of non-Gaussianity of the error distributions we compute the Kullback-Leibler divergence (hereafter115

KLD, Kullback and Leibler, 1951) which is defined as follows:

KLD(P‖Q) =

∞∫
−∞

p(x) ln
p(x)

q(x)
dx, (1)

where P (x) and Q(x) are two
:::::
where

::::
p(x)

:::
and

:::::
q(x)

:::
are

:::
the probability density functions (PDFs) .

::
of

:
P
::::
and

::
Q,

:::::::::::
respectively.

:::
The

:::::
KLD

::
is

:
0
::

if
::
P
::::

and
::
Q

:::
are

:::
the

:::::
same

:::
and

:::::
takes

:::::::
positive

::::::
values

::
if

::
P

:::
and

::
Q
::::::

differ. In our case P (x) is the ensemble-based

sample distribution of
::::
p(x)

::
is

:::::
either

:::
the

::::
first

:::::
guess

::
or

::::::::
analysis

::::
error

::::::::::
distribution

:::
for

:::
the

::::
state

:::::::
variable

:
x, and Q(x)

:::
q(x)

:
is a120

Gaussian distribution whose mean and standard deviation are given by the ensemble-based sample estimates. The KLD is 0 if

P and Q are the same.
:::::
equal

::
to

:::
the

::::
ones

::
of

:::::
p(x). Therefore, a low KLD value corresponds to the sample

:::
first

:::::
guess

::
or

:::::::
analysis
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::::
error distribution close to a Gaussian. To compute the KLD for different variables and at different grid points

::
In

:::
the

:::::
EnKF

:::
we

::
do

:::
not

:::::
have

:::::
access

:::
to

:::
the

:::::::::
continuous

::::
PDF

:::::
p(x)

:::
but

::
to

:::
its

:::::
finite,

::::::
limited

:::::::
sample.

:::
For

:::::
each

::::
state

:::::::
variable

::
x

::::
(e.g.

:::::::::::
temperature,

::::
wind

:::::::::::
components,

:::
etc)

::::
and

::
at

::::
each

::::::
model

::::
grid

::::
point, we approximate P (x)

::::
p(x) with the sample histogram populated from125

the 1000-member ensemble using 32 equally-sized bins covering the range where P (x)
:::
p(x)

:
is greater than 0.

::::
This

:::::
range

::
is

::::::
defined

::
by

:::
the

:::::::::
minimum

:::
and

::::::::
maximum

::::::
values

::
of

::
x

::
at

::::
each

:::::
model

::::
grid

:::::
point

:::
and

::::
time.

:::::::
Hence,

::
we

::::
can

::::::::::
approximate

:::
the

:::::
KLD

::
as

:::::::
follows:

KLD(P‖Q)≈
j=32∑
j=1

pj ln
pj
qj
,

:::::::::::::::::::::::

(2)

:::::
where

::
pj::

is
::::

the
::::::::
empirical

:::::::::
frequency

::
of

::
x

::
at

:::
the

::::::
j− th

:::::::::
histogram

:::
bin.

:::
qj ::

is
:::
the

:::::::
integral

::::
over

:::
the

::::::
j− th

::::::::
histogram

::::
bin

::
of

::
a130

:::::::
Gaussian

::::
PDF

::::::
whose

:::::
mean

:::
and

:::::::
standard

::::::::
deviation

:::
are

:::::
given

::
by

:::
the

::::::::::::::
ensemble-based

::::::
sample

::::::::
estimates.

:::::
After

:::::::::::
implementing

::::
this

::
we

::::
end

::
up

:::::
with

::
an

:::::::::
estimation

::
of

:::
the

:::::
KLD

:::
of

:::
the

:::::::
analysis

:::
and

::::
first

:::::
guess

::::
error

:::::::::::
distributions

::::
with

:::::::
respect

::
to

:::
the

::::::::
Gaussian

:::
for

::::
each

:::
grid

:::::
point

:::::::
location,

:::::::
vertical

:::::
level,

:::
and

:::::
time.

3 Results

All experiments show that the analyzed reflectivity fields are in good agreement with the observation. However, some differ-135

ences can be found between the experiments that assimilate different amounts of data and with different assimilation windows.

For example, Figures 1c and d show that 30SEC captures the strong reflectivity areas (>45 dBZ, orange and red shadings)

better than 5MIN. 5MIN shows noisy patterns of spurious convective cells surrounding the main convective rainband.

First, the impact of data assimilation frequency is explored by the 5MIN, 2MIN, 1MIN, and 30SEC experiments. Here, more

observations are assimilated with more frequent data assimilation. Figure 2 top row (a-d) shows that the reflectivity (Z) patterns140

(
::::::
patterns

:::
(Z, shades) are similar among all experiments, but vertical velocity (W, contours) are different. Figure 2e shows strong

:::::::
Stronger

:::::::
updrafts

:::
are

:::::
found

:::
in

:::
DA

:::::::::::
experiments

::::
with

::::::
shorter

::::::::::
assimilation

:::::::::
windows.

::::
This

:::::::
suggests

::::
that

:::
DA

:::::::::
frequency

::::
have

::
a

::::::::
significant

::::::
impact

:::::
upon

::::::::
quantities

:::::
which

:::
are

:::
not

:::::::
directly

::::::::
observed.

:

:::::
Strong

:
non-Gaussianity

::
is

:::::::
observed

:
in the first-guess ensemble in W and temperature (T ). KLD for W and T are consistently

reduced with more frequent DA (Fig. 2e-h, shades and blue contours), although the reduction is smaller for T. Overall, KLD145

is reduced more from
:
T
::
in

:::
the

:
5MIN to 2MIN than from 1MIN to 30SEC. The forecast error distributions for W and Z at the

location of maximum KLD for W show some discrepancies from the Gaussian distribution (Figs. 2i-p). The ensemble spread

:::::::::
experiment

::::::
(Figure

:::
2e

:::
and

:
i
:::::::::::
respectively).

::::::::::::::
Non-Gaussianity

:
for W is reduced significantly from 5MIN to 2MIN (Fig. 2e-h, red

contours). 5MIN shows strong non-Gaussianity for W
::::::
stronger

:
at the southern edge and the highest peak of the convective

cell(Fig. 2e), which is probably related to the development of a new updraft in the southern edge and the top of the strong150

updraft, respectively. Weaker low-level maxima south of the convective line are associated with shallow convective clouds

that are not effectively corrected by radar observations.
:::
The

:::::
KLD

:::::::
maxima

:::
for

:
T
:::
are

::::::::::::
approximately

:::::::::
collocated

::
as

:::::
those

:::
for

:::
W.

::::
KLD

:::::::
maxima

::
in

::
T

:::
can

:::
be

::::::::
associated

:::::
with

:::::::::::::
non-Gaussianity

::
in

:::
W

:::::::
through

::::::
vertical

::::::::
advection

:::
of

:::::
scalar

::::::::
quantities

::::
such

:::
as

:
T
::::
and

6



:::::::
moisture.

::::::::
Another

::::
KLD

:::::::::
maximum

:::
for

::
T

::
is

:::::
found

::::
near

:::
the

:::::::
surface

:::::
south

::
of

:::
the

:::::::::
convective

::::
cell,

::::::::
probably

:::::::::
associated

::::
with

:::
the

:::
gust

:::::
front.

:
155

Kondo and Miyoshi (2019) found that in synoptic scales, the ensemble spread maxima are co-located
::::::::
collocated

:
with the

KLD maxima. At convective scales for W, the ensemble spread maxima (Fig. 2e-he, red contours) are slightly out of phase

with respect to the KLD maxima (shades). The KLD maxima for T (blue contours)are approximately collocated as those

for W (shades)
:::
not

:::::::::
necessarily

::::::::::
collocated.

:::
For

::::::::
example,

::::::
larger

:::::::::
departures

::::
from

:::
the

::::::::
Gaussian

::::
are

:::::
found

:::::
above

:::
the

:::::::::
ensemble

:::::
spread

:::::::::
maximum

:::::::::
associated

::::
with

:::
the

::::
main

:::::::
updraft

::
in

:::
the

:::::
5MIN

::::::::::
experiment.

::::
For

::::::::::
temperature

:::
also

:::::
there

::
is

::
no

:::::
clear

:::::::
relation

::
in160

::
the

::::::::::
distribution

:::
of

:::
the

::::::::
ensemble

::::::
spread

:::
and

:::
the

::::::
KLD,

:::::::
although

:::::
KLD

:::::::
maxima

:::::
seem

::
to

:::::
occur

::::::
within

:::::
areas

::
of

::::::::
relatively

:::::
large

::::::::
ensemble

::::::
spread.

::
As

:::
the

:::::::::::
assimilation

::::::::
frequency

::::::::
increases

:
it
::
is
:::::
more

:::::::
difficult

::
to

:::
find

::
a

::::::::::
relationship

:::::::
between

::::
KLD

::::
and

::::::::
ensemble

:::::
spread

:::::
either

:::
for

::
W

:::
or

:
T
:::::
(Fig.

:
2
::::::
second

::::
and

::::
third

:::::
rows). These KLD maxima can be associated with

::::
KLD

:::
for

:::
W

:::
and

::
T
:::
are

:::::::::::
consistently

:::::::
reduced

::::
with

:::::
more

:::::::
frequent

::::
DA

::::
(Fig.

::::::
2e-h),

:::::::
although

::::
the

::::::::
reduction

::
is

::::::
smaller

:::
for

:::
T.

::::::
Overall,

:::::
KLD

::
is
:::::::

reduced
:::::

more
:::::
from

:::::
5MIN

:::
to

:::::
2MIN

:::::
than

::::
from

::::::
1MIN

::
to

:::::::
30SEC.

::::
This

::::::::
reduction

::::::
occurs

:::::::
mainly

::::::
within

:::
the165

::::::::
convective

:::::::
clouds.

::::::::::::::
Non-Gaussianity

::
in

::
W

::
at

:::
low

:::::
levels

::::::::
observed

::::::
outside

:::
the

:::::
cloud

::
is

:::
not

::::::::::
significantly

:::::::
affected

::
by

:::::
more

:::::::
frequent

:::::::
updates.

::::
The

::::::::
ensemble

::::::
spread

:::
for

:::
W

::
is

::::
also

:::::::
reduced

::::
with

:::::
more

::::::::
frequent

:::
DA

::::
and

::::::::
indicates

::
a

::::::::
narrower

::::
error

:::::::::::
distribution.

::::
This

:::::
result

::
is

::::::
linked

::::
with

:::
the

:::::::
reduced

:
non-Gaussianity in W through vertical advection of scalar quantities such as T and

moisture. Another KLD maximum for T is found near the surface south of the convective cell,
::::
since

:
it
::
is
::::::::
expected

:::
that

:::::::
smaller

:::::::::::
perturbations

::::
grow

::
in

::
a

::::
more

:::::
linear

::::::
regime

::::
and

::::::::
contribute

::
to

::::::::
reducing

:::
the

:::::::::
departures

::::
from

:::
the

::::::::
Gaussian.

:
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::
To

:::::
better

:::::::::
investigate

::::
the

:::::
shape

::
of

:::
the

:::::
error

::::::::::
distributions

::::
and

::::
how

::::
they

:::
are

:::::::
affected

:::
by

:::
the

::::::
update

:::::::::
frequency,

:::
Fig.

::
3
::::::
shows

::
the

:::::::
sample

:::::::::
histograms

:::
for

:::
the

:::
first

:::::
guess

::
at
:::
the

:::::::
location

::
of

:::::::::
maximum

:::::
KLD

::::::::
(indicated

::::
with

::
a

::::
black

:::::
cross

::
in

::::
Fig.

:::
2).

:::
We

::::::
restrict

::
the

::::::
search

::
of

:::
the

:::::::::
maximum

:::::
KLD

::
to

:::
the

::::
grid

:::::
points

::
at

::::::
which

:::
the

::::::::
ensemble

:::::
mean

:::::::::
reflectivity

::
is

::::
over

:::
30

::::
dBZ

:::::
where

:::::
radar

::::
data

:::::
impact

::::::
would

:::
be

:::::
large.

:::
The

:::::::
forecast

:::::
error

::::::::::
distribution

:::
for

::
W

::::
and

:::
for

:::
the

:::::
5MIN

::::::::::
experiment

::::::
shows

::::
large

:::::::::
departures

:::::
from

:::
the

:::::::
Gaussian

:::::
with

:
a
::::::
strong

:::::::
positive

:::
tail

::::
(Fig.

::::
3a).

::
A

::::::
similar

::::::::
situation

::
is

::::::::
observed

:::
for

::
Z

::::
(Fig.

::::
3e).

::::
This

:::::
result

::
is
:::::::::
consistent

:::::
since175

::::::::
ensemble

:::::::
members

:::::
with

:::::
larger

::
W

:::
are

:
probably associated with the gust front.

::::
larger

:::::::::
reflectivity

:::::::
values,

::
so

::::
both

:::::::::::
distributions

::::::
become

:::::::::
positively

:::::::
skewed.

::
As

:::
the

::::::
update

:::::::::
frequency

::
is

:::::::::
increased,

:::::::::::::
non-Gaussianity

::::
and

::::::::
ensemble

::::::
spread

:::
are

:::::::
reduced

:::
for

::::
both

::::::::
variables.

:::
The

:::::
only

::::::::
exception

::
is

::
Z

::
at

::::::
30SEC

::::::
update

::::::::
frequency

::::
that

::::::
shows

:
a
:::::
KLD

:::::
value

:::
that

::
is

:::::::
slightly

:::::
larger

::::
than

::::
that

::
in

:::
the

:::::
1MIN

::::::::::
experiment.

::::
Note

::::
that

::::
these

:::::
error

::::::::::
distributions

:::
are

:::::
taken

::
at

::::::
slightly

:::::::
different

::::::::
locations

:::::
based

::
on

:::
the

:::::::::
simulated

:::::::::
convection

:::::::
locations

::
in

::::
each

::::::::::
experiment

:::
and

::::
thus

:::
the

:::::
mean

::
of

:::
the

::::::::::
distribution

:::
can

::::::
change

:::::
from

:::
one

:::::::::
experiment

::
to
:::
the

:::::
other.

:
180

4D-EnKF experiments allow us to investigate the impact of changing the assimilation frequency while keeping the obser-

vation number unchanged. 5MIN-4D shows
:::::
weaker

::::::::
updrafts

::::::
(similar

:::
to

:::::
those

:::::
found

::
in

::::::
5MIN)

:::::::::
compared

::::
with

:::::::::::
experiments

::::
with

::::
more

::::::::
frequent

::::::
updates

:::::
(Fig.

:::::
4a,b).

:::::::::
5MIN-4D

:::
also

::::::
shows

:
almost the same ensemble spread for W

:::
and

:
T
:::

as
:::::
5MIN

:
(Fig.

4c
:::
and

::
e, red contours). KLD for W (Fig. 4c, shades) is lower, indicating that the observation number contributes to reducing

non-Gaussianity. This is not the case for T for which KLD is similar or larger (Fig. 4c, blue contours
:
e,

::::::
shades). 1MIN-4D is185

close to 1MIN and 30SEC in terms of non-Gaussianity and the shape and strength of the convective cell (Figs. 4band d
:
,
:
d
::::
and

:
f).
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Figure 2. (a-h) South-North vertical cross-section along the black line indicated in Fig. 1b-d at 0530 UTC for (a-d) first-guess ensemble-mean

reflectivity (Z, shades, dBZ) and vertical velocity (W, contours every 2.5 ms−1), (e-h) vertical velocity KLD (shades, 10−2) and variance

(ensemble spread ,
:
(red contours every 3ms−1

::
at

:::
1.0,

:::
2.5,

:::
5.0

:::
and

::::
10.0

:::::
ms−1), and

:::
(i-l) temperature KLD over 0.04 (blue

::::::
shades,

:::::
10−2)

:::
and

:::::::
ensemble

:::::
spread

::::
(red contours

:
at

:::
0.2,

::::
0.5,

::
1.0

:::
and

:::
2.0

::
K). Blacked dashed contours indicate reflectivity over 30 dBZ.

:::
The

:::::
black

::::
cross

:
in
:::::
panels

:
(i-p) Sample histograms for (i-l) vertical velocity and (m-p) reflectivity at

:::::::
indicates the location of the maximum KLD for vertical

velocity (blue circles in a-h)
:::::
within

:::
the

:::
grid

:::::
points

::
at

:::::
which

::::::::::
Z > 30dBZ. Thick dashed curves indicate fitted Gaussian functions, and KLD

non-Gaussian measures are also indicated. Each column corresponds to 5MIN, 2MIN, 1MIN, and 30SEC from left to right, respectively.
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Figure 3.
::::::
Sample

::::::::
histograms

:::
for

:::
(a-d)

::::::
vertical

::::::
velocity

:::::::
(ms−1)

:::
and

:::
(e-h)

:::::::::
reflectivity

::::
(dBZ)

::
at
:::
the

::::::
location

::
of

:::
the

:::::::
maximum

::::
KLD

:::
for

::::::
vertical

::::::
velocity

:::::
(black

::::
cross

::
in

:::
Fig.

::
2).

:::::
Thick

::::::
dashed

::::::
curves

::::::
indicate

::::
fitted

:::::::
Gaussian

::::::::
functions,

:::
and

::::
KLD

::::::::::
non-Gaussian

:::::::
measures

:::
are

:::
also

::::::::
indicated.

::::
Each

:::::
column

::::::::::
corresponds

:
to
::::::
5MIN,

:::::
2MIN,

:::::
1MIN,

:::
and

::::::
30SEC

::::
from

:::
left

::
to

::::
right,

:::::::::
respectively.

We further investigate the non-Gaussianity by averaging the KLD vertically and temporally (Fig. 5). In 5MIN, the central

and eastern side
::::
sides of the convective area shows

:::::
show relatively low KLD values because the impact of radar DA is generally

bigger in the convective areas (Fig. 5a).
:::
The

::::::
impact

::
of

::::
DA

::::::::
frequency

::
on

::::::::::::::
non-Gaussianity

::
is

::::::::::
investigated

::
by

:::::
means

:::
of

::
the

:::::::
relative190

::::
KLD

:::::::::
difference

:::::::
between

:::
the

:::::
5MIN

::::
and

::
all

:::
the

:::::
other

::::::::::
experiments,

:::::::::
computed

::
as:

:

KLDdiff =
KLDE −KLD5MIN

KLD5MIN

,
:::::::::::::::::::::::::::::

(3)

:::::
where

:::::::::
KLDdiff ::

is
:::
the

::::::
relative

:::::::::
difference

:::::::
between

:::
the

::::::::
averaged

::::
KLD

:::
in

:::
the

:::::
5MIN

::::::::::
experiment

:::::::::::
(KLD5MIN )

::::
and

::
on

::::
each

:::
of

::
the

:::::
other

::::::::::
experiments

:::::::::
(KLDE),

:::::
where

::
E

::::
can

::
be

:::::
either

:::::::::
5MIN-4D,

::::::
2MIN,

::::::
1MIN,

::::::::
1MIN-4D

::
or
::::::::
30SEC).

KLD consistently decreases with increasing DA frequency (Figs. 5b-d). KLD is reduced by up to 40% in 30SEC with195

respect to the 5MIN. KLD is reduced more in the convective area, where more observations are assimilated. Increasing the DA

frequency and the observation number produce
:::::::
produces

:
a more substantial impact over the western part of the convective line

where KLD maxima are found associated with convective cells entering the radar range from the West
:::
west.

KLD in 1MIN-4D is as low as that in 30SEC and lower than that in 1MIN. This result suggests that both observation number

and DA frequency contribute to reducing non-Gaussianity, at least for high DA frequencies. KLD in 5MIN-4D is lower than200
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Figure 4. Similar to
::
As

::
in Fig. 2 a-h but for (a, c

:::
and

:
e) 5MIN-4D and (b, d

::
and

:
f) 1MIN-4D.

that in 5MIN, so that a larger observation number helps to reduce non-Gaussianity. However, KLD in 5MIN-4D is larger than

that in 30-SEC or 1MIN-4D, so
::::::::
indicating

:
that DA frequency is equally important. Moreover, the impact of DA frequency

can be larger in the case of variables like T and moisture. As already found in the vertical cross-sections (Fig. 4), for those

variables, KLD in 5MIN and 5MIN-4D is almost the same, while KLD is clearly reduced for 1MIN, 1MIN-4D, and 30SEC

(not shown).205

We also investigate the vertical distribution of non-Gaussianity by the spatially averaged vertical profile of KLD at "rain
::::::::::
precipitating"

grid points, defined by the ensemble-mean column-maximum reflectivity> 30dBZ, and "no-rain
::::::::::::::
non-precipitating" grid points,

defined by the ensemble-mean column-maximum reflectivity < 0dBZ. At the rain
::::::::::::
“precipitating”

:
grid points (Figures 6a-d)

KLD for temperature and vertical velocity is maximum at mid-levels coinciding with the maximum in latent heat release within

10



Figure 5. (a) Column-averaged KLD for zonal wind for 5MIN, averaged for the experiment period from 0500 to 0600 UTC. Relative KLD

difference (%) from 5MIN for (b) 2MIN, (c) 1MIN, (d) 30SEC, (e) 5MIN-4D, and (f) 1MIN-4D. Warm colors correspond to smaller KLD

values.

convective clouds and with the maximum ensemble spread for these two variables (not shown). KLD for temperature, verti-210

cal velocity, and specific humidity maximizes at lower heights over the no-rain
::::::::::::::
non-precipitating

:
area since, as stated before,

at such locations non-Gaussianity is mainly associated with shallow convection. For instance, for the vertical velocity, the

ensemble spread in the shallow convection is usually low, but the KLD can be larger. An upper-level maximum in KLD is

found for the meridional wind (Figs. 6d ,
:::
and h), also coinciding with the maximum ensemble spread (not shown). Convective

outflows are stronger at the top of convective clouds and can be one of the mechanisms contributing to increase
:::
the

:::::::
increase215

::
of non-Gaussianity at these levels over the rain

::::::::::
precipitating

:
area. Overall, KLD in 30SEC is lower than that in 5MIN with

reductions of more than 40%. The reduction of KLD in the no-rain
::::::::::::::
non-precipitating area is smaller because the radar DA

is inherently less effective in these areas (Figs. 6e-h).
::::
There

:::
are

:::::
some

:::::::::
exceptions

::
to

:::
the

:::::::
general

::::::::
reduction

::
in

::::::::::::::
non-Gaussianity

::::
with

::::::::
increased

:::::
update

:::::::::
frequency.

:::::::
Specific

::::::::
humidity

::
in

:::::::::::::
no-precipitating

::::
grid

:::::
points

::::::
shows

:::::
larger

:::::
KLD

::
in

:::
the

::::::
30SEC

::::
than

::
in

:::
the

:::::
5MIN

:::::::::::
experiments.

::::
This

::
is

:::
also

:::
the

::::
case

:::
for

:::
the

:::::::::::
precipitating

::::
grid

:::::
points

::
at
:::::
upper

::::::
levels

::
in

:::
the

::::::
second

:::
half

:::
of

:::
the

::::::::::
experiment.220

::::
Also

:::
the

::::
KLD

::
in
:::
W

::
in

:::
the

:::::::::::::
no-precipitating

::::
grid

:::::
points

::
at

::::::
middle

::::
and

:::::
upper

:::::
levels

::
is

::::::
slightly

:::::
larger

::
in

:::
the

::::::
30SEC

::::::::::
experiment.

:

::
To

:::::::::
investigate

:::
the

:::::
effect

:::
of

:::
the

:::::::
analysis

::::::
update

:::
on

:::::::::::::
non-Gaussianity

:::
we

:::::::
present

:::
the

::::
time

:::::
series

::
of

::::
the

::::
KLD

:::
of

:::
the

:::::::
analysis

:::
and

::::
first

:::::
guess

::::::::
vertically

::::
and

::::::::::
horizontally

::::::::
averaged

::::
over

:::
the

:::::::::::::
“precipitating”

::::
and

::::::::::::::::
“non-precipitating”

::::
grid

::::::
points

::::
(Fig.

:::
7).

:::
At

::::
most

:::::
times

:::
and

::::::::
variables

::::
over

:::
the

::::::::::::
“precipitating”

::::
and

::::::::::::::::
“non-precipitating”

::::
grid

:::::
points,

:::::
KLD

::
is

:::::::
reduced

::::::
during

:::
the

::::::::::
assimilation

11



Figure 6. Time-vertical cross-section of KLD for 5MIN (contours, 10−2) and the relative difference for 30SEC (shaded), averaged over the

(a-d) "rain
:::::::::

precipitating” (>30dBZ) and (e-h) "no-rain
:::::::::::::
non-precipitating” (<0dBZ) grid points for (a,e) temperature, (b,f) specific humidity,

(c,g) vertical velocity and (d,h) meridional wind.

::::
step.

::::::::::
Experiments

:::::
with

:::::
longer

::::::::
windows

:::::
show

:::::
more

::::
KLD

:::::::
growth

:::::
during

:::
the

:::::::
forecast

:::
as

::::::::
expected,

:::
but

::::
also

:
a
::::::
larger

::::::::
reduction225

:
at
::::

the
:::::::
analysis

::::
step,

::::::
which

::
is

:::
not

::
as

::::::::
effective

::
as

:::
the

:::::
more

:::::::
frequent

:::::::
updates

::
in

::::::::
reducing

:::
the

:::::::
analysis

:::::
KLD.

:::
As

:::::
noted

:::::::
before,

::
the

:::::::
specific

::::::::
humidity

::::
over

:::
the

::::::::::::::::
“non-precipitating”

::::
grid

:::::
points

:::::::
behaves

::::::::::
differently,

:::
and

:::::
KLD

::::::::
increases

:::::
during

:::
the

:::::::::::
assimilation

:::
step

:::
for

::::::
almost

::
all

:::::
times

::::
and

:::::::::::
experiments,

::::::
leading

::
to

:::::
larger

:::::
KLD

::
at

::::::
shorter

::::::::::
assimilation

::::::::
windows

:::::
(Figs.

::
6b

::::
and

::
f).

::
In

::::
this

::::
area

:::::
mostly

:::::::::::::::::
“non-precipitating”

::::::::::
observations

:::
are

::::::::::
assimilated

::
to

::::::::
suppress

:::::::
spurious

:::::::
clouds.

::::::::::
Interestingly

::
in
::::

the
::::::::::::::::
“non-precipitating”

:::
grid

::::::
points

::::::::
5MIN-4D

::
is

:::
the

:::::::::
experiment

:::::::::
providing

:::
the

:::::
lowest

:::::
KLD

:::
for

::
all

::::::::
variables

:::::
(Figs.

:::
7b,

::
d

:::
and

::
f).

:::::
This

::::
result

::::::::
suggests

:::
the230

:::::::
potential

:::::::
benefits

::
of

::::::
treating

:::::::::::::::::
“non-precipitating”

::::::::::
observations

:::::::::
differently.

:

1000-member

::
To

:::::::
evaluate

:::
the

::::::
impact

::
of

:::::::::::
assimilation

::::::::
frequency

:::
on

:::
the

:::::::
distance

:::::::
between

:::
the

:::::::
analysis

:::
and

::::
first

:::::
guess

::
to

:::
the

:::::::::::
observations

::
in

:
a
:::::
more

:::::::::
systematic

::::
way,

:::
we

:::::::
compute

:::
the

::::
root

:::::
mean

:::::::
squared

::::
error

::::::::
(RMSE)

:::
and

::::
bias

:::
for

:::::::::
reflectivity

:::::::::::
observations

::::
(Fig.

:::
8).

::::
The

::::::::::
computation

::
of

:::
the

::::::
RMSE

::::
and

::::
bias

:::::::
between

:::
the

::::::
model

:::
and

:::
the

:::::::::::
observations

::
is

::::
done

:::
by

:::::::::
comparing

:::
the

:::::::
column

::::::::
maximum

:::
of235

::
the

::::::::::
reflectivity

:::
for

::::
each

:::::::::
horizontal

::::
grid

:::::::
location

:::
and

:::::
time.

:::
The

:::::::
RMSE

:::
and

::::
bias

:::
are

::::::::
computed

:::::
only

::::
over

::::
grid

:::::
points

::
at

::::::
which

::
the

::::::::
observed

:::::::::
maximum

:::::::::
reflectivity

::
is

::::
over

::::::
5dBZ.

::::
The

::::
time

:::::
series

::
of

::::::
RMSE

::::::
shows

:
a
::::::
better

::
fit

::
to

:::
the

::::::::
observed

:::::::::
reflectivity

:::
for

::::::
shorter

::::::::::
assimilation

::::::::
windows.

:::
The

::::::
impact

::
of

:::
4D

:::
DA

::
is

:::
not

::
so

:::::
clear,

::::::::
1MIN-4D

:::::::
slightly

::::::::::
outperforms

:::
the

:::::
1MIN

:::
but

::::::::
5MIN-4D

::::
and

:::::
5MIN

:::::::
perform

::::::::
similarly

::::
(Fig.

::::
8a).

::::
This

::
is

:::::::
partially

:::::::
because

::
in

:::
4D

::::
data

::::::::::
assimilation

:::
the

:::::::
analysis

::::::
results

::::
from

:::
the

:::::::::::
assimilation

::
of

::
all

:::
the

:::::::::::
observations

:::::
within

:::
the

::::::::::
assimilation

::::::::
window,

::::
while

:::
to

:::::::
construct

::::
this

:::::
figure,

::::
only

:::
the

:::::::::::
observations

::
at

:::
the

:::::::
analysis

::::
time240

::::
were

::::::::::
considered.

::::
The

::::
bias,

:::::::::
computed

::
as

:::
the

:::::
mean

:::::::::
difference

:::::::
between

:::
the

::::::
model

::::
and

:::
the

::::::::::
observations

:::::
does

:::
not

:::::
seem

::
to

:::
be

::::::::::
consistently

:::::::
affected

::
by

:::
the

::::::::::
assimilation

:::::::::
frequency

::::
(Fig.

::::
8b).

::::::
These

:::::
results

:::
are

:::
in

:::::::::
agreement

::::
with

:::::
those

:::::::
observed

:::
in

:::
the

::::
time

12



Figure 7.
:::::::
Sawtooth

::::::::
time-series

::
of
:::

the
::::
KLD

::::::
(10−2)

::
of

::
the

:::::::
analysis

:::
and

:::
first

:::::
guess

:::::::
vertically

:::
and

:::::::::
horizontally

:::::::
averaged

:::
over

:::
the

::::::::::
precipitating

:::::::
(>30dBZ,

:::::
a,c,e)

:::
and

:::::::::::::
non-precipitating

:::::::
(<0dBZ,

::::
b,d,f)

:::
grid

:::::
points

:::
for

:::::::::
temperature

::::
(a,b),

::::::
specific

:::::::
humidity

:::
(c,d)

:::
and

::::::
vertical

::::::
velocity

::::
(e,f)

:::
and

::
for

:::
the

:::::
5MIN

::::
(red),

::::::::
5MIN-4D

:::::
(blue),

:::::
2MIN

::::::
(green),

:::::
1MIN

::::::::
(magenta),

:::::::
1MIN-4D

::::::
(black)

:::
and

::::::
30SEC

:::::
(cyan)

:::::::::
experiments.
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Figure 8.
:::::::
Sawtooth

:::::::::
time-series

::
of

::
the

::::
root

::::
mean

::::::
squared

::::
error

:::::
(dBZ,

::
a)
:::
and

::::
bias

:::::
(dBZ,

::
b)

::
of

::
the

::::::::
maximum

::::::::
reflectivity

:::
of

::
the

:::::::
analysis

:::
and

:::
first

::::
guess

:::
for

::
the

:::::
5MIN

:::::
(red),

:::::::
5MIN-4D

::::::
(blue),

::::
2MIN

::::::
(green),

:::::
1MIN

:::::::::
(magenta),

:::::::
1MIN-4D

::::::
(black)

:::
and

:::::
30SEC

:::::
(cyan)

::::::::::
experiments.

:::::
series

::
of

::::
KLD

:::
for

::::::::
different

::::::::
variables.

::::::::
However,

:::
we

::::::
should

::
be

:::::::
cautious

::::
with

:::
the

::::::::::::
interpretation

::
of

:::::
these

:::::
results

:::::
since

:::::::::
increasing

::
the

::::::::::
observation

:::::::
number

:::
can

::::
lead

::
to

::::
both

::
a
:::::::
reduced

::::
KLD

::::
and

:
a
:::::
better

::
fit

::
to
:::

the
::::::::

observed
:::::::::
quantities,

:::
not

::::::::::
necessarily

:::::::
implying

::
a

:::::
causal

::::
link

:::::::
between

::::
these

::::
two

::::::
effects.

:
245

4
::::::::
Summary

::::
and

::::::::::
Discussion

::::::::::::::::::
One-thousand-member

:
1-km-resolution ensemble DA experiments were performed using real phased array radar observations

and a mesoscale NWP model to investigate the impact of DA frequency and observation number on the non-Gaussian error

distributions. We found that a DA frequency of 5 minutes, although it was already much faster than the typical DA frequency,

resulted in strong non-Gaussianity possibly affecting the performance of the EnKF. Non-Gaussianity is stronger for vertical250

velocity as has been found by Kawabata and Ueno (2020). Non-Gaussianity is also larger at mid-levels within convective

cells, near the level of larger latent-heat release and vertical accelerations associated with convective instability. At convective

scales, some of the local maxima in KLD can be related directly to advection by mesoscale circulations associated with strong

convective cells, but other processes not specifically presented in this study may also possibly contribute to the generation of

non-Gaussianity, such as those not directly associated with clouds, like differential heating circulations or gravity waves.255

We found that increasing the analysis update frequency and observation number from 5 minutes to 30 seconds has a huge

impact upon non-Gaussianity in the error distributions for all model variables but particularly for vertical velocity and reflec-

tivity which are the ones showing larger KLD from Gaussianity at these scales. Increasing the assimilation frequency to 30

seconds and assimilating more observations can reduce KLD by up to 40%. Moreover, 4D-EnKF experiments revealed that for

frequent DA of every 1 minute, the observation number explained most of the reduction in non-Gaussianity; in contrast, for a260

longer window of 5 minutes, even the experiments using all 30-second-frequency observations presents significant departures

from the Gaussian. While convective clouds are particularly favorable for nonlinear error growth, non-Gaussianity is not nec-

essarily larger within convective clouds. This is mainly due to the convective-scale radar DA is usually most effective within

precipitating clouds. This
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:::::
There

:::
are

::::
two

:::::::
possible

:::::
ways

::
in

::::::
which

:::::
more

:::::::
frequent

::::
DA

:::
can

:::::
result

:::
in

::::
error

:::::::::::
distributions

::::::
closer

::
to

:::
the

:::::::::
Gaussian.

:::::
First,265

::::
more

:::::::
frequent

::::
DA

:::::::::
contributes

::
to
::

a
::::::::::
quasi-linear

::::::::
evolution

::
of

:::
the

:::::::
forecast

:::::
error

:::
due

:::
to

:::::::
forecast

::::::
lengths

:::::
which

:::
are

:::::::
shorter

::::
than

::
the

::::::::::::
predictability

::::
limit

:::
for

::::
the

:::::::
resolved

::::::
scales.

::::
This

::::
also

:::::
helps

:::::
keep

:::
the

::::::::::
perturbation

::::::
small

:::
and

::::
can

::::::::::
additionally

:::::::::
contribute

::
to

::::::::::
quasi-linear

::::::::::
perturbation

:::::::::
dynamics.

::::::::
Second,

:::
our

::::::
results

:::::
show

::::
that

:::
the

::::::::
analysis

::::
step

:::::::::
effectively

::::::::::
contributes

::
to

::::::::
reducing

:::::::::::::
non-Gaussianity

:::
for

::::::::
different

::::::::
variables,

::::::::
although

::::
this

::::
may

:::
not

:::
be

:::
the

::::
case

:::
for

:::::::::::::::::
“non-precipitating”

:::::::::
reflectivity

:::::::::::
observations

:::
that

:::::::
produce

:::
an

:::::::
increase

::
in

:::::
KLD

::
for

:::::::
specific

::::::::
humidity.

::::::::::::::
Non-gaussianity

::::::::
reduction

::::::
during

:::
DA

::
is
::::::
larger

::::
with

:::::
longer

:::::::::
windows.270

::::::::
However,

:
it
::
is

:::
not

::::::
enough

::
to
::::::::::
compensate

:::
for

:::
the

:::::
effect

::
of

:::::
more

::::
rapid

::::
and

::::::::
non-linear

:::::
error

::::::
growth

:::::
during

:::
the

:::::::
forecast

::::
step

::
in

:::
the

:::::
lower

:::::
update

:::::::::
frequency

:::::::::::
experiments.

::::
From

:::
the

:::::
point

:::
of

::::
view

::
of
:::::

KLD
:::::::::
reduction,

:::
the

::::::
largest

::::::
impact

::
is
::::::
found

:::::::
between

::::::
5MIN

:::
and

::::::
2MIN

:::::::
updates.

::::
This

::::::::
suggests

:::
that

:::::::::
non-linear

::::
error

:::::::
growth

:::::::
become

::::
more

:::::::::
important

::::
after

:::
the

::::
first

::
2

:::::::
minutes

::
of

:::::::::
integration

:::
at

::::
these

::::::
scales.

:::::
This

:::::::::
hypothesis

:
is
::::::::

partially
::::::::
supported

:::
by

::::
the

::::::::
reduction

::
in

::::::
RMSE

::::
and

::::::::
ensemble

:::::::
spread.

::
A

::::::::
2-minute

::::::
update

:::::::::
frequency

::::::
seems

::
to

:::::::
provide

::
a275

::::
good

::::::::::
compromise

::::::::
between

:::
the

::::::::::::
computational

:::
cost

::::
and

::::::::::::::
non-Gaussianity

::
of

:::
the

::::
error

:::::::::::
distributions.

::::::::
However,

:::::
from

:::
the

:::::
point

::
of

::::
view

::
of

:::
the

:::::::
analysis

::::::::
accuracy

:::::
more

:::::::
frequent

:::
DA

::::::::
provides

:
a
:::::
better

:::
fit

::
to

:::
the

::::::::
observed

::::::::
quantities.

::::
The

:::::::
specific

::::
role

::
of

:::::::
reduced

:::::::::::::
non-Gaussianity

:::
on

:::
this

::
is
:::
not

:::::
clear

::::
and

::::::
should

::
be

::::::
further

:::::::::::
investigated.

::::::::
Gaussian

::::
error

:::::::::::
distributions

::::
may

:::::::::
contribute

::
to

:::::
more

:::::::
accurate

:::::::
analysis

:::::::
updates,

:::
but

::
in

:::
the

::::::
current

:::::::::::
experimental

:::::::
setting,

::::
other

::::::
factors

::::
like

:::
the

:::::::
increase

::
in

:::
the

:::::::
number

::
of

::::::::::
assimilated

::::::::::
observations

::::
may

::::
also

::::
lead

::
to

:::
the

::::::::
reduction

:::
in

:::
the

::::::
RMSE

:::
for

::::::::
observed

:::::::::
quantities.

::::::::::::::::::::::::
Maejima and Miyoshi (2020)

::::::::::
investigated280

::
the

:::::::
impact

::
of

::::::::::
assimilation

:::::::::
frequency

::
at

:::::
1-km

:::::
using

::::::::
observing

::::::
system

:::::::::
simulation

:::::::::::
experiments.

:::::
They

::::
also

:::::
found

::
a
:::::::::
significant

:::::::::::
improvement

::
in

:::
the

:::::::
forecast

::::::
quality

:::::
when

::::
the

::::::::::
assimilation

:::::::
window

::
is

:::::::
reduced

:::::
from

:
5
:::::::

minutes
:::

to
:
3
:::::::

minutes
::::

and
:::::::::
additional

:::::::::::
improvements

:::::
using

::
1

::::::
minute

::::::::
windows.

:::::
These

:::::
results

:::
are

:::::::::
consistent

::::
with

::::
what

::
is

:::::
found

::
in

:::
this

:::::
paper

::::
with

::::::
respect

::
to

::::::::::
Gaussianity

::
in

:::
the

:::::
error

:::::::::::
distributions.

::::::::
Moreover,

::
as

:::
has

:::::
been

:::::
shown

::
in

:::
the

:::::::
previous

:::::::
studies,

:::::
more

:::::::
frequent

::::::::::
assimilation

:::
can

:::::::
produce

:
a
:::::
larger

::::::
degree

::
of

:::::::::
imbalance

::
in285

::
the

::::::
initial

::::::::
conditions

::::::
which

:::
can

::::::
degrade

:::
the

::::::
quality

::
of

:::
the

::::::::
forecasts

::::::::::::::::::::::::::::::::::::::
(e.g., Lange and Craig, 2014; Bick et al., 2016)

:
.
:::::::::
Therefore,

::::::
despite

::
the

::::::::
potential

::::::
benefits

:::
of

:
a
::::
more

::::::::
Gaussian

:::::
model

:::::
error

:::::::::
distribution

:::
on

::
the

:::::::
analysis

::::::::
accuracy,

:::::
other

:::::
factors

::::
may

:::::::
degrade

:::
the

:::::::
forecasts

::::::::
initialized

:::::
from

::::
more

:::::::
frequent

::::
data

::::::::::
assimilation

::::::
cycles.

:::::::::
Imbalance

:::
may

::::
also

::
be

:::
an

::::::::
additional

::::::
source

::
of

:::::::::::::
non-Gaussianity.

:::::::
Gaussian

:::::
error

:::::::::::
distributions

:::
can

::::
lead

:::
to

:::::
more

:::::::::
physically

::::::::::
meaningful

::::::::::
assimilation

:::::::
updates

::
in
::::

the
::::::
context

:::
of

::
an

::::::
EnKF

::::
and

::::::::
therefore,

::::
more

::::::::
balanced

:::::
initial

::::::::::
conditions.

::::::::
However,

:
a
:::::
larger

:::::::::
imbalance

::
in

:::
the

:::::
initial

:::::::::
conditions

::::
can

::::::::
contribute

::
to

:::::
faster

:::::
error290

::::::
growth

:::
and

::::::::
increased

::::::::
departure

:::::
from

:::
the

::::::::
Gaussian

::
in

:::
the

:::::::
forecast

::::::::::
distribution.

:::::::
Possible

::::::::::
interactions

::
of

:::::
these

::::::::::
mechanisms

::
in

::
a

:::
data

:::::::::::
assimilation

::::
cycle

:::::
have

:::
not

::::
been

:::::::::::
investigated,

::::
and

:::
are

:
a
::::::
subject

:::
for

::::::
future

::::::::
research.

:::
Our

::::::
results

:::::::
suggest

:::
that

:::::::
despite

:::
the

:::::
effect

::
of

:
a
:::::
larger

::::::::::
imbalance,

:::
the

:::::::
increase

::
of

:::
DA

:::::::::
frequency

::::::
reduce

:::::::::::::
non-Gaussianity

::
in

:::
the

::::::
sample

:::::::::::
distributions

::::
with

:::
the

::::::
EnKF.

::::
This

:
is
:::::
even

:::
true

::
to

::::::::
variables

:::
like

:::::::
vertical

:::::::
velocity

:::::
within

:::::::::
convective

::::::
clouds

::::::
which

::
are

:::::::::
frequently

::::
used

::
to
::::::::
measure

:::
the

:::::
effect

::
of

::::::::
imbalance

::
in

:::
the

:::::
initial

::::::::::
conditions.295

::::
This

::::
study

:
is the first attempt to investigate the impact of assimilation frequency and observation number on non-Gaussianity

using an EnKF employing a large 1000-member ensemble and every-30-second observations from a PAWR. In this first set

of experiments, we evaluate the impact on the non-Gaussianity of the ensemble-based sample distribution. Future experiments
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will be performed to investigate the overall quality of the analysis obtained with different assimilation windows and number of

observations and also the impact of assimilation window upon the structure of the error covariance matrix.300

Code and data availability. The codes used for the main results of this study can be accessed at a public github repository (https://github.com/takemasa-

miyoshi/letkf). Essential data to reproduce the results of this study are stored for 5 years in RIKEN R-CCS. Due to the large volume of data
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