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Abstract. Probabilities of future climate states can be estimated by fitting distributions to the members of an ensemble of 

climate model projections. The change in the ensemble mean can be used as an estimate of the unknown change in the mean 

of the distribution of thereal climate variable being predicted. However, the level of sampling uncertainty around the change 

in the ensemble mean varies from case to case and in some cases is large. We compare two model averaging methods that 

take the uncertainty in the change in the ensemble mean into account in the distribution fitting process. They both involve 15 

fitting distributions to the ensemble using an uncertainty-adjusted value for the ensemble mean in an attempt to increase 

predictive skill relative to using the unadjusted ensemble mean. We use the two methods to make projections of future 

rainfall based on a large dataset of high resolution EURO-CORDEX simulations for different seasons, rainfall variables, 

RCPs and points in time. Cross-validation within the ensemble using both point and probabilistic validation methods shows 

that in most cases predictions based on the adjusted ensemble means show higher potential accuracy than those based on the 20 

unadjusted ensemble mean. They also perform better than predictions based on conventional Akaike model averaging and 

statistical testing. The adjustments to the ensemble mean vary continuously between situations that are statistically 

significant and those that are not. Of the two methods we test, one is very simple, and the other is more complex and 

involves averaging using a Bayesian posterior. The simpler method performs nearly as well as the more complex method. 

1 Introduction 25 

Estimates of the future climate state are often created using climate projection ensembles. Examples of such ensembles 

include the CMIP5 project (Taylor, et al., 2012), the CMIP6 project (Eyring, et al., 2016) and the EURO-CORDEX project 
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(Jacob, Petersen, & authors, 2014). If required, distributions can then be fitted to these ensembles to produce probabilistic 

predictions. The probabilities in these predictions are conditional probabilities and depend on the assumptions behind the 

climate model projections, such as the choice of RCP (Moss, et al., 2010; Meinshausen, et al., 2011), and the choice of 30 

models and model resolution. Converting climate projection ensembles to probabilities in this way is helpful for those 

applications of climate projectionsin which the smoothing, interpolation and extrapolation provided by a fitted distribution is 

beneficial. It is also helpful for those applications for which the impact models can ingest probabilities more easily than they 

can ingest individual ensemble members. An example of a class of impact models that, in many cases, possess both these 

characteristics would be the catastrophe models used in the insurance industry, which. Catastrophe models quantify climate 35 

risk using simulated natural catastrophes embedded in many tens of thousands of simulated versions of one year (Friedman 

(1972), Kaczmarska, et al. (2018), Sassi, et al.  (2019)). Methodologies have been developed by which these catastrophe 

model ensembles can be adjusted to include climate change, based on probabilities derived from climate projections 

(Jewson, et al., 2019).   

We will consider the case in which distributions are fitted to changes in climate model output, rather than to absolute values. 40 

When fitting distributions to changes in climate model output, the change in the ensemble mean can be used as an estimate 

of the unknown change in the mean of the distribution of the real future climate. Model weights or bias corrections may be 

included at this point (Sanderson, et al. (2015b), Knutti, et al.  (2017), Chen, et al, (2019)). However, because climate model 

ensembles are finite in size, the ensemble mean suffers from estimation uncertainty. A number of studies have investigated 

the various uncertainties in climate ensembles, including estimation uncertainty (such as A number of studies have 45 

investigated the post-processing of climate model ensembles. These studies have addressed issues such as estimation 

uncertainty (Deser, et al. (2010), Thompson, et al. (2015)) and various methods have been developed for the post-processing 

of ensembles to help understand these uncertainties and take them into account, addressing issues such as, Mezghani, et al. 

(2019)), how to break the uncertainty into components (Hawkins and Sutton, (2009), Yip, et al. (2011), Hingray and Said 

(2014)), how to identify forced signals given the uncertainty (Frankcombe, et al. (2015), Sippel, et al. (2019), Barnes, et al. 50 

(2019) and Wills, et al. (2020)), and how quickly signals emerge from the noise given the uncertainty (Hawkins and Sutton 

(2012), Lehner, et al. (2017)).  

), and how to apply weights and bias corrections (Knutti et al. (2010), Christensen et al. (2010), Buser et al. (2010), Deque et 

al. (2010), DelSole et al. (2013), Sanderson et al. (2015b), Knutti et al. (2017), Mearns et al. (2017), Chen et al. (2019)). In 

this article, we explore some of the implications of estimation uncertainty aroundin climate model ensembles in more detail. 55 

We will consider the case in which distributions are fitted to climate model outputs, and in particular to changes in climate 

model output, rather than to absolute values. When fitting distributions to changes in climate model output, the change in  the 

ensemble mean in more detail. can be used as an estimate of the change in the mean of the real future climate. However, 

because climate model ensembles are finite in size, and different ensemble members give different results, the ensemble 

mean change suffers from estimation uncertainty when used in this way. Ensemble mean change estimation uncertainty 60 

varies by season, variable, projection, time and location. In the worst cases, the uncertainty may be larger than the change in 
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the ensemble mean itself, and this makes the change in the ensemble mean, and distributions that have been fitted to the 

changes in the ensemble, potentially misleading and difficult to use. In these large uncertainty cases the change in the 

ensemble mean is dominated by the randomness of internal variability from the individual ensemble members, and it would 

be unfortunate if this randomness was allowed to influence adaptation decisions. A standard approach used to managefor 65 

managing this varying uncertainty in the change in the ensemble mean is to consider statistical significance of the changes 

(e.g., see shading of regions of statistical significance in climate reports such as the EEA report (European Environment 

Agency, 2017) or the IPCC 2014 report (Pachauri & Meyer, 2014)). Statistical significance testing involves calculating the 

signal-to-noise ratio (SNR) of the change in the ensemble mean, where the signal is the ensemble mean change, and the 

noise is the standard error of the ensemble mean. The SNR is then compared with a threshold value. If the SNR is greater 70 

than the threshold then the signal is declared statistically significant (Wilks, 2011). 

Use of statistical significance to filter climate projections in this way is often appropriate for visualisation and scientific 

discovery. However, it is perhaps less appropriate in some practical applications of as a post-processing method for climate 

model projections. There are a number of reasons for this, which can be illustrated by consideringdata that is intended for use 

in impact models. This is perhaps obvious, but it is useful to review why, as context and motivation for the introduction of 75 

alternative methods for managing ensemble uncertainty. To illustrate the shortcomings of statistical testing  as a method for 

ensemble post-processing we consider a system which applies statistical testing and sets regions oflocations with non-

significant changevalues in the ensemble mean change to zero. The first problem with such a system is that analysis of the 

properties of predictions made using statistical testing show that they have poor predictive skill. This is not surprising, since 

statistical testing was never designed as a methodology for creating predictions. The second problem is that statistical testing 80 

creates abrupt jumps of the climate change signal in space, between significant and non-significant regions, and between 

different RCPs and time points. These jumps are artefacts of the use of a method with a threshold, rather than an aspect of 

the climate change signal itself.. This may lead to situations in which one location is reported to be affected by climate 

change, and an adjacent location not, simply because the significance level has shifted from e.g., 95.1% to 94.9%. From a 

practical perspective this may undermine the credibility of climate predictions in the perception of users, to whom no 85 

reasonable physical explanation can be given for such features of the projections. Finally, the almost universal use of a 

threshold p-value of 95% creates a skew towardsstrongly emphasizes avoiding false positives (type I errors) at the expense 

ofbut creates many false negatives (type II errors). Depending on the application, this may not be appropriate. 

ReducingLarge numbers of false negatives in this way is particularly a problem for risk modelling, since risk models should 

attempt to capture all possibilities in some way, even if low significance.  90 

How, then, should those who wish to make practical application of climate model ensembles deal with the issue of varying 

uncertainty in the change in changes implied by the ensemble mean, as captured by spatial variation of the SNR, in cases 

where for many locations the uncertainty is large but statistical testing is not appropriate?and the implied changes are 

dominated by randomness? This question might arise in any of the many applications of climate model output, such as 

agriculture, infrastructure management, investment decisions, and so on. We describe and compare two model averaging 95 



 

4 

 

three Frequentist Model Averaging (FMA) procedures as possible answers to this question. The procedures work by using a 

bias-variance trade-off argumentFrequentist model averaging methods (Burnham & Anderson, 2002; Hjort & Claeskens, 

2003; Claeskens & Hjort, 2008; Fletcher, 2019) are simple methods for combining outputs from different models in order to 

reduce the change captured by the ensemble mean when it is uncertain. improve predictions. They are based on standard 

statistical ideas relatedcommonly used in economics (Hansen, 2007; Liu, 2014). Relative to parameter shrinkage as a way of 100 

improving prediction performance when fitting distributions (see, e.g., Copas (1983)). We will call the methods Mean-

squared-error Model Averaging (MMA). TheBayesian model averaging in MMAmethods (Hoeting, Madigan, Raftery, & 

Volinsky, 1999) they have various pros and cons (Burnham & Anderson, 2002; Hjort & Claeskens, 2003; Claeskens & 

Hjort, 2008; Fletcher, 2019). For our purposes, we consider the simplicity, transparency and ease of application of FMA as 

benefits. The averaging in our applications of FMA consists of averaging of the usual estimate for the mean change with an 105 

alternative estimate of the change in the mean of zero. which is set to zero. This has the effect of reducing the ensemble 

mean change towards zero. The averaging weights in MMA, which determine the size of the reduction, depend on the SNR 

and are designed to minimise the predictive root-mean-squared-error (PRMSE) of the adjusted ensemble mean. One of the 

two MMA procedures we describe uses a simple plug-in estimator, and we refer to this method as Simple MMA (SMMA).  

The other procedure involves integration over a Bayesian posterior, and we refer to this method as Bayesian MMA 110 

(BMMA).increase the accuracy of the prediction. They vary in space, following the spatial variations in SNR. In regions 

where the SNR is large these methods make no material difference. to the climate prediction. In regions where the SNR is 

small, the changes in the ensemble mean are reduced by MMA, in accordance with the theory we present below, in such a 

way as to increase the accuracy of the predictions. The MMA methods  

This approach can be considered as a continuous analoguesanalog of statistical testing, in which rather than setting the 115 

change in the ensemble mean to either 100% or 0% of the original value, we allow a continuous reduction that can take any 

value between 100% and 0% depending on the SNR. As a result, both methods avoid the abrupt jumps created by statistical 

testing.As a result, the approach avoids the abrupt jumps created by statistical testing.  In summary, by reducing the 

randomness in the ensemble mean (relative to the unadjusted ensemble mean), increasing the accuracy of the predictions 

(relative to both the unadjusted ensemble mean and statistical testing), and avoiding the jumps introduced by statistical 120 

testing, the FMA predictions may make climate model output more appropriate for use in impact models i.e., more usable. 

The increases accuracy are, however, not guaranteed, and need to be verified using potential accuracy, as we describe below.    

One of the three FMA methods we apply is a standard approach based on the Akaike Information Criterion (AIC) (Burnham 

& Anderson, 2002), which we will call AIC model averaging (AICMA). The other two methods are examples of Least 

Squares Model Averaging (LSMA) methods (Hansen, 2007), also known as minimum mean squared error model averaging 125 

methods (Charkhi, Claeskens, & Hansen, 2016), which are FMA methods that focus on minimizing the mean squared error. 

The two LSMA methods we consider both work by using a simple bias-variance trade-off argument to reduce the change 

captured by the ensemble mean when it is uncertain. One of them is a standard method, and the other is a new method that 

we introduce. We will call both LSMA methods 'Plug-in Model Averaging' (PMA), since they involve the simple, and 
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standard, approach of 'plugging-in' parameter estimates into a theoretical expression for the optimal averaging weights 130 

(Jewson & Penzer, 2006; Claeskens & Hjort, 2008; Liu, 2014; Charkhi, Claeskens, & Hansen, 2016). The first PMA 

procedure we describe uses a simple plug-in estimator, and we refer to this method as Simple PMA (SPMA).  The second 

procedure is novel and combines a plug-in estimator with integration over a Bayesian posterior, and we refer to this method 

as Bayesian PMA (BPMA).  

We illustrate and test the SMMAAICMA, SPMA and BMMABPMA methods using a large dataset of high-resolution 135 

EURO-CORDEX ensemble projections of rainfall over Europe. We consider for four seasons, three rainfall variables, two 

RCPs and three future time periods, giving 72 cases in all. In section 2 we describe the EURO-CORDEX data we will use. In 

section 3 we describe the MMAAICMA and both PMA procedures, and present some results based on simulated data which 

elucidate the relative performance of the different methods in different situations in which MMA is likely to perform well 

versus other methods, for both point and probabilistic predictions. In section 4 we present results for one of the 72 cases in 140 

detail. We use cross-validation within the ensemble to evaluate the potential prediction skill of MMAthe FMA methods, 

again for both point and probabilistic predictions, and compare with the skill from using the unadjusted ensemble mean, 

statistical testing and a conventional model averaging scheme (small-sample Akaike Information Criterion model averaging 

(AICc) (Burnham & Anderson, 2010)). and statistical testing. In section 5 we present aggregate results for all 72 cases using 

the same methods. In section 6 we summarize and conclude. 145 

2 Data and Methodology 

The data we use for our study is extracted from the data archive produced by the EURO-CORDEX program (Jacob, 

Petersen, & authors, 2014; Jacob, Teichmann, & authors, 2020), in which a number of different global climate model 

simulations were downscaled over Europe using regional models at 0.11-degree resolution (about 12km). We use data from 

10 models, each of which is a different combination of a global climate model and a regional climate model. The models are 150 

listed in Table 1. Further information on EURO-CORDEX and the models is given in the guidance report (Benestad, et al., 

2017). 

 

Model Driving GCM GCM Member RCM 

M1 CNRM-CM5 r1i1p1 ALADIN53 

M2 IPSL-CM5A-MR r1i1p1 RCA4 

M3 CNRM-CM5 r1i1p1 RCA4 

M4 CNRM-CM5 r1i1p1 CCLM4-8-17 

M5 EC-EARTH r12i1p1 CCLM4-8-17 

M6 EC-EARTH r12i1p1 RACMO22E 

M7 EC-EARTH r12i1p1 RCA4 
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M8 EC-EARTH r1i1p1 RACMO22E 

M9 EC-EARTH r3i1p1 HIRHAM5 

M10 IPSL-CM5A-MR r1i1p1 WRF331F 

 

Table 1: Models used in this study 155 

We extract data for four meteorological seasons (DJF, MAM, JJA, SON), for three aspects of rainfall: changes in the total 

rainfall (RTOT), the 95th percentile of daily rainfall (R95) and the 99th percentile of daily rainfall (R99). We say ‘rainfall’ 

even though in some locations we may be including other kinds of precipitation. We consider two RCPs, RCP4.5 and 

RCP8.5, and four 30-year time-periods: 1981-2010, which serves as a baseline from which changes are calculated, and the 

three target periods of 2011-2040, 2041-2070 and 2071-2100. In total this gives 72 different cases (four seasons, three 160 

variables, two RCPs and three target time periods). 

Figure 1 illustrates one of the 72 cases:  changes in winter (DJF) values for RTOT, from RCP4.5, for the years 2011-2040. 

This example was chosen as the first in the database, rather than for any particular properties it may possess. Figure 1a 

shows the ensemble mean change 𝜇̂𝑐 (the mean change calculated from the 10 models in the ensemble) and Fig. 1b shows 

the standard deviation of the change 𝜎̂𝑐  (the standard deviation of the changes calculated from the 10 models in the 165 

ensemble). Fig. 1c shows the estimated SNR 𝑠̂ calculated from the ensemble mean change and the standard deviation of 

change using the expression 𝑠̂ = 𝑛1/2|𝜇̂𝑐| ⁄ 𝜎̂𝑐 , where the 𝑛1/2  term in this equation converts the standard deviation of 

change (a measure of the spread of the changes across the ensemble) to the standard error of the ensemble mean change (a 

measure of the uncertainty around the ensemble mean change). Finally, Fig. 1d shows the regions in which the changes in 

the ensemble mean are significant at the 95% level, assuming normally distributed changes. WeIn Fig. 1a we see that the 170 

ensemble mean change varies considerably in space, with notable increases in RTOT in the west of Ireland, the west of Great 

Britain, and in parts of France, Germany, Spain and, Portugal. The and elsewhere. In Fig. 1b we see that the standard 

deviation of change also varies considerably with the largest values over Portugal, parts of Spain and the Alps. The In Fig. 1c 

we see that the SNR shows that many of the changes in the West of Ireland, and inGreat Britain, France and, Germany, and 

further east have particularly high SNRs, (greater than four) while the changes in many parts of Southern Europe (Portugal, 175 

Spain, Italy and Greece) have lower values. (often much less than one). Accordingly, Fig. 1d shows that the changes are 

statistically significant throughout most of Ireland, Great Britain, France, Germany, and Eastern Europe, but are mostly not 

statistically significant in Southern Europe. The other 71 cases show similar levels of variability of these four fields, but with 

different spatial patterns.  

 180 
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Figure 1: EURO-CORDEX projections for winter, for the change in total precipitation (RTOT) between the period 2011-

2040 and the baseline 1981-2010, for RCP4.5. Panel (a) shows the ensemble mean change, panel (b) shows the ensemble 

standard deviation of change, panel (c) shows the signal-to-noise ratio (SNR) and panel (d) shows the regions in which the 185 

changes in the mean are significant at the 95% level (shaded in greenlighter colour). 
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Figure 2 shows spatial mean values of the SNR (where the spatial mean is over the entire domain shown in Fig. 1) for all 72 

cases. Each black circle is a spatial mean value of the SNR for one case, and each of the four panels in Fig. 2 shows the same 

72 black circles but divided into sub-categories in different ways. The horizontal lines are the averages over the black circles 190 

in each sub-category. Figure 2a sub-divides by season: we see that there is a clear gradient from winter (DJF), which shows 

the highest values of the spatial mean SNR, to autumn (SON) which shows the lowest values of spatial mean SNR. Fig. 2b 

sub-divides by rainfall variable: in this case there is no obvious impact on the SNR values. Fig. 2c sub-divides by RCP. 

RCP8.5 shows higher SNR values, as we might expect, since in the later years RCP8.5 is based on larger changes in external 

forcing. Fig. 2d sub-divides by time-period: there is a strong gradient in SNR from the first of the three time-periods to the 195 

last. This is also as expected since both RCP scenarios are based on increasing external forcing with time. We would expect 

these varying SNRs to influence the results from the MMAFMA methods. This will be explored in the results we present 

below.  
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Figure 2: Each panel shows 72 values of the spatial average SNR value (black circles) derived from each of the 72 EURO-200 

CORDEX climate change projections described in the text, along with means within each subset (horizontal lines). Panel (a) 

shows the 72 values as a function of season, panel (b) shows them as a function of rainfall variable, panel (c) shows them as 

a function of RCP and panel (d) shows them as a function of time period.  

3 Model Averaging Methodologies 

The model averaging methodologies we apply are based on standard bias-variance trade-off arguments and are used to 205 

average together uncertain projections of change with projections of no change, in such a way as to try and improve 

predictive skill. TheThe AICMA method is a standard text-book method (Burnham & Anderson, 2002; Claeskens & Hjort, 

2008). The weights are determined from the AICc score, which involves a small correction relative to the standard AIC 

score. The method attempts to minimise the difference between the real and predicted distributions, as measured using the 

Kullback-Leibler divergence. The PMA methods are based on a standard bias-variance trade-off argument, and the 210 

derivations of the methods follow standard mathematical arguments and proceed as follows.  

3.1 Assumptions 

For each location within each of the 72 cases, we first make some assumptions about the variability of the climate model 

results, the variability of future reality, and the relationship between the climate model ensemble and future reality. All 

quantities are considered as changes from the 1981-2010 baseline. We assume that the actual future value is a sample from a 215 

distribution with unknown mean 𝜇 and variance 𝜎2. We assume that the climate model values are independent samples from 

a distribution with unknown mean 𝜇𝑐 and variance 𝜎𝑐
2. For the BMMABPMA method we will additionally assume that 

these distributions are normal distributions. With regards to the assumption of independence of samples, this is an 

approximation, since the models are not entirely independent. Issues related to model dependence and independence have 

been discussed in, for example, Knutti, et al. (2010) and DelSole, et al. (2013). We assume that methods to address model 220 

dependence have been applied before applying MMA. various papers (see the citations in the introduction) but it is still 

unclear whether attempting to correct for dependence is beneficial or not, and so we do not. In terms of how the climate 

models and reality relate to each other, we assume that the climate model ensemble is realistic in the sense that it captures 

the real distribution of uncertainty, and so the mean and variance parameters agree, and sogiving 𝜇𝑐 =  𝜇 and 𝜎𝑐
2 = 𝜎2. This 

is a "perfect ensemble" assumption: the models themselves are not perfect, but the distribution they are sampled from 225 

perfectly accounts for their biases. This is not likely to be strictly correct, and real climate model ensembles do contain errors 

and biases, but is a useful working assumption. We will write the future climate state as 𝑦, and the ensemble mean, estimated 

in the usual way from the ensemble, as 𝜇̂𝑐. Since the usual estimator for the mean is unbiased, we can then say: 

𝐸(𝜇̂𝑐) = 𝜇𝑐 =  𝜇 = 𝐸(𝑦)            (1) 
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If we write the ensemble variance, estimated using the usual unbiased estimator, as 𝜎̂𝑐
2
, then we can say:  230 

𝐸(𝜎̂𝑐
2

) = 𝜎𝑐
2 =  𝜎2 =  𝑉(𝑦)           (2) 

Uncertainty around the estimate of the ensemble mean is given by: 

 𝑉(𝜇̂𝑐) =
𝜎𝑐

2

𝑛
=

𝜎2

𝑛
≈

𝜎̂𝑐
2

𝑛
            (3) 

3.2 The Simple Mean-squared-errorPlug-in Model Averaging (SMMASPMA) Methodology 

The SPMA method we use is adapted from a method used in commercial applied meteorology, where the principles of bias-235 

variance trade-off were used to derive better methods for fitting trends to observed temperature data for the pricing of 

weather derivatives (Jewson & Penzer, 2006). Similar methods have been discussed in the statistics and economics literature  

(Copas, 1983; Claeskens & Hjort, 2008; Charkhi, Claeskens, & Hansen, 2016). The adaptation and application of the method 

to ensemble climate predictions is described in a non-peer-reviewed technical report (Jewson & Hawkins, 2009a), but was 

not tested extensively, and that report does not attempt to answer the question of whether the method really works in terms of 240 

improving predictions. The present study is, we believe, the first attempt at large-scale testing of any kind of FMA method 

using real climate predictions, and such testing is essential to evaluate whether the methods really are likely to improve 

predictions in practice. 

In the SMMASPMA method we make a new prediction of future climate in which we adjust the ensemble mean change 

using a multiplicative factor 𝑘. 𝑘 is an averaging weight such that the weight on the ensemble mean is 𝑘 and the weight on a 245 

change of zero is 1 − 𝑘 .. Combining different predictions using weights in this way is a standard method common to all 

model averaging schemes. We write the new prediction 𝑦̂ as: 

𝑦̂ = 𝑘 𝜇̂𝑐             (4) 

where the factor 𝑘, for which we derive an expression below, varies from 0 to 1 as a function of all the parameters of the 

prediction: season, variable, RCP, time-period and spatial location. The intuitive idea behind this prediction is that if forin 250 

one particular set of prediction parameterslocation the SNR in the ensemble is large, and hence the ensemble mean change 

prediction 𝜇̂𝑐 is statistically significant, then it makes sense to use the ensemble mean more or less as is, and 𝑘 should be 

close to 1. On the other hand, if the SNR in the change in the ensemble mean is small, and hence the change in the ensemble 

mean is far from statistically significant, then perhaps it is better to use a 𝑘 value closer to zero. Statistical testing sets 𝑘 to 

either 1 or 0 depending on whether the change is significant or not: the SMMASPMA method (and the BMMABPMA 255 

method described later) allow it to vary continuously from 1 to 0. 

The ensemble mean is the unique value that minimises MSE within the ensemble. However, when considering applications 

of ensembles, it is generally more appropriate to consider out of sample, or predictive, MSE (PMSE).  We can calculate the 

statistical properties of the prediction errors for the prediction 𝑦̂, and the PMSE, as follows: 

prediction error = 𝑒 = 𝑦 − 𝑦̂ = 𝑦 −  𝑘 𝜇̂𝑐          (5) 260 
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bias = 𝐸(𝑒) = 𝐸(𝑦 −  𝑘 𝜇̂𝑐) = 𝐸(𝑦) − 𝐸(𝑘 𝜇̂𝑐) =  𝜇 − 𝑘𝜇 = 𝜇(1 − 𝑘)      (6) 

error variance = 𝑉(𝑒) = 𝑉(𝑦 −  𝑘 𝜇̂𝑐) = 𝑉(𝑦) + 𝑉( 𝑘 𝜇̂𝑐) = 𝜎2 + 𝑘2 𝜎2

𝑛
= 𝜎2 (1 +

𝑘2 

𝑛
)     (7) 

PMSE = 𝐸(𝑦 − 𝑘 𝜇̂𝑐  )2 = [(𝑦 − 𝑘 𝜇̂𝑐   )2] = 𝐸(𝑦2 − 2 𝑘 𝑦 𝜇̂𝑐 + 𝑘2 𝜇̂𝑐
2

) =  𝜇2 + 𝜎2 − 2𝑘 𝜇2 + 𝑘2 (𝜇2 +
𝜎2

𝑛
) 

=  𝜇2(1 − 𝑘)2 + 𝜎2 (1 +
𝑘2 

𝑛
) = bias2 + error variance        (8) 

From the above equations we see that for 𝑘 = 0 the bias of the prediction 𝑦̂ is 𝜇 and the variance is 𝜎2, giving a PMSE of 265 

𝜇2 + 𝜎2. For 𝑘 = 1 the bias is 0 and the variance is 𝜎2 (1 +
1

𝑛
), giving a PMSE equal to the variance. We now seek to find 

the value of 𝑘 that minimizes the PMSE. The derivative of the PMSE with respect to 𝑘 is given by 

𝑑PMSE

𝑑𝑘
= 2𝑘 (𝜇2 +

𝜎2

𝑛
) − 2𝜇2           (9) 

From this we find that the PMSE has a minimum at 

𝑘 =
𝜇2

𝜇2+
𝜎2

𝑛

=
1

1+
𝜎2

𝑛𝜇2

=
1

1+
1

𝑠2

            (10) 270 

where 𝑠 is the SNR 𝑠 = 𝑛1/2|𝜇| 𝜎⁄ . Equation (10) shows that the value of 𝑘 at the minimum always lies in the interval [0,1]. 

We see from the above derivation that there is a value of 𝑘 between 0 and 1 which gives a lower PMSE than either the 

prediction for no change (𝑘 = 0) or the unadjusted ensemble mean (𝑘 = 1) . Relative to the ensemble mean, the prediction 

based on this optimal value of 𝑘 has a higher bias, but a lower variance, which is why we refer to it as a bias-variance trade-

off: in the expression for PMSE we have increased the bias squared term, in return for a bigger reduction in the variance 275 

term. The PMSE of this prediction is lower than the PMSE of the prediction based on the ensemble mean because of the 

reduction in the term 
𝜎2𝑘2 

𝑛
, which represents the contribution to PMSE of the estimation error of the ensemble mean. For an 

infinite size ensemble, this term would be zero, and the optimal value of 𝑘 would be 1. We can therefore see the prediction 𝑦̂ 

as a small-sample correction to the ensemble mean, which compensates for the fact that the ensemble mean is partly affected 

by the variability across a finite ensemble.  280 

If we could determine the optimal value of 𝑘 then we could, without fail, produce predictions that would have a lower PMSE 

than the ensemble mean. However, the expression for 𝑘 given above depends on two unknown quantities, 𝜇2 and 𝜎2, and the 

best we can do is to attempt to estimate 𝑘 based on the information we have. The most obvious estimator is that formed by 

simply plugging-in the observed equivalents of  𝜇2 and 𝜎2, calculated from the ensemble, which are 𝜇̂𝑐
2
 and 𝜎̂𝑐

2
, giving the 

plug-in estimate for 𝑘: 285 

𝑘̂𝑆 =
𝜇̂𝑐

2

𝜇̂𝑐
2

+
𝜎̂𝑐

2

𝑛

=
1

1+
1

𝑠̂2

            (11) 

This is the estimate of 𝑘 that we will use in the SMMA method. SPMA method. From Eq. (8) it gives predictions with a 

corresponding PMSE of: 
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𝜎𝑆
2 = 𝜇̂𝑐

2
(1 − 𝑘̂𝑆)

2
+ 𝜎̂𝑐

2
(1 +

𝑘̂𝑆
2 

𝑛
)         (12) 

The fact that SPMA works by introducing a bias should not be a cause for concern. Bias, in this sense, is an abstract 290 

statistical quantity. PMSE, which is minimized by SPMA, is of more relevance as a measure of accuracy.  

3.2.1 Relation to Statistical Significance 

We can relate the value of the weight 𝑘̂𝑆 to the threshold for statistical significance, since statistical testing for changes in the 

mean of a normal distribution also uses the observed SNR, in which context it is known as the t-statistic. For a sample of size 

10, two-tail significance at the 95% confidence level is achieved by signals with a SNR value of 2.262 or greater. This means 295 

that if the change in the ensemble mean gives a SNR value of greater than 2.262 then we can be 95% confident that the 

change in the mean is not just due to random variability caused by variability between the different ensemble members, but 

indicates a genuine difference between the two ensembles caused by the different forcing. From Eq. (11), a value of SNR of 

2.262 corresponds to a  𝑘̂𝑆  value of 0.837. All situationslocations with a 𝑘̂𝑆  valuevalues greater than this are therefore 

statistically significant at the 95% level., while all locations with 𝑘̂𝑆 values less than this are not statistically significant.  300 

3.2.2 Generation of Probabilistic Predictions 

Applying SMMASPMA to a climate projection adjusts the mean. By making an assumption about the shape of the 

distribution of uncertainty, we can also derive a corresponding probabilistic forecast, as follows. We will assume that the 

distribution of uncertainty, for given values of the estimated mean and variance 𝜇̂𝑐 and 𝜎̂𝑐
2
, is a normal distribution. For the 

unadjusted ensemble mean, an appropriate predictive distribution can be derived using standard Bayesian methods, which 305 

widen and change the predictive distribution so as to take account of parameter uncertainty on the estimates of 𝜇̂𝑐 and 𝜎̂𝑐
2
. 

Bayesian methods require priors, and sometimes the choice of prior is difficult and arbitrary, but the normal distribution is 

one of the few statistical models that have a unique objective prior that is relevantappropriate in the context of making 

predictions (see, for example, standard Bayesian textbooks such as Lee (1997)). or Bernardo and Smith (1993)). This prior, 

often known as the Jeffreys' Independence Prior, has a number of attractive properties, including that the resulting 310 

predictions match with confidence limits. The predictions based on this prior are t distributions, in which . If we write the 

probability density for a random variable 𝑦 that follows a t distribution with location parameter 𝑎, scale parameter 𝑏 and 

degrees of freedom 𝑐  as 𝑆𝑡(𝑦|𝑎, 𝑏, 𝑐)  then, following Bernardo and Smith, page 440 (Bernardo & Smith, 1993) this 

prediction can be written as 

𝑝(𝑦) = 𝑆𝑡 (𝑦|𝜇̂𝑐 , √
11

10
𝜎̂𝑐 , 9)           (13) 315 

The location parameter (which is also the mean of the t distribution) is given by the usual estimate for the mean, 𝜇̂𝑐 , the 

square of 𝜇̂𝑐, the scale parameter (which is not the variance forof the t distribution) is given by a slightly scaled version of the Formatted: Font: Italic
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square root of the usual unbiased estimate for the variance, 𝜎̂𝑐
2𝜎̂𝑐, and the number of degrees of freedom is given by the 

ensemble size minus 1. This formulation gives us probabilistic predictions based on the unadjusted ensemble mean. We then 

modify itthis formation to create probabilistic predictions based on the MMASPMA-adjusted ensemble meansmean: the 320 

distribution remains a t distribution, the location parameter is given by the MMASPMA-adjusted mean, the scale parameter 

is given byin terms of the PMSE of the SPMA prediction from Eq. (8), and the numbersnumber of degrees of freedom are 

again given by the ensemble size minus 1. The probability density for SPMA is then given by: 

𝑝(𝑦) = 𝑆𝑡 (𝑦|𝑘̂𝑆𝜇̂𝑐, √
11

10
𝜎𝑠, 9)           (14) 

 325 

3.3 Bayesian Mean-squared-error Plug-in Model Averaging (BMMABPMA) Methodology 

The BMMABPMA method was described and tested using simulations in a second non-peer-reviewed technical report 

(Jewson & Hawkins, 2009b), but again was not tested extensively on real climate data. The BPMA method is an attempt to 

improve on SPMA by using standard Bayesian methods to reduce the impact of parameter uncertainty on the estimate of the 

weight 𝑘.  It is derived as an extension of the SMMASPMA method as follows. Since the prediction in the SMMASPMA 330 

method 𝑦̂  depends on 𝑘̂𝑆  and 𝜇̂𝑐 , and 𝑘̂𝑆 depends on 𝜇̂𝑐  and 𝜎̂𝑐 , we see that the prediction 𝑦̂  is affected by parameter 

estimation uncertainty on  𝜇̂𝑐 and 𝜎̂𝑐. As a result of this parameter uncertainty the reduction applied to the ensemble mean in 

SPMA might be too large, or not large enough, relative to the ideal reduction. Since we only have 10 ensemble members 

with which to estimate these parametersthe reduction, this uncertainty is large. Different values of 𝜇̂𝑐 and 𝜎̂𝑐 from within the 

range of parameter estimation uncertainty would lead to different values of 𝑦̂. We take a standard Bayesian approach to 335 

managing this parameter uncertainty and , using objective Bayesian methods, as follows. The observed values 𝜇̂𝑐 and 𝜎̂𝑐 are 

the best single estimates for the real unknown values 𝜇𝑐 and 𝜎𝑐, but other values of 𝜇𝑐 and 𝜎𝑐 are also possible. Using Bayes' 

theorem in the usual way, we can evaluate the whole distribution of possible values of 𝜇𝑐 and 𝜎𝑐  by combining a prior 

distribution (for which we use the standard objective prior for the normal distribution, as used in Sect. 3.2.2 above) with the 

likelihood function for 𝜇̂𝑐 and 𝜎̂𝑐  (which is derived from the 10 values). This gives a posterior probability distribution 𝑝(𝜇̂𝑐, 340 

𝜎̂𝑐), which tells us the distribution of possible values of 𝜇̂𝑐 and 𝜎̂𝑐 that can be inferred from the data at that location.  For 

each possible pair of values 𝜇̂𝑐 and 𝜎̂𝑐 we can calculate the average value of 𝑦̂ acrossan SPMA prediction 𝑦̂ = 𝑦̂(𝜇̂𝑐, 𝜎̂𝑐). We 

then combine the probability distribution 𝑝(𝜇̂𝑐, 𝜎̂𝑐) with all possible parameter values weighted by their probability densities 

𝑝(𝜇̂𝑐 , 𝜎̂𝑐). ToSPMA predictions 𝑦̂(𝜇̂𝑐 , 𝜎̂𝑐) to calculate the probability densitiesexpected value of 𝑦̂, which we use as our 

BPMA prediction. This combination is given by the same objective prior as was used in Sect. 3.2.2 above. To calculate the 345 

integral 

𝑦̂𝐵 = ∬ 𝑦̂(𝜇̂𝑐, 𝜎̂𝑐)  𝑝(𝜇̂𝑐, 𝜎̂𝑐)𝑑𝜇̂𝑐𝑑𝜎̂𝑐         (15) 
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 Relative to SPMA we are no longer using just a single prediction for 𝑦̂ based on our best estimate values for 𝜇̂𝑐 and 𝜎̂𝑐, but 

an average prediction based on individual predictions derived from all the possible values for 𝜇̂𝑐 and 𝜎̂𝑐. This integral could 

be evaluated in various different ways. We use straightforward monte-carlo integration, in which we simulate 250 350 

independent pairs of values 𝜇̂𝑐  and 𝜎̂𝑐  for each location  from the distribution 𝑝(𝜇̂𝑐 , 𝜎̂𝑐), and calculate 𝑦̂  for each case, 

calculate 250 values of 𝑦̂, andone. We then average the 250many 𝑦̂ values of 𝑦̂ together to create our final prediction, which 

we write as  𝑦̂𝐵.give an estimate of the expectation, 𝑦̂𝐵. We tested various numbers of simulations, and found that simulating 

250 pairs of values 𝜇̂𝑐 and 𝜎̂𝑐 at each location was more than sufficient to give good convergence of the results. For purposes 

of comparison with the SMMASPMA method we can then reverse-engineer an effective value of 𝑘 , given by 355 

𝑘̂𝐵 = 𝑦̂𝐵 𝜇̂𝑐⁄ .𝑘̂𝐵 = 𝑦̂𝐵 𝜇̂𝑐⁄ . The probability density of the BPMA prediction can then be written as: 

𝑝(𝑦) = 𝑆𝑡 (𝑦|𝑘̂𝐵𝜇̂𝑐, √
11

10
𝜎𝐵 , 9)           (16) 

where 

𝜎𝐵
2 = 𝜇̂𝑐

2
(1 − 𝑘̂𝐵)

2
+ 𝜎̂𝑐

2
(1 +

𝑘̂𝐵
2 

𝑛
)         (17) 

 360 

3.4 Simulation results 

 Given that 𝑘̂𝑆  and 𝑘̂𝐵  are only estimated, there is no guarantee that the predictions from the SMMASPMA and 

BMMABPMA methods will actually have a lower PMSE than the ensemble mean, in spite of the derivation which implies 

that they should. Before we test SMMA and BMMA on actual climate model output, we can explore whether they may or 

may not give better predictions using simulations, as follows.is based on the idea of minimising PMSE. This is a common 365 

problem that arises in many statistical methods, which occurs when there is a step in the derivation in which the unknown 

real parameters are replaced with estimated values. To gain some insight into the possible impact of this issue we can use the 

standard approach of exploring the performance of SPMA and BPMA using simulations, as follows. We vary a SNR 

parameter from 0 to 7, in 100 steps. For each value, we simulate 1 million synthetic ensembles, each of 10 points from a 

normal distribution. For each ensemble we applycreate predictions using the two MMA methodologies, estimated ensemble 370 

mean, AICMA, SPMA, BPMA and statistical testing and conventional AICc model averaging and compare the resulting 

predictions with the underlying known mean, which we know in this case because these are ensembles we have generated 

ourselves. We then calculate the PRMSE of each method relative to the PRMSE of the estimated ensemble mean. Results are 

shown in Fig. 3a. The horizontal line shows the performance of the unadjusted ensemble mean, which is constant with SNR, 

and which is determined simply by the variance of the variable being predicted and the parameter uncertainty on the 375 

ensemble mean. The red dashed line shows the performance of the SMMASPMA method. We see that it does better than the 

ensemble mean for small values of SNR, up to around 1.45, and worse thereafter. For large values of the SNR its 

performance asymptotes to that of the ensemble mean. The worst performance is for values of SNR of around 2.5. The blue 
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dotted line shows the performance of the BMMABPMA method. It shows a similar pattern of behaviour to the 

SMMASPMA method: it does better than the ensemble mean for small values of SNR, now up to around 1.9, and worse 380 

thereafter. For both small and large SNR values it performs worse than the SMMASPMA method, while for a range of 

intermediate values it performs better. The purple dot-dashed line shows the performance of statistical testing, which gives 

the best predictions for the very smallest values of SNR, but the poorest predictions over a large range of intermediate SNR 

values. This poor predictive performance is related to the use of a high threshold that has to be crossed before any 

information from the ensemble mean is used. The green long-dashed line shows the performance of AICc model 385 

averagingAICMA, which shows results in between statistical testing and the MMAPMA methods. Comparing the four 

methods, we see there is a trade-off whereby those methods that perform best for small and large SNR values perform the 

least well for intermediate values. The spatial average performance on a real data-set will then depend on the range of SNR 

values in that dataset. Although this graph gives us insight into the performance of the various methods, and suggests that, 

depending on the range of actual SNR values, they may all perform better than the ensemble mean in some cases, it cannot 390 

be used as a look-up table to determine which of the methods to use. This is because the results are shown as a function of 

the actual SNR value (as opposed to the estimated SNR value), and in real cases this actual value is unknown.  
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Figure 3: panel (a) shows the results of a simulation experiment for quantifying the performance of the two Mean-squared-395 

errorPlug-in Model Averaging (MMAPMA) methods and, comparing with the ensemble mean, statistical testing and AICc 

model averagingAICMA. Panel (a) shows performance of point forecasts in terms of predictive root mean squared error 

(PRMSE). Panel (b) shows performance of probabilistic forecasts in terms of predictive mean log-likelihood (PMLLscore 

(PLS). The horizontal black solid line in both panels is the performance of the unadjusted ensemble mean, versus the real 

SNR, which would usually be unknown. The red dashed line in both panels shows the performance of the Simple MMA 400 

(SMMAPMA (SPMA) scheme and the blue dotted line in both panels shows the performance of the Bayesian MMA 

(BMMAPMA (BPMA) scheme. In panel (a) the purple dot-dashed line shows the performance of statistical testing and the 

green long-dashed line shows the performance of AICc model averagingAICMA. 

 

We can also use simulations to test whether MMA gives SPMA and BPMA give better probabilistic predictions. Fig. , for3b 405 

follows Fig. 3a, but now shows validation of probabilistic predictions using Predictive Mean Log-Likelihood (PMLL), which 

we need to replace PRMSE with a score that evaluates probabilistic predictions. Many such scores are available: see the 

discussion in text-books such as Jolliffe and Stephenson (2003) and Wilks (2011). We use the score which is variously 

known as the log-score, the log-likelihood score, the mean log-likelihood or (after multiplying by minus one) the surprisal, 

or ignorance. Log-score (LS) seems to be the most widely used of these names, so we use that. Since we use the log-score in 410 

a predictive sense we call it the Predictive Log Score (PLS). PLS evaluates the ability of a prediction method to give 

reasonable probabilities across the whole of the probability distribution. PLS is a proper score, and, according to Brocker and 
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Smith (2007) is the only proper local score for probability forecasts of a single variable. It also has a close relationship to 

measures of information in the forecast (Winkler, 1969). 

Fig. 3b follows Fig. 3a, but now shows validation of probabilistic predictions using Predictive Log Score (PLS). We show 415 

the PMLLPLS values as minus one times PMLLPLS, to highlight the similarities between the results in panels (a) and (b). 

We only show probabilistic results for the ensemble mean, SMMASPMA and BMMABPMA. We see that the pattern of 

change in PMLLPLS from using the two MMAPMA methods is almost identical to the pattern of change in PRMSE: for 

small values of SNR, the MMAPMA methods give better probabilistic predictions than the ensemble mean, while for large 

values of SNR, the MMAPMA methods give less good probabilistic predictions than the ensemble mean. The relativity 420 

between SMMASPMA and BMMABPMA is also the same as for PRMSE. The similarity between the results for PRMSE 

and PLS can be understood using the decomposition of the PLS given in Jewson et al. (2004), which shows that PLS can be 

written as two terms, one of which is proportional to the PRMSE.  

One of the implicationsThe overall implication of these simulation results is that for variables forwhether or not the FMA 

methods are likely to improve predictions of climate change depends on the SNR of the change. For situations in which the 425 

impact of climate change is large and unambiguous, corresponding to large SNR, such as is often the case for temperature or 

sea-level rise in most cases, there is little justification for applying the MMA methods, or statistical testing, or AICc, since, 

they would likely make predictions slightly worse. However, for variables such as rainfall, where the impact of climate 

change is often highly uncertain, corresponding to low SNR, these simulation results suggest it is worth exploring these 

methods since, depending on the size of the SNR values,  they imply that they should improve the predictions relative to 430 

using the ensemble meanthey may well improve the predictions.  

3.5 Previous Literature 

Similar methods to SMMA have been studied in the statistics literature (see e.g., Copas (1983)) and are sometimes known as 

parameter shrinkage or damping. The SMMA method is adapted from a method used in commercial applied meteorology, 

where the same principles of bias-variance trade-off were used to derive better methods for fitting trends to observed 435 

temperature data for the pricing of weather derivatives (Jewson & Penzer, 2006). The adaptation of the method to ensemble 

climate predictions is described in a non-peer-reviewed technical report (Jewson & Hawkins, 2009a). The BMMA method 

was described and tested using simulations in a second non-peer-reviewed technical report (Jewson & Hawkins, 2009b). The 

present study is, we believe, the first attempt at large-scale testing of these methods using real climate predictions to evaluate 

whether they really are likely to improve predictions in practice.  440 
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4 Results for RCP4.5, 2011-2040, RTOT, Winter 

We now show results for the SMMASPMA method for the single case that was previously illustrated in Fig. 1. For this case, 

Fig. 44a shows values of the reduction factor 𝑘̂𝑆, Fig. 4b shows the adjusted ensemble mean 𝑘̂𝑆𝜇̂𝑐 and , Fig. 4c shows the 

difference betweenpercent change in the ensemble mean andfrom applying SPMA, and Fig. 4d shows the adjustedabsolute 

(unsigned) change in the ensemble mean 𝜇̂𝑐(1 − 𝑘̂𝑆) as both absolute and relative values. . 445 

In Fig. 4a we see that in the regions where the ensemble mean is statistically significant (as shown in Fig. 1d), 𝑘̂𝑆 is close to 

1 and the SMMASPMA method will have little effect. In the other regions it takes a range of values, and in some regions, 

e.g., parts of Spain, it is close to zero. These values of 𝑘̂𝑆 lead to the prediction shown in Fig. 4b. The prediction does not, 

overall, look much different from the unadjusted prediction shown in Fig. 1a. The changes in the prediction are more clearly 

illustrated by the percentage differences shown in Fig. 4c. We see and the largestabsolute changes in the regions of low 450 

standard deviation and low SNR such as Portugal and the Alps. Fig. 4d shows that some of the changes are large relative to 

the ensemble mean (e.g., in parts of Spain, Italy and Greece). Overall, SMMA. SPMA does not radically alter the patterns of 

climate change in the ensemble mean: it selectively identifies locations where the changes have high uncertainty and makes 

adjustments in those locations. The impact is therefore local rather than large-scale.  
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Figure 4: Various metrics derived from the EURO-CORDEX data shown in Fig. 1. Panel (a) shows the reduction parameter 

𝑘̂𝑠 for the SMMASPMA method, panel (b) shows the ensemble mean reduced by the parameter 𝑘̂𝑠, panel (c) shows the 

difference betweenpercent change in the unadjusted ensemble mean and panel (b),from applying SPMA, and panel (d) shows 

the same difference as a fraction of the ensemble meanabsolute (unsigned) change.  460 
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Figure 5a shows a histogram of the values of SNR shown on the map in Fig. 1c. There are a large number of values below 2, 

which correspond to non-significant changes in the ensemble mean. Figure 5b shows a histogram of the values of  𝑘̂𝑆 shown 

on the map in Fig. 4a. Many of the 𝑘̂𝑆 values are close to one, corresponding to regions where the change in the ensemble is 

significant, and where the MMA methodsSPMA method will have little impact. However, there are also values all the way 465 

down to zero, corresponding to regions where the ensemble mean change is not significant, and where the MMA 

methodsSPMA method will have a larger impact.   

 

Figure 5: The left-hand panel shows the frequency distribution of the SNR values shown in Fig. 1c and the right-hand panel 

shows the frequency distribution of the k values shown in Fig. 3a. 470 

 

4.1 Cross-validation  

We can test whether the adjusted ensemble means created by the MMAPMA methods are really likely to give more accurate 

predictions than the unadjusted ensemble mean, as the theory suggestsand the simulations suggest they might, by using 

leave-one-out cross-validation within the ensemble. Cross-validation is commonly used for evaluating methods for 475 

processing climate model output in this way (see e.g., Raisanen and Ylhaisi (2010)). ThisIt only evaluates potential 

predictive skill, however, since, as we are considering projections of future climate, it cannot involvewe have no 

observations. We apply the following steps: 

• At each location, for each of the 72 cases, we cycle through the ten climate models, missing out each model in turn. 

• We use the nine remaining climate models to estimate the reduction factors 𝑘̂𝑆 and 𝑘̂𝐵. 480 

• We make five predictions using the ensemble mean, the SMMASPMA method, the BMMABPMA method, 

statistical significance testing and AICc model averagingAICMA. 
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• We compare each of the five predictions with the value from the model that was missed out. 

• We calculate the PMSE over all ten models and all locations, for each of the predictions. 

• We calculate the PMLLPLS over all ten models and all locations, for the ensemble mean and the MMAPMA 485 

methods. 

• We calculate the ratio of the PRMSE for the adjusted ensemble mean and statistical significance predictions to the 

PRMSE of the unadjusted ensemble mean prediction, so that values less than one indicate a better prediction than 

the unadjusted ensemble mean prediction. 

• We also calculate the corresponding ratio for the PMLL resultsPLS resultss, for the PMA methods. 490 

For the case illustrated in Fig. 1 and Fig. 4, we find a value of the PRMSE ratio of 0.960 for the SMMASPMA method, 

0.930 for the BMMABPMA method, 1.100 for significance testing and 0.964 for AICcAICMA.  Since the SMMA, 

BMMASPMA, BPMA and AICcAICMA methods give values that are less than 1, we see that the adjusted ensemble means 

are, on average over the whole spatial field, giving predictions with a lower PMSE than the ensemble mean prediction. The 

predictions are 4%, 87% and 4% more accurate, respectively, as estimates of the unknown mean. Since statistical testing 495 

gives a value greater than one, we see that it is giving predictions with higher PMSE than the ensemble mean prediction. All 

these values are a combination of results from all locations across Europe. The PMSE values from the SMMA, 

BMMASPMA, BPMA and AICcAICMA methods are lower than those from the ensemble mean in the spatial average but 

are unlikely to be lower at every location. From the simulation results shown in Sect. 3.4 above we know that the MMAPMA 

and AICcAICMA methods are likely giving better results than the unadjusted ensemble mean in regions where the SNR is 500 

low, (much of Southern Europe), but less good results where the SNR is high. The final average values given above are 

therefore in part a reflection of the relative sizes of the regions with low and high SNR.  

The values of the PMLLPLS ratio for SMMASPMA and BMMABPMA are 0.9983 and 0.9982, and we see that the 

probabilistic predictions based on the MMAPMA-adjusted ensemble means are also improved relative to probabilistic 

predictions based on the unadjusted ensemble mean. The changes in PMLLPLS are small, but our experience is that small 505 

changes are typical when using PMLLPLS as a metric., as we saw in the simulation results shown in Fig. 3b.  

5 Results for 72 Cases 

We now expand our cross-validation testing from one case to all 72 cases, across four seasons, three variables, two RCPs 

and three time-horizons. Fig. 6 shows the spatial means of the estimates of 𝑘 for both MMAPMA methods for all these 

cases, stratified by season, RCP, variable and time horizon. The format of Fig. 6 follows the format of Fig. 2: each panel 510 

contains 72 black circles and 72 red crosses. Each black circle is the spatial mean over all the estimates of 𝑘 from the 

SMMASPMA method for one of the 72 cases. Each red cross is the corresponding spatial mean estimate of 𝑘 from the 

BMMABPMA method. The horizontal lines show the means of the estimates within each sub-set. Figure 6a shows that the 

estimates of 𝑘 from both methods decrease from DJF to SON. This is because of the decreasing SNR values shown in Fig. 
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2a. The BMMABPMA method gives higher 𝑘 estimates than the SMMASPMA method on average, and a lower spread of 515 

values. There is no clear impact of rainfall variable on the 𝑘 values (Fig. 6b). Figure 6c shows higher 𝑘 values for RCP8.5 

than RCP4.5, reflecting the SNR values shown in Fig. 2c. Figure 6d shows 𝑘 values increasing with time into the future, 

reflecting the increasing SNR values shown in Fig. 2d.  

 

Figure 6: Each panel shows the same 72 values of the Europe-wide spatial meansmean of the parametersweights 𝑘̂𝑆 (black 520 

circles) and 𝑘̂𝐵 (red X’s) derived from the 72 EURO-CORDEX climate change projections described in the text, along with 

means within each subset (horizontal lines). Panel (a) shows the 72 values as a function of season, panel (b) shows them as a  

function of rainfall variable, panel (c) shows them as a function of RCP and panel (d) shows them as a function of time 

period.  

 525 
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Figure 7 shows corresponding spatial mean PRMSE results and includes results for significance testing (blue plus signs) and 

AICcAICMA (purple triangles). For the SMMASPMA method the PRMSE reduces (relative to the PRMSE of the 

unadjusted ensemble mean) for 45 out of 72 cases, while for the BMMABPMA method the PRMSE reduces for 51 out of 72 

cases. Significance testing performs much worse than the other methods, and only reduces the PRMSE for 5 out of 72 cases. 

AICcAICMA reduces PRMSE for 27 out of 72 cases and so performs better than statistical testing but less well than the 530 

unadjusted ensemble mean.  

Considering the relativities of the results between SMMA, BMMASPMA, BPMA, significance testing and AICcAICMA by 

subset: BMMABPMA gives the best results overall and beats SMMASPMA for 10 out of 12 of the subsets tested. 

Significance testing gives the worst results and is beaten by SMMA, BMMASPMA, BPMA and AICc model 

averagingAICMA in every subset. Considering the results of SMMA, BMMASPMA, BPMA significance testing and 535 

AICcAICMA relative to the unadjusted ensemble mean by subset: SMMASPMA beats the ensemble mean for 11 out of 12 

of the subsets tested, BMMABPMA beats the ensemble mean for 12 out of 12 of the subsets tested, significance testing 

never beats the ensemble mean and AICcAICMA beats the ensemble mean for 2 out of 12 of the subsets tested. Considering 

the variation of PRMSE values by season (Fig. 7a) we see that the SMMA, BMMASPMA, BPMA, significance testing and 

AICcAICMA all perform gradually better through the year, and best in SON, as the SNR ratio reduces (see Fig. 2a). In SON 540 

the results for SMMASPMA and BMMABPMA for each of the 18 cases in that season are individually better than the 

ensemble mean. Considering the variation of PRMSE values by rainfall variable and RCP (Fig. 7b and Fig. 7c), we see little 

obvious pattern. Considering the variation of PRMSE values by time period, we see that SMMASPMA and BMMABPMA 

show the largest advantage over the unadjusted ensemble mean for the earliest time period, again because of the low SNR 

values (Fig. 2d). 545 

Considering results over all 72 cases we find average PRMSE ratios of 0.956 and 0.946 for the SMMASPMA and 

BMMABPMA methods respectively, corresponding to estimates of the future mean climate that are roughlya little over 4% 

and 5% more accurate than the predictions made using the unadjusted ensemble mean. For significance testing we find 

average PRMSE ratios of 1.226, corresponding to estimates of the future mean climate that are roughly 23% less accurate 

than the predictions made using the unadjusted ensemble mean. For AICcAICMA we find average PRMSE ratios of 1.02, 550 

corresponding to estimates of the future mean climate that are roughly 2% less accurate those from the unadjusted ensemble 

mean. 
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Figure 7: Each panel shows 72 values of the PRMSE ratio from the SMMASPMA scheme (black circles), 72 values of the 

PRMSE ratio from the BMMABPMA scheme (red X’s), 72 values of the PRMSE ratio from significance testing (blue 555 

triangles), and 72 values of the PRMSE ratio from AICc model averagingAICMA scheme (purple triangles), all derived 

from the 72 EURO-CORDEX climate change projections described in the text, along with means within each subset 

(horizontal lines). Panel (a) shows the 72 values as a function of season, panel (b) shows them as a function of rainfall 

variable, panel (c) shows them as a function of RCP and panel (d) shows them as a function of time period.  

 560 
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Figure 8 is equivalent to Fig. 7, but shows results for PMLLPLS i.e., evaluates the performance of probabilistic predictions. 

Given the poor performance of statistical testing and AICcAICMA in terms of PRMSE we do not show their results for 

PMLLPLS. We see that the PMLLPLS results are very similar to the PMSE results in Fig. 7, with BMMABPMA showing 

the best results, followed by SSMASPMA, followed by the unadjusted ensemble mean. For our EURO-CORDEX data, we 

conclude that making the mean of the prediction more accurate also makes the probabilistic prediction more accurate, which 565 

implies that the distribution shape being used in the probabilistic predictions is appropriate.   
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Figure 8: As Fig. 7, but now for 72 values of the PMLLpredictive log score (PLS) ratio derived from probabilistic forecasts 570 

from SMMASPMA (black circles) and BMMABPMA (red X's). 
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5.1 Further analysis 

Figure 9 shows further analysis of these results. Figure 9a shows the mean values of the estimates of 𝑘 for the SMMASPMA 

and BMMABPMA methods, versus the mean SNR for all 72 cases. The connection between the mean SNR and the mean 𝑘 575 

is now very clear, with mean 𝑘 increasing with mean SNR. This panel also shows that the BMMABPMA method gives 

higher 𝑘 values on average for all values of SNR, but particularly for low values of SNR. Figure 9b shows the reduction in 

the root mean squared size (as opposed to error) of the prediction, which is a measure of the impact of the model averaging. 

The two methods give very similar results, in which the impact is greatest for the cases with low SNR. These are average 

reductionsexplores how much the ensemble mean is changed by the application of SPMA and BPMA, by looking at the ratio 580 

of the typical size of the ensemble mean after adjustment to the typical size before adjustment. This metric is calculated by 

first squaring each prediction (for the three predictions consisting of the ensemble mean, the SPMA adjusted ensemble mean 

and the BPMA adjusted ensemble mean), summing the squared predictions across all locations, and taking the square root, to 

give the root mean square size of the predictions from each method. This gives a measure of the typical size of the 

predictions, for each of the three methods. The root mean square sizes for the SPMA and BPMA predictions are then 585 

compared to the root mean square size of the ensemble mean prediction by calculating the ratio of one to the other, and Fig. 

9b shows this ratio. By this measure, SPMA and BPMA give very similar results: they both apply reductions to the ensemble 

mean, so all the values are below one, and in both cases the impact is greatest for the cases with low SNR. These are average 

reductions in the size of the predictions over the whole of Europe: locally, the reduction takes values in the whole range from 

0 to 1.  Figure 9c shows the PRMSE, but now calculated from relative errors, relative to the spatially varying ensemble 590 

mean., which we call PRRMSE (predictive relative RMSE). Values less than one for all 72 cases indicate that the 

MMAPMA methods perform better than the unadjusted ensemble mean more comprehensively by this measure. The 

difference between these results and the straight PRMSE results arises because the locations where the MMAPMA methods 

improve predictions the most on a relative basis tend to be the ones with small signals, which tend to have small prediction 

errors. These locations do not contribute very much to the straight PRMSE but contribute more when the errors are 595 

expressed in a relative sense. Figure 9d shows a scatter plot of the PRMSE versus the SNR for the two methods for all 72 

cases. There is a clear relation in which the MMAPMA methods perform best for small SNR values. The relation is similar 

to that shown in the simulation experiment results shown in Fig. 23, but with the cross-over points (shown by vertical lines) 

shifted to the right, because these are now relations between averages over many cases with different underlying values for 

the unknown real SNR.  We see that for every case in which the mean SNR is less than 2.81 the SMMASPMA method 600 

performs better than the unadjusted ensemble mean on average, and for every case in which the mean SNR is less than 3.02 

the BMMABPMA method performs better than the unadjusted ensemble mean on average. 
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Figure 9: various diagnostics for each of the 72 EURO-CORDEX climate change projections, plotted versus mean SNR. 605 

Results from applying the SMMASPMA scheme are shown with black circles, and results from applying the BMMABPMA 

scheme are shown with red X’s. Panel (a) shows mean values of the parameters 𝑘̂𝑆 and 𝑘̂𝐵; panel (b) shows the reduction in 

the root mean squaretypical size of the ensemble mean; (calculated as described in the text); panel (c) shows the reduction in 
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the relative PRMSE (the PRRMSE) and panel (d) shows the PRMSE ratio. Panel (d) has additional vertical lines showing 

the cross-over points, below which the MMAPMA results are all better than the ensemble mean results.  610 

The results in Sect. 5 can be summarized as follows: for the EURO-CORDEX rainfall data, SMMASPMA and 

BMMABPMA give more accurate predictions on average, in both a point and a probabilistic sense, than the unadjusted 

ensemble mean. BMMA, AICMA or statistical testing. BPMA gives more accurate results than SMMASPMA. The 

MMAPMA methods do well because the ensemble mean is uncertain and has low SNR values at many locations. The 

benefits of SMMASPMA and BMMABPMA are greatest in the cases with the lowest SNR values.  615 

6 Discussion and Conclusions 

Ensemble climate projections can be used to derive probability distributions for future climate, and the ensemble mean can 

be used as an estimate of the mean of the probability distribution. Because climate model ensembles are always finite in size, 

changes in the ensemble mean are always uncertain, relative to the changes in the ensemble mean that would be given by an 

infinite size ensemble. The ensemble mean uncertainty varies in space. In regions where the signal-to-noise ratio (SNR) of 620 

the change in the ensemble mean is high, the change in the ensemble mean gives a precise estimate of the change in the 

mean climate that would be estimated from the infinite ensemble.  However, in regions where the SNR is low, the 

interpretation of the change in the ensemble mean is a little more difficult. For instance, when the SNR is very low, the 

change in the ensemble mean is little more than random noise generated by variability in the members of the ensemble, and 

cannot be taken as a precise estimate of the change in mean climate of the infinite ensemble. In these cases, it mightwould be 625 

unfortunate if the ensemble mean were interpreted too literally, or were used to drive adaptation decisions. 

We have presented two bias-variance trade-off model averaging algorithms that adjust the change in the ensemble mean as a 

function of the SNR in an attempt to improve predictive accuracy. We call the methods Mean-squared errorPlug-in Model 

Averaging (MMA). ThesePMA) methods are designed to be applied after bias correction and corrections for inter-model 

correlation have been applied., since they use a statistical method known as plugging in. One method is very simple (simple 630 

MMA, SMMAPMA, SPMA), and the other is a more complex Bayesian extension (Bayesian MMA, BMMAPMA, BPMA). 

The methods can both be thought of as continuous generalisations of statistical testing, where instead of accepting or 

rejecting the change in the ensemble mean they apply continuous adjustment. They can also be thought of as small-sample 

corrections to the estimate of the ensemble mean. When the SNR is large the ensemble mean is hardly changed by these 

methods, while when the SNR is small the change in the ensemble mean is reduced towards zero in an attempt to maximise 635 

the predictive skill of the resulting predictions.   

We have applied the MMAPMA methods to a large data-set of high-resolution rainfall projections from the EURO-

CORDEX ensemble, for 72 different cases across four seasons, three different rainfall variables, two different RCPs and 

three future time periods during the 21st century. This data shows large variations in the SNR, which results in large 

variations of the extent to which the ensemble mean is adjusted by the methods.  640 
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We have used cross-validation within the ensemble to test whether the adjusted ensemble means achieve greater potential 

predictive skill for point predictions and probabilistic predictions. To assess point predictions we used predictive mean 

squared error (PMSE) and to assess probabilistic predictions we used predictive mean log-likelihood (PMLL).log-score 

(PLS), which are both standard measures. For both measures, we compared against results based on the unadjusted ensemble 

mean. For PMSE we have additionally compared against results based on statistical testing and small-sample Akaike 645 

Information Criterion model averaging (AICMA, a standard method for model averaging). We emphasize that these 

calculations can only tell us about the potential accuracy of the method, not the actual accuracy, since we cannot compare 

projections of future climate with observations. On average over all 72 cases and all locations, the MMAPMA methods 

reduce the PMSE, corresponding to what is roughly a 5% increase in potential accuracy in the estimate of the future mean 

climate. For the SMMASPMA method, the PMSE reduces for 45 of the 72 cases, while for the BMMABPMA method the 650 

PMSE reduces for 51 out of 72 cases. Which cases show a reduction in PMSE and which not depends strongly on the mean 

SNR within each case, in the sense that the MMAPMA methods perform better when the SNR is low. For instance, the 

winter SNRs are high, and the average PMSE benefits of the MMAPMA methods are marginal. The autumn SNRs are much 

lower, and the MMAPMA methods beat the unadjusted ensemble mean in every case.  Significance testing, by comparison, 

gives much worse PMSE values than the unadjusted ensemble mean, and AICc model averagingAICMA gives slightly 655 

worse PMSE values than the unadjusted ensemble mean. For PMLL weConsidering probabilistic predictions, the PLS results 

also foundshow that the MMAPMA methods beat the unadjusted ensemble mean. 

The ensemble mean can be used as a standalone indication of the possible change in climate, or as the mean of a distribution 

of possible changes in a probabilistic analysis. We conclude that in both cases, when the ensemble mean is highly uncertain, 

the MMAPMA-adjusted ensemble means described above can be used in its place. Applying MMAPMA has various 660 

advantages: (a) it reduces the possibility of over-interpreting changes in the ensemble mean that are very uncertain, while not 

affecting more certain changes, (b) relative to significance testing, it avoids jumps in the ensemble mean change in space and 

between scenarios, and (c) when the SNR is low, it will likely produce more accurate predictions than predictions based on 

either the unadjusted ensemble mean or statistical testing. In addition to the above advantages, relative to statistical testing 

the MMAPMA-adjusted ensemble mean reduces the likelihood of false negatives (i.e., missingnot modelling a change due to 665 

climate changethat is real) and increases the likelihood of false positives (i.e., falsely identifyingmodelling a change as being 

due to climate change).that is not real but is just noise). Whether this is an advantage or not depends on the application, but is 

typically beneficial for risk modelling. This is because the goal in risk modelling is to identify all possible futures, and hence 

no changes should be ignored if there is some evidence for them, even if those changes are not statistically significant.  
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