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Abstract. The behavior of the iterative ensemble-based data assimilation algorithm is discussed. The ensemble-based method

for variational data assimilation problems, referred to as the 4-dimensional ensemble variational method (4DEnVar), is a

useful tool for data assimilation problems. Although the 4DEnVar is derived based on a linear approximation, highly uncertain

problems, where system nonlinearity is significant, are solved by applying this method iteratively. However, the ensemble-

based methods basically seek the solution within a lower-dimensional subspace spanned by the ensemble members. It is not5

necessarily trivial how high-dimensional problems can be solved with the ensemble-based algorithm which employs the lower-

dimensional approximation based on the ensemble. In the present study, an ensemble-based iterative algorithm is reformulated

to allow us to analyze its behavior in high-dimensional nonlinear problems. The conditions for monotonic convergence to

a local maximum of the objective function are discussed in high-dimensional context. It is shown that the ensemble-based

algorithm can solve high-dimensional problems by distributing the ensemble in different subspace at each iteration The findings10

as the results of the present study were also experimentally supported.

1 Introduction

The 4-dimensional ensemble variational method (4DEnVar; Lorenc, 2003; Liu et al., 2008) is a useful tool for practical data

assimilation. The 4DEnVar obtains the derivative of the objective function from the approximate Jacobian of a dynamical

system model which is estimated by using the ensemble of simulation results. In contrast with the adjoint method, the 4DEnVar15

does not require an adjoint code which is usually time-consuming to develop. This ensemble method thus allows us to treat the

simulation code as a ‘black box’, and it can easily be implemented.

The 4DEnVar algorithm is derived based on a low-dimensional linear approximation of the high-dimensional nonlinear

system model. If the uncertainties in state variables are small, the solution could be found within the range where a linear

approximation is valid. However, geophysical systems are often highly uncertain. If the scale of uncertainty is much larger20

than the range of linearity, a linear approximation would not be justified. In atmospheric applications, uncertainty can usually

be reduced by taking sufficient spin-up time. On the other hand, in some geophysical applications, it is difficult to obtain a

sufficiently long sequence of observations to allow spin-up. For example, in data assimilation for the interior of the Earth such

as lithospheric plates (e.g., Kano et al., 2015) and the outer core (e.g., Sanchez et al., 2019; Minami et al., 2020), time scale of
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system dynamics is so long that a sufficient length of an observation sequence is not feasible. It is also difficult to use a long25

sequence of observations in the Earth’s magnetosphere where the amount of observations is limited (e.g., Nakano et al., 2008;

Godinez et al., 2016). It is therefore an important issue to consider large uncertainties which could deteriorate the validity of

the linear approximation.

Several studies have suggested that estimation in nonlinear problems can be improved by iterative algorithms in which the

ensemble is repeatedly updated in each iteration (e.g., Gu and Oliver, 2007; Kalnay and Yang, 2010; Chen and Oliver, 2012;30

Bocquet and Sakov, 2013, 2014; Raanes et al., 2019). These iterative algorithms can be regarded as a variant of the 4DEnVar

method based on an approximation of the Gauss-Newton method or the Levenberg-Marquardt method. The Gauss-Newton

and the Levenberg-Marquardt methods are variants of the Newton-Raphson method for solving nonlinear least squares prob-

lems by using the Jacobian of a nonlinear function. Thus, when the Gauss-Newton or the Levenberg-Marquardt framework is

strictly applied to data assimilation problems, the tangent linear of the system model is required. Indeed, if the tangent linear35

of the system model is obtained, 4-dimensional variational data assimilation problems can be solved with the incremental for-

mulation (Courtier et al., 1994) which can be regarded as an instance of the Gauss-Newton framework (Lawless et al., 2005).

The ensemble-based methods avoid computing the Jacobian of a nonlinear system model by a linear approximation using

the ensemble. This ensemble-based approximation is justified if linearity can be assumed over the range where the ensem-

ble members are distributed. However, the ensemble-based methods basically seek the solution within a lower-dimensional40

subspace spanned by the ensemble members. In many applications in atmospheric sciences, it has been demonstrated that

the localization of the covariance matrix is useful for coping with high-dimensional problems (e.g., Buehner, 2005; Liu et al.,

2009; Buehner et al., 2010; Yokota et al., 2016). However, it has not necessarily been clarified how general high-dimensional

problems, in which the localization of the covariance matrix might not be appropriate, can be solved with the ensemble-based

algorithm which employs the lower-dimensional approximation based on the ensemble.45

The present study aims to reformulate an ensemble-based iterative algorithm in order to analyze its behavior in high-

dimensional nonlinear problems. We then explore the conditions for achieving monotonic convergence to a local maximum

of the objective function in high-dimensional nonlinear context. The monotonic convergence means that the discrepancies be-

tween estimates and observations are reduced in each iteration. It is ensured that the algorithm would attain a satisfactory result

in high-dimensional problems if the ensemble is distributed in a different subspace at each iteration. This study is originally50

motivated by data assimilation into a geodynamo model to which the author contributed (Minami et al., 2020). However, the

present paper focuses on the iterative variational data assimilation algorithm for general uncertain problems in order to avoid

the discussion on specific physical processes of geodynamo. In Section 2, the formulation of the variational data assimilation

problem is described. In Section 3, the basic idea of the ensemble variational method is explained. The iterative version is in-

troduced as an algorithm for maximizing the log-likelihood function in Section 4, and the behavior of the iterative algorithm is55

evaluated in Section 5. In Section 6, a Bayesian extension is introduced. Section 7 experimentally verifies our findings. Finally,

a discussion and conclusions are presented in Section 8.
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2 4-dimensional variational data assimilation (4DEnVar)

In the following, the system state at time tk is denoted as xk and the observation at tk is denoted as yk. We consider a

strong-constraint data assimilation problem where the evolution of state xk is given by60

xk = fk(xk−1) (1)

and the relation between yk and xk is written in the following form:

yk = hk(xk)+wk (2)

where wk indicates the observation noise. Assuming that wk obeys a Gaussian distribution with mean 0 and covariance matrix

Rk, then65

p(wk)∝ exp

[
−1

2
wT

k R
−1
k wk

]
. (3)

The likelihood of xk given yk is

p(yk|xk)∝ exp

[
−1

2
(yk −hk(xk))

T R−1
k (yk −hk(xk))

]
. (4)

Since we assume a deterministic system as stated in Eq. (1), hk(xk) can be written as a function of an initial value x0 as

hk(xk) = gk(x0), (5)70

where gk is the following composite function

gk(x0) = hk ◦fk ◦fk−1 ◦ · · ·f1(x0). (6)

The likelihood in Eq. (4) is then written as

p(yk|x0)∝ exp

[
−1

2
(yk − gk(x0))

T R−1
k (yk − gk(x0))

]
. (7)

When the prior distribution of x0 is assumed to be Gaussian with mean x̄0,b and covariance matrix P0,b defined by75

p(x0)∝ exp

[
−1

2
(x0 − x̄0,b)

T P−1
0,b (x0 − x̄0,b)

]
, (8)

the Bayesian posterior distribution of x0 given the whole sequence of observations from t1 to tK , y1:K , can be obtained as

follows:

p(x0|y1:K)∝ exp

[
−1

2
(x0 − x̄0,b)

T P−1
0,b (x0 − x̄0,b)−

1

2

K∑
k=1

(yk − gk(x0))
T R−1

k (yk − gk(x0))

]
. (9)

The maximum of the posterior can be found by maximizing the following objective function:80

J(x0) =−1

2
(x0 − x̄0,b)

T P−1
0,b (x0 − x̄0,b)−

1

2

K∑
k=1

(yk − gk(x0))
T R−1

k (yk − gk(x0)) . (10)
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3 Ensemble-based method

The maximization of the objective function J is conventionally performed by the adjoint method, which differentiates J based

on the adjoint matrix of the Jacobian of the function fk in Eq. (1). For a practical high-dimensional simulation model, however,

it is an extremely laborious task to develop the adjoint code which represents the adjoint matrix of the Jacobian of the forward85

simulation model. The 4DEnVar is an alternative method for obtaining an approximate maximum of J without using the adjoint

code. The 4DEnVar employs an ensemble ofN simulation results {x(1)
0:K , . . . ,x

(N)
0:K}, where x0:K indicates the whole sequence

of the states from t0 to tK ; that is, x0:K = (xT
0 · · · xT

K)T . The initial state of each ensemble member x(i)
0 is assumed to be

sampled from the Gaussian distribution N (x0;x0,b,P0,b). The objective function in Eq. (10) is approximated by using this

ensemble.90

For convenience, we define the following matrix X0,b from the initial states of ensemble members:

X0,b =
1√
N

(
x
(1)
0 − x̄0,b · · · x

(N)
0 − x̄0,b

)
. (11)

Assuming that the optimal x0 can be written as a linear combination of the ensemble members, we can write x0 in the following

form:

x0 = x̄0,b +X0,bw. (12)95

This assumption means that x0 is within the subspace spanned by the ensemble members. The quality of an estimate with the

4DEnVar can thus be poor if there are insufficient ensemble members. In practical applications of the 4DEnVar, a localization

technique is usually used to avoid this problem (e.g., Buehner, 2005; Liu et al., 2009; Buehner et al., 2010; Yokota et al., 2016).

However, the present paper does not consider localization because the focus here is on the basic behavior of the 4DEnVar. If

we assume that the rank of X0,b is N (< dimx0) and approximate the inverse of P0,b by the Moore-Penrose inverse matrix of100

X0,bX
T
0,b, the first term of the right-hand side of Eq. (10) can be approximated as

−1

2
(x0 − x̄0,b)

T P−1
0,b (x0 − x̄0,b) =−1

2
wTXT

0,bP
−1
0,bX0,bw ≈−1

2
wTw. (13)

This corresponds to a low-rank approximation within the subspace spanned by the ensemble members. The prior mean x̄0,b

is usually given by the ensemble mean of {x(i)
0 }Ni=1. In such a case, it is necessary to ignore the subspace along the vector

1= (1 · · · 1)T to reach the approximation of Eq. (13). The function gk(x0) is approximated based on the first-order Taylor105

expansion:

gk(x0)≈ gk(x̄0,b)+Gk(x0 − x̄0,b)≈ gk(x̄0,b)+GkX0,bw, (14)

where Gk is the Jacobian of gk at x̄0,b. The matrix GkX0,b in Eq. (14) is approximated as

GkX0,b ≈
1√
N

(
gk(x

(1)
0 )− gk(x̄0,b) · · · gk(x

(N)
0 )− gk(x̄0,b)

)
. (15)

Defining the right-hand side of Eq. (15) as Γk, that is,110

Γk =
1√
N

(
gk(x

(1)
0 )− gk(x̄0,b) · · · gk(x

(N)
0 )− gk(x̄0,b)

)
≈ GkX0,b, (16)
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we obtain a further approximation of the function gk(x0) in Eq. (14):

gk(x0)≈ gk(x̄0,b)+ Γkw (17)

(e.g., Zupanski et al., 2008; Bannister, 2017). Using Eqs. (13) and (17), the objective function in Eq. (10) can be approximated

as a function of w as follows:115

Ĵw(w) =−1

2
wTw− 1

2

K∑
k=1

(yk − gk(x̄0,b)− Γkw)R−1
k (yk − gk(x̄0,b)− Γkw) (18)

where we defined Ĵw(w) = J(x̄0,b +X0,bw).

The approximate objective function Ĵw is a quadratic function of w and it no longer contains the Jacobian of the function

gk. The maximization of Ĵw is thus much easier than that of the original objective function in Eq. (10). The derivative of Ĵw

with respect to w becomes120

∇wĴw =w−
K∑

k=1

(
ΓTk R

−1
k [yk − gk(x̄0,b)− Γkw]

)
(19)

(Liu et al., 2008). The Hessian matrix of Ĵw is then obtained as

HĴw
= I+

∑
k

[ΓTk R
−1
k Γk]. (20)

We can thus immediately find the value of w maximizing Ĵw:

ŵ =

(
I+
∑
k

ΓTk R
−1
k Γk

)−1∑
k

(
ΓTk R

−1
k [yk − gk(x̄0,b)]

)
. (21)125

Inserting ŵ into Eq. (12), we obtain an estimate of x0 as follows:

x̂0 = x̄0,b +X0,bŵ. (22)

This solution in Eq. (22) is similar to the ensemble Kalman smoother (van Leeuwen and Evensen, 1996; Evensen and van Leeuwen,

2000) although the whole sequence of observations is referred to in Eq. (21). Even if a large amount of data are used, it would

not seriously affect the computational cost because the computation of the inverse matrix can be conducted in N -dimensional130

space. This is also an advantage of the ensemble-based method.

4 Iterative algorithm

Since Eqs. (21) and (22) do not require the Jacobian of the function gk, it can be applied as a post-process provided that an

ensemble of the simulation runs is prepared in advance. However, this solution, which maximizes the objective function in Eq.

(18), relies on Eq. (15) which approximates matrix GkX0,b by using the ensemble. This approximation is based on the first-order135
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approximation shown in Eq. (14). Where x0 exhibits high uncertainty and ∥x0−x̄0,b∥ can be large, this approximation appears

to be invalid. Therefore, it is not guaranteed that the estimate with Eq. (22) provides the optimal x0 which maximizes the

original log-posterior density function in Eq. (10) even if we accept that the solution is limited within the ensemble subspace.

Where the initially prepared ensemble is used, it is unlikely that a better solution than Eq. (22) could be achieved. We

then consider an iterative algorithm which generates a new ensemble based on the previous estimate in each iteration. The140

algorithm introduced in the following is basically the same as the method referred to as the iterative ensemble Kalman filter

(Bocquet and Sakov, 2013, 2014), but we employ a formulation to allows evaluation of the behavior and a slight extension. To

derive an algorithm analogous to that in the previous section, we at first consider the following log-likelihood function:

Jℓ(x0) =−1

2

K∑
k=1

[yk − gk(x0)]
T R−1 [yk − gk(x0)] . (23)

instead of the log-posterior density function in Eq. (10). Maximization of the Bayesian-type objective function in Eq. (10) will145

be discussed in Section 6.

In the following, we combine the vectors of the whole time sequence from t1 to tK into one single vector; that is, y = y1:K

and g(x0) = g0:K(x0). The covariance matrices R1, . . . , RK are also combined into one block diagonal matrix R which

satisfies

yTR−1y =

K∑
k=1

yT
k R

−1
k yk. (24)150

Accordingly, the log-likelihood function of Eq. (23) is rewritten as

Jℓ(x0) =−1

2
[y− g(x0)]

T R−1 [y− g(x0)] . (25)

In our iterative algorithm, them-th step starts with an ensemble of initial values {x(1)
0,m−1, . . . ,x

(N)
0,m−1} obtained in the neighbor

of the (m−1)-th estimate x̄0,m−1. Typically, the ensemble is generated so that the ensemble mean is equal to x̄0,m−1; that is,

x̄0,m−1 =
1

N

N∑
i=1

x
(i)
0,m−1, (26)155

although it is not necessary to satisfy this equation. A simulation run initialized at x(i)
0,m−1 yields g(x

(i)
0,m−1), and we obtain

the ensemble of the simulation results {g(x(1)
0,m−1), . . . ,g(x

(N)
0,m−1)}. Defining the matrices

Xm−1 =
1√
N

(
x
(1)
0,m−1 − x̄0,m−1 · · · x

(N)
0,m−1 − x̄0,m−1

)
, (27)

Γm−1 =
1√
N

(
g(x

(1)
0,m−1)− g(x̄0,m−1) · · · g(x

(N)
0,m−1)− g(x̄0,m−1)

)
, (28)

we consider the following m-th objective function:160

J̌ℓ,m(wm|x̄0,m−1)

=−σ
2
m

2
wT

mwm − 1

2
[y− g(x̄0,m−1)− Γm−1wm]

T R−1 [y− g(x̄0,m−1)− Γm−1wm] . (29)
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where σm is an appropriately chosen parameter. This objective function J̌ℓ,m is maximized when

ŵm =
(
σ2
mI+ ΓTm−1R

−1Γm−1

)−1 (
ΓTm−1R

−1 [y− g(x̄0,m−1)]
)
, (30)

and w̄m provides the m-th estimate of x̄0,m as follows:

x̄0,m = x̄0,m−1 +Xm−1w̄m. (31)165

Unless converged, members of the next ensemble are generated in the neighbor of x̄0,m so that ∥x(i)
0,m − x̄0,m∥2 is small

for each i, and we proceed to the next iteration. By iterating the above procedures until convergence, the optimal x̂0 which

maximizes Jℓ is attained.

The form of J̌ℓ,m in Eq. (29) looks similar to that of Ĵw in Eq. (18). However, the meaning of the first term of Eq. (29) is

different from that of the first term of Eq. (18). The first term of Eq. (18) corresponded to the Bayesian prior. On the other170

hand, the first term of Eq. (29) is a penalty term to ensure monotonic convergence as explained later. After iterations until

convergence, the contribution of this penalty term would decay, and the log-likelihood function in Eq. (23) is maximized in the

end.

We can consider various ways to obtain an ensemble satisfying Eq. (26). Bocquet and Sakov (2013) proposed to obtain a

matrix Xm as a scalar multiple of X0,b:175

Xm = αmX0,b (αm ≥ 0). (32)

where X0,b is a matrix defined in Eq. (11). A new ensemble for next iteration is generated to satisfy

Xm =
1√
N

(
x
(1)
0,m − x̄0,m · · · x

(N)
0,m − x̄0,m

)
. (33)

As discussed later, αm should be taken to be so small that a linear approximation is valid over the range of ensemble dispersion.

The value of αm can be fixed at a small value. Otherwise, αm may be reduced gradually in each iteration so that the spread of180

the ensemble eventually becomes small. We can also shrink the ensemble by using a similar scheme to the ensemble transform

Kalman filter (Bishop et al., 2001; Livings et al., 2008) which obtains Xm as outlined by Bocquet and Sakov (2012); that is,

Xm = Xm−1Tm, (34)

where Tm is the ensemble transform matrix given as

Tm = Um(I+Λm)−
1
2UT

m. (35)185

In Eq. (35), I is the identity matrix and UmΛmUT
m is the eigenvalue decomposition of the matrix σ−2

m ΓTm−1R
−1Γm−1, where

Um is an orthogonal matrix consisting of the eigenvectors, and the matrix Λm is a diagonal matrix of the eigenvalues.

If the ensemble is updated according to Eq. (32) or (34), the estimate of x0 is constrained within the subspace spanned by the

initial ensemble members {x(1)
0,0, . . . ,x

(N)
0,0 }. We can avoid confining the ensemble within a subspace by randomly generating

ensemble members from a Gaussian distribution with mean x̄0,m and variance Qm as:190

x
(i)
0,m ∼N (x̄0,m,Qm), (i= 1, . . . ,N). (36)
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Although this method has a limitation when applying it to Bayesian estimation as explained later, it would be effective if

applicable.

The iterative algorithm is summarized in Algorithm 1. The procedures in this iterative algorithm are similar to those in the

ensemble-based multiple data assimilation method (Emerick and Reynolds, 2012, 2013), which aims to obtain the maximum195

of the Bayesian posterior function, especially if the ensemble is updated with Eq. (34). The multiple data assimilation method

does not perform iterations until convergence, but it performs iterations only a few times to estimate the maximum of the

posterior although it can provide a biased solution in nonlinear problems (Evensen, 2018). In order to achieve the convergence

to the maximum of the Bayesian posterior in our framework, the objective function in each iteration should be modified as

discussed in Section 6.200

Algorithm 1 Iterative algorithm for maximizing the log-likelihood function Jℓ.

Give an initial estimate of x0, x̄0,0.

Give an initial square root of the covariance, X0.

Let m= 1.

while unconverged do

Generate an ensemble {x(i)
0,m−1}Ni=1 in the neighbor of x̄0,m−1 by using either of Eq. (32), (34), or (36).

Obtain Xm−1 and Γk,m−1 in Eqs. (27) and (28).

Compute ŵm in Eq. (30).

Compute the m-th mean vector x̄0,m according to Eq. (31).

Compute the matrix Xm according to Eq. (34).

Let m :=m+1

end while

5 Rationale of the algorithm

Eq. (30) can be regarded as an approximation of the Levenberg-Marquardt method (e.g., Nocedal and Wright, 2006) for max-

imizing the log-likelihood function in Eq. (23) within the subspace spanned by {x(1)
0,0, . . . ,x

(N)
0,0 }. In particular, if σ2

m is zero,

Eq. (30) can be regarded as an approximation of the Gauss-Newton method. Indeed, Bocquet and Sakov (2013, 2014) derived

a similar algorithm as an approximation of the Levenberg-Marquardt method or the Gauss-Newton method. However, the205

Levenberg-Marquardt method basically requires the Jacobian of the function gk, Gm−1. Since the above iterative algorithm

does not directly use Gm−1, it would not be trivial how the convergence of this algorithm is achieved. This issue is explored in

this section.
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We hereinafter assume that g(x0) is at least twice differentiable. The Taylor expansion up to the second-order term of Jℓ

becomes210

Jℓ(x0) =−1

2
[y− g(x̄0,m−1)]

T R−1 [y− g(x̄0,m−1)]+ [y− g(x̄0,m−1)]
T R−1Gm−1(x0 − x̄0,m−1)

− 1

2
(x0 − x̄0,m−1)

TGT
m−1R

−1Gm−1(x0 − x̄0,m−1)

+
1

4
(x0 − x̄0,m−1)

T
[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
(x0 − x̄0,m−1)

+O(∥x0 − x̄0,m−1∥3), (37)

where Gm−1 is the Jacobian at x̄0,m−1 and
(
∇2g

)
is a third-order tensor which consists of the Hessian matrix of each element

of the vector-valued function g(x0). As done in Eq. (12), we assume

x0 = x̄0,m−1 +Xm−1wm, (38)

where Xm−1 is obtained by Eq. (27) given the ensemble {x(1)
0,m−1, . . . ,x

(N)
0,m−1}. We then have215

Jℓ(x0) = Jℓ(x̄0,m−1 +Xm−1wm)

=−1

2
[y− g(x̄0,m−1)]

T R−1 [y− g(x̄0,m−1)]+ [y− g(x̄0,m−1)]
T R−1Gm−1Xm−1wm

− 1

2
wT

mXT
m−1G

T
m−1R

−1Gm−1Xm−1wm

+
1

4
wT

mXT
m−1

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
Xm−1wm +O(∥wm∥3). (39)

In practical cases, the Jacobian matrix Gm−1 is typically unavailable. Ensemble variational methods thus employ the first-

order approximation in Eq. (15) for Gm−1Xm−1; that is,

Gm−1Xm−1 ≈ Γm−1, (40)

where220

Γm−1 =
1√
N

(
g(x

(1)
0,m−1)− g(x̄0,m−1) · · · g(x

(N)
0,m−1)− g(x̄0,m−1)

)
. (41)

To evaluate this approximation when x0 has a large uncertainty, we consider the following expansion of g(x0) for each

ensemble member x(i)
0 :

g(x
(i)
0 ) = g(x̄0,m−1)+Gm−1(x

(i)
0 − x̄0,m−1)

+
1

2
(x

(i)
0 − x̄0,m−1)

T
(
∇2g

)
(x

(i)
0 − x̄0,m−1)+O(∥x(i)

0 − x̄0,m−1∥3). (42)
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If we consider a vector Γm−1wm, it becomes225

Γm−1wm

=
1√
N

N∑
i=1

w(i)Gm−1(x
(i)
0 − x̄0,m−1)

+
1

2
√
N

N∑
i=1

w(i)(x
(i)
0 − x̄0,m−1)

T
(
∇2g

)
(x

(i)
0 − x̄0,m−1)

= Gm−1Xm−1wm

+
1

2
√
N

N∑
i=1

w(i)
[
(x

(i)
0 − x̄0,m−1)

T
(
∇2g

)
(x

(i)
0 − x̄0,m−1)+O(∥x(i)

0 − x̄0,m−1∥3)
]
. (43)

If Gm−1Xm−1wm, which is contained in the first-order term in Eq. (39), is approximated by Γm−1wm, this means that the

second- and higher-order terms of the right-hand side of Eq. (43) are neglected. Indeed, this can be justified if the spread

of the ensemble is taken to be small. In our iterative scheme, the ensemble spread can be tuned freely. Even if the scale of

∥x(i)
0 − x̄0,m−1∥ is very small, any x0, which may have a large uncertainty, can be represented by taking the scale of ∥wm∥ to230

be large according to Eq. (38). The nonlinear terms of the right-hand side of Eq. (43) are of the order of ∥wm∥, while they are

of the order of ∥x(i)
0 − x̄0,m−1∥2 or higher order. Thus, if the spread of the ensemble is taken to be small, the nonlinear terms

of Eq. (43) would be suppressed, and we obtain

Γm−1wm ≈ Gm−1Xm−1wm. (44)

Consequently, we can apply the approximation in Eq. (40) to Eq. (39). Defining a function Jℓ,wm(wm) as235

Jℓ,wm
(wm) =−1

2
[y− g(x̄0,m−1)]

T R−1 [y− g(x̄0,m−1)]+ [y− g(x̄0,m−1)]
T R−1Γm−1wm

− 1

2
wT

mΓTm−1R
−1Γm−1wm

+
1

4
wT

mXT
m−1

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
Xm−1wm +O(∥wm∥3), (45)

Jℓ,wm
(wm) gives an approximation of Jℓ(x̄0,m−1 +Xm−1wm) in Eq. (39):

Jℓ(x̄0,m−1 +Xm−1wm)≈ Jℓ,wm
(wm). (46)

The fourth term on the right-hand side of Eq. (45) would not necessarily be suppressed even if the ensemble variance were

taken to be small, because it is of the order of ∥wm∥2 and of the order of ∥x(i)
0 − x̄0,m−1∥2. To control the effect of this240

term, we introduce the idea of the minorize-maximize algorithm (MM algorithm) (Lange et al., 2000; Lange, 2016). The MM

algorithm is a class of iterative algorithms which considers a surrogate function which minorizes the objective function ϕ(z)

and maximizes the surrogate function. Although the Levenberg-Marquardt method can also be regarded as an instance of the

MM algorithm, the generic idea of the MM algorithm gives a striking insight into the behavior of the algorithm.
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At the m-th step of the MM algorithm, the surrogate function given the (m− 1)-th estimate zm−1, ψ(z0|zm−1), is chosen245

to satisfy the following conditions:

ψ(z|zm−1)≤ ϕ(z), (47a)

ψ(zm−1|zm−1) = ϕ(zm−1). (47b)

The m-th estimate, zm, is obtained by maximizing the m-th surrogate function, ψ(z|zm−1). Since zm obviously satisfies

ϕ(zm−1) = ψ(zm−1|zm−1)≤ ψ(zm|zm−1)≤ ϕ(zm) (48)250

it is guaranteed that the m-th estimate is as good as or better than the (m− 1)-th estimate. After iterations, zm converges

to a stationary point zs of the objective function ϕ(z) (Lange, 2016). If the Hessian matrix of ϕ(z) is negative definite in

a neighborhood of zs, the stationary point zs becomes a local maximum (e.g., Nocedal and Wright, 2006). Therefore, the

estimate would monotonically converge to a local maximum of ϕ(z) by repeating iterations if

– the surrogate function ψ(z|zm) is twice differentiable and satisfies Eqs. (47a) and (47b),255

– and the Hessian of ϕ(z) is negative definite in a neighborhood of the stationary point zs.

Here we consider the following surrogate function J†
ℓ,wm

:

J†
ℓ,wm

(wm|x̄0,m−1)

=−σ
2
m

2
wT

mwm − 1

2
[y− g(x̄0,m−1)]

T R−1 [y− g(x̄0,m−1)]

+ [y− g(x̄0,m−1)]
T R−1Γm−1wm − 1

2
wT

mΓTm−1R
−1Γm−1wm

=−σ
2
m

2
wT

mwm − 1

2
[y− g(x̄0,m−1)− Γm−1wm]

T R−1 [y− g(x̄0,m−1)− Γm−1wm] , (49)

which is a similar treatment to Böhning and Lindsay (1988). For a given ∆, we can take σ2
m so that the following inequality

holds over ∥wm∥<∆:260

−σ
2
m

2
wT

mwm ≤ 1

4
wT

mXT
m−1

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
Xm−1wm +O(∥wm∥3). (50)

where equality holds if wm = 0. If σ2
m is chosen so that the inequality (50) is satisfied, J†

ℓ,w satisfies the followings:

J†
ℓ,wm

(wm|x̄0,m−1)≤ Jℓ,wm
(wm)≈ Jℓ(x̄0,m−1 +Xm−1wm), (51)

J†
ℓ,wm

(0|x̄0,m−1) = Jℓ,wm
(0) = Jℓ(x̄0,m−1). (52)

This means that J†
ℓ,wm

can be used as a surrogate function for maximizing Jℓ,wm
(wm) according to the MM algorithm.265

Since Eq. (49) is the same as Eq. (29), the maximum of J†
ℓ,wm

is achieved when wm = ŵm where ŵm is given by Eq. (30).

Obviously, ŵm satisfies the following inequality:

J†
ℓ,wm

(0|x̄0,m−1)≤ J†
ℓ,wm

(ŵm|x̄0,m−1), (53)

11



and therefore, if the approximation in Eq. (40) is valid, we obtain the following result:

Jℓ(x̄0,m−1) = Jℓ,wm(0)≤ Jℓ,wm(ŵm)≈ Jℓ(x̄0,m−1 +Xm−1ŵm) = Jℓ(x̄0,m), (54)270

where x̄0,m is given by Eq. (31).

The above discussion is valid regardless of the choice of the ensemble {x(1)
0,m, . . . ,x

(N)
0,m} in each iteration as far as the

approximation in Eq. (40) is applicable. This suggests we can use various ways to update the ensemble, including Eq. (36)

which does not confine the ensemble within a particular subspace. It should be noted that the equality of Eq. (53) holds at a

stationary point in the subspace spanned by the ensemble members. If the update of the ensemble in each iteration is carried275

out with Eq. (32) or (34), the ensemble is confined within a particular subspace spanned by the initial ensemble, and x̄0,m−1

would converge to a stationary point in this subspace. According to Eq. (37), if the nonlinearity of g is not severe when
(
∇2g

)
is not dominant, the Hessian of Jℓ is negative definite in a region where ∥y− g(x̄0,m−1)∥ is small enough. This suggests

that the iterative algorithm in Section 4 would attain at least a local maximum of Jℓ in the subspace for weakly nonlinear

problems if Eq. (36) is applicable. If the ensemble is updated according to Eq. (36), a stationary point is sought in a different280

subspace in each iteration. If Qm is full rank, Jℓ would increase until a point which can be regarded as a stationary point in any

N -dimensional subspace, and x̄0,m−1 would thus converge to a local maximum in the full vector space after infinite iterations.

Based on the foregoing, convergence to a local maximum of the objective function Jℓ can be achieved for weakly nonlinear

systems if the ensemble variance is taken to be small enough. If the ensemble with large spread is used, the estimate can be

biased due to the nonlinear terms in Eq. (43). Hence an ensemble with small spread would provide a satisfactory result for285

weakly nonlinear systems where we can assume the Hessian of Jℓ is negative definite over the region of interest. However,

this iterative algorithm does not necessarily guarantee convergence to the global maximum. If there are multiple peaks in Jℓ,

it might be effectual to start with an ensemble with large spread to approach the global maximum. An ensemble with large

spread would grasp a large-scale structure of the objective function because the ensemble approximation of the Jacobian gives

the gradient averaged over the region where the ensemble members are distributed under a certain assumption (Raanes et al.,290

2019). Even if the spread is taken to be large at first, convergence would eventually be achieved by reducing the ensemble

spread in each iteration as described in the previous section.

Our formulation refers to the result of a simulation run initialized at the (m− 1)-th estimate x̄0,m−1 for obtaining the m-th

estimate in Eq. (31). On the other hand, in many studies, the ensemble mean of simulation runs {g(x(i)
0,m−1)} is used as a

substitute for g(x̄0,m−1). If the ensemble mean g(x
(i)
0,m−1) is used, the ensemble in each iteration must be generated so as to295

satisfy Eq. (26), which is not required in our formulation; that is, the ensemble mean must be equal to the (m− 1)-th estimate

x̄0,m−1. It should also be kept in mind that some bias due to the nonlinear terms in Eq. (42) could be introduced when the

ensemble mean is used instead of g(x̄0,m−1). However, this bias could be suppressed by taking the ensemble spread to be

small. Since the use of the ensemble mean would save the computational cost of one simulation run for each iteration, it might

be a useful treatment for practical applications.300

It is also important to appropriately choose the parameter σ2
m. A sufficiently large σ2

m guarantees that them-th estimate x̄0,m

is better than the previous estimate x̄0,m−1 and hence convergence is stable. However, convergence speed will be degraded

12



with large σ2
m because x̄0,m is strongly constrained by the penalty weighted with σ2

m. Although there is no definitive way

to determine this parameter, σ2
m/2 should have a similar scale to the right-hand side of Eq. (50); that is, if the third- and

higher-order terms are assumed to be negligible,305

σ2
m ∼ XT

m−1

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
Xm−1. (55)

Since the right-hand side of Eq. (55) contains
(
∇2g

)
which comes from a nonlinear term of the function g, σ2

m should be

taken larger as system nonlinearity is severer. This equation also suggests that σ2
m should depend on the discrepancy between

observation y and the (m− 1)-th prediction g(x̄0,m−1). Although
(
∇2g

)
is unknown in general, ∥y− g(x̄0,m−1)∥ could be

used as a guide for determine σ2
m. The parameter σ2

m should also be dependent on the variance of the ensemble. If an ensemble310

with a large spread is used, σ2
m should be set large accordingly.

6 Bayesian form

The algorithm in Section 4 maximizes the log-likelihood function in Eq. (23). However, it would be sometimes required to

incorporate prior information into the estimate in a Bayesian manner. We thus consider the following log-posterior density

function as the objective function:315

J(x0) =−1

2
(x0 − x̄0,b)

T P−1
0,b (x0 − x̄0,b)−

1

2
[y− g(x0)]

T R−1 [y− g(x0)] , (56)

which is the same as Eq. (10) although the vectors of the whole time sequence are combined into a single vector for each y

and g(x0) as in Eq. (23). Eq. (56) is proportional to the log-posterior distribution when p(x0) and p(y|x0) are assumed to be

Gaussian. The Taylor expansion of Eq. (56) is

J(x0) =−1

2
(x0 − x̄0,b)

T P−1
0,b (x0 − x̄0,b)−

1

2
[y− g(x̄0,m−1)]

T R−1 [y− g(x̄0,m−1)]

+ [y− g(x̄0,m−1)]
T R−1Gm−1(x0 − x̄0,m−1)

− 1

2
(x0 − x̄0,m−1)

TGT
m−1R

−1Gm−1(x0 − x̄0,m−1)

+
1

4
(x0 − x̄0,m−1)

T
[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
(x0 − x̄0,m−1)

+O(∥x0 − x̄0,m−1∥3). (57)320

Applying Eqs. (38) and (44), we obtain the following approximate objective function:

Jwm(wm) =−1

2
(x̄0,m−1 − x̄0,b +Xm−1wm)

T P−1
0,b (x̄0,m−1 − x̄0,b +Xm−1wm)

− 1

2
[y− g(x̄0,m−1)]

T R−1 [y− g(x̄0,m−1)]

+ [y− g(x̄0,m−1)]
T R−1Γm−1wm − 1

2
wT

mΓTm−1R
−1Γm−1wm

+
1

4
wT

mXT
m−1

[
(y− g(x̄0,m−1))

T R−1
(
∇2g

)]
Xm−1wm +O(∥wm∥3). (58)
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As per Eq. (50), we can take σ2
m so that the fifth and sixth terms on the right-hand side of Eq. (58) can be minorized by a

quadratic function −(σ2
m/2)w

T
mwm, and we obtain the following surrogate function which minorizes the function Jwm

:

J†
wm

(wm|x̄0,m−1) =−σ
2
m

2
wT

mwm

− 1

2
(x̄0,m−1 − x̄0,b +Xm−1wm)

T P−1
0,b (x̄0,m−1 − x̄0,b +Xm−1wm)

− 1

2
[y− g(x̄0,m−1)]

T R−1 [y− g(x̄0,m−1)]

+ [y− g(x̄0,m−1)]
T R−1Γm−1wm − 1

2
wT

mΓTm−1R
−1Γm−1wm

=−σ
2
m

2
wT

mwm − 1

2
(x̄0,m−1 − x̄0,b)

TP−1
0,b(x̄0,m−1 − x̄0,b)

− 1

2
[y− g(x̄0,m−1)]

T R−1 [y− g(x̄0,m−1)]

− (x̄0,m−1 − x̄0,b)
TP−1

0,bXm−1wm + [y− g(x̄0,m−1)]
T R−1Γm−1wm

− 1

2
wT

mXT
m−1P

−1
0,bXm−1wm − 1

2
wT

mΓTm−1R
−1Γm−1wm, (59)325

which satisfies the conditions

J†
wm

(wm|x̄0,m−1)≤ Jwm
(wm)≈ J(x̄0,m−1 +Xm−1wm), (60)

J†
wm

(0|x̄0,m−1) = Jwm
(0) = J(x̄0,m−1). (61)

This function is maximized when

ŵm =
(
σ2
mI+XT

m−1P
−1
0,bXm−1 + ΓTm−1R

−1Γm−1

)−1

×
(
ΓTm−1R

−1 [y− g(x̄0,m−1)]−XT
m−1P

−1
0,b(x̄0,m−1 − x̄0,b)

)
. (62)330

The m-th estimate for x0 is obtained as

x̄0,m = x̄0,m−1 +Xm−1ŵm. (63)

Similarly to Eq. (54), we obtain

J(x̄0,m−1) = Jwm
(0)≤ Jwm

(ŵm)≈ J(x̄0,m−1 +Xm−1ŵm) = Jℓ(x̄0,m). (64)

Thus, x̄0,m is a better estimate than x̄0,m−1 if the approximation in Eq. (44) is valid. Generating the (m+1)-th ensemble335

around x̄0,m, we can obtain the (m+1)-th surrogate function according to Eq. (59) and proceed to the next iteration.

There are various methods for updating the ensemble including the methods mentioned in Section 4. Eq. (32) or (34) is

convenient for practical problems because we can avoid computing the inverse of P0,b in Eq. (62). When Eq. (32) is used for

updating the ensemble, we can easily avoid computing the inverse of P0,b by drawing initial ensemble members from the prior

distribution N (x0;x0,b,P0,b). If initial ensemble members {x(1)
0,0, . . . ,x

(N)
0,0 } obey the prior distribution, we can use the same340

approximation as Eq. (13); that is,

XT
0,bP

−1
0,bX0,b ≈ I. (65)
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Applying Eq. (63) recursively, x̄0,m−1 can be reduced to

x̄0,m−1 = x̄0,m−2 +Xm−2ŵm−1 = x̄0,m−3 +Xm−3ŵm−2 +Xm−2ŵm−1

= · · ·= x̄0,0 +

m−1∑
i=1

Xi−1ŵi

= x̄0,0 +X0,b

m−1∑
i=1

αi−1ŵi (66)

Inserting Eqs. (32) and (66) into Eq. (62) and applying Eq. (65), we obtain345

ŵm ≈
(
[σ2

m +α2
m−1]I+ ΓTm−1R

−1Γm−1

)−1

(
ΓTm−1R

−1 [y− g(x̄0,m−1)]−αm−1

m−1∑
i=1

αi−1ŵi

)
. (67)

Thus, we can avoid computing the inverse of P0,b. Likewise, when Eq. (34) is used for updating the ensemble, we can apply

Eq. (65) to avoid computing the inverse of P0,b (See Appendix).

As described in the previous section, the use of Eq. (32) of (34) confines the estimate x̄0,m−1 within the subspace spanned

by the initial ensemble. On the other hand, Eq. (36) enables us to seek the optimal value of x0 in a different subspace in350

each iteration. We can then obtain the local maximum in the full vector space if Qm is taken to be full rank. It appears that a

similar approximation to Eq. (67) is applicable if Qm is taken to be a scalar matrix of P0,b. However, since this approximation

considers a different approximate objective function in each iteration, monotonic convergence is not guaranteed. In order to

ensure monotonic convergence, Eq. (36) requires the inverse of P0,b in general. Nonetheless, if P−1
0,b can be obtained, the

method with Eq. (36) would be helpful for improving the estimate.355

7 Experiments

Preceding studies have already demonstrated the usefulness of the ensemble-based iterative algorithms for various data assim-

ilation problems. Estimation with the ensemble update in Eq. (32) has been verified in detail (e.g., Bocquet and Sakov, 2014).

The iterative algorithm ensemble update in Eq. (34) has also been demonstrated (e.g., Minami et al., 2020). Although it might

not be necessary to show the ability of the ensemble-based iterative algorithm further, we here verify some properties suggested360

in the above discussion through twin experiments with a simple model rather than a practical model.

In this section, we employ the Lorenz 96 model (Lorenz and Emanuel, 1998), which is written by the following equations:

dxm
dt

= (xm+1 −xm−2)xm−1 −xm + f (68)

for m= 1, . . . ,M , where x−1 = xM−1, x0 = xM , and xM+1 = x1. The state dimension M was taken to be 40 and the forcing

term f was taken to be 8. The true scenario was generated by running the model with a certain initial state. We here consider a365

weakly nonlinear problem. The assimilation window was accordingly taken as a short time interval 0< t≤ 8. It was assumed

that all the state variables could be observed with a fixed time interval (∆t= 0.1), and hence, 80 data were generated for

each state variable. The observation noise for each variable was assumed to independently follow a Gaussian distribution with
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mean 0 and standard deviation 0.5. In each data assimilation experiment, the prior distribution was assumed to be a Gaussian

distribution with mean 0 and variance ζ2I, N (0, ζ2I), where ζ = 5.370

We compare two ensemble updating methods of Eqs. (32) and (36). In applying Eq. (32), the initial ensemble {x(1)
0,0, . . . ,x

(N)
0,0 }

was drawn from a Gaussian distribution N (0,ε2I) where ε= 5× 10−6 and X0 was obtained as follows:

X0 =
1√
N

(
x
(1)
0,0 − x̄0,0 · · · x

(N)
0,0 − x̄0,0

)
. (69)

The matrix Xm for each iteration was fixed at Xm = X0, which corresponds to the setting in Eq. (32) with αm = 1. The

discussion in Section 5 suggests that the penalty parameter σ2
m should be determined according to Eq. (55). Although

(
∇2g

)
375

is unknown, we can say that σ2
m should be related with the variance of the ensemble and the discrepancy between y and

g(x̄0,m−1). We thus gave σ2
m as follows:

σ2
m = δ2

√
(yK − gK(x̂0,m−1))

T R−1
K (yK − gK(x̂0,m−1))tr

(
ΓTm−1R

−1Γm−1

)
, (70)

where we tried two cases with δ = 1.5× 10−3 and δ = 1.5× 10−2. Here the part of the square root of a quadratic form of

yK − gK(x̂0,m−1) was multiplied in order that σ2
m was roughly proportional to ∥y− g(x̄0,m−1)∥, and tr

(
ΓTm−1R

−1Γm−1

)
380

was for representing the variance of the ensemble.

Figures 1 and 2 shows results with Eq. (32) where δ = 1.5× 10−3 and δ = 1.5× 10−2, respectively. We took the ensemble

size N to be 30, which is less than the state dimension, and performed the estimation 20 times with different seeds of a pseudo

random number generator. The value of the objective function J in Eq. (56) for each iteration is plotted for each of 20 trials

in these figures. When δ = 1.5× 10−3, the value of J tended to increase more sharply than when δ = 1.5× 10−2. However, J385

did not monotonically increase when δ = 1.5×10−3, while it monotonically increased when δ = 1.5×10−2. According to the

discussion in Section 5, monotonic convergence is achieved when σ2
m is taken to be large enough. However, convergence speed

becomes slow when σ2
m is large. The results in Figures 1 and 2 thus confirmed our discussion on the convergence. However, the

results shown in Figures 1 and 2 did not converge to the same value, which means the results depended on the seeds of pseudo

random numbers. This would indicate that a local maximum within a subspace spanned by the ensemble does not match the390

maximum in the full state vector space and that the value of the local maximum depends on the subspace.

Figures 3 and 4 shows results with Eq. (36) where δ = 1.5×10−3 and δ = 1.5×10−2, respectively. Again, the ensemble size

N was taken to be 30, and the results of 20 trials with different seeds of pseudo random numbers are overplotted. Again, when

δ = 1.5× 10−3, the increase of J tended to be sharp while it was not monotonic. On the other hand, when δ = 1.5× 10−2,

the increase of J was gradual but monotonic. In contrast with the results in Figures 3 and 4, the values of J in different395

trials converged to the same value after about 15 iterations in the case with δ = 1.5× 10−3 shown in Figure 3. In the case

with δ = 1.5× 10−2, the convergence was much slower, but the values of J converged to the same value as the the case with

δ = 1.5× 10−2 after about 80 iterations in all of the 20 trials (not shown). These results shows that the maximum of the

objective function in the full vector space can be reached by changing an ensemble in each iteration even if the ensemble does

not span the full vector space.400

Figure 5 shows the convergence of the estimated time series to the true time series for one of the 40 state variables, x1, in

one of the 20 trials in Figure 4. The red line indicates the initial guess obtained by running the Lorenz 96 model started at
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Figure 1. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (32)

with δ = 1.5× 10−3.

Figure 2. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (32)

with δ = 1.5× 10−2.
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Figure 3. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (36)

with δ = 1.5× 10−3.

Figure 4. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (36)

with δ = 1.5× 10−2.
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Figure 5. The temporal evolution started at the initial guess (red line), and the estimated evolutions after the 2nd (yellow line), 10th (green

line), and 30th iterations (blue line) in one of the 20 trials in Figure 4. The truth is indicated with the gray line and the time series of the

synthetic observations used in this experiment are overplotted with gray dots.

x̄0,0. The yellow, green, and blue lines shows the estimates after the 2nd, 10th, and 30th iterations, respectively. The truth is

indicated with the gray line and the time series of the synthetic observations used in this experiment are overplotted with gray

dots. Although the initial trajectory (red line) showed was obviously dissimilar to the true trajectory (gray line), the estimate405

was improved by repeating the iterations as also shown in Figure 4. After 30 iterations, the estimate was very close to the truth

and the temporal evolution was well reproduced. Figure 6 shows the root-mean-square errors of the estimates, which means the

root-mean-squares of the differences between the estimates and the true values, over all the 40 variables at each time step in the

same trial as Figure 5. Again, the red line indicates the initial guess, and the yellow, green, and blue lines shows the estimates

after the 2nd, 10th, and 30th iterations, respectively. The errors were certainly reduced over the period of the assimilation by410

the iterations.

In order to closely investigate the effect of σ2
m, we conducted additional experiments for a case in which nonlinearity is a

little stronger. While Figures 3 and 4 show the results when the assimilation window was taken as 0< t≤ 8, Figures 7 and 8

show the results with a little longer assimilation window, 0< t≤ 10. Although the other settings were the same as Figures 3

and 4, the effect of the nonlinearity on the objective function J was a little severer due to the longer assimilation window. When415

δ = 1.5×10−3, the J value converged to about −2000 in many of the 20 trials. In some trials, however, J did not converge but

oscillated below −6000. In contrast, when δ was as large as 1.5× 10−2, the J value converged to the same value after about

50 iterations in all of the 20 trials. As discussed in Section 5, a sufficiently large σ2
m guarantees that the estimate is improved

in each iteration. Although convergence speed becomes worse, stable estimation can be attained.

We also conducted experiments with a higher-dimensional system. The method with a randomly generated ensemble was420

applied to the Lorenz 96 model with 400 variables (M = 400), of which the dimension is ten times higher. Figure 9 shows the

result with 400 variables. The assimilation was taken as 0< t≤ 8 and δ was set at 1.5×10−3, which are the same as in Figures
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Figure 6. The root-mean-square errors over all the 40 variables at each time step for the initial guess (red line), the 2nd iteration (yellow

line), the 10th iteration (green line), and the 30th iteration (blue line) in the same trial as Figure 5.

Figure 7. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (36)

with δ = 1.5× 10−3 and the ensemble window was taken as 0< t≤ 10.
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Figure 8. The value of the objective function J for each iteration for 20 trials of the estimation. The ensemble was updated using Eq. (36)

with δ = 1.5× 10−2 and the ensemble window was taken as 0< t≤ 10.

3. The ensemble sizeN was taken to be 200. For the assimilation into the Lorenz 96 model with 400 variables, the convergence

was attained in about 20 iterations with 200 ensemble members. In this high-dimensional case, monotonic convergence was

achieved even if δ was taken to be as small as in Figure 3. As far as we conducted experiments with the Lorenz 96 model425

with various dimensions, the convergence becomes stabler as the state dimension M becomes higher. This might imply that

the nonlinear term (the fifth term of the right-hand side of Eq. (58)) is depressed in the high-dimensional Lorenz 96 models.

However, we have not resolved the reason of the stable convergence for the high-dimensional Lorenz 96 systems at present.

Figure 9. The value of the objective function J for each iteration for 20 trials of the estimation for the 400 dimensional system. The ensemble

was updated using Eq. (36) with δ = 1.5× 10−3.
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Figure 10. The temporal evolution started at the initial guess (red line), and the estimated evolutions at the 2nd (yellow line), 10th (green

line), and 30th iterations (blue line) in one of the 20 trials in Figure 9. The truth is indicated with the gray line and the time series of the

synthetic observations used in this experiment are overplotted with gray dots.

In Figure 10, we confirmed the convergence of the estimated time series to the true trajectory for one of the 400 state

variables, x1, in one of the 20 trials in Figure 9. The red line indicates the initial guess started at x̄0,0, and the yellow, green,430

and blue lines shows the estimates after the 2nd, 10th, and 30th iterations, respectively. The gray line shows the truth and the

gray dots shows the synthetic observations used in this experiment. Similarly to Figure 5, the estimate approached to the truth

by repeating the iterations even in this high-dimensional case, and the true evolution was well reproduced after 30 iterations.

In Figure 11, the root-mean-square errors over all the 400 variables at each time step in the same trial as Figure 10. Each

color corresponds to the respective iteration shown in Figure 10. It is confirmed that the errors decreased over the period of the435

assimilation after repeating the iterations.

8 Discussion and conclusions

The ensemble variational method is derived under the assumption that a linear approximation of a dynamical system model is

valid over a range of uncertainty. This linear approximation is not valid in such problems that the scale of uncertainty is much

larger than the range of linearity. However, a local maximum of the log-likelihood or log-posterior function can be attained by440

updating the ensemble iteratively even in cases with a large uncertainty. The present paper assessed the influence of system

nonlinearity on this iterative algorithm after considering the nonlinear terms of the system function g. The discussion suggests

two points to guarantee the monotonic convergence to a local maximum in the subspace spanned by the ensemble. One is that

the ensemble spread must be set to be small, and the other is that the penalty parameter σ2
m must be set to be large enough. A

sufficiently large σ2
m would ensure monotonic convergence, although convergence speed would become poorer with a too large445
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Figure 11. The root-mean-square errors over all the 400 variables at each time step for the initial guess (red line), the 2nd iteration (yellow

line), the 10th iteration (green line), and the 30th iteration (blue line) in the same trial as Figure 10.

σ2
m. The effect of this penalty term has also been experimentally confirmed in Section 7. These properties would be reasonable

if this iterative algorithm is regarded as an approximation of the Levenberg-Marquardt method.

In applying the iterative algorithm discussed in this paper, the choice of the parameter σ2
m would be an important issue.

Although it was determined according to Eq. (70) in Section 7, Eq. (70) still requires to tune the parameter δ. However, it is

not necessary to finely tune δ because δ would not make a crucial effect on the performance of the algorithm. It would thus be450

enough to roughly determine δ. In addition, one could check whether the objective function J increases or not at each iteration

just by running one forward simulation initialized at x̄0,m. In the iterative algorithm, most computational cost is spent for

running the ensemble simulation with multiple initial states. The pilot run, which is computationally much cheaper than the

ensemble run, would be a feasible way for tuning δ in practical cases.

One issue peculiar to the ensemble-based method is the rank deficiency which occurs when the ensemble size is smaller455

than the dimension of the initial state x0. If the ensemble is confined within a particular subspace, the iterative algorithm can

only attain the optimal value within the subspace spanned by the ensemble. However, our discussion indicates that, if σ2
m is

sufficiently large, it is ensured that the discrepancies between estimates and observations are reduced in each iteration even if

the ensemble is confined within a subspace. If the ensemble is updated so as to span a different subspace in each iteration as

indicated in Eq. (36), the optimal solution would be sought in a different subspace in each iteration, and the estimate would460

converge to a local maximum in the full vector space after infinite iterations. It should be noted that this paper has not assessed

how well the method with a random ensemble generation with Eq. (36) works in practical high-dimensional problems, although

it is, in theory, applicable as far as the inverse of P0,b is available. Further research would be required to clarify its performance

in high-dimensional geophysical models in order to reinforce this study.

Comparing with the adjoint method, which is a conventional variational method for 4-dimensional variational problems,465

the convergence rate of this iterative method would be poorer because it employs an ensemble approximation within a lower-
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dimensional subspace at each iteration. Nonetheless, we can say that the iterative ensemble-based method is potentially useful

because it is much easier to implement. While the adjoint method requires an adjoint code which is usually time-consuming

to develop, the ensemble-based method can solve the same problem without requiring an adjoint code. This paper mainly

considers data assimilation problems. However, the framework of the iterative ensemble variational method is also applicable470

to general nonlinear inverse problems as far as the Gaussian assumption in Eq. (23) or Eq. (56) is upheld. If an ensemble of

the results of forward runs is available, many practical problems can readily be addressed. This method could therefore be a

promising tool for data assimilation and various inverse problems.

Code availability. The code for reproducing the experimental results shown in Section 7 is available at the following Web site.

http://daweb.ism.ac.jp/~shiny/codes/npg2020.zip475

Appendix A: Algorithm for Bayesian estimation with ensemble transform

In the following, it is described how the iteration can be performed without computing the inverse of P0,b when the ensemble

is updated with the ensemble transform scheme in Eq. (34). When the ensemble is updated by the ensemble transform in the

manner of Eq. (34):

Xm = Xm−1Tm, (A1)480

the transform matrix Tm should be given as

Tm = Um(I+Λm)−
1
2UT

m, (A2)

where Um and Λm are obtained by the following eigenvalue decomposition:

UmΛmUT
m = σ−2

m (XT
m−1P

−1
0,bXm−1 + ΓTm−1R

−1Γm−1). (A3)

If Xm−1 is obtained according to Eq. (A1),485

Xm−1 = Xm−2Tm−1 = X0T1T2 · · ·Tm−1. (A4)

Defining the matrix Cm−1 as

Cm−1 = T1T2 · · ·Tm−1, (A5)

Xm−1 can be written as

Xm−1 = X0Cm−1. (A6)490
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If the initial ensemble is sampled from the prior distribution N (x0; x̄0,b,P0,b), we can apply Eq. (65) again. Using Eqs. (65)

and (A6), the term XT
m−1P

−1
0,bXm−1 in Eq. (62) can be reduced to

XT
m−1P

−1
0,bXm−1 = CT

m−1Cm−1. (A7)

The m-th estimate is broken down as follows:

x̄0,m−1 = x̄0,m−2 +Xm−2ŵm−1 = x̄0,b +

m−1∑
i=1

Xi−1ŵi

= x̄0,b +X0

m−1∑
i=1

Ci−1ŵi, (A8)495

where C0 = I. Defining a vector ξm−1 as

ξm−1 =

m−1∑
i=1

Ci−1ŵi, (ξ0 = 0), (A9)

Eq. (A8) becomes

x̄0,m−1 = x̄0,b +X0ξm−1, (A10)

and we obtain500

XT
m−1P

−1
0,b(x̄0,m−1 − x̄0,b) = CT

m−1X
T
0 P

−1
0,bX0ξm−1

≈ CT
m−1ξm−1. (A11)

Using Eqs. (65) and (A11), we can rewrite Eq. (62) into a form without the inverse of P0,b:

ŵm =
(
σ2
mI+CT

m−1Cm−1 + ΓTm−1R
−1Γm−1

)−1 (
ΓTm−1R

−1 [y− g(x̄0,m−1)]−CT
m−1ξm−1

)
. (A12)

The algorithm with the ensemble transform is summarized in Algorithm 2.
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Algorithm 2 Iterative algorithm for maximizing the Bayesian objective function J with ensemble transform.

Give an initial estimate of x0, x̄0,0.

Give an initial square root of the covariance, X0.

Let C0 = I and ξ0 = 0.

Let m= 1.

while unconverged do

Generate an ensemble {x0,m}Ni=1 around with a mean of x̄0,m−1 and a variance of Xm−1X
T
m−1.

Obtain Γk,m−1 in Eq. (28).

Compute ŵm in Eq. (A12).

Compute the m-th estimate x̄0,m according to Eq. (63).

Compute the matrix Xm according to Eq. (A1).

Let Cm = Cm−1Tm−1

Let ξm = ξm−1 +Cm−1ŵm

Let m :=m+1

end while
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