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Abstract. The Response Function Identification method introduced in the first part of this study is applied here to investigate

the land carbon cycle in the Max Planck Institute for Meteorology Earth System Model. We identify from standard C4MIP

1% experiments the linear response functions that generalize the land carbon sensitivities β and γ. The identification of these

generalized sensitivities is shown to be robust by demonstrating their predictive power when applied to experiments not used

for their identification. The linear regime for which the generalized framework is valid is estimated, and approaches to improve5

the quality of the results are proposed. For the generalized γ-sensitivity, the response is found to be linear for temperature

perturbations until at least 6 K. When this sensitivity is identified from a 2×CO2 experiment instead of the 1% experiment,

its predictive power improves, indicating an enhancement in the quality of the identification. For the generalized β-sensitivity,

the linear regime is found to extend up to CO2 perturbations of 100 ppm. We find that nonlinearities in the β-response arise

mainly from the nonlinear relationship between Net Primary Production and CO2. By taking as forcing the resulting Net10

Primary Production instead of CO2, the response is approximately linear until CO2 perturbations of about 850 ppm. Taking

Net Primary Production as forcing also substantially improves the spectral resolution of the generalized β-sensitivity. For the

best recovery of this sensitivity, we find a spectrum of internal time scales with two peaks, at 4 and 100 years. Robustness

of this result is demonstrated by two independent tests. We find that the two-peak spectrum can be explained by the different

characteristic time scales of functionally different elements of the land carbon cycle. The peak at 4 years results from the15

collective response of carbon pools whose dynamics is governed by fast processes, namely pools representing living vegetation

tissues (leaves, fine roots, sugars, and starches) and associated litter. The peak at 100 years results from the collective response

of pools whose dynamics is determined by slow processes, namely the pools that represent the wood in stem and coarse roots,

the associated litter, and the soil carbon (humus). Analysis of the response functions that characterize these two groups of pools

shows that the pools with fast dynamics dominate the land carbon response only for times below 2 years. For times above 2520

years the response is completely determined by the pools with slow dynamics. From 100 years onwards only the humus pool

contributes to the land carbon response.
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1 Introduction

In Part I of this study we developed a method to identify linear response functions from arbitrary perturbation experiments.

The RFI method (Response Function Identification method) was tested by means of artificial toy model simulations. Here, we25

demonstrate the applicability of our method to a practical problem: We investigate the dynamics of the land carbon cycle in

the Max Planck Institute for Meteorology Earth System Model (MPI-ESM; see Appendix A). In particular, we show how our

RFI method provides insight into two aspects of central relevance to carbon-cycle research: The sensitivity of the land carbon

cycle to changes in atmospheric CO2 and its distribution of internal time scales.

The global carbon cycle plays a critical role in mitigating climatic effects from CO2 emissions. According to the yearly30

published Global Carbon Budget (Friedlingstein et al., 2020), the ocean and land components of this cycle have taken up about

half of the anthropogenic CO2 emitted from pre-industrial times to 2019. Despite its relevance to climate, the dynamics of

the carbon cycle is still poorly understood (Ilyina and Friedlingstein, 2016). Improving our understanding of this dynamics,

in particular in response to CO2 perturbations, is therefore one of the major challenges of climate research (Marotzke et al.,

2017).35

A tool long employed to investigate the carbon-cycle dynamics are linear response functions. Such functions have been used

to predict atmospheric CO2 from emissions (Bolin et al., 1981; Siegenthaler and Oeschger, 1978; Oeschger and Heimann,

1983; Maier-Reimer and Hasselmann, 1987; Enting, 1990; Joos et al., 1996; Joos and Bruno, 1996), land carbon storage from

NPP (Net Primary Production) (Bolin et al., 1981; Thompson and Randerson, 1999) and GPP (Gross Primary Production)

(Emanuel et al., 1981), and to disentangle the historical development of the land and ocean carbon sinks from ice core recon-40

structions of atmospheric 12CO2 and 13CO2 (Joos and Bruno, 1998). Linear response functions have also been employed to

study the dependence of global warming on possible future CO2 emissions and the associated GWP (Global Warming Poten-

tial) (Caldeira and Kasting, 1993; Joos et al., 2013; Caldeira and Myhrvold, 2013; Ricke and Caldeira, 2014; Gasser et al.,

2017).

However, a generally underexplored field in carbon and also climate research is that of internal time scales (see however45

Todd-Brown et al., 2013; Friend et al., 2014; Koven et al., 2015; He et al., 2016). Also here linear response functions open

an interesting perspective. To systematically investigate the interaction between climate and the carbon cycle, for more than a

decade now internationally coordinated simulation exercises have been performed with several Earth System Models within

the Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP; see Fung et al., 2000; Friedlingstein et al., 2006)

that today belongs to the international Coupled Model Intercomparison Project (CMIP; see Taylor et al., 2012). With every50

round of CMIP, quite some effort is put into understanding how differences in simulation results from the participating Earth

System Models arise (see e.g. Anav et al., 2013; Tebaldi et al., 2020; Arora et al., 2020). It is pretty clear that parts of the

differences arise from different spectra of internal time scales. These differences show up e.g. in the standard 4×CO2 and

1% experiments of the CMIP protocol that are explicitly designed to estimate equilibrium and transient climate sensitivity

(Taylor et al., 2012; Eyring et al., 2016). But such a characterization of the response of temperature to radiative forcing by only55

two numbers is rather incomplete: These numbers are the aggregated result of system responses at all its internal time scales
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together. Therefore, a more detailed insight into system behaviour could be obtained from the knowledge of this spectrum of

responses at different time scales. Such insight may be provided by considering the linear response function that generalizes

climate sensitivity (e.g., Ragone et al., 2016). Further, this perspective to obtain from linear response functions information

on internal time scales is not restricted to climate sensitivity, but applies also to other types of system characteristics like the60

airborne fraction (e.g., Le Quéré et al., 2009; Raupach, 2013), the TCRE (Transient Climate Response to Cumulated Emissions,

see e.g. Ciais et al., 2013) and the β and γ sensitivities introduced by Friedlingstein et al. (2003) to characterize how land and

ocean carbon react to rising CO2 and rising temperatures. In the present study we explore the application of linear response

functions to study β and γ. In particular, we focus on the β and γ values that characterize the land carbon cycle, whose response

presents already for several C4MIP rounds a large model spread (Friedlingstein et al., 2006; Arora et al., 2013, 2019).65

When studying the land carbon response, the γ value quantifies the sensitivity of the land carbon cycle to the radiative

effect of CO2 acting via greenhouse warming, while the β value quantifies its sensitivity to the biogeochemical effect of CO2

concentrations on photosynthetic carbon assimilation (Arora et al., 2013; Schwinger et al., 2014; Adloff et al., 2018; Arora

et al., 2019). Mathematically, γ is defined as the ratio between changes in the land carbon caused by the radiative effect of CO2

(∆Crad) and changes in temperature (∆T ) at a particular time:70

γ(t) =
∆Crad(t)

∆T (t)
. (1)

β is defined as the ratio between changes in the land carbon caused by the biogeochemical effect of CO2 (∆Cbgc) and changes

in atmospheric CO2 concentration (∆Catm) at a particular time:

β(t) =
∆Cbgc(t)

∆Catm(t)
. (2)

But although these two values give insight into the magnitude of the sensitivities, they cannot be seen as properties of the land75

carbon cycle alone. The reason is that γ and β quantify the sensitivity of land carbon to CO2 perturbations only for a particular

perturbation scenario, so that for different scenarios one may obtain different values (Gregory et al., 2009; Arora et al., 2013).

To quantify this sensitivity in a more systematic way and thereby gain deeper insight into the land carbon dynamics one

needs a more general formalism. For small changes in atmospheric CO2 one can show that by accounting for the memory

of the carbon cycle these values generalize to linear response functions, which turn out to be properties of the land carbon80

cycle itself (Rubino et al., 2016; Enting and Clisby, 2019, see also Appendix B). As a result, these linear response functions

characterize the land carbon sensitivities for any perturbation scenario. For this reason these functions will here be called land

carbon generalized sensitivities.

The essential step to investigate the carbon-cycle dynamics within this general formalism is the identification of the gen-

eralized sensitivities. Typically, the γ and β values proposed by Friedlingstein et al. (2003) are obtained taking data from85

standardized C4MIP simulation experiments where, starting from an equilibrium state, atmospheric CO2 concentration is in-

creased by 1% each year (e.g., Gregory et al., 2009; Arora et al., 2013; Schwinger et al., 2014; Adloff et al., 2018; Williams

et al., 2019; Arora et al., 2019). Since data from such 1% experiments performed with C4MIP models are readily available

in international databases, one would be interested in identifying the generalized γ- and β-sensitivities as well from these
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experiments. But methods in the literature to identify response functions from data require special perturbation experiments,90

and C4MIP experiments were not tailored for this purpose. It is here that our RFI method is useful. Our method is designed

to derive response functions from experiments driven by any arbitrary perturbation. Thus, in the present study we show that

by this method one can robustly derive the land carbon generalized sensitivities for the MPI-ESM taking data from standard

C4MIP 1% experiments. To make sure the identified generalized sensitivities are indeed characteristics of the land carbon

cycle in the MPI-ESM, we demonstrate their predictive power by applying them to predict the response of the model in several95

experiments that were not used for their identification. In preparation for future studies applying these generalized sensitivities

to study the dynamics of the carbon-climate system in C4MIP models, we also investigate various ideas to improve the quality

of the recovery of the response functions by using additional types of data routinely available in C4MIP simulations or using

log-transformed data to account at least partially for process-immanent nonlinearities that hinder the usage of experiment data

from larger levels of forcing.100

Apart from giving a systematic quantification of the sensitivities, as hinted above linear response functions can be a power-

ful tool to gain insight into the internal dynamics of the carbon cycle. Because response functions fully characterize the linear

response of a system, they contain information on its distribution of internal time scales, i.e. the weights with which character-

istic time scales from internal processes contribute to the macroscopic response of the system. These weights may shed light

into which are the most relevant processes to the response at different time scales. For our application to the land carbon, such105

information may give insight into the main processes influencing the model spread found in the C4MIP results.

However, while several studies have tried to obtain the weights of different time scales in the carbon cycle by fitting response

functions to a sum of few exponents (Maier-Reimer and Hasselmann, 1987; Enting and Mansbridge, 1987; Enting, 1990; Joos

et al., 1996; Pongratz et al., 2011; Joos et al., 2013; Colbourn et al., 2015; Lord et al., 2016), in principle it is not clear to

what extent such results can be trusted, let alone interpreted. The reason is that finding these weights from data is a severely110

ill-posed problem that requires special methods to be dealt with (Istratov and Vyvenko, 1999). In contrast to the classical fitting

procedures, by employing a regularization technique (Groetsch, 1984; Engl et al., 1996) combined with a novel estimation of

the noise level in the data (see Part I) our RFI method accounts for this ill-posedness. In addition, instead of assuming that

the response functions result from only few time scales, the RFI method recovers a continuous spectrum of time scales, in

agreement with what one would expect when studying the carbon cycle response (Forney and Rothman, 2012a). In the present115

work we show that, in contrast to results obtained with classical fitting procedures, spectra recovered by the RFI method may

be reliable and even interpretable. For this purpose, we investigate a relatively detailed spectrum of time scales that arises from

a high-quality recovery of the generalized β-sensitivity. We examine (i) the robustness of the obtained spectrum and (ii) the

explanation for its time-scale structure.

An additional novelty introduced here is a simple procedure to estimate the linear regime of the response, i.e. the range of120

perturbation strengths for which the response of the system can be considered linear. As discussed in Part I, the presence of

traces of nonlinear responses in the data can severely deteriorate the recovery of the response function. Hence, to make sure

that the data from which the response function is recovered contain no strong nonlinearities, one must be able to estimate the

linear regime of the response. Because the response functions will be derived from 1% experiments, we introduce a technique
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to estimate with the aid of additional simulations the linear regime from this type of experiment. By this technique the linear125

regime of the response of land carbon to changes in CO2 and climate for the MPI-ESM will be estimated.

The outline of the paper is as follows. In the next section we introduce the methodology of the study including the RFI

method, the C4MIP experiments, and the technique to estimate the linear regime of the response from “percent” experiments.

In sections 3 and 4 we identify and investigate the generalization of the γ- and β-sensitivities in the MPI-ESM. In section

5 we investigate the detailed spectrum of time scales obtained for the generalized β-sensitivity. In section 6 the results are130

summarized and discussed.

2 Methodology

In this section we introduce the methodology employed throughout the study. We start by briefly introducing the RFI method

(for a detailed description please refer to Part I), the C4MIP-type experiments considered here, and technical details for the

identification of the generalized sensitivities. Then, we present our procedure to estimate the linear regime of the response from135

“percent” experiments.

2.1 RFI method and C4MIP experiments

The RFI method identifies the response function χ(t) taking data from the response Y (t) – in our example the global land

carbon – and the perturbation f(t) – atmospheric CO2 or temperature (see below) – assuming the following relation (see Part

I):140

∆Y (t) =

t∫
0

χ(t− s)∆f(s)ds+ η(t), (3)

where η(t) is a noise term. Here ∆Y (t) and ∆f(t) mean that we are taking only the change in the variables with respect

to their equilibrium values from a control simulation. Following Forney and Rothman (2012a), the spectrum of internal time

scales is obtained by assuming that the response function χ(t) can be represented by an overlay of exponential modes:

χ(t) =

∞∫
0

g(τ)e−t/τdτ. (4)145

To account for the large range of time scales in the carbon cycle (Ciais et al., 2013) it is useful to rewrite Eq. (4) in terms of

log10 τ , so that

χ(t) =

∞∫
−∞

q(τ)e−t/τd log10 τ, with q(τ) := τ ln(10)g(τ). (5)

The spectrum of time scales is then given by q(τ), which following the terminology from Part I we call simply spectrum. The

problem is solved by discretizing Eq. (3) and Eq. (5), prescribing a distribution of time scales τ , taking the data on ∆Y (t)150
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and ∆f(t), and solving a minimization procedure for the spectrum q(τ). The parameters to prescribe the distribution of time

scales are taken identically to those chosen for the application to the toy model in Part I. To treat the ill-posedness we employ

Tikhonov-Phillips regularization (Phillips, 1962; Tikhonov, 1963) in a Singular Value Decomposition (SVD) framework that

gives the solution by the expansion (Hansen, 2010; Bertero, 1989)

qλ =

M−1∑
i=0

fi(λ)
ui •∆Y

σi
vi, (6)155

where M is the number of time scales, ui and vi are the singular vectors, σi are the singular values, λ is the regularization

parameter, and fi(λ) are the filter functions

fi(λ) =
σ2
i

σ2
i +λ

. (7)

The regularization parameter λ is determined by the discrepancy method (Morozov, 1966) with noise level estimated from a

SVD analysis of the data combined with information from the control simulation. Once the spectrum qλ is found, the response160

function χ(t) follows from Eq. (5).

All linear response functions are identified by the RFI method taking data from C4MIP-type experiments performed with

the MPI-ESM. We focus on identifying the response functions from standard 1% experiments that are widely available in

international databases. In addition, to examine the quality of the results, we identify as well some response functions taking

data from additional experiments. To investigate the robustness of the identified response functions, we employ them to predict165

the response of the MPI-ESM in several experiments not used for the identification. A summary of the experiments considered

in the study is given in Table 1, with forcing scenarios shown in Fig. 1.

The variables taken for the identification of the response functions are the ones relevant for the quantification of the land

carbon sensitivities γ and β, respectively:

(a) The change in global land carbon in response to changes in global land temperature;170

(b) The change in global land carbon in response to changes in atmospheric CO2.

Global land carbon is computed as the sum of the total land carbon over all grid cells of the model. Global land temperature is

calculated as the mean near-surface air temperature over land at 2 m height. The changes are computed as ∆Y (t) = Y (t)−YPI ,

with YPI being the mean value of observable Y from a control simulation at pre-industrial conditions. Since the main interest

lies in long-term variations, annual mean data are used.175

As demonstrated in Appendix C, the generalization of the β-sensitivity can be shown to be monotonic. Therefore, in the

following we will derive it employing the additional noise level adjustment in the RFI algorithm (step 6 of Fig. 1 in Part I).

Since the generalization of the γ-sensitivity is not known to be monotonic, for this sensitivity the RFI algorithm will be applied

without the additional adjustment.

180
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Table 1. C4MIP-type experiments considered in this study. Forcings are shown in Fig. 1. Acronyms “rad” and “bgc” refer to standard CMIP

model setups used to calculate the climate-carbon cycle sensitivities. In the “rad” (radiatively coupled) setup only the radiation code of the

model is affected by changes in atmospheric CO2. This setup is used to calculate γ. In the “bgc” (biogeochemically coupled) setup only the

biogeochemistry of the model is affected by changes in atmospheric CO2. This setup is used to calculate β. In brackets are names of standard

CMIP experiments.

Type Forcing Description

Percent

0.5% rad

CO2 is exponentially increased from its pre-industrial

value at the specified percent rate per year.

0.5% bgc

0.75% rad

0.75% bgc

1% rad (esmFdbk1)

1% bgc (esmFixClim1)

1.5% rad

1.5% bgc

2% rad

2% bgc

Step

1.1 × CO2 rad

CO2 is abruptly increased from its pre-industrial value by

the specified factor.

1.1 × CO2 bgc

2 × CO2 rad

2 × CO2 bgc

Control
pre-industrial

(piControl)
CO2 is held fixed at its pre-industrial value.

2.2 Estimating the linear regime from “percent” experiments

As described in Part I, the recovery of response functions is complicated by the presence of noise and nonlinearities. The RFI

method is designed to cope with the former. In the present section we present a technique to cope with the latter, but at the

expense of performing additional response experiments. This technique will serve as a complement to the RFI method in the

application to the land carbon cycle in the following sections. By these additional experiments we will determine the range of185

forcing strengths for which the response can be considered linear – an analysis in general not possible using only the control

and perturbation experiments on which the RFI method is based.

Before we introduce this technique to cope with nonlinearities, it is useful to specify more clearly what we mean by “nonlin-

earity”. Dynamical systems like the Earth System are crowded with nonlinearities. Our notion of “nonlinearity” is much more

specific: The linear response formula (3) can be interpreted as the linear term in a Volterra expansion of the response ∆Y (t)190
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Figure 1. Forcings for the C4MIP-type experiments considered in this study.

of the system into the perturbation ∆f(t) (see section 2 in Part I). This expansion is given by

∆Y (t) =

t∫
0

χ(t− s)∆f(s)ds+ η(t) +O((∆f)2), (8)

where O((∆f)2) represents terms of order two and higher in the perturbation ∆f . For small enough perturbations the term

O((∆f)2) is small compared to the linear-order term and can be ignored so that Eq. (8) yields Eq. (3). Throughout this

study, nonlinearities are defined as the nonlinear terms O((∆f)2) in this expansion. Indeed, these nonlinear terms arise from195

the intrinsic nonlinearities of the underlying system. In the language of statistical mechanics one would call those intrinsic

nonlinearities as “microscopic”. This in mind, our notions of linearity and nonlinearity should then be termed “macroscopic”.

Since the idea here is to study the linear response of the system, we will be interested only in the case where perturbations

are so small that the nonlinear terms O((∆f)2) can be ignored. But the question is whether they can be ignored. It is clear

that nonlinearities may gain importance with increasing forcing strength. Hence, to study only the linear response, experiment200

data can be used for our purpose only up to such perturbation strengths where nonlinearity start to contribute to the response,

i.e. we have to identify the regime where the response is still linear. This is the purpose of the technique that we describe in the

following.

To introduce our technique we use the example of simulations with the linear toy model employed in Part I. To demonstrate

the effect of nonlinearities on the recovery of χ(t), following Part I we artificially add a nonlinear term −aY 2(t) to the linear205

response Y (t) of the toy model:

Ynonlin(t) := Y (t)− aY 2(t). (9)

In this way we obtain a nonlinear response Ynonlin(t), with nonlinearity strength controlled by the parameter a, from which

χ(t) is derived. In addition to including this nonlinear term in the toy model response, to introduce the technique we will need
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to quantify the quality of the recovery of the response function. Since in our application to the land carbon the “true” response210

function is not known a priori, following Part I we quantify the quality of the recovery indirectly by measuring the quality with

which the recovered response function can predict the response of the model in experiments not used for the recovery itself.

For this purpose we introduce the relative prediction error

εk :=
||∆Y k −χ ?∆fk||

||∆Y k||
, (10)

where ? stands for the convolution operation, ∆Y k and ∆fk are the response and the perturbation in experiment “k”, andχ215

is the response function recovered from the 1% experiment.

We can now present our technique. Taking first a purely linear situation (a= 0) we show in Fig. 2(a) the relative pre-

diction error (10) when using the response function obtained from a 1% simulation to predict the response from two other

%-simulations with smaller growth rate. More precisely, performing a sequence of 1% experiments for increasingly longer

simulation periods, we calculated for each experiment the response function and used it to predict the response for a 0.5%220

and 0.75% experiment covering the same simulation period. Then we plotted in Fig. 2(a) the relative prediction error against

the final forcing strength of the 1% experiment. As a result, it is seen that with increasing final forcing strength the relative

prediction error decreases. This happens because in this linear case the SNR is increasing with increasing simulation period,

i.e. with increasing final forcing strength, so that the recovery of the response function continuously improves.

Calculating the relative prediction error only for experiments with smaller growth rate gets important in the next case where225

nonlinearities are considered (Fig. 2(b)). This plot was obtained by the same procedure except that we took for the nonlinearity

parameter a value a > 0. As seen, in this nonlinear case the relative prediction error is first improving but deteriorating after-

wards. For small forcing, nonlinearities are small and therefore the relative prediction error behaves as in the linear case, i.e. it

decreases with final forcing strength. But when forcing strengths get larger, nonlinearities start to contribute substantially to the

response, thereby causing a deterioration of the recovery of the response function and consequently the relative prediction error230

once more increases. This increase of the prediction error can be unambiguously traced back to the presence of nonlinearities

in the 1% simulation because the prediction error was calculated only for experiments with smaller growth rate, i.e. smaller

forcing strength throughout the whole simulation. Therefore, nonlinearities contribute already substantially to the response in

the 1% simulation before they get relevant in the other experiments. Accordingly, with this type of experiment setup we can be

sure that the increase in the prediction error comes solely from the deterioration of the recovery of the response function and235

not from nonlinearities in the additional experiments used for calculating the prediction error.

Obviously, for forcing strengths smaller than at the minimum, nonlinearities do not hinder the recovery of the response

function so that one can consider this to be the regime of linear system behaviour. In view of the trade-off between noise and

nonlinearities, for the 1% experiment the response function is thus optimally recovered when taking as final forcing strength

the value at the minimum of the prediction error curve. Similarly, if the error curve has no minimum (as in the linear case240

shown in Fig. 2(a)) the optimal recovery is obtained from the experiment with the largest forcing strength.

With the presentation of this additional technique to identify the linear regime we are ready for the application to the MPI-

ESM in the next sections.
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(a) Linear case (b) Nonlinear case

Figure 2. Toy model example for the identification of the linear regime by using additional experiments. Shown is the relative prediction

error (10) for the response of 0.5% and 0.75% experiments as obtained from the response function calculated by the RFI method from 1%

experiments. The relative prediction errors are plotted against the final forcing strengths of a sequence of 1% experiments with increasing

time series length. The crosses at the minima indicate the final forcing strength for which the response function is optimally recovered (see

text). Subfigure (a) shows the behaviour for the fully linear toy model (a= 0) and subfigure (b) the behaviour in the presence of nonlinear

contributions to the response (a= 5×10−5). For the purpose of demonstrating more clearly the increase in the relative prediction error for a

decrease in the forcing strength, we include in the plot cases where the forcing strength is extremely small, corresponding to very small time

series lengths. To deal with such cases, we set for a number of data points N < 30 the number of time scales M =N (see parameters for the

RFI method in Part I). For such small number of time scales, usually no plateau in the singular values spectrum is found (step 2 of Fig. 1 in

Part I). Therefore, for these special cases we also modify the algorithm to interpret the two smallest singular values as a plateau, since their

small magnitude makes them have a similar effect to those singular values belonging to the plateau itself. In addition, to illustrate the most

general case where χ(t) is not known to be monotonic, we exclude here the monotonicity check (step 6 of Fig. 1 in Part I).

3 Generalized sensitivityχγ

In this section we identify from MPI-ESM simulations the linear response function χγ (generalized γ-sensitivity), defined by245

∆Crad(t) =

t∫
0

χγ(t− s)∆T (s)ds+ η(t), (11)

where now the response is ∆Y (t) := ∆Crad(t) and the forcing is ∆f(t) := ∆T (t), with ∆Crad(t) being the change in global

land carbon obtained in the “rad” experiment (see Table 1) and ∆T (t) the change in global land temperature.

That χγ indeed generalizes γ can be understood by considering that γ is defined by

γ(t) =
∆Crad(t)

∆T (t)

(11)
=

1

∆T (t)

t∫
0

χγ(t− s)∆T (s)ds, (12)250
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Figure 3. Relative prediction error (10) for the 0.5% and 0.75% rad experiments using χγ(t) recovered from the 1% rad experiment. The

error is shown as function of the final forcing strength used for the recovery of χγ(t). No clear minimum is found so that the recovery seems

not to be limited by nonlinearities.

for a negligible noise η(t). From Eq. (12) it is clear that by knowing χγ(t) one can compute the response ∆Crad(t) and

thereby γ(t) for any time-dependent perturbation ∆T (t), as long as the perturbation strength is small. Hence, χγ(t) can be

seen as a property of the land carbon system and a generalization of γ(t).

Estimating the linear regime

As a first step in obtaining a proper approximation of χγ(t), we investigate what maximum forcing strength can be used to255

assure that the recovered χγ(t) is not spoiled by the presence of nonlinearities. Using the technique introduced in section 2.2,

we show in Fig. 3 the relative prediction error (10) for χγ(t) recovered from the 1% rad experiment as a function of the final

forcing strength in the 1% rad experiment. There is no clear minimum so that for the data available the recovery of χγ(t)

seems not to be limited by nonlinearities. For optimal recovery we thus take the full time series, i.e. the maximum final forcing

strength.260

χγ and the quality of its recovery

The quality of the recovery can in principle be improved by taking an experiment with better SNR. To investigate if the recovery

from the 1% rad experiment can be further improved, we applied the RFI algorithm also to recover χγ from the 2×CO2 rad

experiment. We chose the 2×CO2 rad experiment because as shown in Fig. 4 it has smaller forcing strengths than the maximum

forcing strength for the 1% rad experiment – therefore nonlinearities should also not limit the recovery – but is expected to265

carry useful information over a larger range of the response spectrum. This expectation can be justified as follows (MacMartin
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Figure 4. Forcing temperature ∆T (t) for 1% and 2×CO2 rad experiments.

and Kravitz, 2016). Taking the Laplace transform of Eq. (11) gives

∆C̃rad(p) = χ̃γ(p)∆T̃ (p) + η̃(p), (13)

where the tilde denotes Laplace transformed functions. From Fig. 4 it is seen that for the 1% rad experiment the temperature

∆T behaves approximately as a linear function, which gives a Laplace transform ∆T̃ (p) proportional to 1/p2. For the 2×CO2270

rad experiment, the temperature behaves approximately as a step function (ignoring the transient in the first 20 years), which

gives a Laplace transform ∆T̃ (p) proportional to 1/p. This means that for the same χγ , the first term on the right-hand side

of Eq. (13) – the “clean” response – decays to zero faster for the 1% rad experiment than for the 2×CO2 rad experiment.

Hence, assuming the same noise η for both cases, the response from the 2×CO2 rad experiment gets buried in the noise only at

larger p, meaning that this experiment carries useful information until higher rate values p than the response from the 1% rad275

experiment.

The response function χγ(t) recovered from the two types of experiments is shown in Fig. 5(a). As expected, the different

experiments indeed result in different recoveries. Because we know from the analysis of Fig. 3 that nonlinearities do not limit

the recovery, the difference between the two response functions results probably from the difference in the quality of the data

from the two types of experiments. To compare the robustness of each recovery, we analyze how well they predict the response280

from other experiments (Figs. 5(b) and (c)). If the response function is correctly recovered, it should be able to predict not

only experiments with smaller but also experiments with higher forcing rate. Therefore, we include in the analysis also 1.5%

and 2% rad experiments. To exclude errors that may be caused by nonlinearity, we take as a conservative estimate of the linear

regime forcing strengths smaller than the final forcing strength at the end of the 1% rad experiment (which is approximately the

maximum forcing strength; see temperature value at t = 140 years for the 1% rad experiment in Fig. 4). We take these values285

as an estimate of the linear regime because the 1% rad experiment has only 140 years so that no estimate for higher forcing

strengths is available. Hence, for the 1.5% and 2% rad experiments the responses are expected to be reasonably predictable at
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least until the values marked with circles, where their respective forcing strengths reach this maximum forcing strength. All

other experiments have forcing strengths smaller or equal to this maximum forcing strength so that they should be predictable

for the whole time series.290

(a) χγ derived from 1% and 2×CO2 rad (b) Prediction from χγ derived from 1% rad

(c) Prediction from χγ derived from 2×CO2 rad

Figure 5. χγ recovered from 1% and 2×CO2 rad experiments and prediction of model responses using these recoveries of χγ . Circles

indicate the maximum value for which 1.5% and 2% responses are predictable according to the estimate of the linear regime (see text). At

the right of subfigures (b) and (c) the relative prediction error (see Eq. (10)) is indicated for the different experiments, calculated for the 1.5%

and 2% rad experiments by considering only values preceding the circles.

Figure 5(b) shows the quality of the prediction using χγ(t) recovered from the 1% rad experiment. Visually, model response

and prediction seem to have a comparable quality of agreement across the 1.1×CO2, 0.5%, 0.75% and 1.5% rad experiments,

while for the 2% and 2×CO2 rad experiments there are larger discrepancies. For a quantitative analysis, we compute for the

estimated linear regime the relative prediction error (10) for each experiment (right side of the plot). It is seen that the error

varies from less than 10% for the 0.75% and 1.5% rad experiments to values between 10-20% for the 0.5%, 2% and 2×CO2 rad295
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experiments, and a significantly larger value of 57% for the 1.1×CO2 rad experiment. To better understand these differences,

it is important to note that as long as nonlinearities are small, experiments with higher forcing strength are expected to have

smaller prediction error because they have higher SNR. This can be made plausible by considering that a perfectly recovered

response function predicts a “clean” linear response (infinite SNR) with zero error, whereas the same response function can

predict a noisy response only with some finite error. Therefore, if χγ(t) is well recovered, we expect large prediction errors300

for experiments with small forcing strengths such as the 1.1×CO2 rad – which is indeed the case –, but small errors for

experiments with large forcing strengths but still well within the linear regime such as the 2×CO2 rad (compare the forcing

strengths for the 2×CO2 rad experiment and the maximum forcing strength for the 1% rad experiment in Fig. 4). Since

contrarily to the expectation the prediction error is not particularly small for the 2×CO2 rad experiment, probably the recovery

ofχγ(t) derived from the 1% rad experiment is not completely accurate and may still be further improved. As suggested above,305

such improvement may be achieved by taking data with better quality from the 2×CO2 rad experiment.

Figure 5(c) shows the quality of the prediction using χγ(t) recovered from the 2×CO2 rad experiment. As expected, results

indicate an improvement in the recovery (compare to Fig. 5(b)). The prediction error decreases for all experiments present

in both plots. In addition, it also decreases if we compare the prediction of the 1% rad response in Fig. 5(c) with that of the

2×CO2 rad response in Fig. 5(b).310

This section therefore suggests two main conclusions: First, for χγ(t) the response seems to be approximately linear for

temperature perturbations up to at least 6 K. Second, the overall improvement of the prediction in Fig. 5(c) compared to

Fig. 5(b) confirms the expectation from the Laplace transform analysis that indeed the step-like 2×CO2 rad experiment carries

more information on the response function than the 1% rad experiment. This suggests that step-like experiments may be more

appropriate than the standard 1% experiment for the identification of linear response functions.315

4 Generalized sensitivityχβ

In this section we identify the linear response function χβ (generalized β-sensitivity), defined by

∆Cbgc(t) =

t∫
0

χβ(t− s)∆Catm(s)ds+ η(t), (14)

where now the response is ∆Y (t) := ∆Cbgc(t) and the forcing is ∆f(t) := ∆Catm(t), with ∆Cbgc(t) being the change in

global land carbon found in the “bgc” experiment and ∆Catm(t) the change in atmospheric CO2 (and not atmospheric carbon320

content, as might be expected from the notation).

That χβ indeed generalizes β can be understood analogously to section 3 by considering that β is defined by

β(t) =
∆Cbgc(t)

∆Catm(t)

(14)
=

1

∆Catm(t)

t∫
0

χβ(t− s)∆Catm(s)ds, (15)
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for a negligible noise η(t). Hence, χβ(t) can be seen as a generalization of β(t) and a property of the land carbon cycle that

characterizes the response ∆Cbgc(t) to any time-dependent perturbation ∆Catm(t), as long as the perturbation strength is325

small.

Approaches to identifyχβ

Similarly to the last section, we identify χβ(t) by several approaches to find the one that gives results with best quality. For

this purpose, we consider in addition to Eq. (14) also alternative formulas to derive χβ(t), each taking a different forcing. The

identification is performed in three different ways:330

1. Using CO2 as forcing (see Eq. (14));

2. Using the logarithm of CO2 as forcing:

∆Cbgc(t) =

t∫
0

χln
β (t− s)C0

atm ln

(
Catm(s)

C0
atm

)
ds+ η(t), (16)

where now the forcing is ∆f(t) := C0
atm ln

(
Catm(t)
C0

atm

)
, with C0

atm being the pre-industrial value for atmospheric CO2;

3. Using Net Primary Production (NPP) as forcing:335

∆Cbgc(t) =

t∫
0

χNPP (t− s)∆NPP (Catm(s))ds+ η(t). (17)

The first approach is the same used throughout the paper: χβ(t) is identified using the ∆Catm(t) forcing from Eq. (14).

For the
:::
The

:
second and third approaches , we take advantage of the fact that in the

::
are

:::::::::
motivated

::
as

:::::::
follows.

::
In

:::
the

:
“bgc”

setup, perturbations in
::::::
changes

::
of

:
atmospheric CO2 affect land carbon only via

:::::::::
exclusively

:::
via

:::
the

::::::::
resulting

:
changes in pri-

mary productivity1. Therefore, we use the
::
the

:::::::
reaction

:::
of

::::
land

::::::
carbon

:::
to

:
CO2 forcing only indirectly via its relationship340

to NPP. By doing this, the hope is to account for some of the nonlinear contributions to the response that arise from this

relationship.The advantage of accounting for these nonlinear contributions is that one
:::::::::::
perturbations

::::
may

::
be

::::::::::
understood

::
as

::
a

:::::::
two-step

:::::::
process:

:::::
First,

::::
CO2::::::

affects
:::::::
primary

::::::::::
productivity

:::::::
(carbon

::::::::::::
assimilation);

::::::
second,

:::
the

::::::::::
assimilated

::::::
carbon

::::
adds

:::
to

::::
land

:::::
carbon

:::::::
storage.

::::
This

:::::::
second

:::
step

::
is
:::

in
::::::
models

::::::::
typically

::::::::
described

::
by

:::
an

::::::
almost

:::::
linear

::::::
system

::
of
:::::::

storage
:::::::::::
compartment

::::::
forced

::
by

::::
NPP

:::::::::::::::::::::::::::::::::::::
(see e.g. Xia et al., 2013; Huang et al., 2018).

:::::
Thus,

::::::::::
presumably

:::
the

:::::::
response

:::
of

::::
land

:::::
carbon

:::
to

::::
NPP

::
is

::::
well

::::::::
described345

::
by

::
a

:::::
linear

:::::::
response

::::::::
function.

::::::
These

::::::::::::
considerations

:::::::
underlie

:::
the

::::::
second

::::
and

::::
third

:::::::::
approach,

:::
but

:::
are

:::::
more

::::::::
explicitly

:::::::
realized

::
in

:::
the

:::::
latter:

:::::
There

:::
we

:::
first

::::::
derive

:::
the

:::::
linear

::::::::
response

:::::::
function

::::::::
χNPP (t)

:::::::::
describing

:::
the

:::::::
response

:::
of

::::
land

::::::
carbon

::
to

:::::::
changes

::
in

::::
NPP,

:::
and

:::::
then

:::
use

:::
the

::::
data

::
of

:::
the

:::::::::
simulated

::::::::::
dependence

::
of

::::
NPP

:::
on

::::
CO2::

to
::::::

derive
:::
the

::::::
desired

::::::::
response

:::::::
function

::::::
χβ(t)

::::
(see

1These changes
:
in

:::::
primary

:::::::::
productivity may arise both from the increase in CO2 concentrations at the leaf level that leads via reduced photorespiration to

enhanced carbon assimilation and from increased soil water savings caused by a reduction of stomatal conductance (e.g., Walker et al., 2020). This reduction

leads to decreased transpiration and thereby to climatic changes, but these changes are expected to be small (e.g., Arora et al., 2013, 2020).
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:::
Eq. (21)

:
).

::
In

:::
this

::::
way

:::
we

::
try

::
to
:::::
keep

:::
the

::::
most

::::::
critical

::::
step

::
in

::
the

:::::::::::
identification

:::
of

::
the

::::::::
response

::::::::
function,

::::::
namely

:::
the

::::::::
inversion

::
of

::
the

::::::::
response

:::::::
integral,

::::::
largely

::::
free

::::
from

::::::::::::
nonlinearities.

::::
And

:::::::
indeed,

::
for

::::
this

:::::::
reduced

::::::::
problem,

::::::
without

:::::
much

::::::::::
interference

:::::
from350

::::::::::
nonlinearity

::
we

:
can recover the response function from experiments with perturbation strengths larger than those possible when

not accounting for nonlinear contributions (as
:::::::::
experiment

::::
data

:::::::
obtained

:::
for

:::::
much

:::::
higher

:::::::::::
perturbation

:::::::
strengths

::::
than

:
in the first

approach). Experiments with larger perturbation strengths give responses with higher SNR , which makes it possible to recover

the response function with better quality,
::::
and

:::::::
because

::
of

:::
the

::::::
higher

::::
SNR

:::::::
thereby

:::
the

::::::
quality

::
of

::::::::
recovery

:
is
:::::::

largely
::::::::
improved

:::
(see

:::::::
below).

::::::
Instead

::
of

::::
NPP

::::
one

:::::
could

:::
also

:::
try

::
to

::::
split

:::
off

:::
the

::::::::
nonlinear

:::
part

:::
by

:::::
taking

::::
GPP

::::::
(Gross

:::::::
Primary

::::::::::
Production),

::::::
which355

:::::
differs

:::::
from

::::
NPP

::::
only

:::
by

:::
the

::::::::::
autotrophic

:::::::::
respiration.

::::
But

::::::::::
autotrophic

:::::::::
respiration

::
is

:::
lost

:::
to

:::
the

::::::::::
atmosphere

::
so

::::
that

:
it
::

is
:::::

NPP

:::
and

:::
not

::::
GPP

::::
that

::::
adds

::
to

::::
land

::::::
carbon

::::::
storage.

:::::
Thus,

:::
by

:::::
taking

:::::
NPP

::::::
instead

::
of

::::
GPP

:::
the

:::::
linear

::::
part

::
is

:::::::
arguably

::::::
splitted

:::
off

:::::
more

:::::::::
completely.

::::
The

::::::
second

::::::::
approach

::
is

::::::::
motivated

:::
in

:::
the

::::
same

:::::
way,

:::::
except

::::
that

:::
the

::::::::
nonlinear

::::
part

::
is

:::::::
guessed

::
to

::
be

::
a
::::::::::
logarithmic

:::::::
function

::
of

::::
CO2::

as
::::::::
suggested

:::
by

:::
the

:::::::
Keeling

::::::
formula

::::::::::::::::::::::::::::
(see e.g. Alexandrov et al., 2003)

::
so

:::
that

::::
here

::
no

:::::::::
additional

::::
NPP

::::
data

:::
are

::::::
needed

::::
from

::::::::::
simulations.360

:::::::::::::
Mathematically,

:::
our

::::::::
procedure

::
in

::::
each

::::::::
approach

::
is

:::
the

::::::::
following.

:
In the second approach (see Eq. (16)), we employ as forcing

an explicit logarithmic expression describing the relationship a
::::::::::
logarithmic

:::::::::
expression

:::::::
because

::
it

::
is

:::::
known

::::
that

:
a
:::::
large

::::
part

::
of

::
the

:::::::::
nonlinear

::::::
relation

:
between CO2 and NPP (see e.g. Alexandrov et al., 2003)

:::::
carbon

::::::
storage

::::::
comes

:::::
from

:::
the

::::::::::::
approximately

:::::::::
logarithmic

::::::::::
dependence

::
of

:::::
NPP

::
on

::::
CO2:::::::::::::::::::::::::

(e.g., Alexandrov et al., 2003). Such formula has the advantage that the expansion of

the forcing in Catm gives365

∆Cbgc(t) =

t∫
0

χln
β (t− s)∆Catm(s)ds+O((∆Catm)2) + η(t). (18)

Taking ∆Catm sufficiently small and comparing the result to Eq. (14) thus yields

χβ(t) = χln
β (t). (19)

Accordingly, the response function χln
β (t) from formula (16) gives as well the desired χβ(t).

In the third approach, we take directly the response to NPP (see Eq. (17)). Expanding the forcing ∆NPP (Catm) in Catm370

gives

∆Cbgc(t) =

t∫
0

χNPP (t− s)∂NPP
∂Catm

∣∣∣
Catm=C0

atm

∆Catm(s)ds+O((∆Catm)2) + η(t). (20)

Taking ∆Catm sufficiently small and comparing the result to Eq. (14) yields

χβ(t) = χNPP (t)
∂NPP

∂Catm

∣∣∣
Catm=C0

atm

. (21)

Accordingly, by this approach we compute χβ(t) in three steps: First, we identify the response function χNPP (t) using375

Eq. (17); second, we take the first derivative of NPP with respect to CO2 at Catm = C0
atm; third, we apply formula (21) to

obtain χβ(t) from χNPP (t).
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(a) χβ(t) in (11) (b) χln
β (t) in (13) (c) χNPP(t) in (14)

Figure 6. Relative prediction error (10) for the 0.5% and 0.75% bgc experiments obtained when usingχβ(t),χln
β (t) andχNPP (t) obtained

from the 1% bgc experiment to predict the response. The error is shown as a function of the CO2 final forcing strength.

Checking nonlinearities with the three approaches

Before analyzing the recovery of χβ(t) employing the three approaches, one must verify that indeed these two additional

approaches account for some of the nonlinearities in the response. If this is true, response formulas (16) and (17) should be380

able to predict the response to larger perturbation strengths than Eq. (14). To verify this expectation, in the following we

compare the relative prediction error (10) by applying Eqs. (14), (16) and (17).

Figure 6(a) shows the relative prediction error for χβ(t) recovered from the 1% bgc experiment with the first approach

(Eq. (14)). The prediction is also computed via Eq. (14). The clear minima indicate the presence of strong nonlinearities for

forcing strengths above around 100 ppm (94 ppm for the 0.5% and 133 ppm for the 0.75%). Therefore, in contrast to the case385

of χγ discussed in the last section, we see here that indeed one has to cope with the additional difficulty of nonlinearities.

Figure 6(b) shows the prediction error when using χln
β (t) recovered from the 1% bgc experiment with the second approach

(Eq. (16)). To check how well nonlinearities are accounted for by taking the logarithmic forcing, the prediction is as well

computed via Eq. (16). Compared to Fig. 6(a), we see a slight improvement in the results: The minima have smaller prediction

errors and the prediction errors increase at a slower rate for increasing final forcing strength. This indicates that indeed using390

the logarithm of CO2 as forcing accounts for some of the nonlinearities in the response. Accordingly, one can make predictions

with smaller error for larger forcing strengths using Eq. (16) instead of Eq. (14).

Figure 6(c) shows the prediction error for χNPP (t) recovered via Eq. (17) from the 1% bgc experiment (first step of the

third approach). To check how well nonlinearities are accounted for by taking the NPP forcing, we employ as well Eq. (17) for

the prediction. Here, we see a substantial improvement in the results. The response is almost completely linear, with very “flat”395

minima. This indicates that indeed a large part of the nonlinearity encountered in the response of the land carbon to changes

in CO2 can be explained by the nonlinear relationship between NPP and CO2. Accordingly, by employing Eq. (17) instead of

Eq. (14) one can predict the response of the land carbon until forcing strengths as high as 800 ppm with an error smaller than

10%.
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χβ and the quality of its recovery400

So far, we have only considered the ability of Eqs. (14), (16) and (17) to predict the land carbon response. Now, we analyze

how well the generalized sensitivity χβ(t) can be identified by the three approaches. For the identification we took data from

the 1% bgc experiment until the CO2 forcing strength reaches the first minimum for each case in Fig. 6: ∆Catm = 94 ppm

for the first approach (30 years); ∆Catm = 133 ppm for the second approach (40 years); and ∆Catm = 279 ppm for the third

approach (70 years). Since ∆Catm = 279 ppm is approximately the forcing strength for the 2×CO2 bgc experiment and results405

from last section suggested that this type of experiment may carry more information for the identification, we employ the third

approach also taking the 2×CO2 bgc experiment. For the present application where the recovery is limited by nonlinearities,

taking the 2×CO2 bgc experiment has the additional advantage that because its forcing strength has a constant value throughout

the whole experiment, we can use the full time series (140 years). To compute the first derivative of NPP with respect to CO2

(second step of the third approach), we fitted the function NPP =NPP (Catm) to polynomials of order 4, 5 and 6, and then410

took the first derivative from the fits.

The results from the three approaches are shown in Fig. 7(a). At short time scales there is an overall agreement among all

recoveries with only small discrepancies. To be able to compare the results also for longer time scales, we extend the response

functions recovered from the 1% bgc experiment – obtained from time series with 30, 40 and 70 years respectively for the first,

second and third approaches – until 140 years (extensions are indicated by dotted lines). This can be done because with the415

RFI method we derive the response function from the ansatz (5), which formally gives the values of the response function for

all times. The result is that all response functions recovered from the 1% bgc experiment present relatively small discrepancies

even at long time scales. Response functions derived from the 2×CO2 bgc experiment with the third approach show a similar

behaviour among themselves, but differ from the recoveries using the 1% bgc experiment. The reason for this difference will

be investigated below.420

To quantitatively compare the quality of the recoveries, we plotted in Fig. 7(b) the relative prediction error (10). Since the

response functions were derived using different time series lengths, for a fair comparison we compute the error only at the

minimal time series length of 30 years (the time series length used for the first approach). Results show no large discrepancies

among the different approaches. For the third approach, there seems to be a small advantage in using a polynomial of order 6

for the computation of the derivative.425

But results from Fig. 7(b) reflect only the quality of the recoveries at short time scales, for which anyway no large dis-

crepancies were encountered in Fig. 7(a). To evaluate the quality of the recovery also at long time scales, one must take the

extended version of the response functions that were derived from shorter time series. Since the only substantial difference at

long time scales in Fig. 7(a) is found between the response functions recovered from the 1% and 2×CO2 bgc experiments, we

take for this analysis exemplarily only the response functions recovered with the first approach (1% bgc experiment) and the430

third approach (2×CO2 bgc experiment). By choosing the response function recovered with the first approach, we evaluate for

the worst case scenario (where only 30 years are used for the recovery) how reliable predictions are for time scales longer than

the time series used for recovery. In contrast, by choosing the response function recovered with the third approach from the
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(a) Recovered χβ(t)

(b) Prediction error (7)

Figure 7. Response function χβ(t) derived by the three approaches (subfigure (a)) and the respective prediction errors for the first 30 years

of the response (subfigure (b)). ∆C1%
atm: recovery with first approach from 1% bgc experiment; log(Catm)1%: recovery with second approach

from the 1% bgc experiment; NPP 1%
polx: recovery with third approach from the 1% bgc experiment using for the derivative a polynomial

fit of order x; NPP 2×
polx: recovery with third approach from the 2×CO2 bgc experiment using for the derivative a polynomial fit of order

x. Continuous lines denote values of χ(t) that are within the time series length used for the recovery (30 years for ∆C1%
atm, 40 years for

log(Catm)1% and 70 years for NPP 1%
polx). Dotted lines denote extended parts of the response function, i.e. values not covered by the time

series used for the recovery but obtained from the recovered spectrum using Eq. (5). Circles denote the response functions derived taking the

full time series (NPP 2×
polx). For more details see text.
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2×CO2 bgc experiment, we check whether the different values at long time scales are actually an improvement in the recovery.

As mentioned above, such improvement is expected because this response function was recovered taking the full time series435

(140 years).

Following the same procedure as in the last section, in Fig. 8 we show the quality of the prediction for different experiments

using the aforementioned recoveries of χβ(t). Figure 8(a) shows the results for the predictions calculated via Eq. (14) using

χβ(t) recovered with the first approach. We take as an estimate of the linear regime forcing strengths smaller than the forcing

strength at the first minimum in Fig. 6(a). The response values corresponding to this forcing strength are marked in Fig. 8(a)440

with circles. It is seen that although χβ(t) was recovered using a time series of only 30 years, it predicts the 1.1×CO2 bgc

experiment with only 3% error over 140 years. Other experiments are predicted within the linear regime with error smaller than

10% with exception of the 2% bgc experiment, for which the error is around 14%. Since the 2×CO2 has a constant forcing

strength outside the linear regime already from the beginning, its prediction fails as expected for the whole time series.

In Fig. 8(a) we could only evaluate the quality of the long time scales of χβ(t) by the prediction of the 1.1×CO2 bgc445

experiment, because this is the only experiment which has forcing strengths within the linear regime over the whole time series.

To check the ability of χβ(t) to predict also other experiments at long time scales, we account for some of the nonlinearity

in the response by taking NPP instead of CO2 as forcing (see discussion of Fig. 6). Therefore, we perform the prediction by

employing Eq. (17) instead of Eq. (14). Since for employing Eq. (17) one needs χNPP (t) and not χβ(t), we take the χβ(t)

derived with the first approach and compute χNPP (t) from it via Eq. (21). Because the conversion from χβ(t) to χNPP (t) is450

a simple scaling, the time scales structure is maintained. Hence, we can evaluate the quality of the recovered χβ(t) from the

results given by the obtained χNPP (t). The prediction results computed via Eq. (17) with the obtained χNPP (t) are shown

in Fig. 8(b). Because errors at the minima in Fig. 6(c) are not substantially smaller than those at the maximum final forcing

strength, we take as an estimate of the linear regime all values smaller than the last value of NPP for the 1% bgc experiment

(marked with circles in the responses). Once again it is seen that although χβ(t) was recovered using a time series of 30 years,455

after conversion to χNPP (t) almost all experiments can be predicted with less than 10% error for the whole time series. The

1.5% and 2% bgc experiments are predicted with errors of 17% and 4% within the linear regime. Results from Figs. 8(a)

and 8(b) therefore suggest that although nonlinearities do restrict the recovery from Eq. (14), taking experiments with forcing

strengths within the linear regime for the recovery leads to reliable prediction results even for times reasonably longer than the

length of the time series from which the response function was recovered.460

Finally, we investigate whether the different values seen in Fig. 7(a) for theχβ(t) recovered from the 2×CO2 bgc experiment

indeed reflect a better quality of recovery. Following the same reasoning that led to Fig. 8(b), since in the third approach χβ(t)

is obtained from a scaling of χNPP (t), we evaluate the quality of χβ(t) from the results given by χNPP (t). Accordingly,

in Fig. 8(c) we plot the prediction via Eq. (17) using the χNPP (t) recovered from the 2×CO2 bgc experiment. As expected,

the overall prediction indeed improves compared to Fig. 8(b). Individual relative prediction errors decrease for all experiments465

with exception of the 1.1×CO2. Since the response functions used for Figs. 8(b) and 8(c) differ only at long time scales, this

improvement suggests that indeed obtaining χβ(t) from the 2×CO2 bgc experiment gives a better recovery over these time

scales. Further, because all recoveries are similar at short time scales (see Fig. 7(a)), overall this recovery shows the best quality.
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(a) Prediction by Eq. (11)
(χβ(t) derived with first approach)

(b) Prediction by Eq. (14)
(χβ(t) derived with first approach,
converted to χNPP(t) via Eq. (18))

(c) Prediction by Eq. (14)
(χNPP(t) derived in the first step of third approach)

Figure 8. Prediction of model responses employing response functions derived with the first approach from the 1% bgc experiment (derived

from data with 30 years length, but extended to 140 years) and with the third approach from the 2×CO2 bgc experiment (derived from data

with 140 years length). (a) Prediction by Eq. (14) taking the response function χβ(t) derived from the 1% bgc experiment with the first

approach. (b) Prediction by Eq. (17) taking the response function χβ(t) derived from the 1% bgc experiment with the first approach and

converted to χNPP (t) by Eq. (21). (c) Prediction by Eq. (17) taking the response function χNPP (t) derived in the first step of the third

approach (see explanation after Eq. (21)) taking data from the 2×CO2 bgc experiment. Continuous lines are predictions and dashed lines

are responses from the MPI-ESM. Circles indicate the maximum value for which responses are predictable according to our estimate of

the linear regime (see text). The values printed to the right of the plots are the relative prediction errors (see Eq. (10)) calculated for each

experiment, considering when applicable only values preceding the circles.
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5 Spectrum of land carbon time scales

A response function obtained with high quality not only results in more accurate predictions, but may also provide valuable470

information about the internal dynamics of the system. For the case of χβ(t), we find that the recovery with best quality gives

a relatively detailed description of the spectrum of land carbon time scales (see Eq. (5)). In this section, we investigate (i)

the robustness of this result and (ii) the explanation for the structure of the obtained spectrum. The robustness of this detailed

spectrum must be analyzed because, as explained in Part I, the problem to recover the spectrum of time scales from data is

ill-posed so that in principle it is not clear to what extent the recovered spectrum can be trusted. To investigate this robustness,475

we check whether the main characteristics of the spectrum recovered by our RFI algorithm can as well be obtained by two

independent methods: a Gregory-plot approach (Gregory et al., 2004) and an approach that combines regional responses for

the tropics and extra-tropics. Since the best recovery of χβ(t) was obtained from the response to NPP for the 2×CO2 bgc

experiment, in our investigations we will study only this case.

Obtaining the detailed spectrum480

But before we investigate the recovered spectrum, we demonstrate how such a detailed structure may arise from a better

recovery of the response function. In Fig. 9(a) we plot the spectrum q(τ) of the response function used for Fig. 8(b), i.e. χβ(t)

recovered with the first approach (see beginning of section 4) and converted to χNPP (t) via Eq. (21). Because the data used

for the recovery have a relatively low quality – the response function was recovered from the 1% bgc experiment taken for

only 30 years –, regularization filters out most of the SVD components of the spectrum in Eq. (6). Since the low-index SVD485

components that are not filtered out tend to be smooth (Hansen, 1989, 1990, see also Part I), the final result of this filtering is

the smooth spectrum seen in Fig. 9(a). Obviously, although this smooth spectrum is a sufficiently good approximation to make

the predictions shown in Fig. 8(b), it is not very informative about the internal time scale structure. Instead, the spectrum of the

response function χNPP (t) used for Fig. 8(c) has a more detailed structure (Fig. 9(b)). In this case, the higher quality of the

data used for the identification (2×CO2 bgc experiment taken for 140 years) results in less filtering by regularization, thereby490

revealing more details of the underlying spectrum. The result is a spectrum with two peak time scales, at around 4 and 100

years2.

Checking the robustness of the spectrum via a Gregory-type approach

Some trust in this result may be gained via a linear-regression procedure following the same logic underlying a “Gregory plot”

(Gregory et al., 2004) but applied here not to radiative forcing but to land carbon. As for a Gregory plot, we look here at how495

the nonequilibrium fluxes relax to equilibrium after a step-type perturbation. In our case this is the 2×CO2 bgc experiment. The

2We ignore the negative values obtained for time scales smaller than 1 year (data time step) and larger than 140 years (time series length) because spectral

contributions at time scales much longer or much shorter than the time scales covered by data cannot be correctly recovered. Yet, as demonstrated in Appendix

D, their wrong recovery does not strongly affect the recovered response function so that they can be safely ignored. Other slightly negative values between the

two peaks are probably small recovery errors that inevitably appear as a consequence of ill-posedness and the filtering by regularization (such slightly negative

values have also been observed in recovered spectra shown in Appendix E).
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idea here is to try to identify from an independent method important time scales in the response so that they can be compared

against the spectrum in Fig. 9(b). For this analysis, we plot the global land carbon against its first time derivative (this is the

net land-atmosphere carbon flux). Using the 2×CO2 bgc experiment where the forcing is constant, the first time derivative

vanishes as the land carbon approaches a new equilibrium value. The rate at which the derivative changes can be associated500

to a time scale τi, which should show up with a large weight value qi in the spectrum. Interestingly, the plot shows that the

transient behaviour towards equilibrium develops approximately at two different rates: a higher rate from the starting point

until around 3520 PgC, and a lower rate from 3520 PgC onwards. To determine these rate values, we fitted a linear function

dC/dt= a+ bCbgc for each of these two ranges of the land carbon. Then, from each rate value b we computed a time scale by

τ =−1/b. The computed time scales taking one standard deviation into account are shown by the two ranges highlighted in505

Fig. 9(b). As seen, also this linear-regression procedure reveals a time scale structure dominated by two time scales. While the

shortest time-scale peak of the spectrum partially overlaps with the corresponding time-scale range from the linear-regression

plot, the longest time-scale peak is almost perfectly matched3. This result suggests that indeed the recovered spectrum reflects

internal characteristics of the global response of the land carbon cycle.

Checking the robustness of the spectrum via regional response functions510

The robustness of this detailed spectrum can be further checked by a different method. In the following, we test this robustness

by checking the consistency between the time scales of global and regional carbon responses.

To study regional carbon responses we considered two regions: Tropics and extra-tropics. Tropics were defined as the

region between latitudes 30° south and 30° north, and extra-tropics as the remaining part of the globe. We then determined

separately the linear response functions that characterize the land carbon response to NPP in the tropics and extra-tropics,515

defined respectively by

∆Cbgc,tr(t) =

t∫
0

χtr
NPP (t− s)∆NPP tr(s)ds+ ηtr(t), (22)

∆Cbgc,et(t) =

t∫
0

χet
NPP (t− s)∆NPP et(s)ds+ ηet(t). (23)

The data were taken once more from the 2×CO2 bgc experiment.

Before assessing the robustness of the spectrum, we check the consistency between the regional and global response func-520

tions. In this test, we show that the global response function χNPP can be reconstructed by combining χtrNPP and χetNPP . For

this purpose, we write the global land carbon as the sum of the land carbon in the tropics and extra-tropics:

∆Cbgc(t) = ∆Cbgc,tr(t) + ∆Cbgc,et(t). (24)

3A possible reason for the better matching at long time scales is that these time scales contribute to the response at short and long times, while contributions

at short time scales decay rapidly and therefore contribute only at short times. This gets clear by considering for example a response function χ(t) =

a1e−t/τ1 + a2e−t/τ2 , τ2 � τ1. While a2e−t/τ2 contributes toχ(t) at small and long times, a1e−t/τ1 contributes only at small times.
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(a) First approach taking CO2 as forcing
(1% bgc experiment)

(b) Third approach taking NPP as forcing
(2×CO2 bgc experiment)

(c) Gregory-type plot for land carbon

Figure 9. Spectra associated to χNPP derived with different resolutions and a Gregory-type plot to identify the time-scale structure of land

carbon. (a) Spectrum derived with the first approach (taking CO2 as forcing) from the 1% bgc experiment; (b) Spectrum derived with the third

approach (taking NPP as forcing) from the 2×CO2 bgc experiment; (c) Gregory-type plot of global land carbon against land-atmosphere

carbon flux. Dots are the data, with the color scale from white to black indicating the evolution from 1 to 140 years. Values of b indicate the

rate at which the time derivative of land carbon changes with respect to the land carbon itself. Ranges of time scales corresponding to each

rate accounting for one standard deviation are shown in subfigure (b).

Plugging Eqs. (17), (22) and (23) in Eq. (24) and recognizing that η(t) = ηtr(t) + ηet(t) gives

t∫
0

χNPP (t− s)∆NPP (s)ds=

t∫
0

χtr
NPP (t− s)∆NPP tr(s)ds+

t∫
0

χet
NPP (t− s)∆NPP et(s)ds. (25)525
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(a) First test: global eχNPP (b) Second test: global χβ

(c) Second test: global qβ (d) Regional decomposition of qβ (Eq. (28))

Figure 10. Investigation of the land carbon response in the tropics and extra-tropics and how the regional response functions combine to

the global response functions. The analysis is based on the 2×CO2 bgc experiment. (a) Laplace transform χ̃NPP (p) of global χNPP (t)

obtained directly from the global carbon response and from combining the tropical and extra-tropical response functions; (b) χβ(t) obtained

directly from the global carbon response and from combining the tropical and extra-tropical response functions; (c) As (b) but for qβ(τ); (d)

Decomposition of qβ(τ) into tropical and extra-tropical spectra (Eq. (31)). In (c) and (d) the dots and crosses indicate the computed values,

while the connecting lines are only inserted to guide the eye. For more details see text.

Applying a Laplace transform to both sides of Eq. (25) and reorganizing the resulting equation gives

χ̃NPP (p) =
χ̃trNPP (p) ˜∆NPP tr(p) + χ̃etNPP (p) ˜∆NPP et(p)

∆ÑPP (p)
. (26)

25



Therefore, the Laplace transformed χ̃NPP (p) can be obtained from combining the NPP forcings and the response functions

for the tropics and extra-tropics. Hence, if the response functions are correctly recovered by the RFI algorithm, Eq. (26) should

hold at least approximately. In order to check this, we computed the Laplace transforms analytically by approximating the NPP530

forcings by step functions (since we take the 2×CO2 bgc experiment), and using Eq. (5) for the response functions. Figure

10(a) shows the quality of the result. The small discrepancy between χ̃NPP (p) obtained from the global carbon response and

from combining the regional responses can be at least partially explained by the approximation error made to represent the

forcings by a step function.

We now check the robustness of the land carbon spectrum by combiningχtrNPP (t) andχetNPP (t) to obtainχβ(t) and thereby535

qβ(τ). To this end, we first obtain the tropical χtrβ (t) and extra-tropical χetβ (t) by applying Eq. (21):

χtr
β (t) =

∂NPP tr

∂Catm

∣∣∣
Catm=C0

atm

χtr
NPP (t), (27)

χet
β (t) =

∂NPP et

∂Catm

∣∣∣
Catm=C0

atm

χet
NPP (t). (28)

Note that because CO2 is well mixed, ∆Ctratm(t)≈∆Cetatm(t)≈∆Catm(t), so that, by characterizing the tropical and the

extra-tropical response to CO2, χtrβ (t) and χetβ (t) are describing the response to a regionally correct perturbation. Using the540

response functions obtained from Eqs. (27) and (28), one can now write Eq. (14) for global, tropical and extra-tropical carbon.

Plugging the result into Eq. (24) gives

t∫
0

χβ(t− s)∆Catm(s)ds=

t∫
0

[χtrβ (t− s) +χet
β (t− s)]∆Catm(s)ds. (29)

Hence, one can infer that

χβ(t) = χtr
β (t) +χet

β (t). (30)545

Therefore, the global response function χβ(t) can be obtained from χtr
β (t) and χetβ (t). But in addition, since χ(t) is given by

Eq. (5), Eq. (30) implies that one can also obtain the global spectrum qβ(τ) by combining the regional spectra:

qβ(τ) = qtrβ (τ) + qetβ (τ). (31)

Therefore, using the recovered response functions for tropical and extra-tropical carbon one can obtain the global response

function χβ and its associated spectrum qβ . Accordingly, in this test we check Eqs. (30) and (31). For the calculation of the550

derivatives in Eqs. (27) and (28) we fitted NPP tr =NPP tr(Catm) and NPP et =NPP et(Catm) once again by a polyno-

mial of order 6 (which obtained the best results for global NPP in Fig. 7(b)) and took the derivatives from the fits. For χβ(t)

we used the recovery with best quality from Fig. 7 (“NPP2×
pol6”). The spectra qβ(τ), qtrβ (τ) and qetβ (τ) are obtained by scaling

the spectra from χNPP (t), χtrNPP (t) and χetNPP (t) by the respective derivatives ∂NPP
∂Catm

∣∣∣
Catm=C0

atm

, ∂NPP
tr

∂Catm

∣∣∣
Catm=C0

atm

and

∂NPP et

∂Catm

∣∣∣
Catm=C0

atm

. Results are shown for χβ in Fig. 10(b) and for qβ in Fig. 10(c). As seen in Fig. 10(b), the reconstruction555

matches almost perfectly the values of χβ for times beyond about 20 years. Likewise, the spectrum qβ is almost perfectly
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reconstructed for time scales above 6 years, with a slight discrepancy between 15 and 25 years (see Fig. 10(c)). A larger dis-

agreement is seen below 20 years for χβ and below 6 years for qβ . One of the reasons is that only little information is available

for time scales smaller than 1 year because this is the time step taken for the data. However, Appendix D shows that time scales

much shorter than the time step affect only χ(0). The main reason for the disagreement is that high frequencies (and thus small560

time scales) are the most problematic to recover due to the ill-posedness of the problem that obscures the signal particularly at

high frequencies.

Despite the disagreement at small time scales, Figs. 10(b) and (c) add confidence that: 1) The response functions for global,

tropical and extra-tropical carbon can be trusted over mid-to-long time scales (Fig. 10(b)); and 2) the two-peak spectrum

obtained for global land carbon indeed characterizes the response, since its computation from two independent approaches565

(combining regional spectra in Fig. 10(c) and the Gregory-type plot in Fig. 9(c)) yield similar results with characteristic time

scales matching the peaks of the spectrum.

Investigating the two-peak structure of the spectrum

The reasons for the two-peak structure of the land carbon spectrum are conceivable. In principle, one possibility could be that

the short time scales reflect the carbon dynamics in the tropics, a region with higher temperatures and thus larger heterotrophic570

respiration rates (see e.g. Raich and Potter, 1995), while the long time scales may originate from the carbon dynamics in the

extra-tropics, where respiration rates are smaller due to lower temperatures. This hypothesis may be checked by examining

Fig. 10(d), which shows the contribution from the tropics and the extra-tropics to the land carbon spectrum (Eq. (31)). But as

seen, the two peaks arise both in the tropical and in the extra-tropical spectrum, so that one cannot attribute each peak to a

particular region. Therefore, this cannot be the explanation.575

An alternative hypothesis is that the different peak time scales originate from the very different characteristic time scales of

functionally different elements in the land carbon cycle such as leaves, wood, litter and soil. In the following we investigate

whether this hypothesis can explain the two-peak structure.

For this purpose, we split the land carbon pools of the MPI-ESM into two groups (see Fig. 11). In the first group are the

pools whose dynamics is governed by fast processes such as shedding and decomposition of leaves, thus the pools that respond580

at short time scales. These are the pools representing non-woody tissues in living vegetation (leaves, fine roots, sugars, and

starches) and the associated litter. In the second group are the pools with dynamics determined by slow processes such as the

decomposition of woody plant parts, hence the pools that respond at long time scales. These are the pools representing the

wood in stems and coarse roots, the associated litter pools, and the soil carbon (humus).

Now, we separate the land carbon spectrum into contributions arising from each of these two groups. The land carbon585

response can be described as the sum of the collective responses from the pools with fast and those with slow dynamics:

∆Cbgc(t) = ∆Cbgc,f (t) + ∆Cbgc,s(t). (32)
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In the linear response framework, the response of each term to NPP is given by

t∫
0

χNPP (t− s)∆NPP (s)ds=

t∫
0

χf
NPP (t− s)∆NPP (s)ds+

t∫
0

χs
NPP (t− s)∆NPP (s)ds, (33)

which implies590

χNPP (t) = χf
NPP (t) +χs

NPP (t). (34)

Finally, assuming that each response function in Eq. (34) is described by Eq. (5), we obtain the separation of the land carbon

spectrum in terms of the contribution from each pool group:

qNPP (τ) = qfNPP (τ) + qsNPP (τ). (35)

Hence, if our hypothesis is correct, then the peak at short time scales should be explained by qfNPP and the peak at long time595

scales should be explained by qsNPP .

Figure 11. Simplified pool scheme of the land carbon cycle in the MPI-ESM (see Appendix A) with pools split into two groups according to

the characteristic time scales underlying their dynamics.

To proceed with the analysis we now need to obtain the spectra qfNPP and qsNPP . When investigating the tropical and

extra-tropical land carbon, we obtained each regional spectrum individually by applying the RFI algorithm to the data from the
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tropical and extra-tropical responses. In principle one could proceed in the same way to separate contributions from the two

pool groups, but, as will get clear below, this approach introduces slight inconsistencies between the separate recoveries that600

makes a quantitative comparison of the two contributions less reliable than the alternative method that we use in the following

to separate the fast and slow components of qNPP .

The idea of this alternative approach is the following. Numerically the land carbon spectrum is given by the regularized

solution (6), i.e.

qNPP,λ =

M−1∑
i=0

σ2
i

σ2
i +λ

ui •∆Cbgc

σi
vi, (36)605

where the regularization parameter λ is determined by the RFI algorithm. The land carbon response ∆Cbgc is given by the

sum (32) of the responses from the pools with fast and those with slow dynamics. Entering Eq. (32) into Eq. (36) yields

qNPP,λ =

M−1∑
i=0

σ2
i

σ2
i +λ

ui • (∆Cbgc,f + ∆Cbgc,s)

σi
vi = qfNPP,λ + qsNPP,λ. (37)

Therefore, by deriving the spectra qfNPP,λ and qsNPP,λ using the same regularization parameter λ employed for the land carbon

spectrum qNPP,λ, we can in principle accurately reconstruct qNPP,λ from qfNPP,λ and qsNPP,λ.610

By obtaining qfNPP,λ and qsNPP,λ in this way and combining them via Eq. (35) we show that indeed qNPP,λ can be very

accurately reconstructed (Fig. 12(a)). This approach leads as well to an almost perfect reconstruction of the response function

χNPP via Eq. (34), as shown in Fig. 12(b). Compared to our previous approach employed to reconstruct the global spectrum

from the regional spectra (Eq. (31)), this alternative approach gives a more accurate reconstruction because it takes the same

regularization parameter λ for all qNPP,λ, qfNPP,λ, and qsNPP,λ, in contrast to the previous approach where λ was separately615

calculated by the RFI algorithm for each spectrum in Eq. (31).

Now, the question is whether the spectra qfNPP and qsNPP can indeed explain each peak in the land carbon spectrum qNPP .

To check this, in Fig. 12(c) we plot the three spectra. As seen, clearly the peak at short time scales of the land carbon spectrum

arises mostly from the large peak in the fast-dynamics spectrum, while the peak at long time scales follows closely the large

peak in the slow-dynamics spectrum. This result thus indicates that our hypothesis is correct, so that indeed the two-peak620

spectrum originates from the different characteristic time scales of functionally different elements in the land carbon cycle.

More insight into the dynamics of the land carbon can be gained by analyzing the different contributions to the response

function χNPP shown in Figs. 12(d) and 12(e). Figure 12(d) shows the contribution of the pools with fast dynamics χfNPP
and that of the pools with slow dynamics χsNPP . We see that χfNPP only dominates the response at times smaller than about

2 years. Further, for times larger than 25 years only χsNPP contributes to the response. In Fig. 12(e) we further separate the625

response functions into the contributions from the individual pools, i.e.

χf
NPP (t) = χnwt

NPP (t) +χnwl
NPP (t), (38)

χs
NPP (t) = χwt

NPP (t) +χwl
NPP (t) +χh

NPP (t), (39)
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(a) Land carbon spectrum qNPP (b) Response function χNPP

(c) Separation of qNPP into qƒNPP and qs
NPP

(d) Separation of χNPP into χƒ
NPP and χs

NPP

(e) Separation of χNPP into contributions from
individual pools

Figure 12. Investigation of the contribution from the pools with fast dynamics (non-woody pools) and those with slow dynamics (woody

and humus pools) to the land carbon spectrum. The analysis is based on the 2×CO2 bgc experiment. (a) Land carbon spectrum qNPP and

its reconstruction via Eq. (35) from the fast and slow components; (b) response function χNPP and its reconstruction via Eq. (34) from the

response functions for the fast and the slow components; (c) separation of spectrum qNPP into qfNPP and qsNPP ; (d) separation of response

function χNPP into χfNPP and χsNPP ; (e) separation of χNPP into contributions from the individual pools. For more details see text.
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where χnwtNPP is the response function for the non-woody tissues in living vegetation, χnwlNPP for non-woody litter, χwtNPP for

woody tissues in living vegetation, χwlNPP for woody litter, and χh
NPP for the humus pool. This more detailed separation630

shows that for long times the humus pool starts to dominate the response so that at times larger than 100 years it gives the only

contribution.

6 Summary, discussion and outlook

Although the γ and β values introduced by Friedlingstein et al. (2003) provide a useful framework for model intercomparison,

they only characterize the sensitivity of a model for a particular perturbation scenario. Instead, one would like to characterize635

the sensitivity as an independent property of the carbon cycle. The dependence of γ and β on the considered scenario arises

because of the internal memory of the system, i.e. because of the dependence of the response on past values of the perturbation.

When the memory is taken into account, linear response functions arise as natural generalization of the γ and β sensitivities.

But a fundamental step for applying this generalized framework is to identify the appropriate linear response functions. In Part

I, we developed a method to identify linear response functions from data using only information from an arbitrary perturbation640

experiment and a control simulation. In that study, the robustness of the method in the presence of noise and nonlinearity was

demonstrated in applications to data from perturbation experiments performed with a toy model.

Generalized land carbon sensitivities in the MPI-ESM

In the present study, we demonstrated that our RFI method can as well be employed to derive response functions from C4MIP

data. Here, we identified for the MPI-ESM, using data from standard 1% experiments, the land carbon generalized sensitivities645

χγ and χβ , i.e. the linear response functions that generalize the γ- and β-sensitivities for land carbon. The robustness of the

identified generalized sensitivities was demonstrated by their ability to predict the response from experiments not used for the

identification (sections 3 and 4). With the aid of additional experiments, we estimated the linear regime that gives the range of

forcing strengths for which each generalized sensitivity can predict model responses. For χγ , results indicate a linear response

at least until the end of the 1% experiment, corresponding to temperature perturbations of around 6 K. For χβ , the estimate is650

for CO2 perturbation strengths up to 100 ppm. In addition, we analyzed different approaches that may be employed to improve

the quality of the recovery of the response functions. For χγ , taking the response from a 2×CO2 experiment demonstrated to

give smaller prediction errors for every response evaluated, suggesting that this type of experiment gives also a better recovery.

For χβ , we used the knowledge of the relationship between NPP and CO2 to account for some of the nonlinearities
:::
the

::::::::
estimated

:::::
linear

::::::
regime

::
of

::::
only

::::
100

::::
ppm

::::::::
indicates

:::
that

:::
for

:::::
larger

::::::
forcing

::::::::
strengths

::::::::::::
nonlinearities

:::
are

::::::
present

:
in the response .655

We found that nonlinearities can to a large extent be explained by the nonlinear relationship between NPP and CO2: By
:::
that

:::::::::
deteriorate

:::
the

:::::::
recovery

::
of

::::
χβ .

:::
To

:::::::::
circumvent

:::::
such

:::::::::::
nonlinearities

::::
and

::::
thus

:::::::
improve

:::
the

::::::::
recovery,

:::
we

::::::::
identified

:::
χβ:::

by using

NPP instead of CO2 as forcing.
:::
We

::::::
found

:::
that

:::
by

:::
this

::::::::
approach an approximately linear response is found over the whole 1%

experiment, i.e. until CO2 perturbations of about 850 ppm. In addition, this approach
::::
This

:::::
result

:::::::
suggests

:::
that

::::::::::::
nonlinearities

::
in

::
the

::::::::::::::
biogeochemical

:::::::
response

::
of

::::
land

::::::
carbon

::::
can

::
to

:
a
::::
large

::::::
extent

::
be

::::::::
explained

:::
by

:::
the

::::::::
nonlinear

::::::::::
relationship

:::::::
between

::::
NPP

::::
and660

31



::::
CO2.

::::
This

::::::::
approach

::
of

:::::
using

:::::
NPP

::
as

::::::
forcing

::::::
instead

:::
of

::::
CO2:

yielded the best recovery for χβ . Evidences for this conclusion

are the quality of its prediction and the detailed spectrum it yields for the response.

Spectrum of land carbon time scales

Obtaining the spectrum of the response is an additional advantage of the RFI method. Most methods in the literature either

recover χ(t) pointwise – and therefore do not give the spectrum –, or try to fit it with few exponents without accounting665

for ill-posedness, which does not give reliable results for the spectrum (see e.g. the famous example from Lanczos, 1956,

p. 272). In the application to the MPI-ESM, obtaining the spectrum has proven advantageous for two reasons. First, it allows

to formally extend the recovery of the response function beyond the time range of the length of the underlying time series.

Results from such an extension (Figs. 8(a) and (b)) demonstrated that the recovered response function contains information on

times reasonably longer than the time series length used for the recovery.670

Second, the spectrum gives valuable insight into the internal dynamics of the system. In particular, for our application the

spectrum gives the most relevant time scales for the land carbon response on a global or regional level. The spectrum associated

with the best recovery of χβ showed two peak time scales for the global response: One around 4 and another around 100 years

(section 5).

To obtain evidence for the robustness of this result, we showed that it is possible to reconstruct the global spectrum from675

the recovered tropical and extra-tropical spectra (see Fig. 10(c)), and that similar time scale ranges can be obtained via a

Gregory-type approach (see Fig. 9(b) and (c)). Further, we demonstrated that the recovered tropical and extra-tropical response

functions combine to the identified global response functions, indicating consistency between regional and global recovery

(see Fig. 10(a) and (b)).

We then proceeded to investigate the reason for the two-peak structure of the spectrum. To this end, we separated the land680

carbon response into the response from pools with fast dynamics (non-woody vegetation tissues and associated litter) and the

response from pools with slow dynamics (woody vegetation tissues, woody litter, and humus). By analyzing the spectrum

for each of these responses we showed that the peak at short time scales of the land carbon spectrum arises mostly from the

contribution of the pools with fast dynamics, while the peak at long time scales follows closely the contribution from the pools

with slow dynamics. This investigation therefore suggests that the two-peak spectrum results from the different contributions685

of functionally different elements of the land carbon cycle. Analysis of the response functions showed that the pools with

fast dynamics dominate the land carbon response only for times below 2 years. Further, for times larger than 25 years only

the pools with slow dynamics contribute to the response, and from 100 years onwards the contribution comes solely from the

humus pool.

We remark that results for the spectrum should be always interpreted with care, since deriving the spectrum may be a more690

complicated problem than deriving the response function. This is partially explained by the degree of ill-posedness of each

problem. In deriving the response function from Eq. (3), one is solving a deconvolution problem, which is known to be ill-

posed because of the smoothing property of the convolution operator (e.g., Landl et al., 1991; Bertero et al., 1995; Hansen,

2002). On the other hand, by deriving the spectrum from Eqs. (3) and (5), one is solving not only a deconvolution (Eq. (3))
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but also a type of inverse Laplace transform (to obtain the spectrum from the response function (5)), which is known to be695

extremely ill-posed because of the smoothing property of the Laplace operator (e.g., McWhirter and Pike, 1978; Istratov and

Vyvenko, 1999). As a result, deriving q(τ) from the data ∆Y (t) involves two smoothing operations, namely the Laplace

transform and convolution, whereas deriving χ(t) from ∆Y (t) involves only convolution, so that the problem of finding q(τ)

may be more ill-posed than that of finding χ(t). This difficulty was exemplified by results from appendices D and E, which

discuss cases where the response function can be perfectly recovered but the recovered spectrum is relatively poor.700

Another worthwhile comment is that, in comparison to the widely used assumption that the spectrum can be described by

only a few exponents (Maier-Reimer and Hasselmann, 1987; Enting and Mansbridge, 1987; Enting, 1990; Joos et al., 1996;

Pongratz et al., 2011; Joos et al., 2013; Colbourn et al., 2015; Lord et al., 2016), our assumption of a continuous spectrum

(ansatz (5)) has some advantages. First, by our approach one circumvents the complication of determining the number of

exponents. This leads to a linear problem and thereby to a more transparent method (see Part I, section 3.1). Second, our ansatz705

better describes the expectation that variables integrated over many different climate zones are composed by a large range of

time scales. If, in contrast to these expectations, the underlying spectrum has only few time scales, results in Appendix E show

that our approach may still yield a reasonable recovery.

Outlook

In this study we investigated the generalized γ- and β-sensitivities that solve the scenario dependence problem noted e.g. by710

Gregory et al. (2009) and Arora et al. (2013) to linear order in the perturbation – an approach that can in principle be extended to

higher orders (Ruelle, 1998; Lucarini, 2009). By demonstrating how to successfully recover generalized sensitivities, this study

paves the way for their future application in studying the dynamics of the combined carbon-climate system in different Earth

System Models. Applying our RFI method, we showed for the MPI-ESM that one can obtain these sensitivities from standard

C4MIP 1% simulations. In addition, the estimates for the linear regime obtained by employing the recovered sensitivities to715

predict additional experiments give a hint into the range of perturbation strengths for which this generalized framework might

be valid as well for other models, for which data from additional experiments necessary to determine this linear regime are not

available. Since the process descriptions of the land carbon cycle are quite similar in different models, it may be assumed that

the linear range estimates obtained for MPI-ESM in the present study apply also to other models. Considering the radiative

land carbon response, thereby also for other models their χγ should fully characterize the response to temperature up to at least720

6K. As a consequence, in models with temperature response similar or weaker than the MPI-ESM, χγ can as for the MPI-

ESM be recovered taking the full time series from the 1% experiment. Analogously, considering the generalized sensitivity

χβ , the experience presented in the present study for the MPI-ESM suggests that also for other models the response to CO2

perturbations is linear up to 100 ppm. As a consequence, χβ can be recovered taking data from the 1% experiment for the

first 30 years. Alternatively, as discussed in section 4, the time range for the recovery of χβ can be extended if one takes725

as forcing NPP instead of CO2 (third approach investigated in section 4). For models with NPP response similar or weaker

than the MPI-ESM, by this approach χβ can be recovered taking the full time series from the 1% experiment. Still, as the

relatively successful predictions in Fig. 8(b) suggest, even if χβ is recovered by taking CO2 as forcing for only 30 years of the
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1% experiment (first approach investigated in section 4), it may still contain sufficient information to predict responses of the

model for a time range of 140 years.730

::
In

:::
the

::::::
present

:::::::::::
investigation

:::
we

::::
have

::::::
studied

::::::
rather

:::::::
idealized

::::::::::
simulations

::::::
where

::::
only

:::::::::::
perturbations

::
in

::::::::::
atmospheric

:::::
CO2 :::
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:::::
acting

::
on

:::
the

:::::::
climate

::::::
system.

::
A

:::::::
possible

::::
next

::::
step

::::::
towards

:::
the

::::::::::
application

::
of

:::
our

:::::::::
sensitivity

::::::
analysis

::
to
:::::
more

:::::::
realistic

::::::::
scenarios

::::
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:::
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::
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:::::::
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::::::::
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:::::::::::
experiments

:::::
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::::
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:::::
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:::::::::::
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::::
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::
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:::::::
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:::::::
change

:::
and

::::::::
non-CO2::::::::::

greenhouse

::::
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::::
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:::::::
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::
To

::::
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::::
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::
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:::::::::::
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::
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::::::::
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:::::::
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:::::::::
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::::::
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::
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::::::::::
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::
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::::
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::::
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::::::
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:::
the

::::::::
response

::
of

:::
the

::::::
system

::
to

::::
each

::::::::::
perturbation

::::::::::::::::::::::::
(as e.g. in Bódai et al., 2020).

:::::::
Another

:::::::
possible

:::::::::
extension

::
of

:::
our

:::::
study735

::::
could

:::
be

::
to

::::::
employ

::::::::
response

::::::::
functions

::
to

:::::
study

:::
the

::::::
spatial

::::::::
dynamics

::
of

:::
the

::::::
carbon

:::::
cycle.

:::
We

::::
have

::::::
shown

:
a
::::::
simple

::::::::
example

::
of

:::
this

::::
type

::
of

:::::::::
application

:::
by

::::::
looking

::
at
:::
the

::::::::
responses

:::
for

::::::
tropics

::::
and

:::::::::::
extra-tropics,

:::
but

::
in

::
the

::::::::
literature

::::
one

::::
finds

::::
also

::::::::::
applications

::
to

::::
study

:::
the

::::::::
response

::::::::::
latitudinally

::::::::
resolved

:::
and

::::
even

::::::::
globally

::
at

:::::::
grid-cell

::::
level

::::::::::
(Thompson

::::
and

:::::::::
Randerson,

:::::
1999;

::::::::
Lucarini

::
et

::
al.,

::::::
2017).

:

But in addition to the carbon-cycle sensitivities considered here, our RFI method may be applied to investigate different740

aspects of climate and the carbon cycle. Ragone et al. (2016) have shown how the linear response framework generalizes

the concept of equilibrium climate sensitivity (ECS) and transient climate response (TCR). Originally, ECS is defined as the

response of global temperature to an instantaneous doubling of atmospheric CO2 from its pre-industrial value, while TCR is

the temperature response to a doubling of CO2 after a 1% per year increase. Within the generalized framework, the ECS and

TCR are shown to be only particular values encoded in a linear response function.745

Linear response functions can also be useful in studying “committed changes” (Wigley, 2005; Plattner et al., 2008; Jones

et al., 2009; Mauritsen and Pincus, 2017). As shown by Ragone et al. (2016), the concept of climate inertia (closely related

to commited changes) can be explicitly described within the linear response framework. Since the linear response function

describes the delayed response of the system to a perturbation, by deriving this function one has at hand also the information

of how the system reacts once the perturbation – for instance CO2 emissions – ceases.750

Further, linear response functions can help understanding the concept of “emergent constraints” (Nijsse and Dijkstra, 2018).

Recent studies have shown how to obtain from response functions derived from conceptual models emergent constraints for

the real Earth System (Cox et al., 2018; Williamson et al., 2019). With the method developed here, in principle such type of

analyses may be carried out employing instead response functions derived from Earth System Models.

As a result of accounting for the memory of the system, the linear response function gives information on the strength of755

the response at all internal time scales covered by the time series underlying its recovery and probably even slightly longer

(see Fig. 8(b)). Using our method, in principle one can even compare the spectra of time scales from models to those from

observations (e.g., Forney and Rothman, 2012b). The method presented here may also be applied to analyze changes in age and

transit time distributions of carbon in different models, since these distributions can be derived directly from linear response

functions (Thompson and Randerson, 1999).760

In all of the mentioned examples, the generality of the RFI method allows for the derivation of the appropriate linear

response functions for any model by taking only data from an arbitrary perturbation experiment and a control experiment.

Such generality opens the possibility of combining the linear response framework, which has been gaining increasing attention
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due its wide applicability in climate science (e.g., Lucarini, 2009; Lucarini and Sarno, 2011; Lucarini et al., 2014; Ragone

et al., 2016; Lucarini et al., 2017; Aengenheyster et al., 2018; Ghil and Lucarini, 2020; Lembo et al., 2020; Bódai et al., 2020),765

with model intercomparison studies, hopefully leading to a deeper understanding of critical differences encountered across

models.

Appendix A: The Max Planck Institute for Meteorology Earth System Model

In this appendix we give a brief description of the model employed in this study: the Max Planck Institute for Meteorology

Earth System Model (MPI-ESM; for more details see Giorgetta et al., 2013). The MPI-ESM consists of the coupled general770

circulation models ECHAM6 (Stevens et al., 2013) for atmosphere, at T63/1.9◦ horizontal resolution with 47 vertical levels,

and MPIOM (Jungclaus et al., 2013) for ocean, with a nominal resolution of 1.5◦ with 40 vertical levels. In addition, the MPI-

ESM includes the subsystems JSBACH (Reick et al., 2013; Schneck et al., 2013), a land and vegetation model, and the marine

biogeochemistry model HAMOCC (Ilyina et al., 2013). JSBACH and HAMOCC describe respectively the land and ocean

carbon cycle in the MPI-ESM. Thus, of particular interest for our study is the subsystem JSBACH. JSBACH simulates fluxes775

of energy, water, momentum and CO2 between the land surface and atmosphere. To represent subgrid scale heterogeneity, each

grid cell of the land surface is divided into tiles, being each tile associated with a vegetation type (or “plant functional type”).

The photosynthesis scheme follows Farquhar et al. (1980) and Collatz et al. (1992). The land carbon structure is divided into

three vegetation pools (living tissues, carbohydrate and starch storage, and wood), four aboveground and belowground pools

for litter from woody and non-woody parts and a pool for soil carbon (humus). In addition, JSBACH includes a dynamic780

vegetation scheme that allows for simulating changes in vegetation cover driven by climate.

Appendix B: Generalization of climate-carbon cycle sensitivities

In this appendix we show that indeed linear response functions generalize Friedlingstein α-β-γ sensitivities. We explain this

by taking the β-sensitivity of land carbon uptake as an example. The calculation of β is based on an experiment where the

CO2-rise acts only biogeochemically, i.e. concerning the land carbon via the photosynthesis of plants. Calling ∆Cbgc(t) the785

difference in land carbon between the perturbed and the control simulation, β is defined as

β(t) =
∆Cbgc(t)

∆Catm(t)
, ∆Catm(t) = C0

atm(1.01t− 1), (B1)

where t is the time in years elapsed since the perturbation was switched on, and ∆Catm(t) is the change in CO2 concentration

when increasing atmospheric CO2 each year by 1% starting from its pre-industrial value C0
atm of the control simulation. In the

framework of linear response, one can understand ∆Catm(t) as perturbation and ∆Cbgc(t) as response so that the response790

formula reads

∆Cbgc(t) =

t∫
0

χβ(t− s)∆Catm(s)ds. (B2)
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This equation defines χβ(t) as the linear response function describing the biogeochemical response of land carbon to any

type of CO2 perturbation ∆Catm(t), as long as the perturbation is sufficiently weak. Employing in particular the percent

perturbation from Eq. (B1), β(t) is thus obtained from the linear response function χβ(t) as795

β(t) =
1

∆Catm(t)

t∫
0

χβ(t− s)∆Catm(s)ds. (B3)

In this way, χβ(t) can be understood as a generalization of β(t), that gives not only the response to percent-type perturbations,

but also to other perturbations. Accordingly, χβ(t) characterizes system properties independent of the type of perturbation, in

contrast to β(t).

Appendix C: Monotonicity ofχβ(t)800

In this appendix it is shown that the response function χβ(t) is monotonic, as claimed in subsection 2.1. The argument here is

actually more general, namely that the response function to changes in the input of the system (for land carbon, the Net Primary

Production) is monotonic. Since χβ(t) is related to χNPP (t) by Eq. (21), the monotonicity property transfers to χβ(t).

Let the linear response of land carbon be described by Eq. (17):

∆Cbgc(t) =

t∫
0

χNPP (t− s)∆NPP (s)ds, (C1)805

where for simplicity we assume that η(t) is small so that it can be neglected. If NPP is a Dirac delta function ∆NPP (t) = δ(t),

then the response is given by ∆Cbgc(t) = χNPP (t). Therefore we can interpret the response function χNPP (t) as follows: If

a certain number of carbon atoms enter the biosphere at time t = 0, the response function χNPP (t) gives the fraction of these

atoms still left in the biosphere at time t.

Let p(t)dt be the probability that an atom that entered the system at time t = 0 will leave it at time t. Then810

P (t) :=

t∫
0

p(s)ds (C2)

is the probability that an atom that entered the system at time t = 0 will leave the system until time t. Hence from the interpre-

tation of χNPP (t) above

P (t) = 1−χNPP (t). (C3)

From Eqs. (C2) and (C3) it follows that815

p(t) =− d

dt
χNPP (t). (C4)

But since the probability density function p(t)≥ 0 ∀ t, then d
dt
χNPP (t)≤ 0 ∀ t, i.e. χNPP (t) decays monotonically towards

zero. Therefore, because χβ(t) is simply a scaling of χNPP (t) given by Eq. (21), χβ(t) also decays monotonically towards

zero.
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Appendix D: Derivation of spectrum andχ(t) when the response contains time scales much longer or much shorter820

than the time scales covered by data

Time scales much longer or much shorter than the time scales covered by data cannot be correctly recovered in the spectrum.

Nevertheless, in this appendix we show that the wrong recovery of these extreme time scales does not strongly affect the

recovery of χ(t). These considerations add to the footnote remark in section 5 where we claim that such extreme time scales

can be safely ignored.825

First, we consider the case where the response has time scales much longer than those covered by data. Let χ at time T be

given by

χ(T ) =

∞∫
−∞

q(τ)e−T/τd log10 τ. (D1)

Let T be the time series length and assume that q(τ) has significant contributions at time scales τ ≥ τL with τL >> T . Then

(D1) can be written as830

χ(T )≈
log10 τL∫
−∞

q(τ)e−T/τd log10 τ +

∞∫
log10 τL

q(τ)d log10 τ, (D2)

where e−T/τ ≈ 1 was used in the second integral because τL >> T . Thereby the second term in the right-hand side of (D2) is

just a constant offset

∞∫
log10 τL

q(τ)d log10 τ = k, k constant. (D3)

Hence, for internal time scales much longer than the time series length T , the correct recovery of the individual q(τ) values is835

not relevant for the derivation of χ(t), as long as those values combine to the correct offset in Eq. (D3). Note that because this

argument is based on the condition τL >> T , it applies not only to χ(T ) but also to all χ(t), t < T .

Now, we consider the case where the response has time scales much smaller than those covered by data. Let t=: i∆t, where

∆t is the time step and i ∈ IN . If q(τ) has significant contributions at time scales τ ≤ τS with τS <<∆t, then for i > 0 Eq. (5)

can be written as840

χ(i∆t)≈
∞∫

log10 τS

q(τ)e−i∆t/τd log10 τ, (D4)

where e−i∆t/τ ≈ 0 was used for τ < τS because τS <<∆t. As a result, values of q(τ) are irrelevant to χ(t) for almost every

i. The only exception is i= 0, where one has

χ(0) =

∞∫
−∞

q(τ)d log10 τ. (D5)
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Hence, for time scales much shorter than the time step ∆t, the correct recovery of the individual q(τ) values is not relevant for845

the derivation of χ(t) as long as those values combine with the other recovered values of q(τ) to the correct χ(0) in Eq. (D5).

As shown by Eq. (D4), if they combine to the wrong value, only the recovery of χ(0) is affected.

Therefore, in principle χ(t) can be correctly recovered also when the response contains much longer and much shorter

time scales than those covered by data, as long as the recovered q(τ) values at these extreme time scales combine to the

correct values of the offset in Eq. (D3) and χ(0) in Eq. (D5). In Fig. D1 we show an example of recovery of the spectrum850

and response function in such a case. For the recovery we took data with SNR= 6× 104 from the 1% experiment with our

toy model (see Part I). As seen, the spectrum can only be partially recovered (Fig. D1(a)). The recovery wrongly estimates

spectral contributions at time scales longer and shorter than those covered by data, i.e. time scales larger than the time series

length T = 140 and smaller than the time step ∆t = 1. In addition, the existence of such spectral contributions at time scales

not covered by data seems to also deteriorate the recovery of the spectrum at the time scales actually covered by data: In the855

region 1 < τ < 140, despite the high SNR the recovered spectrum matches the true spectrum only partially. This is probably

a compensation effect where wrong information shows up in the recovered spectrum to compensate missing information on

the response function. For instance, to obtain the correct χ(0), only Eq. (D5) is needed but not the correct recovery of all time

scales. The same goes for obtaining the correct offset: Only Eq. (D3) is needed but not the correct recovery of all time scales

from τL onwards.860

Figure D1(b) shows the quality of the recovery of the response function χ(t). The recovered q(τ) values at long time scales,

although individually wrong, combine to the correct offset in (D3): The “height” of the recovered response function matches

almost perfectly that of the true response function (compare e.g. the value at t = 140 for the true and recovered response

function). On the other hand, χ(0) is not perfectly recovered (compare the difference at t = 0 between the true and recovered

response functions), meaning that the sum in Eq. (D5) is incorrect. Nevertheless, the recovered value is still reasonably close865

to the true value. Except for this small error at χ(0), the overall recovery of the response function is almost perfect.

Therefore, as claimed in section 5, this numerical example shows that even though very long and very short time scales

cannot be correctly recovered in the spectrum, they do not strongly influence the recovery of χ(t). This is because they only

influence the offset in Eq. (D3) and χ(0) in Eq. (D5), and those two values seem to be reasonably well recovered numerically.

Appendix E: Recovering a discrete spectrum q(τ )870

This appendix gives numerical evidence for the claim in section 6 that although the RFI method assumes that the response has

a continuous spectrum of many time scales, for sufficiently good signal-to-noise ratio the recovered continuous spectrum may

also give a reasonable approximation to an underlying discrete spectrum of only few time scales.

Before we give numerical examples, one must first understand the limitations of the recovery of the spectrum. As explained in

Part I, the spectrum q(τ) can only be completely recovered (for sufficiently high SNR) if it is dominated by the first components875

of expansion (6). By Hansen’s observation (Hansen, 1989, 1990, see Part I), this means that the spectrum must be dominated

by low frequencies, i.e. it must be to some extent smooth. However, an underlying discrete spectrum implies a spectrum that
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(a) Spectrum (b) Response function

Figure D1. Recovery of spectrum and χ(t) taking a true spectrum with contributions at time scales much longer and much shorter than

the time scales covered by data. For the recovery, data with SNR= 6× 104 from the 1% experiment with the toy model (see Part I) was

taken (times series length T = 140 and time step ∆t = 1). RFI parameters are taken as in Part I except for M = 140. The recovered spectrum

matches only partially the true spectrum. Nevertheless, the response function χ(t) is almost perfectly recovered.

is instead given by “spikes” in the time scale domain. Such “spikes” can only be described by high-frequency components of

Eq. (6). Therefore, a discrete spectrum can be only partially recovered. To obtain a sufficiently good recovery, the solution (6)

must contain many components. Hence, the data must have a sufficiently high signal-to-noise ratio. The explanation for this880

conclusion is the following: If many components in Eq. (6) must be recovered, the regularization parameter must be small; but

a small regularization parameter requires a small noise level (see Theorem 3.3.1 in Groetsch, 1984).

With this in mind, we show in Figs. E1–E9 that at least smooth approximations to an underlying discrete spectrum can be

obtained. For the results we took data with SNR∼O(104)−O(105) from different experiments performed with the toy model

described in Part I. Since the aim is to recover discrete spectra, a larger number of time scales M gives a better resolution.885

Therefore, we take M = 140. All other RFI parameters are taken according to Part I. Also, monotonicity needed not to be

taken into account (step 6 of Fig. 1 in Part I).

Figures E1–E6 show results for taking data from a 1% experiment and Figs. E7–E9 from a 2×f0 experiment. We start

with one time scale τ = 37 (Fig. E1). As expected, the spike cannot be perfectly recovered, but the recovery gives a smooth

approximation to it, with peak coinciding approximately with the “true” value. On the other hand, the response function is890

almost perfectly recovered. This is a result of the ill-posedness of Eq. (5): In the same way that high frequencies of the

spectrum are suppressed in the data by Eq. (3), they are also suppressed in the response function by Eq. (5) (see Groetsch,

1984, section 1.1). Therefore, both the true spectrum and its smooth recovery result in practically the same response function.

In Fig. E2, the true spectrum has two time scales, this time at τ = 7 and τ = 100. Similarly to Fig. E1, the time scales are

recovered by a smooth approximation with peaks approximately at the true values. Also similarly to Fig. E1, the response895

function is almost perfectly recovered. A similar result is obtained if we take time scales that are a bit closer together, as seen

in Fig. E3 (τ = 7 and τ = 37). Nevertheless, now the peak for the longer time scale is a worse approximation, and there is a

slightly pronounced negative peak that does not reflect the true spectrum.
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In Fig. E4, we take instead time scales τ = 37 and τ = 100. Here, the resolution is not sufficiently high for a recovery

of each time scale separately. Instead, the recovered spectrum shows only one mode that spans both spikes. Once more the900

response function can be almost perfectly recovered. Taking the three time scales τ = 7, τ = 37 and τ = 100 (Fig. E5), the

smooth recovery shows only two modes: One at τ = 7 with peak almost coinciding with the true value, and another with peak

in between τ = 37 and τ = 100. If one in addition considers a fourth time scale τ = 1 (Fig. E6), once more the recovery shows

only two modes. But now the mode at shorter time scales displays a longer tail that spans both τ = 7 and τ = 1.

The situation changes when we take for the recovery the 2×CO2 experiment. According to the Laplace transform analysis905

in section 3, data from this experiment should give more information on small time scales. Figure E7 shows that this is indeed

the case: In contrast to the recovery from Fig. E6, now the time scale τ = 1 is also recovered. On the other hand, now there are

two small negative peaks that do not reflect information from the true spectrum. Also, the resolution is not sufficiently good to

recover separately the two peaks at long time scales. However, if the longest time scale is increased from τ = 100 to τ = 228

(Fig. E8), a small peak can be seen around this time scale. In addition, now the peak at τ = 37 matches slightly better the910

true value. In Fig. E9 we add another time scale, now at τ = 518. We see that although this time scale cannot be recovered

separately from τ = 228, the peak at long time scales is more pronounced. This is in contrast to the fact that the time series

used for the recovery reaches only t= 140, indicating that the method can recover information on time scales even longer than

the time series length. This is in agreement with the conclusions from section 4, where in one case χβ(t) was recovered from

a time series with only 30 years but could recover responses for t= 140 years (see Fig. 8(b)).915

(a) Spectrum (b) Response function

Figure E1. Spectrum qλ and response function χ(t) recovered from a 1% experiment performed with the toy model described in Part I

taking an underlying discrete spectrum with one time scale τ = 37. The data were taken with SNR∼O(104)−O(105).
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(a) Spectrum (b) Response function

Figure E2. Spectrum qλ and response function χ(t) recovered from a 1% experiment performed with the toy model described in Part I

taking an underlying discrete spectrum with two time scales τ = 7, τ = 100. The data were taken with SNR∼O(104)−O(105).

(a) Spectrum (b) Response function

Figure E3. Spectrum qλ and response function χ(t) recovered from a 1% experiment performed with the toy model described in Part I

taking an underlying discrete spectrum with two time scales τ = 7, τ = 37. The data were taken with SNR∼O(104)−O(105).

(a) Spectrum (b) Response function

Figure E4. Spectrum qλ and response function χ(t) recovered from a 1% experiment performed with the toy model described in Part I

taking an underlying discrete spectrum with two time scales τ = 37, τ = 100. The data were taken with SNR∼O(104)−O(105).
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(a) Spectrum (b) Response function

Figure E5. Spectrum qλ and response function χ(t) recovered from a 1% experiment performed with the toy model described in Part I

taking an underlying discrete spectrum with three time scales τ = 7, τ = 37, τ = 100. The data were taken with SNR∼O(104)−O(105).

(a) Spectrum (b) Response function

Figure E6. Spectrum qλ and response functionχ(t) recovered from a 1% experiment performed with the toy model described in Part I taking

an underlying discrete spectrum with four time scales τ = 1, τ = 7, τ = 37, τ = 100. The data were taken with SNR∼O(104)−O(105).

(a) Spectrum (b) Response function

Figure E7. Spectrum qλ and response function χ(t) recovered from a 2×f0 experiment performed with the toy model described in Part I

taking an underlying discrete spectrum with four time scales τ = 1, τ = 7, τ = 37, τ = 100. The data were taken with SNR∼O(104)−

O(105).
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(a) Spectrum (b) Response function

Figure E8. Spectrum qλ and response function χ(t) recovered from a 2×f0 experiment performed with the toy model described in Part I

taking an underlying discrete spectrum with four time scales τ = 1, τ = 7, τ = 37, τ = 228. The data were taken with SNR∼O(104)−

O(105).

(a) Spectrum (b) Response function

Figure E9. Spectrum qλ and response function χ(t) recovered from a 2×f0 experiment performed with the toy model described in Part I

taking an underlying discrete spectrum with five time scales τ = 1, τ = 7, τ = 37, τ = 228, τ = 518. The data were taken with SNR∼

O(104)−O(105).
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