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Abstract. The behavior of the iterative ensemble-based data assimilation algorithm is discussed. The ensemble-based method

for variational data assimilation problems, referred to as the 4-dimensional ensemble variational method (4DEnVar), is a

useful tool for data assimilation problems. Although the 4DEnVar is derived based on a linear approximation, highly uncertain

problems, where system nonlinearity is significant, are solved by applying this method iteratively. However, it is not necessarily

trivial how the algorithm works in highly uncertain problems where nonlinearity is not negligible. In the present study, an5

ensemble-based iterative algorithm is reformulated to allow us to analyze its behavior in nonlinear problems. The conditions

for monotonic convergence to a local maximum of the objective function are discussed in nonlinear context. The findings as

the results of the present study were also experimentally supported.

1 Introduction

The 4-dimensional ensemble variational method (4DEnVar; Lorenc, 2003; Liu et al., 2008) is a useful tool for practical data10

assimilation. The 4DEnVar obtains the derivative of the objective function from the approximate Jacobian of a dynamical

system model which is estimated by using the ensemble of simulation results. In contrast with the adjoint method, the 4DEnVar

does not require an adjoint code which is usually time-consuming to develop. This ensemble method thus allows us to treat the

simulation code as a ‘black box’, and it can easily be implemented.

The 4DEnVar algorithm is derived based on a linear approximation of the nonlinear system model. If the uncertainties in state15

variables are small, the solution could be found within the range where a linear approximation is valid. However, geophysical

systems are often highly uncertain. If the scale of uncertainty is much larger than the range of linearity, a linear approximation

would not be justified. In atmospheric applications, uncertainty can usually be reduced by taking sufficient spin-up time. On the

other hand, in some geophysical applications, it is difficult to obtain a sufficiently long sequence of observations to allow spin-

up. For example, in data assimilation for the interior of the Earth such as lithospheric plates (e.g., Kano et al., 2015) and the20

outer core (e.g., Sanchez et al., 2019; Minami et al., 2020), time scale of system dynamics is so long that a sufficient length of

an observation sequence is not feasible. It is also difficult to use a long sequence of observations in the Earth’s magnetosphere

where the amount of observations is limited (e.g., Nakano et al., 2008; Godinez et al., 2016). It is therefore an important issue

to consider large uncertainties which could deteriorate the validity of the linear approximation.
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Several studies have suggested that estimation in nonlinear problems can be improved by iterative algorithms in which25

the ensemble is repeatedly updated in each iteration (e.g., Gu and Oliver, 2007; Kalnay and Yang, 2010; Chen and Oliver,

2012; Bocquet and Sakov, 2013, 2014; Raanes et al., 2019). These iterative algorithms can be regarded as a variant of the

4DEnVar method based on an approximation of the Gauss-Newton method or the Levenberg-Marquardt method. The Gauss-

Newton and the Levenberg-Marquardt methods are variants of the Newton-Raphson method for solving nonlinear least squares

problems by using the Jacobian of a nonlinear function. Thus, when the Gauss-Newton or the Levenberg-Marquardt framework30

is strictly applied to data assimilation problems, the tangent linear of the system model is required. Indeed, if the tangent linear

of the system model is obtained, 4-dimensional variational data assimilation problems can be solved with the incremental

formulation (Courtier et al., 1994) which can be regarded as an instance of the Gauss-Newton framework (Lawless et al., 2005).

The ensemble-based methods avoid computing the Jacobian of a nonlinear system model by a low-rank linear approximation

using the ensemble. This ensemble-based approximation is justified if linearity can be assumed over the range where the35

ensemble members are distributed. However, it has not necessarily been clarified how the algorithm works in highly uncertain

problems where nonlinearity is not negligible.

The present study aims to reformulate an ensemble-based iterative algorithm in order to analyze its behavior in nonlinear

problems. We then explore the conditions for achieving monotonic convergence to a local maximum of the objective function in

nonlinear context. The monotonic convergence means that the discrepancies between estimates and observations are reduced40

in each iteration. It is thus ensured that the algorithm would attain a satisfactory result in nonlinear problems. This study

is originally motivated by data assimilation into a geodynamo model to which the author contributed (Minami et al., 2020).

However, the present paper focuses on the iterative variational data assimilation algorithm for general uncertain problems in

order to avoid the discussion on specific physical processes of geodynamo. In Section 2, the formulation of the variational data

assimilation problem is described. In Section 3, the basic idea of the ensemble variational method is explained. The iterative45

version is introduced as an algorithm for maximizing the log-likelihood function in Section 4, and the behavior of the iterative

algorithm is evaluated in Section 5. In Section 6, a Bayesian extension is introduced. Section 7 experimentally verifies our

findings. Finally, a discussion and conclusions are presented in Section 8.

2 4-dimensional variational data assimilation (4DEnVar)

In the following, the system state at time tk is denoted as xk and the observation at tk is denoted as yk. We consider a50

strong-constraint data assimilation problem where the evolution of state xk is given by

xk = fk(xk−1) (1)

and the relation between yk and xk is written in the following form:

yk = hk(xk)+ wk (2)
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where wk indicates the observation noise. Assuming that wk obeys a Gaussian distribution with mean 0 and covariance matrix55

Rk, then

p(wk)∝ exp
[
−1

2
wT

k R−1
k wk

]
. (3)

The likelihood of xk given yk is

p(yk|xk)∝ exp
[
−1

2
(yk −hk(xk))T R−1

k (yk −hk(xk))
]
. (4)

Since we assume a deterministic system as stated in Eq. (1), hk(xk) can be written as a function of an initial value x0 as60

hk(xk) = gk(x0), (5)

where gk is the following composite function

gk(x0) = hk ◦fk ◦fk−1 ◦ · · ·f1(x0). (6)

The likelihood in Eq. (4) is then written as

p(yk|x0)∝ exp
[
−1

2
(yk − gk(x0))

T R−1
k (yk − gk(x0))

]
. (7)65

When the prior distribution of x0 is assumed to be Gaussian with mean x̄0,b and covariance matrix P0,b defined by

p(x0)∝ exp
[
−1

2
(x0− x̄0,b)

T P−1
0,b (x0− x̄0,b)

]
, (8)

the Bayesian posterior distribution of x0 given the whole sequence of observations from t1 to tK , y1:K , can be obtained as

follows:

p(x0|y1:K)∝ exp

[
−1

2
(x0− x̄0,b)

T P−1
0,b (x0− x̄0,b)−

1
2

K∑

k=1

(yk − gk(x0))
T R−1

k (yk − gk(x0))

]
. (9)70

The maximum of the posterior can be found by maximizing the following objective function:

J(x0) =−1
2

(x0− x̄0,b)
T P−1

0,b (x0− x̄0,b)−
1
2

K∑

k=1

(yk − gk(x0))
T R−1

k (yk − gk(x0)) . (10)

3 Ensemble-based method

The maximization of the objective function J is conventionally performed by the adjoint method, which differentiates J based

on the adjoint matrix of the Jacobian of the function fk in Eq. (1). For a practical high-dimensional simulation model, however,75

it is an extremely laborious task to develop the adjoint code which represents the adjoint matrix of the Jacobian of the forward

simulation model. The 4DEnVar is an alternative method for obtaining an approximate maximum of J without using the adjoint

code. The 4DEnVar employs an ensemble ofN simulation results {x(1)
0:K , . . . ,x

(N)
0:K}, where x0:K indicates the whole sequence
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of the states from t0 to tK ; that is, x0:K = (xT
0 · · · xT

K)T . The initial state of each ensemble member x
(i)
0 is assumed to be

sampled from the Gaussian distribution N (x0;x0,b,P0,b). The objective function in Eq. (10) is approximated by using this80

ensemble.

For convenience, we define the following matrix X0,b from the initial states of ensemble members:

X0,b =
1√
N

(
x

(1)
0 − x̄0,b · · · x

(N)
0 − x̄0,b

)
. (11)

Assuming that the optimal x0 can be written as a linear combination of the ensemble members, we can write x0 in the following

form:85

x0 = x̄0,b + X0,bw. (12)

This assumption means that x0 is within the subspace spanned by the ensemble members. The quality of an estimate with the

4DEnVar can thus be poor if there are insufficient ensemble members. In practical applications of the 4DEnVar, a localization

technique is usually used to avoid this problem (e.g., Buehner, 2005; Liu et al., 2009; Buehner et al., 2010; Yokota et al., 2016).

However, the present paper does not consider localization because the focus here is on the basic behavior of the 4DEnVar. If90

we assume that the rank of X0,b is N (< dimx0) and approximate the inverse of P0,b by the Moore-Penrose inverse matrix of

X0,bX
T
0,b, the first term of the right-hand side of Eq. (10) can be approximated as

−1
2

(x0− x̄0,b)
T P−1

0,b (x0− x̄0,b) =−1
2
wT XT

0,bP
−1
0,bX0,bw ≈−1

2
wT w. (13)

This corresponds to a low-rank approximation within the subspace spanned by the ensemble members. The prior mean x̄0,b

is usually given by the ensemble mean of {x(i)
0 }N

i=1. In such a case, it is necessary to ignore the subspace along the vector95

1 = (1 · · · 1)T to reach the approximation of Eq. (13). The function gk(x0) is approximated based on the first-order Taylor

expansion:

gk(x0)≈ gk(x̄0,b)+ Gk(x0− x̄0,b)≈ gk(x̄0,b)+ GkX0,bw, (14)

where Gk is the Jacobian of gk at x̄0,b. The matrix GkX0,b in Eq. (14) is approximated as

GkX0,b ≈
1√
N

(
gk(x(1)

0 )− gk(x̄0,b) · · · gk(x(N)
0 )− gk(x̄0,b)

)
. (15)100

Defining the right-hand side of Eq. (15) as Γk, that is,

Γk =
1√
N

(
gk(x(1)

0 )− gk(x̄0,b) · · · gk(x(N)
0 )− gk(x̄0,b)

)
≈ GkX0,b, (16)

we obtain a further approximation of the function gk(x0) in Eq. (14):

gk(x0)≈ gk(x̄0,b)+ Γkw (17)

(e.g., Zupanski et al., 2008; Bannister, 2017). Using Eqs. (13) and (17), the objective function in Eq. (10) can be approximated105

as a function of w as follows:

Ĵw(w) =−1
2
wT w− 1

2

K∑

k=1

(yk − gk(x̄0,b)− Γkw)R−1
k (yk − gk(x̄0,b)− Γkw) (18)
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where we defined Ĵw(w) = J(x̄0,b + X0,bw).

The approximate objective function Ĵw is a quadratic function of w and it no longer contains the Jacobian of the function

gk. The maximization of Ĵw is thus much easier than that of the original objective function in Eq. (10). The derivative of Ĵw110

with respect to w becomes

∇wĴw = w−
K∑

k=1

(
ΓT

k R−1
k [yk − gk(x̄0,b)− Γkw]

)
(19)

(Liu et al., 2008). The Hessian matrix of Ĵw is then obtained as

HĴw
= I+

∑

k

[ΓT
k R−1

k Γk]. (20)

We can thus immediately find the value of w maximizing Ĵw:115

ŵ =

(
I+
∑

k

ΓT
k R−1

k Γk

)−1∑

k

(
ΓT

k R−1
k [yk − gk(x̄0,b)]

)
. (21)

Inserting ŵ into Eq. (12), we obtain an estimate of x0 as follows:

x̂0 = x̄0,b + X0,bŵ. (22)

This solution in Eq. (22) is similar to the ensemble Kalman smoother (van Leeuwen and Evensen, 1996; Evensen and van Leeuwen,

2000) although the whole sequence of observations is referred to in Eq. (21). Even if a large amount of data are used, it would120

not seriously affect the computational cost because the computation of the inverse matrix can be conducted in N -dimensional

space. This is also an advantage of the ensemble-based method.

4 Iterative algorithm

Since Eqs. (21) and (22) do not require the Jacobian of the function gk, it can be applied as a post-process provided that an

ensemble of the simulation runs is prepared in advance. However, this solution, which maximizes the objective function in Eq.125

(18), relies on Eq. (15) which approximates matrix GkX0,b by using the ensemble. This approximation is based on the first-order

approximation shown in Eq. (14). Where x0 exhibits high uncertainty and ∥x0−x̄0,b∥ can be large, this approximation appears

to be invalid. Therefore, it is not guaranteed that the estimate with Eq. (22) provides the optimal x0 which maximizes the

original log-posterior density function in Eq. (10) even if we accept that the solution is limited within the ensemble subspace.

Where the initially prepared ensemble is used, it is unlikely that a better solution than Eq. (22) could be achieved. We130

then consider an iterative algorithm which generates a new ensemble based on the previous estimate in each iteration. The

algorithm introduced in the following is basically the same as the method referred to as the iterative ensemble Kalman filter

(Bocquet and Sakov, 2013, 2014), but we employ a formulation to allows evaluation of the behavior and a slight extension. To

derive an algorithm analogous to that in the previous section, we at first consider the following log-likelihood function:

Jℓ(x0) =−1
2

K∑

k=1

[yk − gk(x0)]
T R−1 [yk − gk(x0)] . (23)135
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instead of the log-posterior density function in Eq. (10). Maximization of the Bayesian-type objective function in Eq. (10) will

be discussed in Section 6.

In the following, we combine the vectors of the whole time sequence from t1 to tK into one single vector; that is, y = y1:K

and g(x0) = g0:K(x0). The covariance matrices R1, . . . , RK are also combined into one block diagonal matrix R which

satisfies140

yT R−1y =
K∑

k=1

yT
k R−1

k yk. (24)

Accordingly, the log-likelihood function of Eq. (23) is rewritten as

Jℓ(x0) =−1
2

[y− g(x0)]
T R−1 [y− g(x0)] . (25)

In our iterative algorithm, them-th step starts with an ensemble of initial values {x(1)
0,m−1, . . . ,x

(N)
0,m−1} obtained in the neighbor

of the (m−1)-th estimate x̄0,m−1. Typically, the ensemble is generated so that the ensemble mean is equal to x̄0,m−1; that is,145

x̄0,m−1 =
1
N

N∑

i=1

x
(i)
0,m−1, (26)

although it is not necessary to satisfy this equation. A simulation run initialized at x
(i)
0,m−1 yields g(x(i)

0,m−1), and we obtain

the ensemble of the simulation results {g(x(1)
0,m−1), . . . ,g(x(N)

0,m−1)}. Defining the matrices

Xm−1 =
1√
N

(
x

(1)
0,m−1− x̄0,m−1 · · · x

(N)
0,m−1− x̄0,m−1

)
, (27)

Γm−1 =
1√
N

(
g(x(1)

0,m−1)− g(x̄0,m−1) · · · g(x(N)
0,m−1)− g(x̄0,m−1)

)
, (28)150

we consider the following m-th objective function:

J̌ℓ,m(wm|x̄0,m−1)

=−σ
2
m

2
wT

mwm− 1
2

[y− g(x̄0,m−1)− Γm−1wm]T R−1 [y− g(x̄0,m−1)− Γm−1wm] . (29)

where σm is an appropriately chosen parameter. This objective function J̌ℓ,m is maximized when

ŵm =
(
σ2

mI+ ΓT
m−1R

−1Γm−1

)−1 (
ΓT

m−1R
−1 [y− g(x̄0,m−1)]

)
, (30)

and w̄m provides the m-th estimate of x̄0,m as follows:155

x̄0,m = x̄0,m−1 + Xm−1w̄m. (31)

Unless converged, members of the next ensemble are generated in the neighbor of x̄0,m so that ∥x(i)
0,m− x̄0,m∥2 is small

for each i, and we proceed to the next iteration. By iterating the above procedures until convergence, the optimal x̂0 which

maximizes Jℓ is attained.
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The form of J̌ℓ,m in Eq. (29) looks similar to that of Ĵw in Eq. (18). However, the meaning of the first term of Eq. (29) is160

different from that of the first term of Eq. (18). The first term of Eq. (18) corresponded to the Bayesian prior. On the other

hand, the first term of Eq. (29) is a penalty term to ensure monotonic convergence as explained later. After iterations until

convergence, the contribution of this penalty term would decay, and the log-likelihood function in Eq. (23) is maximized in the

end.

We can consider various ways to obtain an ensemble satisfying Eq. (26). Bocquet and Sakov (2013) proposed to obtain a165

matrix Xm as a scalar multiple of X0,b:

Xm = αmX0,b (αm ≥ 0). (32)

where X0,b is a matrix defined in Eq. (11). A new ensemble for next iteration is generated to satisfy

Xm =
1√
N

(
x

(1)
0,m− x̄0,m · · · x

(N)
0,m− x̄0,m

)
. (33)

As discussed later, αm should be taken to be so small that a linear approximation is valid over the range of ensemble dispersion.170

The value of αm can be fixed at a small value. Otherwise, αm may be reduced gradually in each iteration so that the spread of

the ensemble eventually becomes small. We can also shrink the ensemble by using a similar scheme to the ensemble transform

Kalman filter (Bishop et al., 2001; Livings et al., 2008) which obtains Xm as outlined by Bocquet and Sakov (2012); that is,

Xm = Xm−1Tm, (34)

where Tm is the ensemble transform matrix given as175

Tm = Um(I+ Λm)−
1
2 UT

m. (35)

In Eq. (35), I is the identity matrix and UmΛmUT
m is the eigenvalue decomposition of the matrix σ−2

m ΓT
m−1R

−1Γm−1, where

Um is an orthogonal matrix consisting of the eigenvectors, and the matrix Λm is a diagonal matrix of the eigenvalues.

If the ensemble is updated according to Eq. (32) or (34), the estimate of x0 is constrained within the subspace spanned by the

initial ensemble members {x(1)
0,0, . . . ,x

(N)
0,0 }. We can avoid confining the ensemble within a subspace by randomly generating180

ensemble members from a Gaussian distribution with mean x̄0,m and variance Qm as:

x
(i)
0,m ∼N (x̄0,m,Qm), (i= 1, . . . ,N). (36)

Although this method has a limitation when applying it to Bayesian estimation as explained later, it would be effective if

applicable.

The iterative algorithm is summarized in Algorithm 1. The procedures in this iterative algorithm are similar to those in the185

ensemble-based multiple data assimilation method (Emerick and Reynolds, 2012, 2013), which aims to obtain the maximum

of the Bayesian posterior function, especially if the ensemble is updated with Eq. (34). The multiple data assimilation method

does not perform iterations until convergence, but it performs iterations only a few times to estimate the maximum of the

posterior although it can provide a biased solution in nonlinear problems (Evensen, 2018). In order to achieve the convergence

to the maximum of the Bayesian posterior in our framework, the objective function in each iteration should be modified as190

discussed in Section 6.
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Algorithm 1 Iterative algorithm for maximizing the log-likelihood function Jℓ.

Give an initial estimate of x0, x̄0,0.

Give an initial square root of the covariance, X0.

Let m = 1.

while unconverged do

Generate an ensemble {x(i)
0,m−1}N

i=1 in the neighbor of x̄0,m−1 by using either of Eq. (32), (34), or (36).

Obtain Xm−1 and Γk,m−1 in Eqs. (27) and (28).

Compute ŵm in Eq. (30).

Compute the m-th mean vector x̄0,m according to Eq. (31).

Compute the matrix Xm according to Eq. (34).

Let m := m +1

end while

5 Rationale of the algorithm

Eq. (30) can be regarded as an approximation of the Levenberg-Marquardt method (e.g., Nocedal and Wright, 2006) for max-

imizing the log-likelihood function in Eq. (23) within the subspace spanned by {x(1)
0,0, . . . ,x

(N)
0,0 }. In particular, if σ2

m is zero,

Eq. (30) can be regarded as an approximation of the Gauss-Newton method. Indeed, Bocquet and Sakov (2013, 2014) derived195

a similar algorithm as an approximation of the Levenberg-Marquardt method or the Gauss-Newton method. However, the

Levenberg-Marquardt method basically requires the Jacobian of the function gk, Gm−1. Since the above iterative algorithm

does not directly use Gm−1, it would not be trivial how the convergence of this algorithm is achieved. This issue is explored in

this section.

We hereinafter assume that g(x0) is at least twice differentiable. The Taylor expansion up to the second-order term of Jℓ200

becomes

Jℓ(x0) =−1
2

[y− g(x̄0,m−1)]
T R−1 [y− g(x̄0,m−1)]+ [y− g(x̄0,m−1)]

T R−1Gm−1(x0− x̄0,m−1)

− 1
2
(x0− x̄0,m−1)T GT

m−1R
−1Gm−1(x0− x̄0,m−1)

+
1
4
(x0− x̄0,m−1)T

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
(x0− x̄0,m−1)

+O(∥x0− x̄0,m−1∥3), (37)

where Gm−1 is the Jacobian at x̄0,m−1 and
(
∇2g

)
is a third-order tensor which consists of the Hessian matrix of each element

of the vector-valued function g(x0). As done in Eq. (12), we assume

x0 = x̄0,m−1 + Xm−1wm, (38)205
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where Xm−1 is obtained by Eq. (27) given the ensemble {x(1)
0,m−1, . . . ,x

(N)
0,m−1}. We then have

Jℓ(x0) = Jℓ(x̄0,m−1 + Xm−1wm)

=−1
2

[y− g(x̄0,m−1)]
T R−1 [y− g(x̄0,m−1)]+ [y− g(x̄0,m−1)]

T R−1Gm−1Xm−1wm

− 1
2
wT

mXT
m−1G

T
m−1R

−1Gm−1Xm−1wm

+
1
4
wT

mXT
m−1

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
Xm−1wm +O(∥wm∥3). (39)

In practical cases, the Jacobian matrix Gm−1 is typically unavailable. Ensemble variational methods thus employ the first-

order approximation in Eq. (15) for Gm−1Xm−1; that is,

Gm−1Xm−1 ≈ Γm−1, (40)210

where

Γm−1 =
1√
N

(
g(x(1)

0,m−1)− g(x̄0,m−1) · · · g(x(N)
0,m−1)− g(x̄0,m−1)

)
. (41)

To evaluate this approximation when x0 has a large uncertainty, we consider the following expansion of g(x0) for each

ensemble member x
(i)
0 :

g(x(i)
0 ) = g(x̄0,m−1)+ Gm−1(x

(i)
0 − x̄0,m−1)

+
1
2
(x(i)

0 − x̄0,m−1)T
(
∇2g

)
(x(i)

0 − x̄0,m−1)+O(∥x(i)
0 − x̄0,m−1∥3). (42)215

If we consider a vector Γm−1wm, it becomes

Γm−1wm

=
1√
N

N∑

i=1

w(i)Gm−1(x
(i)
0 − x̄0,m−1)

+
1

2
√
N

N∑

i=1

w(i)(x(i)
0 − x̄0,m−1)T

(
∇2g

)
(x(i)

0 − x̄0,m−1)

= Gm−1Xm−1wm

+
1

2
√
N

N∑

i=1

w(i)
[
(x(i)

0 − x̄0,m−1)T
(
∇2g

)
(x(i)

0 − x̄0,m−1)+O(∥x(i)
0 − x̄0,m−1∥3)

]
. (43)

If Gm−1Xm−1wm, which is contained in the first-order term in Eq. (39), is approximated by Γm−1wm, this means that the

second- and higher-order terms of the right-hand side of Eq. (43) are neglected. Indeed, this can be justified if the spread

of the ensemble is taken to be small. In our iterative scheme, the ensemble spread can be tuned freely. Even if the scale of220

∥x(i)
0 − x̄0,m−1∥ is very small, any x0, which may have a large uncertainty, can be represented by taking the scale of ∥wm∥ to

be large according to Eq. (38). The nonlinear terms of the right-hand side of Eq. (43) are of the order of ∥wm∥, while they are
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of the order of ∥x(i)
0 − x̄0,m−1∥2 or higer order. Thus, if the spread of the ensemble is taken to be small, the nonlinear terms of

Eq. (43) would be suppressed, and we obtain

Γm−1wm ≈ Gm−1Xm−1wm. (44)225

Consequently, we can apply the approximation in Eq. (40) to Eq. (39). Defining a function Jℓ,wm(wm) as

Jℓ,wm
(wm) =−1

2
[y− g(x̄0,m−1)]

T R−1 [y− g(x̄0,m−1)]+ [y− g(x̄0,m−1)]
T R−1Γm−1wm

− 1
2
wT

mΓT
m−1R

−1Γm−1wm

+
1
4
wT

mXT
m−1

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
Xm−1wm +O(∥wm∥3), (45)

Jℓ,wm
(wm) gives an approximation of Jℓ(x̄0,m−1 + Xm−1wm) in Eq. (39):

Jℓ(x̄0,m−1 + Xm−1wm)≈ Jℓ,wm(wm). (46)

The fourth term on the right-hand side of Eq. (45) would not necessarily be suppressed even if the ensemble variance were230

taken to be small, because it is of the order of ∥wm∥2 and of the order of ∥x(i)
0 − x̄0,m−1∥2. To control the effect of this

term, we introduce the idea of the minorize-maximize algorithm (MM algorithm) (Lange et al., 2000; Lange, 2016). The MM

algorithm is a class of iterative algorithms which considers a surrogate function which minorizes the objective function ϕ(z)

and maximizes the surrogate function. Although the Levenberg-Marquardt method can also be regarded as an instance of the

MM algorithm, the generic idea of the MM algorithm gives a striking insight into the behavior of the algorithm.235

At the m-th step of the MM algorithm, the surrogate function given the (m− 1)-th estimate zm−1, ψ(z0|zm−1), is chosen

to satisfy the following conditions:

ψ(z|zm−1)≤ ϕ(z), (47a)

ψ(zm−1|zm−1) = ϕ(zm−1). (47b)

The m-th estimate, zm, is obtained by maximizing the m-th surrogate function, ψ(z|zm−1). Since zm obviously satisfies240

ϕ(zm−1) = ψ(zm−1|zm−1)≤ ψ(zm|zm−1)≤ ϕ(zm) (48)

it is guaranteed that the m-th estimate is as good as or better than the (m− 1)-th estimate. After iterations, zm converges

to a stationary point zs of the objective function ϕ(z) (Lange, 2016). If the Hessian matrix of ϕ(z) is negative definite in

a neighborhood of zs, the stationary point zs becomes a local maximum (e.g., Nocedal and Wright, 2006). Therefore, the

estimate would monotonically converge to a local maximum of ϕ(z) by repeating iterations if245

– the surrogate function ψ(z|zm) is twice differentiable and satisfies Eqs. (47a) and (47b),

– and the Hessian of ϕ(z) is negative definite in a neighborhood of the stationary point zs.
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Here we consider the following surrogate function J†ℓ,wm
:

J†ℓ,wm
(wm|x̄0,m−1)

=−σ
2
m

2
wT

mwm− 1
2

[y− g(x̄0,m−1)]
T R−1 [y− g(x̄0,m−1)]

+ [y− g(x̄0,m−1)]
T R−1Γm−1wm− 1

2
wT

mΓT
m−1R

−1Γm−1wm

=−σ
2
m

2
wT

mwm− 1
2

[y− g(x̄0,m−1)− Γm−1wm]T R−1 [y− g(x̄0,m−1)− Γm−1wm] , (49)

which is a similar treatment similar to Böhning and Lindsay (1988). For a given ∆, we can take σ2
m so that the following250

inequality holds over ∥wm∥<∆:

−σ
2
m

2
wT

mwm ≤ 1
4
wT

mXT
m−1

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
Xm−1wm +O(∥wm∥3). (50)

where equality holds if wm = 0. If σ2
m is chosen so that the inequality (50) is satisfied, J†ℓ,w satisfies the followings:

J†ℓ,wm
(wm|x̄0,m−1)≤ Jℓ,wm(wm)≈ Jℓ(x̄0,m−1 + Xm−1wm), (51)

J†ℓ,wm
(0|x̄0,m−1) = Jℓ,wm(0) = Jℓ(x̄0,m−1). (52)255

This means that J†ℓ,wm
can be used as a surrogate function for maximizing Jℓ,wm(wm) according to the MM algorithm.

Since Eq. (49) is the same as Eq. (29), the maximum of J†ℓ,wm
is achieved when wm = ŵm where ŵm is given by Eq. (30).

Obviously, ŵm satisfies the following inequality:

J†ℓ,wm
(0|x̄0,m−1)≤ J†ℓ,wm

(ŵm|x̄0,m−1), (53)

and therefore, if the approximation in Eq. (40) is valid, we obtain the following result:260

Jℓ(x̄0,m−1) = Jℓ,wm
(0)≤ Jℓ,wm

(ŵm)≈ Jℓ(x̄0,m−1 + Xm−1ŵm) = Jℓ(x̄0,m), (54)

where x̄0,m is given by Eq. (31).

The above discussion is valid regardless of the choice of the ensemble {x(1)
0,m, . . . ,x

(N)
0,m} in each iteration as far as the

approximation in Eq. (40) is applicable. This suggests we can use various ways to update the ensemble, including Eq. (36)

which does not confine the ensemble within a particular subspace. It should be noted that the equality of Eq. (53) holds at a265

stationary point in the subspace spanned by the ensemble members. If the update of the ensemble in each iteration is carried

out with Eq. (32) or (34), the ensemble is confined within a particular subspace spanned by the initial ensemble, and x̄0,m−1

would converge to a stationary point in this subspace. According to Eq. (37), if the nonlinearity of g is not severe when
(
∇2g

)

is not dominant, the Hessian of Jℓ is negative definite in a region where ∥y− g(x̄0,m−1)∥ is small enough. This suggests

that the iterative algorithm in Section 4 would attain at least a local maximum of Jℓ in the subspace for weakly nonlinear270

problems if Eq. (36) is applicable. If the ensemble is updated according to Eq. (36), a stationary point is sought in a different

subspace in each iteration. If Qm is full rank, Jℓ would increase until a point which can be regarded as a stationary point in any

N -dimensional subspace, and x̄0,m−1 would thus converge to a local minimum in the full vector space after infinite iterations.
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Based on the foregoing, convergence to a local maximum of the objective function Jℓ can be achieved for weakly nonlinear

systems if the ensemble variance is taken to be small enough. If the ensemble with large spread is used, the estimate can be275

biased due to the nonlinear terms in Eq. (43). Hence an ensemble with small spread would provide a satisfactory result for

weakly nonlinear systems where we can assume the Hessian of Jℓ is negative definite over the region of interest. However,

this iterative algorithm does not necessarily guarantee convergence to the global maximum. If there are multiple peaks in Jℓ,

it might be effectual to start with an ensemble with large spread to approach the global maximum. An ensemble with large

spread would grasp a large-scale structure of the objective function because the ensemble approximation of the Jacobian gives280

the gradient averaged over the region where the ensemble members are distributed under a certain assumption (Raanes et al.,

2019). Even if the spread is taken to be large at first, convergence would eventually be achieved by reducing the ensemble

spread in each iteration as described in the previous section.

Our formulation refers to the result of a simulation run initialized at the (m− 1)-th estimate x̄0,m−1 for obtaining the m-th

estimate in Eq. (31). On the other hand, in many studies, the ensemble mean of simulation runs {g(x
(i)
0,m−1)} is used as a285

substitute for g(x̄0,m−1). If the ensemble mean g(x
(i)
0,m−1) is used, the ensemble in each iteration must be generated so as to

satisfy Eq. (26), which is not required in our formulation; that is, the ensemble mean must be equal to the (m− 1)-th estimate

x̄0,m−1. It should also be kept in mind that some bias due to the nonlinear terms in Eq. (42) could be introduced when the

ensemble mean is used instead of g(x̄0,m−1). However, this bias could be suppressed by taking the ensemble spread to be

small. Since the use of the ensemble mean would save the computational cost of one simulation run for each iteration, it might290

be a useful treatment for practical applications.

It is also important to appropriately choose the parameter σ2
m. A sufficiently large σ2

m guarantees that them-th estimate x̄0,m

is better than the previous estimate x̄0,m−1 and hence convergence is stable. However, convergence speed will be degraded

with large σ2
m because x̄0,m is strongly constrained by the penalty weighted with σ2

m. Although there is no definitive way

to determine this parameter, σ2
m/2 should have a similar scale to the right-hand side of Eq. (50); that is, if the third- and295

higher-order terms are assumed to be negligible,

σ2
m ∼ XT

m−1

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
Xm−1. (55)

Since the right-hand side of Eq. (55) contains
(
∇2g

)
which comes from a nonlinear term of the function g, σ2

m should be

taken larger as system nonlinearity is severer. This equation also suggests that σ2
m should depend on the discrepancy between

observation y and the (m− 1)-th prediction g(x̄0,m−1). Although
(
∇2g

)
is unknown in general, ∥y− g(x̄0,m−1)∥ could be300

used as a guide for determine σ2
m. The parameter σ2

m should also be dependent on the variance of the ensemble. If an ensemble

with a large spread is used, σ2
m should be set large accordingly.

6 Bayesian form

The algorithm in Section 4 maximizes the log-likelihood function in Eq. (23). However, it would be sometimes required to

incorporate prior information into the estimate in a Bayesian manner. We thus consider the following log-posterior density305

12

https://doi.org/10.5194/npg-2020-9
Preprint. Discussion started: 17 April 2020
c© Author(s) 2020. CC BY 4.0 License.



function as the objective function:

J(x0) =−1
2

(x0− x̄0,b)
T P−1

0,b (x0− x̄0,b)−
1
2

[y− g(x0)]
T R−1 [y− g(x0)] , (56)

which is the same as Eq. (10) although the vectors of the whole time sequence are combined into a single vector for each y

and g(x0) as in Eq. (23). Eq. (56) is proportional to the log-posterior distribution when p(x0) and p(y|x0) are assumed to be

Gaussian. The Taylor expansion of Eq. (56) is310

J(x0) =−1
2

(x0− x̄0,b)
T P−1

0,b (x0− x̄0,b)−
1
2

[y− g(x̄0,m−1)]
T R−1 [y− g(x̄0,m−1)]

+ [y− g(x̄0,m−1)]
T R−1Gm−1(x0− x̄0,m−1)

− 1
2
(x0− x̄0,m−1)T GT

m−1R
−1Gm−1(x0− x̄0,m−1)

+
1
4
(x0− x̄0,m−1)T

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
(x0− x̄0,m−1)

+O(∥x0− x̄0,m−1∥3). (57)

Applying Eqs. (38) and (44), we obtain the following approximate objective function:

Jwm
(wm) =−1

2
(x̄0,m−1− x̄0,b + Xm−1wm)T P−1

0,b (x̄0,m−1− x̄0,b + Xm−1wm)

− 1
2

[y− g(x̄0,m−1)]
T R−1 [y− g(x̄0,m−1)]

+ [y− g(x̄0,m−1)]
T R−1Γm−1wm− 1

2
wT

mΓT
m−1R

−1Γm−1wm

+
1
4
wT

mXT
m−1

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
Xm−1wm +O(∥wm∥3). (58)

As per Eq. (50), we can take σ2
m so that the fifth and sixth terms on the right-hand side of Eq. (58) can be minorized by a

quadratic function −(σ2
m/2)wT

mwm, and we obtain the following surrogate function which minorizes the function Jwm
:315

J†wm
(wm|x̄0,m−1) =−σ

2
m

2
wT

mwm

− 1
2

(x̄0,m−1− x̄0,b + Xm−1wm)T P−1
0,b (x̄0,m−1− x̄0,b + Xm−1wm)

− 1
2

[y− g(x̄0,m−1)]
T R−1 [y− g(x̄0,m−1)]

+ [y− g(x̄0,m−1)]
T R−1Γm−1wm− 1

2
wT

mΓT
m−1R

−1Γm−1wm

=−σ
2
m

2
wT

mwm− 1
2
(x̄0,m−1− x̄0,b)T P−1

0,b(x̄0,m−1− x̄0,b)

− 1
2

[y− g(x̄0,m−1)]
T R−1 [y− g(x̄0,m−1)]

− (x̄0,m−1− x̄0,b)T P−1
0,bXm−1wm + [y− g(x̄0,m−1)]

T R−1Γm−1wm

− 1
2
wT

mXT
m−1P

−1
0,bXm−1wm− 1

2
wT

mΓT
m−1R

−1Γm−1wm, (59)
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which satisfies the conditions

J†wm
(wm|x̄0,m−1)≤ Jwm(wm)≈ J(x̄0,m−1 + Xm−1wm), (60)

J†wm
(0|x̄0,m−1) = Jwm(0) = J(x̄0,m−1). (61)

This function is maximized when320

ŵm =
(
σ2

mI+ XT
m−1P

−1
0,bXm−1 + ΓT

m−1R
−1Γm−1

)−1

×
(
ΓT

m−1R
−1 [y− g(x̄0,m−1)]−XT

m−1P
−1
0,b(x̄0,m−1− x̄0,b)

)
. (62)

The m-th estimate for x0 is obtained as

x̄0,m = x̄0,m−1 + Xm−1ŵm. (63)

Similarly to Eq. (54), we obtain

J(x̄0,m−1) = Jwm
(0)≤ Jwm

(ŵm)≈ J(x̄0,m−1 + Xm−1ŵm) = Jℓ(x̄0,m). (64)325

Thus, x̄0,m is a better estimate than x̄0,m−1 if the approximation in Eq. (44) is valid. Generating the (m+1)-th ensemble

around x̄0,m, we can obtain the (m+1)-th surrogate function according to Eq. (59) and proceed to the next iteration.

There are various methods for updating the ensemble including the methods mentioned in Section 4. Eq. (32) or (34) is

convenient for practical problems because we can avoid computing the inverse of P0,b in Eq. (62). When Eq. (32) is used for

updating the ensemble, we can easily avoid computing the inverse of P0,b by drawing initial ensemble members from the prior330

distribution N (x0;x0,b,P0,b). If initial ensemble members {x(1)
0,0, . . . ,x

(N)
0,0 } obey the prior distribution, we can use the same

approximation as Eq. (13); that is,

XT
0,bP

−1
0,bX0,b ≈ I. (65)

Applying Eq. (63) recursively, x̄0,m−1 can be reduced to

x̄0,m−1 = x̄0,m−2 + Xm−2ŵm−1 = x̄0,m−3 + Xm−3ŵm−2 + Xm−2ŵm−1

= · · ·= x̄0,0 +
m−1∑

i=1

Xi−1ŵi

= x̄0,0 + X0,b

m−1∑

i=1

αi−1ŵi (66)335

Inserting Eqs. (32) and (66) into Eq. (62) and applying Eq. (65), we obtain

ŵm ≈
(
[σ2

m +α2
m−1]I+ ΓT

m−1R
−1Γm−1

)−1

(
ΓT

m−1R
−1 [y− g(x̄0,m−1)]−αm−1

m−1∑

i=1

αi−1ŵi

)
. (67)

Thus, we can avoid computing the inverse of P0,b. Likewise, when Eq. (34) is used for updating the ensemble, we can apply

Eq. (65) to avoid computing the inverse of P0,b (See Appendix).
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As described in the previous section, the use of Eq. (32) of (34) confines the estimate x̄0,m−1 within the subspace spanned340

by the initial ensemble. On the other hand, Eq. (36) enables us to seek the optimal value of x0 in a different subspace in each

iteration. the full vector space if Qm is taken to be full rank. It appears that a similar approximation to Eq. (67) is applicable

if Qm is taken to be a scalar matrix of P0,b. However, since this approximation considers a different approximate objective

function in each iteration, monotonic convergence is not guaranteed. In order to ensure monotonic convergence, Eq. (36)

requires the computation of the inverse of P0,b in general. Nonetheless, if P−1
0,b can be obtained, the method with Eq. (36)345

would be helpful for improving the estimate.

7 Experiments

Preceding studies have already demonstrated the usefulness of the ensemble-based iterative algorithms for various data assim-

ilation problems. Estimation with the ensemble update in Eq. (32) has been verified in detail (e.g., Bocquet and Sakov, 2014).

The iterative algorithm ensemble update in Eq. (34) has also been demonstrated (e.g., Minami et al., 2020). Although it might350

not be necessary to show the ability of the ensemble-based iterative algorithm further, we here verify some properties suggested

in the above discussion through twin experiments with a simple model rather than a practical model.

In this section, we employ the Lorenz 96 model (Lorenz and Emanuel, 1998), which is written by the following equations:

dxm

dt
= (xm+1−xm−2)xm−1−xm + f (68)

for m= 1, . . . ,M , where x−1 = xM−1, x0 = xM , and xM+1 = x1. The dimension of the state vector M was taken to be 40355

and the forcing term f was taken to be 8. The true scenario was generated by running the model with a certain initial state. We

here consider a weakly nonlinear problem. The assimilation window was accordingly taken as a short time interval 0< t≤ 8.

It was assumed that all the state variables could be observed with a fixed time interval (∆t= 0.1), and hence, 80 data were

generated for each state variable. The observation noise for each variable was assumed to independently follow a Gaussian

distribution with mean 0 and standard deviation 0.5. In each data assimilation experiment, the prior distribution was assumed360

to be a Gaussian distribution with mean 0 and variance ζ2I, N (0, ζ2I), where ζ = 5.

We compare two ensemble updating methods of Eqs. (32) and (36). In applying Eq. (32), the initial ensemble {x(1)
0,0, . . . ,x

(N)
0,0 }

was drawn from a Gaussian distribution N (0,ε2I) where ε= 5× 10−6 and X0 was obtained as follows:

X0 =
1√
N

(
x

(1)
0,0− x̄0,m · · · x

(N)
0,0 − x̄0,m

)
. (69)

The matrix Xm for each iteration was fixed at Xm = X0, which corresponds to the setting in Eq. (32) with αm = 1. The365

discussion in Section 5 suggests that the penalty parameter σ2
m should be determined according to Eq. (55). Although

(
∇2g

)

is unknown, we can say that σ2
m should be related with the variance of the ensemble and the discrepancy between y and

g(x̄0,m−1). We thus gave σ2
m as follows:

σ2
m = δ2

√
(yK − gK(x̂0,m−1))

T R−1
K (yK − gK(x̂0,m−1))tr

(
ΓT

m−1R
−1Γm−1

)
, (70)
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Figure 1. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (32)

with δ = 1.5× 10−3.

where we tried two cases with δ = 1.5× 10−3 and δ = 1.5× 10−2. Here the part of the square root of a quadratic form of370

yK − gK(x̂0,m−1) was multiplied in order that σ2
m was roughly proportional to ∥y− g(x̄0,m−1)∥, and tr

(
ΓT

m−1R
−1Γm−1

)

was for representing the variance of the ensemble.

Figures 1 and 2 shows results with Eq. (32) where δ = 1.5× 10−3 and δ = 1.5× 10−2, respectively. We took the ensemble

size N to be 30, which is less than the state dimension, and performed the estimation 20 times with different seeds of a pseudo

random number generator. The value of the objective function J in Eq. (56) for each iteration is plotted for each of 20 trials375

in these figures. When δ = 1.5× 10−3, the value of J tended to increase more sharply than when δ = 1.5× 10−2. However, J

did not monotonically increase when δ = 1.5×10−3, while it monotonically increased when δ = 1.5×10−2. According to the

discussion in Section 5, monotonic convergence is achieved when when σ2
m is taken to be large enough. However, convergence

speed becomes slow when σ2
m is large. The results in Figures 1 and 2 thus confirmed our discussion on the convergence.

However, the results shown in Figures 1 and 2 did not converge to the same value, which means the results depended on the380

seeds of pseudo random numbers. This would indicate that a local maximum within a subspace spanned by the ensemble does

not match the maximum in the full state vector space and that the value of the local maximum depends on the subspace.

Figures 3 and 4 shows results with Eq. (36) where δ = 1.5×10−3 and δ = 1.5×10−2, respectively. Again, the ensemble size

N was taken to be 30, and the results of 20 trials with different seeds of pseudo random numbers are overplotted. Again, when

δ = 1.5× 10−3, the increase of J tended to be sharp while it was not monotonic. On the other hand, when δ = 1.5× 10−2,385

the increase of J was gradual but monotonic. In contrast with the results in Figures 3 and 4, the values of J in different

trials converged to the same value after about 15 iterations in the case with δ = 1.5× 10−3 shown in Figure 3. In the case

with δ = 1.5× 10−2, the convergence was much slower, but the values of J converged to the same value as the the case with

δ = 1.5× 10−2 after about 80 iterations in all of the 20 trials (not shown). These results shows that the maximum of the
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Figure 2. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (32)

with δ = 1.5× 10−2.

Figure 3. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (36)

with δ = 1.5× 10−3.

objective function in the full vector space can be reached by changing an ensemble in each iteration even if the ensemble does390

not span the full vector space.

In order to closely investigate the effect of σ2
m, we conducted additional experiments for a case in which nonlinearity is a

little stronger. While Figures 3 and 4 show the results when the assimilation window was taken as 0< t≤ 8, Figures 5 and 6

show the results with a little longer assimilation window, 0< t≤ 10. Although the other settings were the same as Figures 3

and 4, the effect of the nonlinearity on the objective function J was a little severer due to the longer assimilation window. When395

δ = 1.5×10−3, the J value converged to about −2000 in many of the 20 trials. In some trials, however, J did not converge but
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Figure 4. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (36)

with δ = 1.5× 10−2.

Figure 5. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (36)

with δ = 1.5× 10−3 and the ensemble window was taken as 0 < t≤ 10.

oscillated below −6000. In contrast, when δ was as large as 1.5× 10−2, the J value converged to the same value after about

50 iterations in all of the 20 trials. As discussed in Section 5, a sufficiently large σ2
m guarantees that the estimate is improved

in each iteration. Although convergence speed becomes worse, stable estimation can be attained.
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Figure 6. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (36)

with δ = 1.5× 10−2 and the ensemble window was taken as 0 < t≤ 10.

8 Discussion and conclusions400

The ensemble variational method is derived under the assumption that a linear approximation of a dynamical system model is

valid over a range of uncertainty. This linear approximation is not valid in such problems that the scale of uncertainty is much

larger than the range of linearity. However, a local maximum of the log-likelihood or log-posterior function can be attained by

updating the ensemble iteratively even in cases with a large uncertainty. The present paper assessed the influence of system

nonlinearity on this iterative algorithm after considering the nonlinear terms of the system function g. The discussion suggests405

two points to guarantee the monotonic convergence to a local maximum in the subspace spanned by the ensemble. One is that

the ensemble spread must be set to be small, and the other is that the penalty parameter σ2
m must be set to be large enough.

These properties would be reasonable if this iterative algorithm is regarded as an approximation of the Levenberg-Marquardt

method. However, the importance of σ2
m for nonlinear problems has been clarified by introducing an interpretation based on

the MM algorithm. A sufficiently large σ2
m would ensure monotonic convergence, although convergence speed would become410

poorer with a too large σ2
m. The effect of this penalty term has also been experimentally confirmed in Section 7.

One issue peculiar to the ensemble-based method is the rank deficiency which occurs when the ensemble size is smaller

than the dimension of the initial state x0. If the ensemble is confined within a particular subspace, the iterative algorithm can

only attain the optimal value within the subspace spanned by the ensemble. However, our discussion indicates that, if σ2
m is

sufficiently large, it is ensured that the discrepancies between estimates and observations are reduced in each iteration even if415

the ensemble is confined within a subspace. If the ensemble is updated so as to span a different subspace in each iteration, the

optimal solution would be sought in a different subspace in each iteration, and the estimate would converge to a local minimum

after infinite iterations.
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This paper mainly considers data assimilation problems. However, the framework of the iterative ensemble variational

method is also applicable to general nonlinear inverse problems as far as the Gaussian assumption in Eq. (23) or Eq. (56)420

is upheld. If an ensemble of the results of forward runs is available, many practical problems can readily be addressed. This

method could therefore be a promising tool for data assimilation and various inverse problems.

Code availability. The code for reproducing the experimental results shown in Section 7 is available at the following Web site.

http://daweb.ism.ac.jp/~shiny/codes/npg2020.zip

Appendix A: Algorithm for Bayesian estimation with ensemble transform425

In the following, it is described how the iteration can be performed without computing the inverse of P0,b when the ensemble

is updated with the ensemble transform scheme in Eq. (34). When the ensemble is updated by the ensemble transform in the

manner of Eq. (34):

Xm = Xm−1Tm, (A1)

the transform matrix Tm should be given as430

Tm = Um(I+ Λm)−
1
2 UT

m, (A2)

where Um and Λm are obtained by the following eigenvalue decomposition:

UmΛmUT
m = σ−2

m (XT
m−1P

−1
0,bXm−1 + ΓT

m−1R
−1Γm−1). (A3)

If Xm−1 is obtained according to Eq. (A1),

Xm−1 = Xm−2Tm−1 = X0T1T2 · · ·Tm−1. (A4)435

Defining the matrix Cm−1 as

Cm−1 = T1T2 · · ·Tm−1, (A5)

Xm−1 can be written as

Xm−1 = X0Cm−1. (A6)

If the initial ensemble is sampled from the prior distribution N (x0; x̄0,b,P0,b), we can apply Eq. (65) again. Using Eqs. (65)440

and (A6), the term XT
m−1P

−1
0,bXm−1 in Eq. (62) can be reduced to

XT
m−1P

−1
0,bXm−1 = CT

m−1Cm−1. (A7)
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The m-th estimate is broken down as follows:

x̄0,m−1 = x̄0,m−2 + Xm−2ŵm−1 = x̄0,b +
m−1∑

i=1

Xi−1ŵi

= x̄0,b + X0

m−1∑

i=1

Ci−1ŵi, (A8)

where C0 = I. Defining a vector ξm−1 as445

ξm−1 =
m−1∑

i=1

Ci−1ŵi, (ξ0 = 0), (A9)

Eq. (A8) becomes

x̄0,m−1 = x̄0,b + X0ξm−1, (A10)

and we obtain

XT
m−1P

−1
0,b(x̄0,m−1− x̄0,b) = CT

m−1X
T
0 P−1

0,bX0ξm−1

≈ CT
m−1ξm−1. (A11)450

Using Eqs. (65) and (A11), we can rewrite Eq. (62) into a form without the inverse of P0,b:

ŵm =
(
σ2

mI+ CT
m−1Cm−1 + ΓT

m−1R
−1Γm−1

)−1 (
ΓT

m−1R
−1 [y− g(x̄0,m−1)]−CT

m−1ξm−1

)
. (A12)

The algorithm with the ensemble transform is summarized in Algorithm 2.
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Algorithm 2 Iterative algorithm for maximizing the Bayesian objective function J with ensemble transform.

Let m = 1.

Give an initial estimate of x0, x̄0,1.

Give an initial square root of the covariance, X1.

Let C0 = I and ξ0 = 0.

while unconverged do

Generate an ensemble {x0,m}N
i=1 around with a mean of x̄0,m and a variance of XmXT

m.

Obtain Γk,m−1 in Eq. (28).

Compute ŵm in Eq. (A12).

Compute the m-th estimate x̄0,m according to Eq. (63).

Compute the matrix Xm according to Eq. (A1).

Let Cm = Cm−1Tm−1

Let ξm = ξm−1 + Cm−1ŵm

Let m := m +1

end while
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