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Abstract. In this paper, we present an ensemble data assimilation paradigm over a Riemannian manifold equipped with the

Wasserstein metric. Unlike the Euclidean distance used in classic data-assimilation methodologies, the Wasserstein metric can

capture translation and difference between the shapes of square-integrable probability distributions of the background state

and observations. This enables us to formally penalize geophysical biases in state-space with non-Gaussian distributions. The

new approach is applied to dissipative and chaotic evolutionary dynamics and its potential advantages and limitations are5

highlighted compared to the classic ensemble data assimilation approaches under systematic errors.

1 Introduction

Extending the forecast skill of Earth System Models (ESM) relies on advancing the science of Data As-

similation (DA) (Tsuyuki and Miyoshi, 2007; Carrassi et al., 2018). A large body of current DA method-

ologies, either filtering (Kalman, 1960; Evensen, 1994; Reichle et al., 2002; Evensen, 2003) or variational10

approaches (Lorenc, 1986; Le Dimet and Talagrand, 1986; Talagrand and Courtier, 1987; Park and Žu-

panski, 2003; Trevisan et al., 2010; Carrassi and Vannitsem, 2010; Ebtehaj and Foufoula-Georgiou, 2013),

are derived from basic principles of Bayesian inference under the assumption that the state-space is unbi-

ased and can be represented well with Gaussian distributions, which are not often consistent with reality

(Bocquet et al., 2010; Pires et al., 2010). It is well documented that this drawback often limits forecast15

skills of DA systems (Walker et al., 2001; Dee, 2005; Ebtehaj et al., 2014; Chen et al., 2019a) especially

under the presence of systematic errors (Dee, 2003).

Apart from particle filters (Spiller et al., 2008; Van Leeuwen, 2010), which are intrinsically designed for

state-space with a non-Gaussian distribution, numerous modifications to the variational DA (VDA) and

ensemble-based filtering methods have been made to tackle non-Gaussianity of geophysical processes20
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(Pires et al., 1996; Han and Li, 2008; Mandel and Beezley, 2009; Anderson, 2010). As a few exam-

ples, in four-dimensional VDA, a quasi-static approach is proposed to ensure convergence by gradually

increasing the assimilation intervals (Pires et al., 1996). To deal with multi-modal systems, Kim et al.

(2003) proposed modifications to the ensemble Kalman filter (EnKF; Evensen, 1994; Li et al., 2009) us-

ing approximate implementation of Bayes’ theorem in lieu of a linear interpolation via Kalman gain. For25

ensemble-based filters, Anderson (2010) proposed a new approach to account for non-Gaussian priors

and posteriors by utilizing rank histograms (Anderson, 1996; Hamill, 2001). A hybrid ensemble approach

was also suggested to combine advantages of both EnKF and particle filter (Mandel and Beezley, 2009).

Even though particle filters can handle non-Gaussian likelihood functions, when observations lie away

from the support set of the particles, the ensemble variance tends to zero over time and can render the30

filter degenerate (Poterjoy and Anderson, 2016). In recent years, significant progress has been made to

treat systematic errors through numerous ad hoc methods such as the field alignment technique (Ravela

et al., 2007) and morphing EnKF (Beezley and Mandel, 2008) that can tackle position errors between

observations and forecast. Dual state-parameter EnKF (Moradkhani et al., 2005) was also developed to

resolve systematic errors originating from parameter uncertainties. Additionally, bias aware variants of35

the Kalman filter were designed (Drécourt et al., 2006; De Lannoy et al., 2007a, b; Kollat et al., 2008)

to simultaneously update the state-space and an a priori estimate of the additive biases. In parallel, the

cumulative distribution function matching (Reichle and Koster, 2004) has garnered widespread attention

in land DA.

From a geometrical perspective, Gaussian statistical inference methods exhibit a flat geometry (Amari,40

2012). In particular, it is proved that linear auto-regressive and moving average Markov stochastic models,

which are driven by Gaussian noise, form dually flat manifolds (Amari, 2012). The notion of distance over

such a geometrically flat space is defined over a straight line, which can be quantified by the Euclidean

distance. Consequently, the Euclidean space has served as a major tool in explaining statistical inference

techniques using linear Gaussian models and has been the cornerstone of DA techniques. It is important45

to note that the Euclidean distance remains (Ning et al., 2014) insensitive to the magnitude of translation

between probability distributions with disjoint support sets – when used to interpolate between them.

Non-Gaussian statistical models often form geometrical manifolds, a topological space that is locally

Euclidean. In the case of nonlinear regression, it is demonstrated that the statistical manifold exhibits a

Riemannian geometry (Lauritzen, 1987) over which the notion of distance between probability distribu-50
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tions is geodesic that not only can capture translation but also the difference between the entire shape

of probability distributions (Pennec, 2006). The question is – how can we equip DA with a Riemannian

geometry? To answer this question, inspired by the theories of optimal mass transport (Villani, 2003), this

paper presents the Ensemble Riemannian Data Assimilation (EnRDA) framework using the Wasserstein

metric or distance, which is a distance function defined between probability distributions, as explained in55

detail in Section 2.3.

In recent years, a few attempts have been made to utilize the Wasserstein metric, in geophysical DA.

Reich (2013) introduced an ensemble transform particle filter, where the optimal transport framework was

utilized to guide the resampling phase of the filter. Ning et al. (2014) used the Wasserstein distance to re-

duce forecast uncertainty due to parameter estimation errors in dissipative evolutionary equations. Feyeux60

et al. (2018) suggested a novel approach employing the Wasserstein distance in lieu of the Euclidean dis-

tance to penalize the position error between state and observations. More recently, Tamang et al. (2020)

introduced a Wasserstein regularization in a variational setting to correct for geophysical biases under

chaotic dynamics.

The EnRDA extends the previous work through the following main contributions: (a) EnRDA defines65

DA as a discrete barycenter problem over the Wasserstein space for assimilation in probability domain

without any parametric or Gaussian assumption. The framework provides a continuum of non-parametric

analysis probability histograms that naturally span between the distributions of the background state and

observations through optimal transport of probability masses. (b) The presented methodology operates

in an ensemble setting and utilizes a regularization technique for improved computational efficiency. (c)70

The paper studies advantages and limitations of DA over the Wasserstein space for dissipative advection-

diffusion dynamics and nonlinear chaotic Lorenz-63 model in comparison with the well-known ensemble-

based methodologies.

The organization of the paper is as follows: Section 2 provides a brief background on Bayesian DA

formulations and optimal mass transport. The mathematical formalism of EnRDA is described in Section75

3. Section 4 presents the results and compares them with their Euclidean counterparts. Section 5 discusses

the findings and ideas for future research.
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2 Background

2.1 Notations

Throughout, small bold letters represent m-element column vectors x = (x1, . . . ,xm)T ∈ Rm, where (·)T80

is the transposition operator. The m-by-n matrices X ∈ Rm×n are denoted by capital bold letters, whereas

Rm
+ (Rm×n

+ ) denotes those vectors (matrices) only containing non-negative real numbers. The 1m refers to

an m-element vector of ones and Im is an m×m identity matrix. A diagonal matrix with entries given

by x ∈ Rm is represented by diag(x) ∈ Rm×m. Notation x∼N (µ,Σ) denotes that the random vector

x is drawn from a Gaussian distribution with mean µ and covariance Σ and EX(x) is the expectation85

of x. The `q-norm of x is defined as ‖x‖q =
(∑m

i=1 |xi|q
)1/q with q > 0 and the square of the weighted

`2-norm of x is represented as ‖x‖2B−1 = xTB−1x, where B is a positive definite matrix. Notations of

x�y and x�y represent the element-wise Hadamard product and division between equal length vectors

x and y, respectively. Notation 〈A,B〉= tr(ATB) denotes the Frobenius inner product between matrices

A and B and tr(·) and det[·] represent trace and determinant of a square matrix, respectively. Here, p(x) =90 ∑M
i=1 pxi

δxi
represents a discrete probability distribution with respective histogram {px ∈ RM

+ :
∑

i pxi
=

1} supported on xi, where δxi
represents a Kronecker delta function at xi. Throughout, the dimension of

the state or observations is denoted by small letters such as x ∈ Rm while the number of ensembles or

support points of their respective probability distribution is shown by capital letters such as px ∈ RM
+ .

2.2 Data Assimilation on Euclidean Space95

In this section, we provide a brief review of the derivation of classic variational DA and particle filters

based on Bayes’ theorem to set the stage for the presented Ensemble Riemannian DA formalism.

2.2.1 Variational Formulation

Let us consider a discrete-time Markovian dynamics and its observations as follows:

xt =M(xt−1) +ωt , ωt ∼N (0,B)

yt =H(xt) +vt , vt ∼N (0,R) , (1)100
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where xt ∈ Rm and yt ∈ Rn represent the state variables and the observations at time t,M : Rm→ Rm

and H : Rm→ Rn are the deterministic forward model and observation operator, ωt ∈ Rm and vt ∈ Rn

are the independent and identically distributed model and observation errors, respectively.

Recalling Bayes’ theorem, dropping the time superscript, without loss of generality, the posterior

probability density function (pdf) of the state given the observation can be obtained as p(x|y)∝105

p(y|x)p(x)/p(y), where p(y|x) is proportional to the likelihood function, p(x) is the prior density and

p(y) denotes the distribution of observations. Letting xb = EX(x) ∈ Rm represents the background state,

ignoring the constant term log p(y) and assuming Gaussian distributions for the observation error and the

prior, logarithm of the posterior density leads to the well-known three-dimensional variational (3D-Var)

cost function (Lorenc, 1986; Kalnay, 2003):110

− log p(x|y)∝ 1

2
(x−xb)

TB−1(x−xb) +
1

2
(y−H(x))TR−1(y−H(x))

∝ ‖x−xb‖2B−1 + ‖y−H(x)‖2R−1 .
(2)

As a result, the analysis state obtained by minimization of the cost function in Eq. (2) is the mode of

the posterior distribution that coincides with the posterior mean when errors are drawn from unbiased

Gaussian densities andH(·) is a linear operator. Using the Woodbury matrix inversion lemma (Woodbury,

1950), it can be easily demonstrated that for a linear observation operator, the analysis states in the 3D-Var115

and Kalman filter are equivalent (Tarantola, 1987). As is evident, zero-mean Gaussian assumptions lead

to penalization of the error through the weighted Euclidean norm.

2.2.2 Particle Filters

Particle filters (Gordon et al., 1993; Doucet and Johansen, 2009; Van Leeuwen et al., 2019) in DA were

introduced to address the issue of non-Gaussian distribution of the state by representing the prior and120

posterior distributions through a weighted ensemble of model outputs referred to as “particles”. In its

standard discrete setting, using Monte Carlo simulations, the prior distribution p(x) is represented by a

sum of equal-weight Kronecker delta functions as p(x) =
1

M

M∑
i=1

δxi
, where xi ∈ Rm is the state variable

represented by the ith particle.
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Each of these M particles are then evolved through the nonlinear model in Eq. (1). Assuming that the125

conditional distribution p(y|xi) =
1

(2π)n/2|R|1/2
exp

{
− 1

2
[y−H(xi)]

TR−1[y−H(xi)]

}
is Gaussian,

using Bayes’ theorem, it can be shown that the posterior distribution p(x|y) can be approximated using

a set of weighted particles as p(x|y) =
∑M

i=1 wi δxi
, where wi =

p(y|xi)∑M
j=1 p(y|xj)

. The particles are then

resampled from the posterior distribution p(x|y) based on their relative weights and propagated forward

in time according to the model dynamics.130

As is evident, in particle filters, weights of each particle are updated using the Gaussian likelihood func-

tion under a zero-mean error assumption. However, in the presence of systematic biases, when the support

sets of particles and the observations are disjoint, only the weights of a few particles become significantly

large and weights of other particles tend to zero. As the underlying dynamical system progresses in time,

only those few particles, with relatively larger weights, are resampled and the filter can become degenerate135

gradually in time (Poterjoy and Anderson, 2016).

2.3 Optimal Mass Transport

The theory of optimal mass transport (OMT), coined by Gaspard Monge (Monge, 1781) and later extended

by Kantorovich (Kantorovich, 1942), was developed to minimize transportation cost in resource allocation

problems with purely practical motivations. Recent developments in mathematics discovered that OMT140

provides a rich ground to compare and morph probability distributions and uncovered new connections

to partial differential equations (Jordan et al., 1998; Otto, 2001) and functional analysis (Brenier, 1987;

Benamou and Brenier, 2000; Villani, 2003).

In a discrete setting, let us define two discrete probability distributions p(x) =
∑M

i=1 pxi
δxi

and p(y) =∑N
j=1 pyj

δyj
with their respective histograms {px ∈ RM

+ :
∑

i pxi
= 1} and {py ∈ RN

+ :
∑

j pyj
= 1} sup-145

ported on xi and yj . A “ground” transportation cost matrix C ∈ RM×N
+ is defined such that its elements

cij = ‖xi−yj‖qq represent the cost of transporting unit probability masses from location xi to yj . The

Kantorovich OMT problem determines an optimal “transportation plan” Ua ∈ RM×N
+ that can linearly

map two probability histograms onto each other with minimum amount of total transportation cost as

follows:150

Ua = argmin
U

〈C,U〉 s.t. U≥ 0, U1N = px, UT
1M = py . (3)
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Figure 1. Interpolation between two Gaussian distributionsN (µ1,σ
2
1) andN (µ2,σ

2
2) where, µ1 =−1.1,µ2 = 1.4,σ2

1 = 0.4, and σ2
2 = 0.01

as a function of the interpolation or displacement parameter η ∈ [0,1] for the (a) Hellinger distance, (b) Kullback-Leibler divergence, and (c)
2-Wasserstein distance (Peyré et al., 2019)

The transportation plan can be interpreted as a “joint distribution” that couples the marginals histograms

px and py. For the transportation cost with q = 2, the OMT problem in Eq. (3) is convex and defines the

square of the 2-Wasserstein distance d2W (px,py) = 〈C,Ua〉 between the histograms.

Wasserstein distance has some advantages compared to other measures of proximity – such as the155

Hellinger distance (Hellinger, 1909) or the Kullback–Leibler (KL) divergence (Kullback and Leibler,

1951). To elaborate on the advantages, we confine our consideration to the Gaussian densities over

which the Wasserstein distance can be obtained in a closed form. In particular, interpolating over

the 2-Wasserstein space between N (µx,Σx) and N (µy,Σy), using an interpolation parameter η, re-

sults in a Gaussian distribution N (µη,Ση), where µη = ηµx + (1− η)µy and Ση = Σ−1/2x

(
ηΣx + (1−160

η)(Σ1/2
x ΣyΣ

1/2
x )1/2

)2
Σ−1/2x (Chen et al., 2019b).

Fig. 1 shows the spectrum of interpolated distributions between two Gaussian pdfs for a range of η ∈
[0,1]. As shown, the interpolated densities using the Hellinger distance, which is Euclidean in the space of

probability histograms, are bimodal. Although the Gaussian shape of the interpolated densities using the

KL divergence is preserved, the variance of the interpolants is not necessarily bounded by the variances165

of the input Gaussian densities. Unlike these metrics, as shown, the Wasserstein distance moves the mean

and preserves the shape of the interpolants through a natural morphing process.
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Figure 2. (a) Optimal transportation plan or the joint distribution Ua between a gamma Γ(2,2) and a Gaussian marginal distribution
N (6.5,1) as well as (b) the 2-Wasserstein interpolation between them for different values of the displacement parameter η ∈ [0,1].

As is previously noted, this metric is not limited to any Gaussian assumption. Fig. 2 shows the 2-

Wasserstein interpolation between a gamma and a Gaussian distribution. The results show that the Wasser-

stein metric penalizes the translation and mismatch between the shapes of the pdfs. It can be shown that170

d2W(px,py) = d2W(px,py)+
∥∥µx−µy∥∥22, where px and py are the centered zero-mean probability masses

and µx and µy are the respective mean values (Peyré et al., 2019).

3 Ensemble Riemannian Data Assimilation

3.1 Problem Formulation

First, let us recall that the weighted mean of a cloud of points {xi}Mi=1 ∈ Rm in the Euclidean space is175

µx =
∑M

i=1 ηixi for a given family of non-negative weights
∑

i ηi = 1. This expected value is equivalent

to solving the following variational problem:

µx = argmin
x

M∑
i=1

ηi ‖xi−x‖22 . (4)

The 3D-Var problem in Eq. (2) reduces to the above barycenter problem when the model and observation

error covariances are diagonal with uniform error variances across multiple dimensions of the state-space.180

For non-diagonal error covariances, it can be shown that the weight of the background and observation
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are (B−1 + HTR−1H)−1B−1 and (B−1 + HTR−1H)−1HTR−1 respectively, where H is the linear ap-

proximation of the observation operator. Therefore, the 3D-Var DA can be interpreted as a “barycenter

problem” in the Euclidean space, where the analysis state is the weighted mean of the background state

and observation.185

By changing the distance metric from Euclidean to the Wasserstein (Agueh and Carlier, 2011), a Rie-

mannian barycenter can be defined as the Fréchet mean (Fréchet, 1948) ofNp probability histograms with

finite second-order moments as follows:

pη = argmin
p

Np∑
k=1

ηk d
2
W(p,pk) . (5)

Inspired by (Feyeux et al., 2018), the EnRDA defines the probability distribution of the analysis state190

p(xa) ∈ RM as the Fréchet barycenter over the Wasserstein space as follows:

p(xa) = argmin
px

{
η d2W(px, pxb) + (1− η) d2W(px, |det [H′(x)] |py)

}
, (6)

where the displacement parameter η > 0 assigns the relative weights to the observation and background

term to capture their respective geodesic distances from the true state. Here H′(·) is the Jacobian of

the observation operator assuming that H : x−→ y is a smooth and a square (i.e., m= n) bijective map.195

The displacement parameter η is a hyperparameter and its optimal value should be determined empirically

using some reference data through cross-validation studies. For example, in practice, one may compute the

mean squared error as a function of η by comparing the analysis state and some ground-based observations

and use the minimum point of that function statically over a window of multiple assimilation cycles. It

is also important to note that due to the bijective assumption for the observation operator, the above200

formalism currently lacks the ability to propagate the information content of observed dimensions to

unobserved ones. This limitation is discussed further in the Section 5.

The solution of the above DA formalism involves finding the optimal analysis transportation plan or

the joint distribution Ua ∈ RM×N , using Eq. (3), that couples the background and observation marginal

histograms. We use the McCann’s method (McCann, 1997; Peyré et al., 2019) to obtain the analysis205
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probability histogram:

p(xa) =
M∑
i=1

N∑
j=1

uaij δzij , (7)

where the analysis support points are zij = ηxi + (1− η)yj . To solve Eq. (3), the widely used interior-

point methods (Altman and Gondzio, 1999) and the Orlin’s (Orlin, 1993) algorithm have super-cubic run

time with a computational complexity of O(M3 log M), where M =N . Therefore, the use of original210

OMT framework in EnRDA is a limitation in high-dimensional geophysical DA problems. To alleviate

this computational cost, in the next subsection 3.2, we discuss the use of entropic regularization.

To solve Eq. (6) in an ensemble setting, let us assume that in the absence of any a priori information,

initially the background probability distribution is represented by i= 1 . . .M ensemble members of the

state variable xi ∈ Rm as p(xb) = 1
M

∑M
i=1 δxi

. An a priori assumption is needed to reconstruct the obser-215

vation distribution p(y) =
∑N

i=1pyjδyj
at j = 1 . . .N supporting points. To that end, one may choose a

parametric or a non-parametric model based on the past climatological information. Here, for simplicity,

we assume a zero-mean Gaussian representation with covariance R ∈ Rn×n (Burgers et al., 1998) to per-

turb the observation at each assimilation cycle. After each cycle, the probability histogram of the analysis

state p(xa) is estimated using Eq. (7) over zij at M ×N support points. Then p(xa) is resampled at M220

points using the multinomial sampling scheme (Li et al., 2015) to initialize the next time step forecast.

3.2 Entropic Regularization of EnRDA

In order to speed up the computation of the coupling, the problem in Eq. (3) can be regularized (Cuturi,

2013):

Ua = argmin
U

〈C,U〉− γH(U) s.t. U≥ 0, U1N = pxb , UT
1M = py , (8)225

where γ > 0 is the regularization parameter and H(U) := 〈U, log U−1M1T
N〉 represents the Gibbs-

Boltzmann relative entropy function. Note that the relative entropy is a concave function and thus its

negative value is convex.
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The Lagrangian function (L) of Eq. (8) can be obtained by adding two dual variables or Lagrangian

multipliers q ∈ RM and r ∈ RN :230

L(U,q,r) = 〈C,U〉− γH(U)−〈q,U1N −pxb〉− 〈r,UT
1M −py〉 . (9)

Setting the derivative of the Lagrangian function to zero, we have

∂L(U,q,r)

∂uij
= cij + γ log(uij)− qi− rj = 0 , ∀i, j . (10)

The entropic regularization keeps the problem in Eq. (8) strongly convex and it can be shown (Peyré

et al., 2019) that Eq. (10) leads to a unique optimal joint density with the following form:235

Ua = diag(v)K diag(w) , (11)

where v = exp(q)� (γ1M) ∈ RM and w = exp(r)� (γ1N) ∈ RN are the unknown scaling variables and

K ∈ RM×N
+ is the Gibbs kernel with elements kij = exp

(
− cij

γ

)
, where cij are the elements of the cost

matrix C.

From the mass conservation constraints in Eq. (8) and scaling form of the optimal joint density in240

Eq. (11), we can derive:

diag(v)K diag(w)1N = pxb and diag(w)KT diag(v)1M = py . (12)

The two unknown scaling variables v and w can then be iteratively solved using Sinkhorn’s matrix

scaling algorithm (Cuturi, 2013) as follows:

vl+1 = pxb � (Kwl) and wl+1 = py � (KTvl) . (13)245

The Sinkhorn algorithm is initialized using w0 = 1N and since the marginal densities pxb and py are not

zero vectors, the Hadamard division in Equation 13 remains valid throughout the iterations. A summary

of the EnRDA implementation is demonstrated in Algorithm 1.
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Algorithm 1 Ensemble Riemannian Data Assimilation

1: Inputs: Ensemble size M , number of perturbed observations N from a chosen observation pdf, displacement parameter
η, entropic regularization parameter γ and total number of time steps T .

2: Initialize: x0
i ∼ p(x0), i= 1, . . . ,M .

3: for t= 1, . . . ,T do
4: xt

i =M(xt−1
i )+ωt

i, i= 1, . . . ,M.
5: Generating ensemble of observations yt

j , j = 1, . . . ,N .
6: At initial time obtain probability histogram of the background state and observations:

p(xb) =
1

M

M∑
i=1

δxt
i
, p(y) =

N∑
j=1

pyj
δyt

j
.

7: Compute the joint histogram as follows:

Ua = argmin
U

M∑
i=1

N∑
j=1

uij cij − γ〈U, logU−1M1
T
N 〉 s.t. U≥ 0, U1N = pxb

, UT
1M = py ,

where cij =
∥∥xt

i −yt
j

∥∥2
2
.

8: Obtain analysis probability distribution p(xa) =
∑M

i=1

∑N
j=1u

a
ij δzij

where zij = ηxt
i +(1− η)yt

j .
9: Obtain M analysis ensemble members xai ∈ Rm by multinomial sampling from p(xa).

10: Set xt
i := xai.

11: end for

The entropic regularization parameter plays an important role in characterization of the joint density;

however, there exists no closed-form solution for its optimal selection. Generally speaking, increasing250

the value of γ will increase convexity of the cost function and thus computational efficiency; however,

at the expense of reduced coupling between the marginal histograms, consistent with the second law of

thermodynamics.

As an example, the effects of γ on the coupling between two Gaussian mixture models pxb and py

are demonstrated in Fig. 3. It can be seen that at smaller values of γ = 0.001, the probability masses of255

the joint distribution are sparse and lie compactly along the main diagonal – capturing a strong coupling

between the background state and observations. However, as the value of γ increases, the probability

masses of the joint distribution spread out – reflecting less degree of dependencies between the marginals.

It is important to note that in limiting cases, as γ→ 0, the solution of Eq. (8) converges to the true optimal

joint histogram, while as γ→∞, the entropy of the analysis state increases and tends to pxbp
T
y . The260

regularization parameter is dependent on the elements of the transportation cost matrix C and varies
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Figure 3. The effect of the entropic regularization parameter γ on the optimal joint histogram coupling two Gaussian mixture models
pxb : 0.5N (−12,0.4) + 0.5N (−8,0.8) and py : 0.55N (5,4) + 0.45N (9.5,4).

according to the experimental settings. In practice, one can begin with the value of γ set as the largest

element of the cost matrix C and gradually reduce it to find the minimum value of γ that provides a stable

solution.

4 Numerical Experiments and Results265

In order to demonstrate the performance of EnRDA and quantify its effectiveness, we focus on the linear

advection-diffusion equation and the chaotic Lorenz-63 model (Lorenz, 1963). The advection-diffusion

model explains a wide range of heat, mass, and momentum transport across the land, vegetation, and

atmospheric continuum, and has been utilized to evaluate the performance of DA methodologies (Zhang

et al., 1997; Hurkmans et al., 2006; Ning et al., 2014; Ebtehaj et al., 2014; Berardi et al., 2016). Similarly,270

the Lorenz-63 model, as a chaotic model of atmospheric convection, has been widely used in testing the

performance of DA methodologies (Miller et al., 1994; Nakano et al., 2007; Van Leeuwen, 2010; Goodliff

et al., 2015; Tandeo et al., 2015; Tamang et al., 2020). Throughout, under controlled experimental settings

with foreknown model and observation errors, we run the forward models under systematic errors and

compare the results of EnRDA with a particle filter (PF) and an EnKF.275
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4.1 Advection-Diffusion Equation

4.1.1 State-space Characterization

The advection-diffusion is a special case of the Navier-Stokes partial differential equation. In its linear

form, with constant diffusivity in an incompressible fluid flow, it is expressed for a mass conserved phys-

ical quantity x(s, t) as follows:280

∂x(s, t)

∂t
+ a�∇x(s, t) = D∇2x(s, t) , (14)

where s ∈ Rn represents a n−dimensional spatial domain at time t. In the above expression, a =

(a1, . . . ,an)T ∈ Rn is the advection velocity vector and D = diag(D1, . . . ,Dn) ∈ Rn×n represents the dif-

fusivity matrix. Given initial condition x(s, t= 0), owing to its linearity, the solution at time t can be ob-

tained by convolving the initial condition with a Kronecker delta function δ(s−a t) followed by a convolu-285

tion with the fundamental Gaussian kernel G(s, t) =
1

(2π)n/2 |Σ|1/2
exp

(
−1

2
sTΣ−1s

)
, where Σ = 2D t.

4.1.2 Experimental Setup and Results

In this subsection, we first highlight the difference between Euclidean and Wasserstein barycenters using

a 2-D advection-diffusion model and then compare the results of EnRDA with the PF and EnKF on a 1-D

advection-diffusion equation.290

Fig. 4 shows the results of an assimilation experiment using the 2-D advection-diffusion equation where

the underlying state is bimodal. This experiment is designed to demonstrate the differences between the

Euclidean and Wasserstein barycenters in the presences of bias in a non-Gaussian state-space. In particu-

lar, the state-space is characterized over a spatial domain s1 = (0,10] and s2 = (0,10] with a discretization

of ∆s1 = ∆s2 = 0.1. The advection-diffusion is considered to be an isotropic process with true model295

parameters set as a1 = a2 = 0.08 [L/T], and D1 =D2 = 0.02 [L2/T]. The shown state variable is ob-

tained after evolving two Kronecker delta functions x(s, t) = 1000δ(s1, s2) and x(s, t) = 4000δ(s1, s2)

for T =0–25 and T = 0–35 [t], respectively.

To resemble a model with systematic errors, background state is obtained by increasing the advective

velocity to 0.12 [L/T] while diffusivity is reduced to 0.01 [L2/T] (Fig. 4b). Observations are not considered300

to have position biases; however, a systematic representative error is imposed assuming that the sensing
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Figure 4. The true state xtr , the background state xb and observation y (a–c) with systematic errors under a 2-D advection-diffusion
dynamics as well as the Euclidean (d–f) and the Wasserstein barycenters (g–i) between xb and y for different displacement parameters η.
The entropic regularization parameter is set to γ = 0.003 and the black plus signs show the location of the modes for the true state.

system has a lower resolution than the model. To that end, we evolve two Kronecker delta functions,

x(s, t) = 800δ(s1, s2) and x(s, t) = 2400δ(s1, s2), with mass less than the true state for same time period

of T = 0–25 and T = 0–35 [t] and then up-scaled the field by a factor of two through box averaging

(Fig. 4c).305

As shown in Fig. 4(g–i), the Wasserstein barycenter preserves the shape of the state variable well and

gradually moves the mass towards the background state as the value of η increases, while the bias remains

almost constant and the ubrmse increases from 0.12 to 0.95. The error quality metrics are constantly

below the Euclidean counterpart. As shown in Fig. 4(d–f), the shape of the Euclidean barycenter for

smaller values of η is not well recovered due to the position error. As η increases from 0.25 to 0.75, the310

Euclidean barycenter is nudged towards the background state and begins to recover the shape. The bias is
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reduced by more than 30%, from 0.15 to 0.05; however, this occurs at the expense of almost three folds

increase in unbiased root mean squared error (ubrmse), from 0.3 to 1.1. The reason for reduction of the

bias is that the positive differences between the Euclidean barycenter and true state are compensated by

their negative differences. However, ubrmse is quadratic and thus measures the average magnitude of the315

error irrespective of its signs.

For the 1-D case, the state-space is characterized over a spatial domain s ∈ (0,60] with a discretization

of ∆s= 0.1. The model parameters are chosen to be a= 0.8 [L/T] and D = 0.25 [L2/T]. The initial state

resembles a bimodal mixture of Gaussian distributions obtained by superposition of two Kronecker delta

functions x(s, t= 0) = 300δ(s) – evolved for time 15 and 25 [t], respectively. The ground truth of the320

trajectory is then obtained by evolving the initial state at a time step of ∆t= 0.5 over a window of T = 0–

30 [t] in the absence of any model error.

The observations are obtained at assimilation intervals 10∆t, assuming an identity observation operator,

through corrupting the ground truth by a heteroscedastic Gaussian noise with a variance εy = 5% of the

squared values of the ground truth state. We introduce both systematic and random errors in model simu-325

lations. For the systematic error, model velocity and diffusivity coefficient are set to a′ = 0.12 [L/T] and

D′ = 0.4 [L2/T] respectively. To impose the random error, a heteroscedastic Gaussian noise with variance

εb = 2% is added at every ∆t to model simulations. One hundred ensemble members are used in EnRDA

and the regularization and displacement parameters are set to γ = 3 and η = 0.2, through the previously

outlined trial and error procedures. To obtain a robust comparison of EnRDA with PF and EnKF, each330

with 100 particles (ensemble members), the experiment is repeated for 50 independent simulations.

The evolution of the initial state over a time period T = 0− 30 [t] and the results comparing EnRDA

with PF and EnKF at 5, 15, and 25 [t] are shown in Fig. 5. As demonstrated, during all time steps, EnRDA

reduces the analysis uncertainty, in terms of both bias and ubrmse. The shape of the entire state-space

is also properly preserved and remains closer to the ground truth. The EnKF performs comparable to335

EnRDA during the initial time steps, however, the performance degrades and the error statistics gradually

increases as the system evolves over time. Among the two traditional ensemble-based methodologies, the

PF acquires the highest error statistics owing to the well-known problem of filter degeneracy (Poterjoy

and Anderson, 2016), which is exacerbated by the presence of systematic errors.

We should emphasize that the presented results do not imply that EnRDA always performs better than340

PF and EnKF. The EnKF at the limiting caseM −→∞, in the absence of bias, is a minimum mean squared
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Figure 5. (a) Temporal evolution of a bimodal initial state under a linear 1-D advection-diffusion equation (b–d) by particle filter (PF),
ensemble Kalman filter (EnKF) and ensemble Riemannian data assimilation for three time snapshots at 5, 15 and 25 [t]. The bias and ubrmse
of the analysis states are also reported in the legends.

error estimator and attains the lowest possible posterior variance for linear systems, also referred to as the

Cramer-Rao lower bound (Cramér, 1999; Rao et al., 1973). Thus, when the errors are drawn from zero-

mean Gaussian distributions with a linear observation operator, EnKF can outperform EnRDA in terms of

the mean squared error.345

4.2 Lorenz-63

4.2.1 State-space Characterization

The Lorenz system (Lorenz-63, Lorenz, 1963) is derived through truncation of the Fourier series of the

Rayleigh-Bénard convection model. This model can be interpreted as a simplistic local weather system

only involving the effect of local shear stress and buoyancy forces. The system is expressed using cou-350

pled ordinary differential equations that describe the temporal evolution of three coordinates x, y, and z
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representing the rate of convective overturn, horizontal, and vertical temperature variations:

dx

dt
=−σ(x− y)

dy

dt
= ρx− y−xz

dz

dt
= xy− βz ,

(15)

where σ represents the Prandtl number, ρ is a normalized Rayleigh number proportional to the difference

in temperature gradient through the depth of the fluid and β denotes a horizontal wave number of the355

convective motion. It is well established that for parameter values of σ = 10, ρ= 28 and β = 8/3, the

system exhibits chaotic behavior with the phase space revolving around two unstable stationary points

located at (
√
β(ρ− 1),

√
β(ρ− 1),ρ− 1) and (−

√
β(ρ− 1),−

√
β(ρ− 1),ρ− 1).

4.2.2 Experimental Setup and Results

Throughout, we use the classic multinomial resampling for implementation of EnRDA and particle filter.360

Apart from the systematic error component, we utilize the standard experimental setting used in numerous

DA studies (Miller et al., 1994; Furtado et al., 2008; Van Leeuwen, 2010; Amezcua et al., 2014). In order

to obtain the ground truth of the model trajectory, the system is initialized at x0 = (1.508870, −1.531271,

25.46091) and integrated with a time step of ∆t= 0.01 over a time period of T = 0–20 [t] using the

fourth-order Runge-Kutta approximation (Runge, 1895; Kutta, 1901). The observations are obtained at365

every assimilation interval 40∆t by assuming identity observation operator and perturbing the ground

truth with Gaussian noise vt ∼N (0,σ2
obsΣρ), where σ2

obs = 2 and the correlation matrix Σρ ∈ R3×3 is

populated with 1 on the diagonal entries, 0.5 on the first sub and super diagonals, and 0.25 on the second

sub and super diagonals.

In order to characterize the distribution of the background state, 100 particles (ensemble members) are370

used, among all DA methods, by adding to the ground truth a zero-mean Gaussian noise ω0 ∼N (0,σ2
0 I3)

with σ2
0 = 2, at the initial time. For introducing systematic errors, the model parameters are set to

σ′ = 10.5, ρ′ = 27, and β′ = 10/3. The random errors are also introduced in time by adding a Gaussian

noise ωt ∼N (0,σ2
b I3) at every ∆t, with σ2

b = 0.02. Throughout, to draw a robust statistical inference

about the error statistics, the DA experiments are repeated for 50 independent simulations. As described375
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Figure 6. Temporal evolution of the true state xtr in Lorenz-63, observations y as well as the analysis state xa for the particle filter (PF)
(first column), ensemble Kalman filter (EnKF) (second column) and ensemble Riemannian data assimilation (EnRDA) (third column) with
100 particles (ensemble members). The temporal evolution of the particles and ensemble members are shown with solid gray lines. Also
shown within dashed rectangles are the windows of time over which the DA methods exhibit large errors.

previously, to properly account for the effects of both bias and ubrmse, the optimal value of the displace-

ment parameter η in EnRDA can be selected based on an offline analysis of the minimum mean squared

error. However, to provide a fair comparison between EnRDA and other filtering methods, at each as-

similation cycle, we set η = tr(R)/tr(R + B), when observation operator is an identity matrix. Note that

while the observation error covariance remains constant in time, the background error covariance is ob-380

tained from simulated ensembles and changes in time dynamically. This selection assures that the relative

weights assigned to the background state and observations remain at the same order of magnitude among

different methods.

Fig. 6 shows the temporal evolution of the ground truth and the analysis state by the PF (first column),

EnKF (second column), and EnRDA (third column) over a time period of T = 0–15 [t]. As is evident,385

the PF is well capable of capturing the ground truth when observations lie within the particle spread.

However, when the observations lie far apart from the support set of particles (Fig. 6, dashed box) and
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Figure 7. Temporal evolution of bias and ubrmse along three dimensions of the Lorenz-63 for (a, d) particle filter (PF), (b, e) ensemble
Kalman filter (EnKF), and (c, f) ensemble Riemannian data assimilation (EnRDA), each with 100 particles (ensemble members). The mean
values are computed over 50 independent simulations.

the distribution of the background state and observations become disjoint, the filter becomes degenerate

and the analysis state (particle mean) deviates from the ground truth (Fig. 6g, dashed box). As a result,

the bias of PF along the z-dimension is markedly lower than that of the EnKF and EnRDA while ubrmse390

is significantly higher. Whereas, EnRDA is capable of capturing the true state well even when ensemble

spread and observations are far apart from each other. Although EnKF does not suffer from the same

problem of filter degeneracy as the particle filter, in earlier time steps from 2.5 to 7.5 [t], it struggles

to adequately nudge the analysis state towards the ground truth when ensemble members are far from

the observations due to the imposed systematic bias. EnRDA seems to be robust to the propagation of395

systematic errors in this region and follows the true trajectory well.

The time evolution of the bias and ubrmse for 50 independent simulations, with the same error structure,

is color coded over the phase space in Fig. 7. As shown, the error quality metrics are relatively lower for

EnRDA than other DA methodologies. Nevertheless, we can see that the improvement compared to EnKF

is modest. In particular, across all dimensions of the problem, the mean bias and ubrmse are decreased in400

20



Table 1. Expected values of the bias and ubrmse for the particle filter (PF), ensemble Kalman filter (EnKF) and ensemble Riemannian data
assimilation (EnRDA) for 50 independent simulations of Lorenz-63 across all problem dimensions.

Methods bias ubrmse
x y z x− z x y z x− z

Particle Filter 2.24 2.41 0.59 1.75 6.25 7.95 7.88 7.36
EnKF 0.33 0.35 1.23 0.64 3.80 5.41 5.02 4.74

EnRDA 0.17 0.24 1.25 0.56 2.63 4.0 3.78 3.47

EnRDA by 68 (13)% and 53 (27)% compared to the particle filter (EnKF). More details about the expected

values of the bias and ubrmse are reported in Table 1. We emphasize that the presented results shall be

interpreted in light of the presence of systematic errors. In fact, EnRDA cannot reduce the analysis error

variance beyond a minimum mean squared estimator such as EnKF in the absence of bias.

5 Discussion and Concluding Remarks405

In this study, we introduced an ensemble data assimilation (DA) methodology over a Riemannian man-

ifold, namely Ensemble Riemannian DA (EnRDA), and illustrated its performance in comparison with

other ensemble-based DA techniques for dissipative and chaotic dynamics. We demonstrated that the pre-

sented methodology is capable of assimilating information in probability domain – characterized by the

families of distributions with finite second-order moments. The key message is that when the probabil-410

ity distribution of the forecast and observations exhibit non-Gaussian structure and their support sets are

disjoint, due to the presence of systematic errors; the Wasserstein metric can be leveraged to potentially

extend geophysical forecast skills. Even though, future research for a comprehensive comparison with

existing filtering and bias correction methodologies is needed to completely characterize relative pros and

cons of the proposed approach – especially when it comes to the ensemble size and optimal selection of415

the displacement parameter η.

We explained the role of static regularization and displacement parameter in EnRDA and empirically

examined their effects on the optimal joint histogram, coupling the background state and observations, and

consequently on the analysis state. Nevertheless, future studies are required to characterize closed-form or

heuristic expressions to expand our understating of their impacts on the forecast uncertainty dynamically.420

As was explained earlier, unlike the Euclidean DA methodologies that assimilate available information

using different relative weights across multiple dimensions through the error covariance matrices; a scalar
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displacement parameter is utilized in EnRDA that interpolates uniformly between all dimensions of the

problem. Future research can be devoted to developing a framework that utilizes a dynamic vector repre-

sentation of the displacement parameters to effectively tackle possible heterogeneity of uncertainty across425

multiple dimensions.

In it’s current form, EnRDA requires the observation operator to be smooth and bijectve. This is a lim-

itation when observations of all problem dimensions are not available and propagation of observations

to non-observed dimensions is desired. Extending the EnRDA methodology to include partially observed

systems seems to be an important future research area. This could include performing a rough inversion430

for unobserved components of the system offline or extending the methodology in the direction of parti-

cle flows (Van Leeuwen et al., 2019). Another promising area is to use EnRDA only over the observed

dimensions of the state-space and, similar to the EnKF, use the ensemble covariance to update the unob-

served part of state-space through a hybrid approach. Furthermore, it is important to note that several bias

correction methodologies are available that explicitly add a bias term to the control vector in variational435

and filtering DA techniques (Dee, 2003; Reichle and Koster, 2004; De Lannoy et al., 2007b). Future re-

search is required to compare the performance of EnRDA with other bias correction methodologies to

fully characterize its relative advantages and disadvantages.

We should mention that EnRDA is computationally expensive as it involves estimation of the coupling

through the Wasserstein distance. On a desktop machine with a 3.4 GHz CPU clock rate, it took around440

1600 s to complete 50 independent simulations on Lorenz-63 for EnRDA compared to 651 (590) s for the

PF (EnKF) with 100 particles (ensemble members). Since the computational cost is nonlinearly related

to the problem dimension, it is expected that it grows significantly for large-scale geophysical DA and

becomes a limiting factor. Furthermore, in high-dimensional geophysical problems, the computational

cost of determining optimal displacement parameter η through cross-validation can be high. Although the445

entropic regularization works well for the presented low dimensional problems, future research is needed

to test its efficiency in high-dimensional problems. Constraining the solution of the coupling on a sub-

manifold of probability distributions with a Gaussian mixture structure (Chen et al., 2019b) can also be

a future research direction for lowering the computational cost. Furthermore, recent advances in approx-

imation of the Wasserstein distance using a combination of 1-D Radon projections and dimensionality450

reduction (Meng et al., 2019), can significantly reduce the computational cost to make EnRDA a viable

methodology for tackling high-dimensional geophysical DA problems.
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Lastly, in the presented formalism, we define the analysis state distribution through an optimal coupling

between forecast and observation distributions. Future line of research can be devoted to coupling the

forecast distribution with a normalized version of the likelihood function towards establishing connections455

with Bayesian data assimilation.

Code availability. A demo code for EnRDA in the MATLAB programming language can be downloaded at https://github.com/tamangsk/
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