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Abstract. In spread spectrum induced polarization (SSIP) data processing, attenuation of background noise from the observed 
data is the essential step that improves the signal-to-noise ratio (SNR) of SSIP data. The Time-Domain Spectral Induced 
Polarization Based on Pseudo-random Sequence (TSIP) algorithm has been proposed to improve the SNR of these data. 
However, signal processing in background noise is still a challenging problem. We propose an enhanced correlation 
identification (ECI) algorithm to attenuate the background noise. In this algorithm, the cross-correlation matching method is 15 
helpful for the extraction of useful components of the raw SSIP data and suppression of background noise. Then the frequency-
domain IP (FDIP) method is used for extracting the frequency response of the observation system. Experiments on both 
synthetic and real SSIP data show that the ECI algorithm can not only suppress the background noise but also better preserves 
the valid information of the raw SSIP data to display the actual location and shape of adjacent high resistivity anomalies, which 
can improve subsequent steps in SSIP data processing and imaging. 20 

1 Introduction 

Induced Polarization (IP) technology operated in both the time domain and the frequency domain is useful in exploration for 
groundwater mapping, mineral exploration, and other environmental studies (Revil 2012, 2019; Høyer et al. 2018). Since the 
phenomenon of IP in time domain was first discovered by Schlumberger in 1920s, there has been consistent efforts to explore 
its utilization in various researches. In 1959, the frequency-domain IP (FDIP) approach is proposed by Collett and Seigel, 25 
which became the most classic and widely used mapping technique. For example, the first variable-frequency approach was 
proposed by Wait et al in 1959, then the spectrum approach of the complex resistivity was developed by Zonge and Wynn in 
1975, and the dual-frequency IP approach was presented and developed by He et al. in 1993 and Han et al. in 2013. Recently, 
spread spectrum induced polarization (SSIP) is a popular branch of FDIP which uses pseudo-random current pulses of opposite 
polarity as an excitation source (Chen et al., 2007; Xi et al., 2013, 2014; He et al. 2015). According to the intrinsic broadband 30 
characteristics of the source itself, the spectral response of an observation system can be simultaneously calculated at multiple 
frequencies in electrical exploration (Liu et al., 2019). Thus, this SSIP technology has been gaining attention and application 
in electrical prospecting (Xi et al., 2014; Lu et al., 2019; Wang and He, 2020). 

In field detection experiments, it is still a major problem that IP data is often contaminated with background noise. The 
background noise can be mainly categorized into two types: the Gaussian noise and the impulsive interference with different 35 
percentage of outliers (Liu et al., 2016; Kimiaefar et al., 2018; Li et al., 2019). If the background noise is not effectively 
reduced, the remnant noise can affect the calculation of complex resistivity and may mislead subsequent interpretations of the 
subsurface structure. 

The field of FDIP denoising has achieved quite good results through the constant research of experts and scholars. There 
have been many algorithms that can be used to suppress the FDIP random noise (Mo et al., 2017), such as smooth filter (Guo, 40 
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2017), Mean stack (Liu, 2015), digital filter (Meng et al., 2015), and robust stacking (Liu et al., 2016). The smooth can 
effectively attenuate Gaussian noise, but the impulsive interference with intense energy leaves the effectiveness of this 
algorithm limited. Therefore, an effective attenuative algorithm for background noise is still a challenging task for traditional 
noise suppression algorithms (Neelamani et al., 2008; Liu et al., 2017). SSIP method also faces the same issue (Liu et al., 2016, 
2017). 5 

Recently, the new algorithm based on a circular cross-correlation method, Time-Domain Spectral Induced Polarization 
Based on Pseudo-random Sequence (TSIP) algorithm, has also been used to suppress the SSIP noise (Li et al. 2013; Zhang et 
al. 2020). Due to its effective denoising ability, the identification method has gained more attention and development. However, 
the TSIP algorithm is restricted because the excitation signal is sensitive to the random noise. For this problem, we propose an 
enhanced correlation identification (ECI) algorithm for reducing the noise in SSIP data. The ECI algorithm obtains cross-10 
correlations between the transmitter output signal, the excitation signal, and the response signal. The performance of the ECI 
algorithm is demonstrated on both synthetic and field SSIP data. Experimental results show that the ECI algorithm can 
effectively control the root mean square of noise (NRMS) increase, enhance its denoising performance in background noise 
and improve the valid signal preservation to display the actual location and shape of high resistivity anomalies with higher 
resolution.  15 

2 Theory  

2.1 Subsection (as Heading 2) The TSIP theoretical model 

Figure 1 shows a traditional diagram of the electrical resistivity survey. The transmitter output signal Tu t( )  is poured from 

electrode A to electrode B, the excitation signal i t( )  flows from electrode A to electrode B, and the response signal u t( )  

between the electrodes M and N is measured. To simultaneously obtain the spectral response of subsurface at various 20 
frequencies, pseudo-random sequence based the excitation signal i t( )  is considered. Thus, the spectral response of subsurface 

be retrieved by the TSIP algorithm, and its spectral response be expressed as (Li et al., 2013):  
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where uiP ( )  is the cross-power spectral density of ( )u t  and ( )i t , iiP ( )  the auto-power spectral density of ( )i t , and SH ( )  

is the impulse spectral response of the observing system. 25 
Given this observation mode using low-power signals, the magnetotelluric system is a time-invariant system and let us suppose 

that SH ( )  is 1. Eq. (1) can further be expressed as: 
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where [.]fft  denotes Fast Fourier Transform (FFT), uiR τ( )  is the cross-correlation function of ( )u t  and ( )i t , iiR τ( )  is the auto-
correlation function of ( )i t , U ( )  and I ( )  depict the geometric factor defined by the frequency spectrum of ( )u t and the 30 
frequency spectrum of ( )i t  respectively, and τ denotes time-delay.  
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Figure 1.  (a) The observation model of the four-electrode measurement. (b) its equivalent diagram. 

In the practical field environment, this observation mode is contaminated by the background noise, as shown in Figure2. The 
output of the sensors A k  ( 1, 2,3k= ) can be expressed as: 

1 T 1( ) + ( )y =u t n t ,  (3) 5 

2 2( ) + ( )y =u t n t ,  (4) 

3 3( ) + ( )y =i t n t ,  (5) 

where ( )kn t  is the background noise. 

 
Figure 2.  Schematic diagram using the TSIPD algorithm. 10 

Therefore, according to Eq. (2), the formula of the TSIP algorithm is given as: 
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Eq. (6) demonstrates that the TSIP algorithm has a weak denoising effect when 3 ( )n t  is the massive intense noise. In other 

words, the TSIP algorithm depends on the energy intensity of 3 ( )n t  present in ( )i t . 
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Figure 3.  The schematic diagram of the ECI denoising model. 

2.2 The ECI theoretical model 

That the denoising ability of the TSIP algorithm is limited is caused by that ( )i t  is sensitive to 3 ( )n t . To solve this problem, the 
ECI algorithm is proposed and its derivation process is as follows. 5 

Firstly, let us suppose that the telluric system is a time-invariant system under low-power signals. For three sensor output 
signals, their cross-correlation functions are the periodic correlation functions of time τ . When the length of the correlation 
window NT  is specified, 0.0125s in this experiment. The cross-correlation functions can be expressed as follows: 

1 21 2( ) E[ ( ) ( )] ( ( )) ( )
Ty y u u N n nR τ = y t y t-τ = R τ + R τ

1 2
,  (7) 

1 31 3( ) E[ ( ) ( )] ( ( )) ( )
Ty y u i N n nR τ = y t y t-τ = R τ + R τ

1 3
,  (8) 10 

where 1 2 ( )n nR τ  and 1 3 ( )n nR τ  are the cross-correlations of, 2 ( )n t  and 3 ( )n t  respectively, and τ  is time-delay that lies in the 
range of NT-  to NT . 

Figure 4 shows the schematic diagram of ZW-CMDSII (Zhang et al., 2014; He et al., 2014;). As is known from the figure, we 
can conclude that Tu t( )  is mainly disturbed by the floor noise energy of the instrument, and i t( )  and u t( )  are mainly 
contaminated by environmental noise. The floor noise is relatively very low, while environmental noise possesses a much higher 15 
energy level. Thus we assume that 1( ) 0n t  , and can conclude that zero correlation between 1( )n t  and 2 ( )n t , 3 ( )n t , 

1 2 ( ) 0n nR τ   and 1 3 ( ) 0n nR τ  . 

 
Figure 4.  Schematic diagram of the instrument. 

Based on the above analyses, we can further obtain: 20 
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Then the cross-power spectrum of Eq. (9) and Eq. (10) can be written as following 
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Finally, according to Eq. (2) and Eq. (11), Eq. (12) can be expressed as following 
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where 1 2 ( )y y   and 1 3 ( )y y   denotes the difference between 1 ( )y t , 2 ( )y t  and 3 ( )y t . 
So, Eq. (13) is the formula of the ECI algorithm. The derivation process of this formula clearly describes that the ECI algorithm 

can effectively suppress the background noise and be independent on the degree of 3 ( )n t  present in ( )i t . 

3 Experiment on synthetic SSIP data record 

We test the ECI algorithm for attenuating background noise of SSIP data sets in comparison with the FDIP algorithm and the 10 
TSIP algorithm. For the comparison, the SNR, root mean square of noise (NRMS) and relative error ( ε ) as the objective 
parameters to judge the performance of denoising, which are calculated as follows: 
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Sii t =u t R( ) ( ) /  (17) 

where y  and n  denote the mean values of the useful signal and the noise separately. y i( )  and n i( )  are the useful signal and the noise 
separately, M is the length, 0  denotes the complex resistivity calculated without noise, and 1  is the complex resistivity calculated with the 
noise added to 0 . SR  is the value of the sampling resistor ( SR  1 ), and iu t( )  is the voltage at the sampling resistor.  

To validate the effectiveness of the ECI system, we performed a resistance-capacitance experiment, as shown in Figure 5. The circuit 20 
parameters are chosen to be A WR  30.3 / 5 , MN WR  30.1 / 5 , B WR  30 / 5  and MN FC  470 . We recorded the applied voltage 

T ( )u t , the injected current ( )i t  and the measured potential signal ( )u t as the raw signals. These signals are a 3-order spread spectrum 

pseudo-random sequence at the clock cycle of 0.0125s, as shown in Figures 6a-6c and Table 1.  
Since our experiment is in a stable environment, we consider the system linear time-invariant and the noise from the current and voltage 
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measurement are linearly superpositioned (Pelton, et al., 1983; De, et al., 1983; Vinegar and Waxman, 1984; De, et al., 1992; Garrouch 
and Sharma, 1998). Therefore, it is actually equivalent whether the noise is added to the injected current ( )i t , the measured potential 

signal ( )u t  or the applied voltage T ( )u t . Therefore, the injected current ( )i t  is only polluted by the synthetic background noise, 

including Gaussian and impulsive, as shown in Figures 6d and 6e. Thirdly, the complex resistivity of the main frequency is considered and 
discussed because the main energy of the pseudo-random signal is concentrated on the main frequency (He, 2017). Finally, for detailed 5 
comparisons between the ECI algorithm and the others, we add the synthetic Gaussian and impulsive noises to the response signal ( )i t , 

respectively. 

 
Figure 5.  (a) Experimental schematic; (b) Experimental setup. 

 10 
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Figure 6.  The time waves of (a) the applied voltage uT(t), (b) the measured potential signal u(t), (c) the voltage ui(t) at the sampling 
resistor, (d) noise(t), and (e) the synthetic signal (ui(t)+ noise(t)). 

Table 1.  Amplitude and phase values of complex resistivity obtained with Figures 6a-6c. 

 
We use synthetic Gaussian noise with the deviation and mean values of 0.1 and 1.1 as a standard template. The excitation signal i t( )  is 5 

polluted by synthetic different energy levels of the Gaussian noise. Figure 7 show that the denoised results are obtained and compared at the 
three main frequencies when the noise RMS ranges from 0.12 to 0.25. The figure shows that as the RMS of noise increases, the complex 
resistivity information obtained by each algorithm decreases. However, the amplitude spectrum after ECI processing has the slowest falling 
speed, and the phase spectrum has the slowest falling speed at 80 Hz. 

 10 
Figure 7.  amplitude and phase of complex resistivity values at (a1) and (b1) 80 Hz, (a2) and (b2) 160 Hz, (a3) and (b3) 320 Hz 

comparison using the three methods. 

Previous literature has shown that if the percentages of outliers in impulsive noise exceed 50% , the traditional denoising algorithm will be 
limited (Liu et al., 2016, 2017). Thus, Synthetic impulsive noise is added to the excitation signal ( )i t  in ten percent steps. Their standard 
deviations (SDs) and skewnesses (SKs) are shown in Figure 8. As depicted in Figure 9, the three algorithms have a certain degree of denoising 15 
performance versus the different percentages of the synthetic outliers against the raw data. The figure shows that with the discrete points of 
impulse noise growing, the RMS of noise is different. The amplitude spectrum and phase spectrum of complex resistivity obtained by each 
algorithm fluctuate. The amplitude spectrum after ECI processing remained the slowest falling speed. Although the noise reduction performance 
of the phase spectrum processed by ECI does not stand out, the overall change of the amplitude spectrum after ECI processing is still slow, 
especially when the discrete point is more than 50%. 20 
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Figure 8.  The standard deviations (SDs) and skewnesses (SKs) of synthetic impulsive noise. 

 
Figure 9.  Complex resistivity values at (a1) and (b1) 80 Hz, (a2) and (b2) 160 Hz, (a3) and (b3) 320 Hz comparison using the three 

methods. 5 

4 Experiment on real SSIP data record 

To further verify the performance of the ECI algorithm, the Wenner array, the traditionally applied system in the field, was 
selected for performing laboratory tests, as shown in Figures 10 and 11. SSIP data was acquired with high-density meter and 
20 electrodes at 1m spacing. A Wenner acquisition sequence was adopted with 55 potential measurements expressed utilizing 
the green and points. The figure shows an example of two high resistance cavities. The two cavities were presented by the 10 

letters A and B, and their calibers were about 1.8 m × 2 m. The two cavities are buried by loess. The loess is measured to have 
an electronic resistivity of 36 m . The measured excitation signal had a range between 0.04 and 0.19 A approximately. The 
transmitter output signal is a three-order sequence with 80 Hz frequency, and its voltage is about ± 11.8 V. The sampling 
frequency is 625 kHz. The excitation and response data of 40 periods were recorded at each point. 

 15 
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Figure 10.  Diagram of the field-test. 

 
Figure 11.  The schematic of the two high resistance cavities. 

Figure 12 demonstrates the experimental SSIP data processed by the three algorithms, inverted with Res2DInv (Arifin et al. 
2019). It can be observed that the location and shape of two abnormal bodies are distinguished only in the ECI algorithm while 5 
recognized as one whole in the other algorithms. We believe the reason that ECI has higher detection precision is due to its 
higher denoising ability. 

 
Figure 12.  Inverted resistivity sections of the two high resistivity anomalies (A and B) at 80Hz with using (a) the FDIP method, (b) the 

TSIP algorithm, and (c) the ECI algorithm. 10 

To verify the reason of the improved detecting precision, the SDs of data points are calculated from 18 to 50 (Figure 11), 
as shown in Figure 13. This figure shows that among the 33 SD of SSIP data by processed the ECI method is the lowest at all 
points except for the 28th. The average SD in ECI processing the SSIP data is 7% and 3.8% lower than the FDIP and TSIP 
respectively. Also, the maximum value of SDs with the ECI method is 5% and 1.4% lower than the others, and the minimum 
value is 8% and 10% lower, respectively. These results quantitively indicate that the ECI algorithm improves the accuracy and 15 
robustness of the collected data.  
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Figure 13.  Standard deviation (SD) of the ECI algorithm and the others to the data dots from 18 to 50 at 80Hz. 

Meanwhile, amplitude-frequency f( ) and phase-frequency f( )  characteristics of complex resistivity are calculated by 

the three algorithms (one period) in survey point No 38, in Figure 11. 
For example, Figures 14a1 and 14a2 show that the amplitude and phase of complex resistivity spectrum for this point at 5 

80 Hz processed by FDIP are 39.7 m  and -0.0881 rad, the amplitude and phase are 40.9 m  and 6.12 rad when at 160Hz, 
and the amplitude and phase are 38.7 m  and -0.253 rad when at 320Hz. As depicted in Figure 11, the complex resistivity 
processed by the ECI shows a linear trend with the three main frequencies. Also, the SD of the amplitude-frequency f( )  
characteristic is 9.9% and 4.9% lower than the others, and the SD of the phase-frequency f( )  is 356.1% and 3.3% lower. 

Therefore, we believe that the ECI algorithm has advantage on suppressing background noise, which benefits the subsequent 10 
steps in SSIP data processing and imaging. 

 
Figure 14.  Complex resistivity spectrum calculated by the three algorithms (one period) in survey point No 38. 

5 Conclusions 

We propose the ECI algorithm that effectively attenuates the background noise in SSIP data and improves the complex resistivity 15 
spectrum. This method uses the correlation function to neutralize the influence of the background noise in the SSIP data, and the 
spectrum complex resistivity can be calculated at multiple frequencies by the formula of the complex resistivity. Simulation results 
show that the ECI algorithm can effectively attenuate the background noise and improve the SNR. Subsequently, the practicability 
of the ECI algorithm is further verified by a field test. The results demonstrate that the SD of the SSIP data is improved, which 
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benefits the accuracy and stability of the collected data. There is a good agreement between the complex resistivity and the 
geological target body with high resistance, which indicates that the ECI algorithm can help to improve the quality of interpretation 
and inversion in the survey area. The ECI algorithm can more effectively suppress the background noise including the Gaussian 
random and impulsive noises, but its effect on particular frequency disturbance is very limited due to the periodicity of the 
disturbance. Therefore, denoising algorithm based on pseudo random sequence correlation identification is still left open for more 5 
investigation. 
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