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Abstract. In this paper, we present an ensemble data assimilation paradigm over a Riemannian manifold equipped with the

Wasserstein metric. Unlike the Euclidean distance used in classic data-assimilation methodologies, the Wasserstein metric can

capture translation and difference between the shapes of square-integrable probability distributions of the background state

and observations. This enables us to formally penalize geophysical biases in state-space with non-Gaussian distributions. The

new approach is applied to dissipative and chaotic evolutionary dynamics and its potential advantages and limitations are5

highlighted compared to the classic ensemble data assimilation approaches under systematic errors.

1 Introduction

Extending the forecast skill of Earth System Models (ESM) relies on advancing the science of Data As-

similation (DA) (Tsuyuki and Miyoshi, 2007; Carrassi et al., 2018). A large body of current DA method-

ologies, either filtering (Kalman, 1960; Evensen, 1994; Reichle et al., 2002; Evensen, 2003) or variational10

approaches (Lorenc, 1986; Le Dimet and Talagrand, 1986; Talagrand and Courtier, 1987; Park and Žu-

panski, 2003; Trevisan et al., 2010; Carrassi and Vannitsem, 2010; Ebtehaj and Foufoula-Georgiou, 2013),

are derived from basic principles of Bayesian inference under the assumption that the state-space is unbi-

ased and can be represented well with Gaussian distributions, which are not often consistent with reality

(Bocquet et al., 2010; Pires et al., 2010). It is well documented that this drawback often limits forecast15

skills of DA systems (Walker et al., 2001; Dee, 2005; Ebtehaj et al., 2014; Chen et al., 2019a) especially

under the presence of systematic errors (Dee, 2003).

Apart from particle filters (Spiller et al., 2008; Van Leeuwen, 2010), which are intrinsically designed for

state-space with a non-Gaussian distribution, numerous modifications to the variational DA (VDA) and

ensemble-based filtering methods have been made to tackle non-Gaussianity of geophysical processes20
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(Pires et al., 1996; Han and Li, 2008; Mandel and Beezley, 2009; Anderson, 2010). As a few exam-

ples, in four-dimensional VDA, a quasi-static approach is proposed to ensure convergence by gradually

increasing the assimilation intervals (Pires et al., 1996). To deal with multi-modal systems, Kim et al.

(2003) proposed modi�cations to the ensemble Kalman �lter (EnKF; Evensen, 1994; Li et al., 2009) us-

ing approximate implementation of Bayes' theorem in lieu of a linear interpolation via Kalman gain. For25

ensemble-based �lters, Anderson (2010) proposed a new approach to account for non-Gaussian priors

and posteriors by utilizing rank histograms (Anderson, 1996; Hamill, 2001). A hybrid ensemble approach

was also suggested to combine advantages of both EnKF and particle �lter (Mandel and Beezley, 2009).

Even though particle �lters can handle non-Gaussian likelihood functions, when observations lie away

from the support set of the particles, the ensemble variance tends to zero over time and can render the30

�lter degenerate (Poterjoy and Anderson, 2016). In recent years, signi�cant progress has been made to

treat systematic errors through numerous ad hoc methods such as the �eld alignment technique (Ravela

et al., 2007) and morphing EnKF (Beezley and Mandel, 2008) that can tackle position errors between

observations and forecast. Dual state-parameter EnKF (Moradkhani et al., 2005) was also developed to

resolve systematic errors originating from parameter uncertainties. Additionally, bias aware variants of35

the Kalman �lter were designed (Drécourt et al., 2006; De Lannoy et al., 2007a, b; Kollat et al., 2008)

to simultaneously update the state-space and ana priori estimate of the additive biases. In parallel, the

cumulative distribution function matching (Reichle and Koster, 2004) has garnered widespread attention

in land DA.

From a geometrical perspective, Gaussian statistical inference methods exhibit a �at geometry (Amari,40

1985). In particular, it is proved that linear auto-regressive and moving average Markov stochastic models,

which are driven by Gaussian noise, form dually �at manifolds (Amari, 2012). The notion of distance over

such a geometrically �at space is de�ned over a straight line, which can be quanti�ed by the Euclidean

distance. Consequently, the Euclidean space has served as a major tool in explaining statistical inference

techniques using linear Gaussian models and has been the cornerstone of DA techniques. It is important45

to note that the Euclidean distance remains (Ning et al., 2014) insensitive to the magnitude of translation

between probability distributions with disjoint support sets – when used to interpolate between them.

Non-Gaussian statistical models often form geometrical manifolds, a topological space that is locally

Euclidean. In the case of nonlinear regression, it is demonstrated that the statistical manifold exhibits a

Riemannian geometry (Lauritzen, 1987) over which the notion of distance between probability distribu-50
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tions is geodesic that not only can capture translation but also the difference between the entire shape

of probability distributions (Pennec, 2006). The question is – how can we equip DA with a Riemannian

geometry? To answer this question, inspired by the theories of optimal mass transport (Villani, 2003), this

paper presents the Ensemble Riemannian Data Assimilation (EnRDA) framework using the Wasserstein

metric or distance, which is a distance function de�ned between probability distributions, as explained in55

detail in Section 2.3 .

In recent years, a few attempts have been made to utilize the Wasserstein metric, in geophysical DA.

Reich (2013) introduced an ensemble transform particle �lter, where the optimal transport framework was

utilized to guide the resampling phase of the �lter. Ning et al. (2014) used the Wasserstein distance to re-

duce forecast uncertainty due to parameter estimation errors in dissipative evolutionary equations. Feyeux60

et al. (2018) suggested a novel approach employing the Wasserstein distance in lieu of the Euclidean dis-

tance to penalize the position error between state and observations. More recently, Tamang et al. (2020)

introduced a Wasserstein regularization in a variational setting to correct for geophysical biases under

chaotic dynamics.

The EnRDA extends the previous work through the following main contributions: (a) EnRDA de�nes65

DA as a discrete barycenter problem over the Wasserstein space for assimilation in probability domain

without any parametric or Gaussian assumption. The framework provides a continuum of non-parametric

analysis probability histograms that naturally span between the distributions of the background state and

observations through optimal transport of probability masses. (b) The presented methodology operates

in an ensemble setting and utilizes a regularization technique for improved computational ef�ciency. (c)70

The paper studies advantages and limitations of DA over the Wasserstein space for dissipative advection-

diffusion dynamics and nonlinear chaotic Lorenz-63 model in comparison with the well-known ensemble-

based methodologies.

The organization of the paper is as follows: Section 2 provides a brief background on Bayesian DA

formulations and optimal mass transport. The mathematical formalism of EnRDA is described in Section75

3. Section 4 presents the results and compares them with their Euclidean counterparts. Section 5 discusses

the �ndings and ideas for future research.
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2 Background

2.1 Notations

Throughout, small bold letters representm-element column vectorsx = ( x1; : : : ;xm )T 2 Rm , where(�)T80

is the transposition operator. Them-by-n matricesX 2 Rm� n are denoted by capital bold letters, whereas

Rm
+ (Rm� n

+ ) denotes those vectors (matrices) only containing non-negative real numbers. The1m refers to

an m-element vector of ones andI m is anm � m identity matrix. A diagonal matrix with entries given

by x 2 Rm is represented by diag(x) 2 Rm� m . Notationx � N (� ; � ) denotes that the random vector

x is drawn from a Gaussian distribution with mean� and covariance� andEX (x) is the expectation85

of x. The`q-norm of x is de�ned askxkq =
� P m

i =1 jx i jq
� 1=q

with q > 0 and the square of the weighted

`2-norm of x is represented askxk2
B � 1 = xTB � 1x, whereB is a positive de�nite matrix. Notations of

x � y andx � y represent the element-wise Hadamard product and division between equal length vectors

x andy, respectively. NotationhA ;B i = tr(A TB) denotes the Frobenius inner product between matrices

A andB and tr(�) and det[�] represent trace and determinant of a square matrix, respectively. Here,p(x) =90
P M

i =1 px i � x i represents a discrete probability distribution with respective histogramf px 2 RM
+ :

P
i px i =

1g supported onx i , where� x i represents a Kronecker delta function atx i . Throughout, the dimension of

the state or observations is denoted by small letters such asx 2 Rm while the number of ensembles or

support points of their respective probability distribution is shown by capital letters such aspx 2 RM
+ .

2.2 Data Assimilation on Euclidean Space95

In this section, we provide a brief review of the derivation of classic variational DA and particle �lters

based on Bayes' theorem to set the stage for the presented Ensemble Riemannian DA formalism.

2.2.1 Variational Formulation

Let us consider a discrete-time Markovian dynamics and its observations as follows:

x t = M (x t � 1) + ! t ; ! t � N (0;B )

y t = H(x t ) + v t ; v t � N (0;R) ; (1)100
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wherex t 2 Rm andy t 2 Rn represent the state variables and the observations at timet, M : Rm ! Rm

andH : Rm ! Rn are the deterministic forward model and observation operator,! t 2 Rm andv t 2 Rn

are the independent and identically distributed model and observation errors, respectively.

Recalling Bayes' theorem, dropping the time superscript, without loss of generality, the posterior proba-

bility density function (pdf) of the state given the observation can be obtained asp(xjy) / p(y jx) p(x)=p(y),105

wherep(y jx) is proportional to the likelihood function,p(x) is the prior density andp(y) denotes the dis-

tribution of observations. Lettingxb = EX (x) 2 Rm represents the background state, ignoring the constant

termlogp(y) and assuming Gaussian distributions for the observation error and the prior, logarithm of the

posterior density leads to the well-known three-dimensional variational (3D-Var) cost function (Lorenc,

1986; Kalnay, 2003):110

� log p(xjy) /
1
2

(x � xb)TB � 1(x � xb) +
1
2

(y � H (x))TR � 1(y � H (x))

/ k x � xbk
2
B � 1 + ky � H (x)k2

R � 1 :
(2)

As a result, the analysis state obtained by minimization of the cost function in Eq. (2) is the mode of

the posterior distribution that coincides with the posterior mean when errors are drawn from unbiased

Gaussian densities andH(�) is a linear operator. Using the Woodbury matrix inversion lemma (Woodbury,

1950), it can be easily demonstrated that for a linear observation operator, the analysis states in the 3D-Var115

and Kalman �lter are equivalent (Tarantola, 1987). As is evident, zero-mean Gaussian assumptions lead

to penalization of the error through the weighted Euclidean norm.

2.2.2 Particle Filters

Particle �lters (Gordon et al., 1993; Doucet and Johansen, 2009; Van Leeuwen et al., 2019) in DA were

introduced to address the issue of non-Gaussian distribution of the state by representing the prior and120

posterior distributions through a weighted ensemble of model outputs referred to as “particles”. In its

standard discrete setting, using Monte Carlo simulations, the prior distributionp(x) is represented by a

sum of equal-weight Kronecker delta functions asp(x) =
1

M

MX

i =1

� x i , wherex i 2 Rm is the state variable

represented by thei th particle.
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Each of theseM particles are then evolved through the nonlinear model in Eq. (1). Assuming that the125

conditional distributionp(y jx i ) =
1

(2� )n=2jR j1=2
exp

�
�

1
2

[y � H (x i )]TR � 1[y � H (x i )]
�

is Gaussian,

using Bayes' theorem, it can be shown that the posterior distributionp(xjy) can be approximated using

a set of weighted particles asp(xjy) =
P M

i =1 wi � x i , wherewi =
p(y jx i )

P M
j =1 p(y jx j )

. The particles are then

resampled from the posterior distributionp(xjy) based on their relative weights and propagated forward

in time according to the model dynamics.130

As is evident, in particle �lters, weights of each particle are updated using the Gaussian likelihood func-

tion under a zero-mean error assumption. However, in the presence of systematic biases, when the support

sets of particles and the observations are disjoint, only the weights of a few particles become signi�cantly

large and weights of other particles tend to zero. As the underlying dynamical system progresses in time,

only those few particles, with relatively larger weights, are resampled and the �lter can become degenerate135

gradually in time (Poterjoy and Anderson, 2016).

2.3 Optimal Mass Transport

The theory of optimal mass transport (OMT), coined by Gaspard Monge (Monge, 1781) and later extended

by Kantorovich (Kantorovich, 1942), was developed to minimize transportation cost in resource allocation

problems with purely practical motivations. Recent developments in mathematics discovered that OMT140

provides a rich ground to compare and morph probability distributions and uncovered new connections

to partial differential equations (Jordan et al., 1998; Otto, 2001) and functional analysis (Brenier, 1987;

Benamou and Brenier, 2000; Villani, 2003).

In a discrete setting, let us de�ne two discrete probability distributionsp(x) =
P M

i =1 px i � x i andp(y) =
P N

j =1 py j � y j with their respective histogramsf px 2 RM
+ :

P
i px i = 1g andf py 2 RN

+ :
P

j py j = 1g sup-145

ported onx i andy j . A “ground” transportation cost matrixC 2 RM � N
+ is de�ned such that its elements

cij = kx i � y j k
q
q represent the cost of transporting unit probability masses from locationx i to y j . The

Kantorovich OMT problem determines an optimal “transportation plan”U a 2 RM � N
+ that can linearly

map two probability histograms onto each other with minimum amount of total transportation cost as

follows:150

U a = argmin
U

hC;U i s.t. U � 0; U 1N = px ; U T1M = py : (3)
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Figure 1. Interpolation between two Gaussian distributionsN (� 1 ; � 2
1 ) andN (� 2 ; � 2

2 ) where,� 1 = � 1:1; � 2 = 1 :4; � 2
1 = 0 :4, and� 2

2 = 0 :01
as a function of the interpolation or displacement parameter� 2 [0;1] for the (a) Hellinger distance, (b) Kullback-Leibler divergence, and (c)
2-Wasserstein distance (Peyré and Cuturi, 2019).

The transportation plan can be interpreted as a “joint distribution” that couples the marginals histograms

px andpy. For the transportation cost withq= 2, the OMT problem in Eq. (3) is convex and de�nes the

square of the 2-Wasserstein distanced2
W (px ;py) = hC;U a i between the histograms.

Wasserstein distance has some advantages compared to other measures of proximity – such as the155

Hellinger distance (Hellinger, 1909) or the Kullback–Leibler (KL) divergence (Kullback and Leibler,

1951). To elaborate on the advantages, we con�ne our consideration to the Gaussian densities over

which the Wasserstein distance can be obtained in a closed form. In particular, interpolating over

the 2-Wasserstein space betweenN (� x ; � x ) and N (� y; � y), using an interpolation parameter� , re-

sults in a Gaussian distributionN (� � ; � � ), where� � = � � x + (1 � � ) � y and� � = � � 1=2
x

�
� � x + (1 �160

� ) ( � 1=2
x � y � 1=2

x )1=2
� 2

� � 1=2
x (Chen et al., 2019b).

Fig. 1 shows the spectrum of interpolated distributions between two Gaussian pdfs for a range of� 2

[0;1]. As shown, the interpolated densities using the Hellinger distance, which is Euclidean in the space of

probability histograms, are bimodal. Although the Gaussian shape of the interpolated densities using the

KL divergence is preserved, the variance of the interpolants is not necessarily bounded by the variances165

of the input Gaussian densities. Unlike these metrics, as shown, the Wasserstein distance moves the mean

and preserves the shape of the interpolants through a natural morphing process.
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Figure 2. (a) Optimal transportation plan or the joint distributionU a between a gamma�(2 ;2) and a Gaussian marginal distribution
N (6:5;1) as well as (b) the 2-Wasserstein interpolation between them for different values of the displacement parameter� 2 [0;1].

As is previously noted, this metric is not limited to any Gaussian assumption. Fig. 2 shows the 2-

Wasserstein interpolation between a gamma and a Gaussian distribution. The results show that the Wasser-

stein metric penalizes the translation and mismatch between the shapes of the pdfs. It can be shown that170

d2
W (px ;py) = d2

W (px ;py)+



 � x � � y




 2

2
, wherepx andpy are the centered zero-mean probability masses

and� x and� y are the respective mean values (Peyré and Cuturi, 2019).

3 Ensemble Riemannian Data Assimilation

3.1 Problem Formulation

First, let us recall that the weighted mean of a cloud of pointsf x i g
M
i =1 2 Rm in the Euclidean space is175

� x =
P M

i =1 � i x i for a given family of non-negative weights
P

i � i = 1. This expected value is equivalent

to solving the following variational problem:

� x = argmin
x

MX

i =1

� i kx i � xk2
2 : (4)

The 3D-Var problem in Eq. (2) reduces to the above barycenter problem when the model and observation

error covariances are diagonal with uniform error variances across multiple dimensions of the state-space.180

For non-diagonal error covariances, it can be shown that the weight of the background and observation
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are (B � 1 + H TR � 1H )� 1B � 1 and (B � 1 + H TR � 1H )� 1H TR � 1 respectively, whereH is the linear ap-

proximation of the observation operator. Therefore, the 3D-Var DA can be interpreted as a “barycenter

problem” in the Euclidean space, where the analysis state is the weighted mean of the background state

and observation.185

By changing the distance metric from Euclidean to the Wasserstein (Agueh and Carlier, 2011), a Rie-

mannian barycenter can be de�ned as the Fréchet mean (Fréchet, 1948) ofNp probability histograms with

�nite second-order moments as follows:

p � = argmin
p

NpX

k=1

� k d2
W (p;pk) : (5)

Inspired by (Feyeux et al., 2018), the EnRDA de�nes the probability distribution of the analysis state190

p(xa) 2 RM as the Fréchet barycenter over the Wasserstein space as follows:

p(xa) = argmin
p x

�
� d 2

W (px ; pxb) + (1 � � ) d2
W (px ; jdet[H 0(x)] j py)

	
; (6)

where the displacement parameter� > 0 assigns the relative weights to the observation and background

term to capture their respective geodesic distances from the true state. HereH 0(�) is the Jacobian of

the observation operator assuming thatH : x �! y is a smooth and a square (i.e.,m = n) bijective map.195

The displacement parameter� is a hyperparameter and its optimal value should be determined empirically

using some reference data through cross-validation studies. For example, in practice, one may compute the

mean squared error as a function of� by comparing the analysis state and some ground-based observations

and use the minimum point of that function statically over a window of multiple assimilation cycles. It

is also important to note that due to the bijective assumption for the observation operator, the above200

formalism currently lacks the ability to propagate the information content of observed dimensions to

unobserved ones. This limitation is discussed further in the Section 5.

The solution of the above DA formalism involves �nding the optimal analysis transportation plan or

the joint distributionU a 2 RM � N , using Eq. (3), that couples the background and observation marginal

histograms. We use the McCann's method (McCann, 1997; Peyré et al., 2019) to obtain the analysis205
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probability histogram:

p(xa) =
MX

i =1

NX

j =1

ua
ij � zij ; (7)

where the analysis support points arezij = � x i + (1 � � ) y j . To solve Eq. (3), the widely used interior-

point methods (Altman and Gondzio, 1999) and the Orlin's (Orlin, 1993) algorithm have super-cubic run

time with a computational complexity ofO(M 3 log M ), whereM = N . Therefore, the use of original210

OMT framework in EnRDA is a limitation in high-dimensional geophysical DA problems. To alleviate

this computational cost, in the next subsection 3.2, we discuss the use of entropic regularization.

To solve Eq. (6) in an ensemble setting, let us assume that in the absence of any a priori information,

initially the background probability distribution is represented byi = 1 : : :M ensemble members of the

state variablex i 2 Rm asp(xb) = 1
M

P M
i =1 � x i . An a priori assumption is needed to reconstruct the obser-215

vation distributionp(y) =
P N

i =1 pyj � y j at j = 1 : : :N supporting points. To that end, one may choose a

parametric or a non-parametric model based on the past climatological information. Here, for simplicity,

we assume a zero-mean Gaussian representation with covarianceR 2 Rn� n (Burgers et al., 1998) to per-

turb the observation at each assimilation cycle. After each cycle, the probability histogram of the analysis

statep(xa) is estimated using Eq. (7) overzij at M � N support points. Thenp(xa) is resampled atM220

points using the multinomial sampling scheme (Li et al., 2015) to initialize the next time step forecast.

3.2 Entropic Regularization of EnRDA

In order to speed up the computation of the coupling, the problem in Eq. (3) can be regularized (Cuturi,

2013):

U a = argmin
U

hC;U i � 
 H (U ) s.t. U � 0; U 1N = pxb; U T1M = py ; (8)225

where 
 > 0 is the regularization parameter andH (U ) := hU ; log U � 1M 1T
N i represents the Gibbs-

Boltzmann relative entropy function. Note that the relative entropy is a concave function and thus its

negative value is convex.
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The Lagrangian function (L ) of Eq. (8) can be obtained by adding two dual variables or Lagrangian

multipliersq 2 RM andr 2 RN :230

L (U ;q;r ) = hC;U i � 
 H (U ) � h q;U 1N � pxb i � h r ;U T1M � py i : (9)

Setting the derivative of the Lagrangian function to zero, we have

@L(U ;q;r )
@uij

= cij + 
 log(uij ) � qi � r j = 0 ; 8i; j : (10)

The entropic regularization keeps the problem in Eq. (8) strongly convex and it can be shown (Peyré

et al., 2019) that Eq. (10) leads to a unique optimal joint density with the following form:235

U a = diag(v) K diag(w) ; (11)

wherev = exp(q) � (
 1M ) 2 RM andw = exp(r ) � (
 1N ) 2 RN are the unknown scaling variables and

K 2 RM � N
+ is the Gibbs kernel with elementskij = exp

�
�

cij




�
, wherecij are the elements of the cost

matrixC.

From the mass conservation constraints in Eq. (8) and scaling form of the optimal joint density in240

Eq. (11), we can derive:

diag(v) K diag(w)1N = pxb and diag(w) K T diag(v)1M = py : (12)

The two unknown scaling variablesv andw can then be iteratively solved using Sinkhorn's matrix

scaling algorithm (Cuturi, 2013) as follows:

v l+1 = pxb � (Kw l ) and w l+1 = py � (K Tv l ) : (13)245

The Sinkhorn algorithm is initialized usingw0 = 1N and since the marginal densitiespxb andpy are not

zero vectors, the Hadamard division in Equation 13 remains valid throughout the iterations. A summary

of the EnRDA implementation is demonstrated in Algorithm 1.
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Algorithm 1 Ensemble Riemannian Data Assimilation

1: Inputs: Ensemble sizeM , number of perturbed observationsN from a chosen observation pdf, displacement parameter
� , entropic regularization parameter
 and total number of time stepsT.

2: Initialize: x0
i � p(x0); i = 1 ; : : : ;M .

3: for t = 1 ; : : : ;T do
4: x t

i = M (x t � 1
i ) + ! t

i ; i = 1 ; : : : ;M:
5: Generating ensemble of observationsy t

j ; j = 1 ; : : : ;N .
6: At initial time obtain probability histogram of the background state and observations:

p(xb) =
1

M

MX

i =1

� x t
i
; p(y ) =

NX

j =1

py j � y t
j
:

7: Compute the joint histogram as follows:

U a = argmin
U

MX

i =1

NX

j =1

uij cij � 
 hU ; logU � 1M 1T
N i s.t. U � 0; U 1N = px b ; U T1M = py ;

wherecij =



 x t

i � y t
j




 2

2
:

8: Obtain analysis probability distributionp(xa) =
P M

i =1

P N
j =1 ua

ij � z ij wherezij = � x t
i + (1 � � ) y t

j .
9: ObtainM analysis ensemble membersxai 2 Rm by multinomial sampling fromp(xa).

10: Setx t
i := xai .

11: end for

The entropic regularization parameter plays an important role in characterization of the joint density;

however, there exists no closed-form solution for its optimal selection. Generally speaking, increasing250

the value of
 will increase convexity of the cost function and thus computational ef�ciency; however,

at the expense of reduced coupling between the marginal histograms, consistent with the second law of

thermodynamics.

As an example, the effects of
 on the coupling between two Gaussian mixture modelspxb andpy

are demonstrated in Fig. 3. It can be seen that at smaller values of
 = 0:001, the probability masses of255

the joint distribution are sparse and lie compactly along the main diagonal – capturing a strong coupling

between the background state and observations. However, as the value of
 increases, the probability

masses of the joint distribution spread out – re�ecting less degree of dependencies between the marginals.

It is important to note that in limiting cases, as
 ! 0, the solution of Eq. (8) converges to the true optimal

joint histogram, while as
 ! 1 , the entropy of the analysis state increases and tends topxbp
T
y . The260

regularization parameter is dependent on the elements of the transportation cost matrixC and varies
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Figure 3. The effect of the entropic regularization parameter
 on the optimal joint histogram coupling two Gaussian mixture models
p x b : 0:5N (� 12;0:4) + 0 :5N (� 8;0:8) andp y : 0:55N (5;4) + 0 :45N (9:5;4).

according to the experimental settings. In practice, one can begin with the value of
 set as the largest

element of the cost matrixC and gradually reduce it to �nd the minimum value of
 that provides a stable

solution.

4 Numerical Experiments and Results265

In order to demonstrate the performance of EnRDA and quantify its effectiveness, we focus on the linear

advection-diffusion equation and the chaotic Lorenz-63 model (Lorenz, 1963). The advection-diffusion

model explains a wide range of heat, mass, and momentum transport across the land, vegetation, and

atmospheric continuum, and has been utilized to evaluate the performance of DA methodologies (Zhang

et al., 1997; Hurkmans et al., 2006; Ning et al., 2014; Ebtehaj et al., 2014; Berardi et al., 2016). Similarly,270

the Lorenz-63 model, as a chaotic model of atmospheric convection, has been widely used in testing the

performance of DA methodologies (Miller et al., 1994; Nakano et al., 2007; Van Leeuwen, 2010; Goodliff

et al., 2015; Tandeo et al., 2015; Tamang et al., 2020). Throughout, under controlled experimental settings

with foreknown model and observation errors, we run the forward models under systematic errors and

compare the results of EnRDA with a particle �lter (PF) and an EnKF.275
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4.1 Advection-Diffusion Equation

4.1.1 State-space Characterization

The advection-diffusion is a special case of the Navier-Stokes partial differential equation. In its linear

form, with constant diffusivity in an incompressible �uid �ow, it is expressed for a mass conserved phys-

ical quantityx(s; t) as follows:280

@x(s; t)
@t

+ a � r x(s; t) = D r 2x(s; t) ; (14)

where s 2 Rn represents an� dimensional spatial domain at timet. In the above expression,a =

(a1; : : : ;an )T 2 Rn is the advection velocity vector andD = diag(D1; : : : ;Dn ) 2 Rn� n represents the dif-

fusivity matrix. Given initial conditionx(s; t = 0) , owing to its linearity, the solution at timet can be ob-

tained by convolving the initial condition with a Kronecker delta function� (s� at) followed by a convolu-285

tion with the fundamental Gaussian kernelG(s; t) =
1

(2� )n=2 j� j1=2
exp

�
�

1
2

sT� � 1s
�

, where� = 2 D t.

4.1.2 Experimental Setup and Results

In this subsection, we �rst highlight the difference between Euclidean and Wasserstein barycenters using

a 2-D advection-diffusion model and then compare the results of EnRDA with the PF and EnKF on a 1-D

advection-diffusion equation.290

Fig. 4 shows the results of an assimilation experiment using the 2-D advection-diffusion equation where

the underlying state is bimodal. This experiment is designed to demonstrate the differences between the

Euclidean and Wasserstein barycenters in the presences of bias in a non-Gaussian state-space. In particu-

lar, the state-space is characterized over a spatial domains1 = (0 ;10]ands2 = (0 ;10]with a discretization

of � s1 = � s2 = 0:1. The advection-diffusion is considered to be an isotropic process with true model295

parameters set asa1 = a2 = 0:08 [L/T], and D1 = D2 = 0:02 [L2/T]. The shown state variable is ob-

tained after evolving two Kronecker delta functionsx(s; t) = 1000� (s1;s2) andx(s; t) = 4000� (s1;s2)

for T = 0–25 andT = 0–35 [t], respectively.

To resemble a model with systematic errors, background state is obtained by increasing the advective

velocity to 0.12 [L/T] while diffusivity is reduced to 0.01 [L2/T] (Fig. 4b). Observations are not considered300

to have position biases; however, a systematic representative error is imposed assuming that the sensing
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