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I appreciate the referee #2 for taking time for reviewing the manuscript. The followings
are the responses to the comments by the referee. Each response is numbered in
accord with the referee’s comments.

Responses to Major comments

1. Our group has applied an instance of the iterative method with the ensemble trans-
form to a practical geodynamo model (Minami et al., 2020). However, I agree that the
performance of a method with a randomly generated ensemble has not been demon-
strated in any high-dimensional problems. According to the referee’s comment, I have
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applied the method to the Lorenz 96 model with 400 variables, of which the dimen-
sion is ten times higher. The iterative method with a randomly generated ensemble
achieved a promising convergence even in high-dimensional problems. The attached
figure shows the value of the objective function for each iteration in the experiment
using the Lorenz 96 model with 400 variables. For the assimilation into the Lorenz 96
model with 400 variables, the convergence was attained in about 20 iterations with 200
ensemble members.

2. The iterative algorithm discussed in the present paper considers a highly uncertain
problem, which corresponds to a situation before a spin-up process in typical data
assimilation. This algorithm is thus applicable without spin-up. Rather, the iterations
could be used for spin-up for another data assimilation system. In the experiments of
Section 7, a spin-up procedure is not done. Instead, the initial ensemble was randomly
drawn from a Gaussian distribution as described in L. 362.

3. The value of δ in Figures 1–6 was chosen to contrast between a monotonic conver-
gence case and a non-monotonic convergence case. At present, I can not provide any
automatic way to determine the value of δ. In practical applications, however, one can
check whether the objective function J increases or not at each iteration just by running
one forward simulation initialized at x̄0,m. In the iterative algorithm, most computational
cost is spent for the ensemble simulation run. The pilot run, which is computationally
much cheaper than the ensemble run, is a feasible way for tuning δ in practical cases.

4. The iterative method discussed in the present paper is for variational problems.
Therefore, it can not be fairly compared with the EnKFs. Comparing with the con-
ventional 4DVar, the convergence rate of this iterative method would be a little poorer
because it employs an ensemble approximation within a particular subspace at each
iteration. Nonetheless, I believe that the iterative ensemble-based method is useful
because it is much easier to implement. As mentioned in the introduction section, the
conventional 4DVar requires an adjoint code which is usually time-consuming to de-
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velop. However, variational problems can be solved with the ensemble-based method
which does not require an adjoint code. As discussed in the present paper, the itera-
tive ensemble-based method, which does not require an adjoint code, can potentially
achieve comparable accuracy to the conventional 4DVar. I thus believe it is a promising
tool for data assimilation and various inverse problems in geosciences.

Responses to Minor comments

1. I appreciate the referee for the correction. This sentence should read “We can then
obtain the local maximum in the full vector space if Qm is taken to be full rank.”

2. I appreciate the referee for the correction.
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Fig. 1. The value of the objective function J for each iteration for 20 trials of the estimation in
the experiment with 400 variables.
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