
Reviewer #1

Review of “Reduced non-Gaussianity by 30-second rapid update in convective-scale
numerical weather prediction ” by J. Ruiz et al..

General comments: The manuscript investigated the degree of non-Gaussianity of
forecast error distributions and how it is affected by the DA update frequency and
observation number. This article used 1000 ensembles, but the generation of ensembles
is not very clear. The introduction of the KLD method is not clear. Some words are not
rigorous. This paper theoretically provides evidence that increasing the update
frequency and the observations can improve the accuracy of assimilation in
convective-scale. I think this manuscript can be considered for publication if these
concerns could be addressed:

We would like to thank the reviewer for the comments which help to improve the clarity
of the presentation and also bring additional discussions to the paper. Based on the
reviewer’s comments we expand the description of the methodology and add additional
explanations and discussions.

Specific comments:

1. The generation of ensembles need to be described in detail, because it is very
important for this article and the ensemble DA method.

We agree that this is an important aspect of the experimental design so following the
reviewer’s comment we expand the description on how the initial perturbations for the
first assimilation cycle as well as the boundary conditions are generated in our
experiments.

The initial ensemble at the first assimilation cycle and the ensemble boundary condition
ensemble are created by adding random perturbations which preserve the hydrostatic and
nearly geostrophic equilibrium (Necker et al. 2020a, Maldonado et al. 2021). These
perturbations are generated from a sample of continuous 6-hourly analysis states provided
by the Climate Forecast System Reanalysis (CFSR, Saha et al. 20202), [XCFSR(t1),
XCFSR(t1),...,XCFSR(tN)], where N=5840 (4 years). The horizontal grid spacing of the CFSR data
is 0.5º. At the beginning of the assimilation cycle (t=ts), the initial condition perturbation of the
i-th member X’(i) is computed as:

where 𝛼 is a multiplicative factor equal to 0.1 so that the amplitude of the perturbations is
roughly equivalent to 10% of the climatological variability. The two CFSR analysis states are
chosen by randomly selecting two numbers n1

(i) and n2
(i) from the N elements satisfying the

condition that tn1(i) and tn2(i) correspond to the same time of the year and time of the day. In
the following assimilation cycles at time t>ts, we obtain the boundary perturbations as:



where l(i)1,2= n1,2
(i) + m and u(i)

1,2=n1,2
(i) + m + 1, with m = floor[(t - ts)/6 h] and 𝛽 = [(t-ts)/6 h] - m

being a temporal linear interpolation factor to compute perturbations at arbitrary times (not
necessarily a multiple of 6 h). In this way we obtain perturbations that are smoothly varying
in time and consistently with the large scale dynamics of the atmosphere. This procedure is
applied to all atmospheric and soil state variables.

2. The introduction of KLD should contain how to operate in this article? What
should be noted? So that readers can repeat your experiment

We agree with the reviewer and we expanded the description on how KLD is computed
in this work. In particular, we added more details on how KLD is computed from the
ensemble-based sample, and an equation expressing how KLD is computed in this
paper.

To measure the degree of non-Gaussianity of the error distributions we compute the
Kullback-Leibler divergence (KLD, Kullback 1951) which is defined as follows:

where p(x) and q(x) are the probability density functions (PDFs) of P and Q respectively. The
KLD is 0 if P and Q are the same and takes positive values if P and Q differ. In our case p(x)
is either the first guess or analysis error distribution for the state variable x (e.g. temperature,
wind components, etc), and q(x) is a Gaussian distribution whose mean and standard
deviation are equal to the ones of p(x). Therefore, a low KLD value corresponds to the first
guess or analysis error distribution close to a Gaussian.
In the EnKF we do not have access to the continuous PDF p(x) but to a finite sample of it.
For each state variable x and at each model grid point, we approximate p(x) with the sample
histogram populated from the 1000-member ensemble using 32 equally-sized bins covering
the range where p(x) is greater than 0. This range is defined by the minimum and maximum
values of x at each model grid point and time. Then we can approximate the KLD as follows:

where pj is the relative frequency of x at the j-th histogram bin. qi is the integral over the j-th
histogram bin of a Gaussian PDF whose mean and standard deviation are given by the
ensemble-based sample estimates. After implementing this we end up with an estimation of



the KLD of the analysis and first guess error distributions with respect to the Gaussian for
each grid point location, vertical level, and time.

3. Is the solution of KLD grid point by grid ? Using the assimilated ensembles to
statistics?

Following this comment and the previous one we extend the description on how KLD is
computed so that the experiments can be reproduced. The specifications on how KLD is
computed from the ensemble members is included (see also the answer corresponding
to the previous comment).

4. Please give the formula of relative KLD difference.

We include an equation for the relative KLD difference.

The impact of DA frequency on non-Gaussianity is investigated by means of the relative KLD
difference between the 5MIN and all the other experiments, computed as:

where is the relative difference between the averaged KLD in the 5MIN

experiment ( ) and on each of the other experiments ( ), where E can be
either 5MIN-4D, 2MIN, 1MIN, 1MIN-4D or 30SEC).

5. Please explain "closest" quantitatively.

Following the reviewer’s comment we expand the discussion to better explain possible time
differences between the observations and the analysis time.
Here, only a single volume scan closest to the analysis time is used per analysis. Namely,
more frequent updates assimilate more data. In all cases the time difference between
observation time (center time of the radar volume scan) and the analysis time do not differ
by more than 15 seconds.

6. The higher the update frequency, will it break the balance between physical
variables? How to understand and explain.



We agree with the reviewer that this is an important aspect that has been overlooked in
the previous version of the manuscript. In the revised version we include a discussion
about the effect of imbalance.

As has been shown in the previous studies, more frequent assimilation can produce a larger
degree of imbalance in the initial conditions which can degrade the quality of the forecasts
(e.g. Lange and Craig 2014, Bick et al. 2016). Therefore, despite the potential benefits of a
more Gaussian model error distribution on the analysis accuracy, other factors may degrade
the forecasts initialized from more frequent data assimilation cycles. Imbalance and
non-Gaussianity can also possibly be related. Gaussian error distributions can lead to more
physically meaningful assimilation updates in the context of an EnKF and thus more
balanced initial conditions. However, a larger imbalance in the initial conditions can
contribute to faster error growth and increased departure from the Gaussian in the forecast
distribution. Possible interactions of these mechanisms in a data assimilation cycle have not
been investigated, and are a subject for future research. Our results suggest that despite the
effect of a larger imbalance, the increase of DA frequency reduces non-Gaussianity in the
sample distributions obtained with the EnKF. This is even true for variables like the vertical
velocity within convective clouds which are frequently used to measure the effect of
imbalance in the initial conditions.

Added references:
Lange, H. and Craig, G. C.: The impact of data assimilation length scales on analysis and
prediction of convective storms, Mon. Wea. Rev.,
142, 3781–3808, 2014.

Bick, T., Simmer, C., Trömel, S., Wapler, K., Stephan, K., Blahak, U., Zeng, Y., and Potthast, R.:
Assimilation of 3D-Radar Reflectivities with an Ensemble Kalman Filter on the Convective Scale,
Quart. J. Roy. Meteor. Soc., 142, 1490–1504, 2016.

7. This paper used the super-observations. What is the relationship between
observation scale and grid scale matching and more observations?

We agree with the reviewer in that this point deserves further clarification. We expand the
discussion in the paper. Reflectivity and Doppler velocity observations are superobbed to
horizontal resolution of 1 km and vertical resolution of 500 m to approximately match the
model resolution. This is done to reduce the amplitude of spatial scales, in the observed
data, which are not well resolved by the model as well as that of small scale noise. This
procedure can also reduce the impact of possible spatial correlations in the observation
errors.

8. This article needs polishing.

Based on the reviewer’s comment and on the comment of the other two reviewers we
perform an extended revision and polishing of the text and improvement of the figures. We
hope that these changes improved the overall presentation quality of the manuscript.


