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Responses to review comments (Reviewer 1)

Comment: The authors present and apply a new methodology for data assimilation that
includes non-Euclidean metric and has a potential for addressing systematic and random
errors. Results from applications to linear advection-diffusion equation and to Lorenz-63
model show that the new system is performing better than several referent DA systems. A
limited discussion of computational cost and applicability of the new method is also included.
The methodology and mathematical formalism are sound, but the choice of experiments and
presentation can be improved to highlight the pros and cons of the new method. I recom-
mend the manuscript to be accepted subject to major changes. My comments are listed
below.

Reply: We very much appreciate the reviewer for providing us with constructive feedback.
Your feedback helped us to improve the manuscript. In the revised manuscript with the
track-change on, the blue colored text is the updated text in response to the reviewer’s com-
ments. Some of the changed text in the manuscript are copied in the replies and shown with
red color for convenience. Please also find item-by-item replies to the comments as follows.

General Comments:

1. The inclusion of 3D-Var in the suite of experiments is not clearly justified. 3D-Var
is a deterministic/variational method, while the new method is ensemble-based. It is
already understood how ensemble and variational methods work and differ. In addition
3D-Var is not very much competitive with Ensemble Kalman Filter (EnKF) or Particle
Filter (PF) methods anyway, so showing that the new method outperforms 3D-Var is
not saying much. If there is a desire to compare the new method with deterministic
methods, then using 4D-Var instead of 3D-Var would be more advisable. Please justify
using 3D-Var or exclude it from the experiments.

Reply: We completely agree with the reviewer’s comment that the ensemble-based
methodologies are known to perform better than 3D-Var. We admit that the text was
confusing. When we structure the manuscript, we first define 3D-Var data assimilation
and interpret it as an Euclidean barycenter problem. Then, we evolve the concept of
barycenter to the Wasserstein space to define the presented methodology. Therefore,
we felt that the initial comparisons between the Euclidean and Wasserstein barycenter
makes sense and highlight the differences between data assimilation in the two spaces
– particularly in the presence of bias.

Indeed, Figure 5 (old revision) is just a comparison between the Euclidean and Wasser-
stein barycenter problems. We considered that 3D-Var and the Euclidean barycenter
problem are equivalent, which is correct, but confusing in the way it was presented in
Figures 4 and 5. To improve the readership of the manuscript, we have now swapped
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the position of Figures 4 and 5 and replaced 3D-Var implementation in Figure 4 (old
version) with EnKF and particle filter. Therefore, in this new revision, Figure 4 is
just a comparison between the Euclidean and Wasserstein barycenter problem under
systematic error to inform the reader about their differences. Figure 5 then shows
the comparison between the presented methodology and well-known particle filter and
ensemble Kalman filter. The 3D-Var implementation is completely removed from the
paper and Figure 5 (revised) is updated accordingly. Please see lines 288–290, 292–293,
and 330–339, where we responded to this feedback in the text.

2. The linear advection-diffusion and Lorenz-63 applications include different sets of data
assimilation (DA) systems: 3D-Var is used in advection-diffusion and EnKF and PF are
used in Lorenz-63 model. This does not allow clear understanding how the new system
performs relative to other DA algorithm and what is its true capability in these dif-
ferent applications (e.g., linear/diffusion and nonlinear/chaotic). Please include EnKF
and PF in linear advection-diffusion application, and 3D-Var in Lorenz-63 application
(conditional on the comment-1 above).

Reply: Thank you for this comment. As mentioned in the reply to previous comment,
in response we decided to completely remove 3D-Var from our analyses and compar-
isons. In the revision, the results of DA experiments on 1-D advection-diffusion only
compares the presented methodology with EnKF and PF. Please see the revised text
in lines 330–339 and updated Figure 5.

3. There is no clear understanding if the new method is better suited for handling sys-
tematic or random errors. Please add the standalone experiments: (i) random error
only and (ii) systematic error only, using the same setup as in the random + system-
atic error experiment. This will help understand better the true potential of the new
system.

Reply: We appreciate the feedback. Data assimilation over the Wasserstein space is
suited for handling systematic errors and might not outperform, in terms of root mean
squared error (rmse), the minimum variance unbiased estimators such as EnKF when
we only deal with zero mean random errors in linear problems. Please see the text
in lines 340–345 (also copied below for convenience), where we have highlighted this
issues.

We should emphasize that the presented results do not imply that EnRDA always
performs better than PF and EnKF. The EnKF at the limiting case M −→ ∞, in the
absence of bias, is a minimum mean squared error estimator and attains the lowest
possible posterior variance for linear systems, also referred to as the Cramer-Rao lower
bound (Cramér, 1999; Rao et al., 1973). Thus, when the errors are drawn from zero-
mean Gaussian distributions with a linear observation operator, EnKF can outperform
EnRDA in terms of the mean squared error.

Specific comments:

1. One should be aware that systematic errors can be addressed within variational and
ensemble methods. Your comparison includes other DA methodologies without that
capability. Could you please briefly comment on that in the manuscript?
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Reply: Thank you for this comment. Please see the text in lines 413–416 and 434–438
(also copied below for convenience), where we have updated the text in response to
this comment.

“Even though, future research for a comprehensive comparison with existing filtering
and bias correction methodologies is needed to completely characterize relative pros
and cons of the proposed approach – especially when it comes to the ensemble size and
optimal selection of the displacement parameter η.”

“Furthermore, it is important to note that several bias correction methodologies are
available that explicity add a bias term to the control vector in variational and filtering
DA techniques (Dee, 2003; Reichle and Koster, 2004; De Lannoy et al., 2007). Future
research is required to compare the performance of EnRDA with other bias correction
methodologies to fully characterize its relative advantages and disadvantages.”

2. Abstract includes “Eulerian penalization of error in Euclidean space”. However this is
not a common terminology which requires some explanation (as done in main text).
Please adjust Abstract to avoid this terminology until explained.

Reply: Thank you. Please see the updated abstract in lines 2–4. That narrative is
removed with simpler explanations.

3. p.1-3: In general, the manuscript includes new terminology that I would not consider
common. I would prefer to see some basic explanation of uncommon terminology (such
as Wasserstein metric/space, Riemannian manifold, entropic regularization, Sinkhorn
algorithm), to allow the reader to go through the manuscript without the need to
immediately check the references.

Reply: Thank you. In this round of revision, we have tried our best to avoid the use of
uncommon terminologies prior to their explanation. We also modified the sentences in
lines 48–49 and 53–56, according to the suggestion as below. Please see text where we
explained the Wasserstein distance (line 54–56), entropic regularization (lines 223–228)
and Sinkhorn’s algorithm (lines 243–247).

“Non-Gaussian statistical models often form geometrical manifolds, a topological space
that is locally Euclidean.”

“To answer this question, inspired by the theories of optimal mass transport (Vil-
lani, 2003), this paper presents the Ensemble Riemannian Data Assimilation (EnRDA)
framework using the Wasserstein metric, which is a distance function defined between
probability distributions, as explained in more detail in Section 2.3”

4. p.5, L.111-115: I am not sure that 3D-Var the authors refer to is the same as the
commonly used 3D-Var. Aside from using a pre-assigned static background error co-
variance matrix, standard 3D-Var is not including the full matrix inversion that allows
direct solution of the linear problem (e.g., in Eq.(26) of Lorenc (1986) the matrix
BHTR−1H = 0). Please refrain from using 3D-Var to describe the system you use, or
include some clarification.

Reply: We are referring to the most basic formulation of 3D-Var, based on explanation
in the book titled “Atmospheric Modeling, Data Assimilation and Predictability” (Page
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168) by Eugenia Kalnay. In response to the earlier comment, we have now removed
3D-Var from our analyses and comparisons with EnRDA.

5. p.6, L.146: Is the cost with subscript “q” and superscript “q” a typo? Can they differ?

Reply: They are the same. The definition of the `q-norm is presented in the notation
section (line 86). The norm here is just the `q-norm to the power q. In practice,
Euclidean distance is the most common choice in which q = 2 and defines the 2-
Wasserstein distance.

6. p.8, L178-180: Can this be explained in somewhat more detail? Otherwise, not clear
why Cholesky decomposition is relevant here.

Thank you for this feedback! We agree that the text was not complete. We have
revised the text in lines 179–185 (also copied below for your convenience).

“The 3D-Var problem in Eq. (2) reduces to the above barycenter problem when the
model and observation error covariances are diagonal with uniform error variances
across multiple dimensions of the state-space. For non-diagonal error covariances,
it can be shown that the weight of the background and observation are (B−1 +
HTR−1H)−1B−1 and (B−1 + HTR−1H)−1HTR−1 respectively, where H is the linear
approximation of the observation operator. Therefore, the 3D-Var DA can be inter-
preted as a “barycenter problem” in the Euclidean space, where the analysis state is
the weighted mean of the background state and observation.”

7. p.11, Eq.(13): How is assured that Kw, Kv are not zero, which is required for the
element-wise ratio?

Reply: Thank you. To initialize Sinkhorn’s algorithm, we set w0 = 1N . The multi-
plication of the Gibbs Kernel with v and w will be zero if and only if the marginal
densities in Eq. (13) are zero vectors, which is not the case in this study. Please see
lines 246–247, where we clarified this issue.

8. p.13, Eq.(14): A vector dot-product is typically used for advection term. Is this a typo
or you are using an element-wise product? Please explain.

Reply: We are using the notation � to represent the Hadamard element-wise product
between equal length vectors. This notation is described in Section 2.1. Please see
lines 87–88 in the revised manuscript.

9. p.13, L. 290: How difficult would be to obtain the optimal parameters eta in realistic
high-dimensional situation?

Reply: Thank you for this comment. Similar to the low-dimensional problems, the
optimal interpolation parameter η can be obtained using the minimum mean-squared
error criterion in high-dimensional settings. However, given the high dimensionality
of the problem, the computational cost of cross validation can be cumbersome. This
issue is addressed in lines 444–445.

We would like to take this opportunity and once gain thank you for taking the time and
providing us a thorough review of the manuscript. We did our best to incorporate your
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comments into the new revision. We hope that the replies and changes we made in the
manuscript meet your expectation.
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Responses to review comments (Reviewer 2)

Comment: This paper introduces an optimal transport framework for updating dis-
crete representations of posterior probability density functions during ensemble data
assimilation. This work further provides proof-of-concept assimilation experiments com-
paring the algorithm the authors introduce (and call EnRDA) to standard DA methods
(3D-var, particle filters, ensemble Kalman filters). The authors mention two serious
issues that will need to be overcome for EnRDA to become a viable strategy for users
in the DA community: 1) the high computational expense (that scales super-cubicly
with the ensemble size) associated with computing optimal transport maps and 2) the
need for the observation operator to be bijective, e.g. all state dimensions must be observable.

Reply: We very much appreciate the thoughtful review and comments on the manuscript.
We have included a track-change color coded version in which red colored text is the
updated text in response to the reviewer’s feedback. Some of the changed text in the
manuscript are also copied in the replies and shown with red color for convenience. Please
also find item-by-item replies to your comments as follows.

Some minor comments:

1. The reader would benefit from more discussion of the Sinkhorn algorithm and how/why
gamma is chosen as well as how eta is chosen in practice. On line 290, you mention that
these parameters are set by “trial and error”. Can you offer the reader more guidance
on how to make these choices in practice, even if ad-hoc? Do these or should these
parameters vary at different assimilation time steps? On line 290 you have gamma=3
and in the caption of Figure 5 you have gamma=0.003. Are both correct? Are these
for the same DA experiment at different times? Or different experiments? This should
be clarified in the text. In Figure 3 you demonstrate that one order of magnitude
change in gamma results in quite different joint distributions with the same prior and
observation pdfs. What does a 3 order of magnitude change in gamma do?

Reply: Thank you for this comment. The displacement parameter η can be tuned
offline through cross-validation by minimizing the mean squared error or any other
error metric of interest. The error shall be defined with respect to a reference point
such as ground-based observations. Please see the updated text in lines 196–199, where
we have addressed this comment. However, the value of the regularization parameter
is highly dependent on the transportation cost matrix. In practice, one can begin with
γ set as the largest element of the transportation cost matrix and gradually reduce it
to find the minimum value of γ that provides a stable solution of Sinkhorn’s algorithm.
Please see the updated text in lines 260–264. Both the displacement and regularization
parameters are static in our implementation, however, future research may come up
with new ideas for dynamic updating. Please see line 417–426, where we addressed
this issue.

Thanks for your attention to the details. We double checked and the reported values
of γ are correct. The choice of γ is different for different experiments and dependent
on the transportation cost matrix. The value of γ = 0.003 is set for two arbitrary
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Gaussian mixture models defined in Figure 3 whereas γ = 3 is set for our experimental
setting in the 1-D advection-diffusion model. Please see the updated text in lines 260–
264, where we clarified that the value of the regularization parameter is different for
different experiments.

2. The barriers to wide usage of this approach are quite high, yet if overcome the EnRDA
could prove a very powerful DA method. As such I believe these barriers and the
research advances needed to overcome them warrant a longer discussion than you offer
in section 5.

Reply: Thank you for your perspective. We agree and did our best to be upfront about
the barriers of the presented approach. Please see the expanded discussion about the
limitation in Section 5, 432–434, and 449–452 (also copied below for convenience).

“Another promising area is to utilize EnRDA only over the observed dimensions of
the state-space and similar to the EnKF, use the ensemble covariance to update the
unobserved part of state-space through a hybrid approach.”

“Furthermore, recent advances in approximation of the Wasserstein distance using
a combination of 1-D Radon projections and dimensionality reduction (Meng et al.,
2019), can significantly reduce the computational cost to make EnRDA a viable
methodology for tackling high-dimensional geophysical DA problems.”

3. Typographical mistake — you have two periods ending a sentence on line 398.

Reply: Thank you, fixed.

Once again we would like to take the opportunity and thank you for the insights and
feedback that helped us to improve the manuscript. We hope that the replies and changes
we made in the manuscript meet your expectation.

References

Cramér, H.: Mathematical methods of statistics, vol. 9, Princeton university press, 1999.
De Lannoy, G. J., Reichle, R. H., Houser, P. R., Pauwels, V., and Verhoest, N. E.: Correcting

for forecast bias in soil moisture assimilation with the ensemble Kalman filter, Water
Resources Research, 43, 2007.

Dee, D. P.: Detection and correction of model bias during data assimilation, Meteorological
Training Course Lecture Series (ECMWF), 2003.

Meng, C., Ke, Y., Zhang, J., Zhang, M., Zhong, W., and Ma, P.: Large-scale optimal
transport map estimation using projection pursuit, in: Advances in Neural Information
Processing Systems, edited by Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
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