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Dear Ms Natascha Töpfer: 

 

We would like to express our sincere gratitude to the editors and anonymous reviews for their time 

and  effort  in  handling  our  manuscript  (npg‐2020‐8)  entitled  “An  enhanced  correlation 

identification algorithm and its application on spread spectrum induced polarization data”. 

We would like to say thanks again sincerely to the editors and anonymous reviews for their time 
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improving very much the presentation and quality of this manuscript. 

It is worth pointing out that the reviewers’ comments and suggestions have really constructively 

helped us improve further the quality and presentation of the manuscript. In light of their inspiring 

comments and suggestions, we have revised the manuscript duly and carefully, and the specific 

responses to the reviewers are listed as below, with the corresponding revisions highlighted in blue 

color in the revised manuscript. 

 

Sincerely, 

Dr. Siming He 

hsmfly1982@163.com 

 

   



Responses to comments of Reviewer 1 

 

We greatly appreciate your suggestions, and we hope our revisions have addressed your 

questions and made this manuscript better. 

 

Comment 1. 1.show extracted measured spectra (i.e., the resulting "data" after noise removal and 

conversion to the frequency domain): |R(f)|, Phase(f). 

Response.  

We added Phase(f) to the experiment on synthetic SSIP data record. Figures 1 and 2 show the relative 

error of Phase(f) are calculated and compared at the three main frequencies when the noise RMS 

ranges from 0 to 0.9.   

 

Figure 1.   The effect of different degrees of Gaussian noise to the measures excitation signals in the phase‐

frequency characteristics. (a) SNR of the polluted potential signal. Complex resistivity relative error at (b) 80 Hz, 

(c) 160 Hz, (d) 320 Hz comparison using the three methods. 



 

Figure 2.   The effect of different levels of spike noises to the measured excitation signals. (a) SNR of the 

contaminated potential signal in the phase‐frequency characteristics. Complex resistivity relative error at (b) 80 

Hz, (c) 160 Hz, (d) 320 Hz comparison using the three methods. 

From Figures 1 and 2, the results do not reflect the noise reduction performances of the three 

algorithms.  Therefore,  these  results  are  not  put  into  our manuscript.  But  |R(f)|  and  Phase(f) 

processed  by  three  algorithms  reflect  their  noise  reduction  performance  well  in  the  field 

experiment, as shown in Figure 3. So |R(f)| and Phase(f) in the field experiment are added to our 

manuscript.   

This information is added on Page 9, line 16 and 17, Page 10, line 1 to 5 and Figure 3. 

 
Figure 3.   Complex resistivity spectrum calculated by the three algorithm (one period) in survey point No 21. 

Comment 2. show phase results for the inversion results (if not easily included into the main text, 

additional magnitude/phase results for different frequencies could be supplied in a supplement) 

Response.  

The phase results for the inversion results given by Res2DInv software is shown as Figure 4. As we 
can see, this figure shows chaos information from the phase shift between ( )i t  and ( )u t  of the 



three methods. This is because the loss layer surrounding the shelter is very weak polarized, so the 

phase shift is very small, which cause the result easily contaminated by some random factors. 

Therefore, we have not figured out how to extract meaningful information out of the phase results, 

but it is possible that with proper strong-polarized experiment field there could be different results. 

We are eager to explore that in our next experiment plan. 

 

Figure 4.   Inverted phase sections of the two high resistivity anomalies at 80Hz with using (a) the FDIP method, 

(b) the TSIP algorithm, and (c) the ECI algorithm. 

 

Comment 3. Please employ a proper notation for complex entities. From my point of view most 

equations contain complex values.  

Response.  

We have modified some complex entities. 

Page 4, line 19 to 23 

 

Comment 4. page 4,line 17: "ZW-CMDSII" not defined - please provide a reference here as this 

seems to be related to the construction of a measurement system? 

Response. 

We have added reference the reference of ZW-CMDSII (Zhang, et al., 2014; He, et al., 2014;) to the 

paper. 

Page 6, line 5 to 12 

 

References 

He, G. Wang, J. Zhang, B. Y. Li, M. and Ma, C.: Design of High-density Electrical Method Data 

Acquisition System, Instrument Technique and Sensor, 2014, 8, 18-19, https:// 

doi.org/10.3969/j.issn.1002-1841.2014.08.007. 

Zhang, B. Y. He, G. and Wang J.: New High-density Electrical Instrument Measuring System. 

Instrument Technique and Sensor, 2014, 1, https://doi.org /10.3969/j.issn.1002-1841.2014.01.009. 

 



Comment 5. page 4/ECI approach: My understanding of the main point of the ECI approach is that 

you assume uncorrelated noise for applied voltage (n1), measured voltage (n2), and measured 

injected current (n3) (otherwise the cross-correlations between those quantities shouldn’t be zero, 

as stated in page 4, line 19). If this reading of mine is correct, I would like to see more discussion 

on this: Is this always the case? What about electronic noise (e.g., from the ADCs involved) - 

shouldn’t this superimpose on all three noise components? I understand that this is probably not an 

issue here, but it would be nice if you could guide the reader into the right direction. Also, this main 

assumption should be more prominently presented in your manuscript. 

Response.  
What you understand is basically right. In our experiment, the applied voltage Tu t( )  is measured 

within the powering system, so the environment interference only introduce noise into the measured 
voltage and measured infected current. In fact, 1 ( )n t   mainly consists of the floor noise of the 

measuring instruments (including ADCs noise), and very feebly influenced the coupling effect of 

2 ( )n t  and 3 ( )n t , while 2 ( )n t  and 3 ( )n t  mainly consist of the environment noise. This is why 

we consider the cross-correlation between 1( )n t  2 ( )n t  or 1 ( )n t  3 ( )n t  ‘approximately’ zero. We 

adjust the expressions in page 4 line 13 to 15 to make it more clear. As for the electronic noise, since 

they are Gaussian noise, Figure 5 shows how its energy is compressed by the cross-correlation 

computation. But what you suggest inspires us to more thoroughly consider different noise sources. 

So we make further discussions on the correlation behaviors of these noise as below. 

In a real environment, this model is contaminated by the environment interference and measuring 

instrument. It can be categorized into three types: the Gaussian random noise, the impulse 

interference, and the particular frequency disturbance (Wang and Li, 1986; Yan et al., 2016). 

For our system, we assume the three noises are linearly overlapping on the three sensors, along with 

some weak influence of coupling effects. So, the noises in the three sensors are only different in 

amplitude. Hence, 

 1 1 1 1( ) ( ) ( ) ( )n t B g t C p t D s t    (1) 

 2 2 2 2( ) ( ) ( ) ( )n t B g t C p t D s t    (2) 

 3 3 3 3( ) ( ) ( ) ( )n t B g t C p t D s t    (3) 

where ( )kn t   is the noise in sensor Yk  , 1,2,3k   , respectively. ( )g t  , ( )p t   and ( )s t   are 

separately Gaussian random noise, impulsive noise and particular frequency interference. kB , kC  

and kD  are the amplitudes of ( )g t , ( )p t  and ( )s t , 1,2,3k  , respectively. 

According to the properties of the correlation function, the cross-correlation results of the three kind 

of noise is as below: 

A. For the Gaussian random noise, when NT NT  -  and 0  , ( )ggR   is shown in Figure 



5. 

 

Figure 5. Waveform and autocorrelation for the Gaussian random noise ( )g t . (a) its time domain waveform. 

(b) its autocorrelation ( )ggR  . 

B. For the impulsive noise, when NT NT  -   and 0   , it is considered that 

(0) ( )pp ppR R  , as shown in Figure 6. 

 

Figure 6. Waveform and autocorrelation for the impulsive noise ( )p t . (a) its time domain waveform 

containing 20% of the outliers. (b) its autocorrelation ( )ppR  . 

C. For the particular frequency disturbance, its autocorrelation has the same frequency with it, 

but when it is less effective for the transmitter output signal ab ( )u t  than that of the mn ( )u t  and 

( )i t , 1 2 ( )ssD D R   and 1 3 ( )ssD D R   can be effectively suppressed, as shown in Figure 7.  



 

Figure 7. Waveform and autocorrelation for the particular frequency interference ( )s t  . The power-line 

interference (a) at 1 0.01D  , (b) at 2 1D  . (c) their cross-correlation 1 2 ( )ssD D R  . 

Based on the analysis above, it can be concluded that the influences of Gaussian random and 

impulsive noises are more effectively suppressed, while the particular frequency disturbance is 

attenuated to some degree when the noise is in lower intensity. Therefore, the proposed method has 

more value on denoising for Gaussian and impulsive random noises. 

(2) In our experiment design, the noise sources and the system are considered independent and 

linearly superpositioned. Since our method demonstrates enhanced denoising ability to both kinds 

of noise, we think it is reasonable to say it has better denoising method. To further verify this 

assumption, we conduct an experiment on the denoising of mixed noises, as shown in Figure 8. 

 
Figure 8. The injected current contaminated by simulated by sum of synthetic different degrees of Gaussian 

random noise and synthetic different levels of impulsive random noises, and RECR compared at three frequencies. 



(a) SNR of the contaminated injected current. RECR at (b) 80 Hz, (c) 160 Hz, (d) 320 Hz comparison using the 

hybrid method and the others in the amplitude‐frequency characteristics. 

 

References 

Wang, F.S., and Li, T., 1986, Industry of stray current resistivity observation and avoid interference 

distance: Northeastern Seismological Research, 2, 44–48. doi:10.13693/j.cnki.cn21-

1573.1986.02.006 

Yan, T. J., Wang, S. Q., Mang, Y. X., and Luo, X. Z., 2016, Influence of human interference on 
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Comment 6. Is NT specified? What interval was used for the synthetic and the experimental cases? 

Response.  

(1) NT is set 0.0125s in our experiment. 

The information is added on Page 4, line 8 and Figure 4. 

(2) The time interval is 0.0016ms, with sampling frequency of 625kHz. 

Page 8, line 12 

 

Comment 7. Fig 4: i(t) is the injected current, if I’m not mistaken. As such it should have a unit of 

Ampere, not Volts (same with the corresponding noise n3). If i(t) somehow has units of volts, please 

explain correspondingly (also in the previous text passages). 

Response.  

Thank you for pointing out our negligence. The relationship of the injected current signal between 

electrode A and electrode B is: 

     sit ti u R , (1) 

where, 
sR  is a  1  sampling resistor, and  i tu  is the voltage at the sampling resistor. 

Figure 4 is modified and the introduction is added on Page 5, line 10 to 14. 

 

Comment 8. Synthetic case: It is not clear to me why you only add noise to the injected current and 

not to the measured voltage (n2) and the applied voltage (n1). Isn’t that the whole point of your 

study? It would be nice if you could show that also for the synthetic case the cross-correlation of 

those noise components reduces to zero (p4, line19). I suppose this entails generating suitably 

uncorrelated random ensembles. 

Response.  

In our experiment the measurement line is 19m and in a stable environment, so we consider the 

system linear time-invariant and the noise from the current and voltage measurement are linearly 

superpositioned (Pelton, et al., 1983; De, et al., 1983; Vinegar and Waxman, 1984; De, et al., 1992; 

Garrouch and Sharma, 1998). Therefore, it is actually equivalent whether the noise is added to the 

injected current  ti  , the measured potential signal  tu   or the applied voltage  T tu  , the 



equivalent relationship is described as below 

(1) When the measured potential signal  tu  and the injected current  ti  are contaminated by 

the noise  2 tn  and the noise  3 tn , we can obtain  

 1 T 1( ) + ( )y =u t n t ,  (1) 

 2 2( ) + ( )y =u t n t ,  (2) 

 3 3( ) + ( )y =i t n t ,  (3) 

The cross-correlation functions can be expressed as follows: 

 1 2
( ) ( ) ( )y y x x n nR τ =R τ + R τ

1 2 1 2
,  (4) 

 1 3
( ) ( ) ( )y y x x n nR τ =R τ + R τ

1 3 1 3
,  (5) 

Thus we can assume that the cross-relation between  1 tn   and  2 tn  ,  3 tn   1 2 ( ) 0n nR τ   and 

1 3 ( ) 0n nR τ , we can further obtain: 

 ( ) ( )y y x xR τ R τ
1 2 1 2  (6) 

 ( ) ( )y y x xR τ R τ
1 3 1 3  (7) 

(2) When the noise  tn  from the current and voltage measurement are linearly superpositioned, 

     1 2t = t + tn n n  and the injected current  ti  are contaminated by the noise  tn , we can obtain 

 1 T 1( ) + ( )y =u t n t ,  (8) 

 2 ( )y =u t ,  (9) 

 3 ( ) + ( ) ( ) + ( ) + ( )y =i t n t =i t n t n t2 3 ,  (10) 

The cross-correlation functions can be expressed as follows: 

 ( ) ( )y y x xR τ =R τ
1 2 1 2

,  (11) 

 1 1
( ) ( ) ( ) ( )y y x x n n n nR τ =R τ + R τ + R τ

1 3 1 3 2 3
,  (12) 

Thus we can assume that the cross-relation between  1 tn   and  2 tn  ,  3 tn   1 2 ( ) 0n nR τ   and 

1 3 ( ) 0n nR τ , we can further obtain: 

 ( ) ( )y y x xR τ R τ
1 2 1 2  (13) 

 ( ) ( )y y x xR τ R τ
1 3 1 3  (14) 

Based on the analysis above, it can be concluded that Eq. (6) and Eq. (7) are consistent with Eq. (13) 



and Eq. (14).This is why we only add noise on the injected current to represent the overall noise 

summation. 

The cross-correlation results are shown in Figures 5 and 6 in response 5 
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Comment 9. While I think this step was taken to simplify the discussion, I think the simplification 

does not represent the problem at hand. As you stated in page 4, you also expect significant noise 

levels in n2 ("n2(t) and n3(t) may possess more massive energy..."), you should at least add suitable 

noise levels to n2 to test you algorithm. I still wonder why the current measurement entails such 

large noise components, given that this measurement is usually just a voltage measurement over a 

shunt resistor... 

Response.  

Sorry we did not put this clear enough in the manuscript. What we actually did was adding noise on 

the injected current to represent the overall noise summation in the system, as we explained in 

Response 8.  

Since we consider our system as a linear time invariant system, whether the noise is added on the 

drive signal  T tu  , the measured potential  tu   or the current  ti   are equivalent. When 

observing the field measured data, we found that the current signal is more heavily interfered by 

noise, as shown in Figure 1, so we decided to add noise on the supply current.  

 
Figure 9. The time waveform of measured potential and supply current on electrode No. 53 



 

 

Comment 10. Eq. 14/15: Is M defined in the text? 

Response.  

M is the length in the text as follows: 

Page 5, line 12 

 

Comment 11. Please use the same colorbar limits for all plots in Fig. 9. Otherwise a proper com-

parison is not possible. 

Response.  

Yes, we use the same colorbar limits for all plots in Figure 10 as follows: 

Page 9, line 5 

 
Figure 10.   Inverted resistivity sections of the two high resistivity anomalies at 80Hz with using (a) the FDIP 

method, (b) the TSIP algorithm, and (c) the ECI algorithm. 

 

Comment 12. the forward response of the final inversion model to the actual data. Does this analysis 

also follow the observed noise levels?   

Response.  

Sorry we are not so sure what you are referring to. In the actual field data, it is hard to extract the actual 

noise component. So we are trying to observe the noise level by calculating the SDs respectively, which 

help us evaluate the fluctuation degree of the processed signal, as shown in Figures 10 and 11. 

As the figure shows, the ECI method has the lowest SD, which is why we deduce that our method has 

better denoising ability. 

Page 9, and Page 10 line 1 to 6 

 

Comment 13. Just to be sure (and perhaps encourage a slight extension of the last paragraph of the 

introduction to better clarify): The major point of this manuscript is that it takes into account also 

noise from the current measurement, which is not commonly done, right? For example Liu et al 



2017, (10.1190/GEO2016-0109.1) seem to only assume noise on the primary potential 

measurements (The geophysics-paper also nicely shows pseudosections of both magnitude and 

phase - this would also be interesting here). 

Response.  

(1) In our field experiment, we did observe different noise levels both in potential and current 

measurements, in which the fluctuation in the current measurement is even acuter, as Figure. 11 

shows. 

 
Figure 11. The time waveform of measured potential and supply current on electrode No. 53 

(2) As stated Page 3, line 13 and 14, and Page 4, line 4 and 5 in our manuscript, that the denoising 

ability of the TSIP algorithm is limited is caused by that ( )i t  is sensitive to 3 ( )n t . To solve this 

problem, the ECI algorithm is proposed. Therefore, that ( )i t  is added noise to verify the noise 

reduction performance of the ECI algorithm. 

(3) In fact, we think the it should represent the total noise summation in the system whether the 

noise component is added on the potential or current during calculation. From our understanding, 

the difference between us and Liu et al. is that they put this component in ‘acquired potential U0’ 

(Eq. (5)), and we put it in Iab. As we were trying to explain in response 8, this to operation should 

be equivalent during the cross-correlation process. 

To clarify this, we added some explanations in the experiment section. 

Page 5, line 17 and 24 

 

Comment 14. In conclusion, I suggest to improve the presentation of the manuscript and to better 

work out the novel contribution of the ECI algorithm in comparison to the various other correlation-

based noise-reduction algorithms out there, as well as to make sure your test cases compare to those 

of other studies (i.e., current and voltage noise). 

Response.  

As Liu. et al. mentioned, correlation noise-reduction algorithms applied on SSIP data processing is 

rarely reported, now all reported experiments we can find are Liu’s research and ‘Time-Domain 

Spectral Induced Polarization Based on Pseudo-random Sequence’ (Li et al. 2013), as the TCI 

referring to in our manuscript. Liu’s research is more of a screening method to find suitable signal 

sequence, rather than data processing method. Therefore what we can do is comparing our method 

with Mei Li’s method. To be more accurate, we change ‘TCI’ to ‘TSIP’ when referring to Mei Li’s 



research in the manuscript. 

Page2, line 3 and 4 

Reference 

Li, M. Wei, W. Luo, W. and Xu, Q: Time-domain spectral induced polarization based on pseudo-

random sequence, Pure and Applied Geophysics, 170(12), 2257-2262, https:// 

doi.org/10.1007/s00024-012-0624-z, 2013. 

  



 

 

Responses to comments of Reviewer 3 

 

We greatly appreciate your suggestions, and we hope our revisions have addressed your 

questions and made this manuscript better. 

 

Comment 1. My general comment in that the results presented in manuscript are not discussed. 

Additionally, figure captions need to expand and explain the figure in a brief and simple way, so the 

reader doesn0t need to switch back to the tex to understand the figure. 

Response. 

(1) According to your suggestion, we have discussed the results. 

Page 7, line 9 and 10 

Page 9, line 16 and 17 

Page 10, line 1 to 6 

(2) According to your suggestion, we have modified the figure captions. 

Page 6, line 2 

Page 7, line 12 

Page 9, line 6 

 

Comment 2. I have read the first review of the manuscript, and I agree with the reviewer that it is 

essencial to show multi-frequency and phase data.   

Response. 

We added Phase(f) to the experiment on synthetic SSIP data record. Figures 1 and 2 show the relative 

error of Phase(f) are calculated and compared at the three main frequencies when the noise RMS 

ranges from 0 to 0.9.   

 



Figure 1.   The effect of different degrees of Gaussian noise to the measures excitation signals in the phase‐

frequency characteristics. (a) SNR of the polluted potential signal. Complex resistivity relative error at (b) 80 Hz, 

(c) 160 Hz, (d) 320 Hz comparison using the three methods. 

 

Figure 2.   The effect of different levels of spike noises to the measured excitation signals. (a) SNR of the 

contaminated potential signal in the phase‐frequency characteristics. Complex resistivity relative error at (b) 80 

Hz, (c) 160 Hz, (d) 320 Hz comparison using the three methods. 

From Figures 1 and 2, the results do not reflect the noise reduction performances of the three 

algorithms.  Therefore,  these  results  are  not  put  into  our manuscript.  But  |R(f)|  and  Phase(f) 

processed  by  three  algorithms  reflect  their  noise  reduction  performance  well  in  the  field 

experiment, as shown in Figure 3. So |R(f)| and Phase(f) in the field experiment are added to our 

manuscript.   

This information is added on Page 9, line 16 and 17, Page 10, line 1 to 5 and Figure 3. 

 
Figure 3.   Complex resistivity spectrum calculated by the three algorithm (one period) in survey point No 21. 

Comment 3. Page 7: “ECI algorithm still has superior denoising performance and holds smaller 



volatility of the relative error when the percentage of the outliers is more significant than 50% .” 

What do you mean by volatility here? This sentence is unclear. 

Response.  

By ‘volatility’ we were trying to say ‘fluctuation’, sorry for causing misunderstanding.  

Page 6, line 8 

 

Comment 4. What situations would the algortim fail? That is, what are the limitations? Please show 

the limitations in detail (simulation or measured data and discussion). 

Response. 

In a real environment, this model is contaminated by the environment interference and measuring 

instrument. It can be categorized into three types: the Gaussian random noise, the impulse 

interference, and the particular frequency disturbance (Wang and Li, 1986; Yan et al., 2016). 

For our system, we assume the three noises are linearly overlapping on the three sensors, along with 

some weak influence of coupling effects. So, the noises in the three sensors are only different in 

amplitude. Hence, 

 1 1 1 1( ) ( ) ( ) ( )n t B g t C p t D s t    (1) 

 2 2 2 2( ) ( ) ( ) ( )n t B g t C p t D s t    (2) 

 3 3 3 3( ) ( ) ( ) ( )n t B g t C p t D s t    (3) 

where ( )kn t   is the noise in sensor Yk  , 1, 2,3k   , respectively. ( )g t  , ( )p t   and ( )s t   are 

separately Gaussian random noise, impulsive noise and particular frequency interference. kB , kC  

and kD  are the amplitudes of ( )g t , ( )p t  and ( )s t , 1, 2,3k  , respectively. 

According to the properties of the correlation function, the cross-correlation results of the three kind 

of noise is as below: 

A. For the Gaussian random noise, when NT NT  -  and 0  , ( )ggR   is shown in Figure 

4. 



 

Figure 4. Waveform and autocorrelation for the Gaussian random noise ( )g t . (a) its time domain waveform. 

(b) its autocorrelation ( )ggR  . 

B. For the impulsive noise, when NT NT  -  and 0  , it is considered that (0) ( )pp ppR R  , 

as shown in Figure 5. 

 

Figure 5. Waveform and autocorrelation for the impulsive noise ( )p t . (a) its time domain waveform 

containing 20% of the outliers. (b) its autocorrelation ( )ppR  . 

C. For the particular frequency disturbance, its autocorrelation has the same frequency with it, but 

when it is less effective for the transmitter output signal ab ( )u t  than that of the mn ( )u t  and ( )i t , 

1 2 ( )ssD D R   and 1 3 ( )ssD D R   can be effectively suppressed, as shown in Figure 6.  



 

Figure 6. Waveform and autocorrelation for the particular frequency interference ( )s t  . The power-line 

interference (a) at 1 0.01D  , (b) at 2 1D  . (c) their cross-correlation 1 2 ( )ssD D R  . 

Based on the analysis above, it can be concluded that the influences of Gaussian random and 

impulsive noises are more effectively suppressed, while the particular frequency disturbance is 

attenuated to some degree when the noise is in lower intensity. Therefore, the proposed method has 

more value on denoising for Gaussian and impulsive random noises. 

Page 10, line 15 and 16 
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Comment 5. Phase (or quadradture component) results must be presented and discussed, oth-erwise 

we are not looking at the IP effects. 

Response. 

(1) The phase results for the inversion results given by Res2DInv software is shown as Figure 7. As 
we can see, this figure shows chaos information from the phase shift between ( )i t  and ( )u t  of 

the three methods. This is because the loss layer surrounding the shelter is very weak polarized, so 

the phase shift is very small, which cause the result easily contaminated by some random factors. 

Therefore, we have not figured out how to extract meaningful information out of the phase results, 

but it is possible that with proper strong-polarized experiment field there could be different results. 

We are eager to explore that in our next experiment plan. 



 

Figure 7.   Inverted phase sections of the two high resistivity anomalies at 80Hz with using (a) the FDIP method, 

(b) the TSIP algorithm, and (c) the ECI algorithm. 

(2) We added phase results to field experiment and not to simulation as we explained in Response 

2.  
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Abstract. In spread spectrum induced polarization (SSIP) data processing, attenuation of background noise from the observed 
data is the essential step that improves the signal-to-noise ratio (SNR) of SSIP data. The Time-Domain Spectral Induced 
Polarization Based on Pseudo-random Sequence (TSIP) algorithm has been proposed to improve the SNR of these data. 10 
However, signal processing in background noise is still a challenging problem. We propose an enhanced correlation 
identification (ECI) algorithm to attenuate the background noise. In this algorithm, the cross-correlation matching method is 
helpful for the extraction of useful components of the raw SSIP data and suppression of background noise. Then the frequency-
domain IP (FDIP) method is used for extracting the frequency response of the observation system. Even when the signal to 
noise ratio (SNR) is -37.5dB, this ECI algorithm can still be able to keep 3.0% relative error. Experiments on both synthetic 15 
and real SSIP data show that the ECI algorithm can not only suppress the background noise but also better preserves the valid 
information of the raw SSIP data to display the actual location and shape of adjacent high resistivity anomalies, which can 
improve subsequent steps in SSIP data processing and imaging. 

1 Introduction 

Induced Polarization (IP) technology operated in both the time domain and the frequency domain is useful in exploration for 20 
groundwater mapping, mineral exploration, and other environmental studies (Revil 2012, 2019; Høyer et al. 2018). Since the 
phenomenon of IP in time domain was first discovered by Schlumberger in 1920s, there has been consistent efforts to explore 
its utilization in various researches. In 1959, the frequency-domain IP (FDIP) approach is proposed by Collett and Seigel, 
which became the most classic and widely used mapping technique. For example, the first variable-frequency approach was 
proposed by Wait et al in 1959, then the spectrum approach of the complex resistivity was developed by Zonge and Wynn in 25 
1975, and the dual-frequency IP approach was presented and developed by He et al. in 1993 and Han et al. in 2013. Recently, 
spread spectrum induced polarization (SSIP) is a popular branch of FDIP which uses pseudo-random current pulses of opposite 
polarity as an excitation source (Chen et al., 2007; Xi et al., 2013, 2014; He et al. 2015). According to the intrinsic broadband 
characteristics of the source itself, the spectral response of an observation system can be simultaneously calculated at multiple 
frequencies in electrical exploration (Liu et al., 2019). Thus, this SSIP technology has been gaining attention and application 30 
in electrical prospecting (Xi et al., 2014; Lu et al., 2019; Wang and He, 2020). 

SSIP technology has a certain degree of noise immunity, but it is still polluted by inevitable background noise in IP data 
acquisition. The background noise can be mainly categorized into two types: the Gaussian noise and the impulsive interference 
with different percentage of outliers (Liu et al., 2016; Kimiaefar et al., 2018; Li et al., 2019). If the background noise is not 
effectively reduced, the remnant noise can affect the calculation of complex resistivity and may mislead subsequent 35 
interpretations of the subsurface structure. 

The field of FDIP denoising has achieved quite good results through the constant research of experts and scholars. There 
have been many algorithms that can be used to suppress the FDIP random noise (Mo et al., 2017), such as smooth filter (Guo, 
2017), Mean stack (Liu, 2015), digital filter (Meng et al., 2015), and robust stacking (Liu et al., 2016). The smooth can 
effectively attenuate Gaussian noise, but the impulsive interference with intense energy leaves the effectiveness of this 40 
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algorithm limited. Therefore, an effective attenuative algorithm for background noise is still a challenging task for traditional 
noise suppression algorithms (Neelamani et al., 2008; Liu et al., 2017). SSIP method also faces the same issue (Liu et al., 2016, 
2017). 

Recently, the new algorithm based on a circular cross-correlation method, Time-Domain Spectral Induced Polarization 
Based on Pseudo-random Sequence (TSIP) algorithm, has also been used to suppress the SSIP noise (Li et al. 2013; Zhang et 5 
al. 2020). Due to its effective denoising ability, the identification method has gained more attention and development. However, 
the TSIP algorithm is restricted because the excitation signal is sensitive to the random noise. For this problem, we propose an 
enhanced correlation identification (ECI) algorithm for reducing the noise in SSIP data. The ECI algorithm obtains cross-
correlations between the transmitter output signal, the excitation signal, and the response signal. The performance of the ECI 
algorithm is demonstrated on both synthetic and field SSIP data. Experimental results show that the ECI algorithm can 10 
effectively control the root mean square of noise (NRMS) increase, enhance its denoising performance in background noise 
and improve the valid signal preservation to display the actual location and shape of high resistivity anomalies with higher 
resolution.  

2 Theory  

2.1 Subsection (as Heading 2) The TSIP theoretical model 15 

Figure 1 shows a traditional diagram of the electrical resistivity survey. The transmitter output signal Tu t( )  is poured from 

electrode A to electrode B, the excitation signal i t( )  flows from electrode A to electrode B, and the response signal u t( )  

between the electrodes M and N is measured. To simultaneously obtain the spectral response of subsurface at various 
frequencies, pseudo-random sequence based the excitation signal i t( )  is considered. Thus, the spectral response of subsurface 

be retrieved by the TSIP algorithm, and its spectral response be expressed as (Li et al., 2013):  20 
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where uiP ( )  is the cross-power spectral density of ( )u t  and ( )i t , iiP ( )  the auto-power spectral density of ( )i t , and SH ( )  

is the impulse spectral response of the observing system. 
Given this observation mode using low-power signals, the magnetotelluric system is a time-invariant system and let us suppose 

that SH ( )  is 1. Eq. (1) can further be expressed as: 25 

[ ]

[ ]
ui ui

e
ii ii

P fft R τ U
H

P fft R τ I

 
 

  
( ) ( ) ( )

( ) ,
( ) ( ) ( )

 (2) 

where [.]fft  denotes Fast Fourier Transform (FFT), , uiR τ( )  is the cross-correlation function of ( )u t  and ( )i t , iiR τ( )  is the 
auto-correlation function of ( )i t , U ( )  and I ( )  depict the geometric factor defined by the frequency spectrum of ( )u t and the 
frequency spectrum of ( )i t  respectively, and τ denotes time-delay.  
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Figure 1.  (a) The observation model of the four-electrode measurement. (b) its equivalent diagram. 

In the practical field environment, this observation mode is contaminated by the background noise, as shown in Figure2. The 
output of the sensors Ak  ( 1, 2,3k= ) can be expressed as: 

1 T 1( ) + ( )y =u t n t ,  (3) 5 

2 2( ) + ( )y =u t n t ,  (4) 

3 3( ) + ( )y =i t n t ,  (5) 

where ( )kn t  is the background noise. 

 
Figure 2.  Schematic diagram using the TSIPD algorithm. 10 

Therefore, according to Eq. (2), the formula of the TSIP algorithm is given as: 

2 1
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Eq. (6) demonstrates that the TSIP algorithm has a weak denoising effect when 3 ( )n t  is the massive intense noise. In other 

words, the TSIP algorithm depends on the energy intensity of 3 ( )n t  present in ( )i t . 



4 
 

 
Figure 3.  The schematic diagram of the ECI denoising model. 

2.2 The ECI theoretical model 

That the denoising ability of the TSIP algorithm is limited is caused by that ( )i t  is sensitive to 3 ( )n t . To solve this problem, the 
ECI algorithm is proposed and its derivation process is as follows. 5 

Firstly, let us suppose that the telluric system is a time-invariant system under low-power signals. For three sensor output 
signals, their cross-correlation functions are the periodic correlation functions of time τ . When the length of the correlation 
window NT  is specified, 0.0125s in this experiment. The cross-correlation functions can be expressed as follows: 

1 21 2( ) E[ ( ) ( )] ( ( )) ( )
Ty y u u N n nR τ = y t y t-τ = R τ + R τ

1 2
,  (7) 

1 31 3( ) E[ ( ) ( )] ( ( )) ( )
Ty y u i N n nR τ = y t y t-τ = R τ + R τ

1 3
,  (8) 10 

where 1 2 ( )n nR τ  and 1 3 ( )n nR τ  are the cross-correlations of, 2 ( )n t  and 3 ( )n t  respectively, and τ  is time-delay that lies in the range 
of NT- to NT . 

According to the design features of ZW-CMDSII (Zhang, et al., 2014; He, et al., 2014;), 1( )n t  caused mainly by the floor noise 
energy of the instrument is relatively very low, while 2 ( )n t  and 3 ( )n t  possess much higher energy level because they are mainly 
composed of environment noise. Thus we can assume that the cross-relation between 1( )n t  and 2 ( )n t , 3 ( )n t , 1 2 ( ) 0n nR τ  and 15 

1 3 ( ) 0n nR τ . 
Based on the above analyses, we can further obtain: 

( ) ( ( ))
Ty y u u NR τ R τ

1 2
,  (9) 

( ) ( ( ))
Ty y u i NR τ R τ

1 3
.  (10) 

Then the cross-power spectrum of Eq. (9) and Eq. (10) can be written as following 20 
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Finally, according to Eq. (2) and Eq. (11), Eq. (12) can be expressed as following 
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So, Eq. (13) is the formula of the ECI algorithm. The derivation process of this formula clearly describes that the ECI algorithm 
can effectively suppress the background noise and be independent on the degree of 3 ( )n t  present in ( )i t . 

3 Experiment on synthetic SSIP data record 

We test the ECI algorithm for attenuating background noise of SSIP data sets in comparison with the FDIP algorithm and the 
TSIP algorithm. For the comparison, the SNR, root mean square of noise (NRMS) and relative error ( ε ) as the objective 5 
parameters to judge the performance of denoising, which are calculated as follows: 
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Sii t =u t R( ) ( ) /  (17) 10 

where y  and n  denote the mean values of the useful signal and the noise separately. y i( )  and n i( )  are the useful signal and 
the noise separately, M is the length, 0  denotes the complex resistivity calculated without noise, and 1  is the complex 
resistivity calculated with the noise added to 0 . SR  is the value of the sampling resistor ( SR  1 ), and iu t( )  is the voltage at 
the sampling resistor.  

To validate the effectiveness of the ECI algorithm, we test for one practically recorded data set. Firstly, we use the applied 15 
voltage T ( )u t , the injected current ( )i t  and the measured potential signal ( )u t as the raw signals. These signals are a 3-order 
spread spectrum pseudo-random sequence at the clock cycle of 0.0125s, as shown in Figures 4a-c. Secondly, In our experiment 
the measurement line is 19m and in a stable environment, so we consider the system linear time-invariant and the noise from the 
current and voltage measurement are linearly superpositioned (Pelton, et al., 1983; De, et al., 1983; Vinegar and Waxman, 1984; 
De, et al., 1992; Garrouch and Sharma, 1998). Therefore, it is actually equivalent whether the noise is added to the injected current 20 
( )i t , the measured potential signal ( )u t  or the applied voltage T ( )u t . Therefore, the injected current ( )i t  is only polluted by the 

synthetic background noise, including Gaussian and impulsive, as shown in Figures 4d and e. Thirdly, the complex resistivity of 
the main frequency is considered and discussed because the main energy of the pseudo-random signal is concentrated on the main 
frequency (He, 2017). Finally, for detailed comparisons between the ECI algorithm and the others, we add the synthetic Gaussian 
and impulsive noises to the response signal ( )i t , respectively. 25 
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Figure 4.  The time waves of (a) the applied voltage uT(t), (b) the measured potential signal u(t), (c) the voltage u i(t) at the sampling 

resistor, (d) noise(t), and (e) the synthetic signal (ui(t)+ noise(t)). 

We use synthetic Gaussian noise with the deviation and mean value of 0.1 and 1.1 as a standard template. The excitation signal 
( )i t  is polluted by synthetic different energy levels of the Gaussian noise, as shown in Figure 5. The denoised results obtained by 5 

the ECI algorithm and the others are shown in Figures 5a-c. These figures show that the relative error and SNR of the excitation 
signal ( )i t  are calculated and compared at the three main frequencies when the noise RMS ranges from 0 to 0.9. From Figure 5b, 
it can be seen that the denoising ability of TSIP algorithm depends on the energy intensity of the noise presence in the excitation 
signal ( )i t , consistent with the conclusion of Eq. (6). Meanwhile, Figure 5 indicates that the ECI algorithm possesses the best 
denoising performance under the same noise RMS and SNR. Particularly, when the SNR is -37.5 dB, this ECI algorithm is still 10 
able to keep 3.0% relative error at the primary frequency 160Hz.  
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Figure 5.  The effect of different degrees of Gaussian noise to the measures excitation signals. (a) SNR of the polluted potential signal. 

Complex resistivity relative error at (b) 80 Hz, (c) 160 Hz, (d) 320 Hz comparison using the three methods. 

Previous literature has shown that if the percentages of outliers in impulsive noise exceed 50% , the traditional denoising 
algorithm will be limited (Liu et al., 2016, 2017). Thus, Synthetic impulsive noise is added to the excitation signal ( )i t  in ten 5 
percent steps. Their standard deviations (SDs) and skewnesses (SKs) are shown in Figure 6. As depicted in Figures 7, the three 
algorithms have a certain degree of denoising performance versus the different percentages of the synthetic outliers against the 
raw data. However, the ECI algorithm still has superior denoising performance and holds smaller fluctuation of the relative error 
when the percentage of the outliers is more significant than 50% . For example, the average SD in ECI processing the SSIP data 
is 37% and 51% lower than the FDIP and TSIP respectively. 10 

 
Figure 6.  The standard deviations (SDs) and skewnesses (SKs) of synthetic impulsive noise. 
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Figure 7.  The effect of different levels of spike noises to the measured excitation signals. (a) SNR of the contaminated potential signal 
in the amplitude-frequency characteristics. Complex resistivity relative error at (b) 80 Hz, (c) 160 Hz, (d) 320 Hz comparison using the 

three methods. 

4 Experiment on real SSIP data record 5 

To further verify the performance of the ECI algorithm, the Wenner array, the traditionally applied system in the field, was 
selected for performing laboratory tests, as shown in Figure 8. SSIP data was acquired with high-density meter and 20 
electrodes at 1m spacing. A Wenner acquisition sequence was adopted with 55 potential measurements expressed utilizing the 
green and points. The figure shows an example of two high resistance cavities. The two cavities were presented by the letters 
A and B, and their calibers were about 1.8 m × 2 m. The measured excitation signal had a range between 0.04 and 0.19 A 10 
approximately. The transmitter output signal is a three-order sequence with 80 Hz frequency, and its voltage is about ± 11.8 
V. The sampling frequency is 625 kHz. The excitation and response data of 40 periods were recorded at each point. 

 

 
Figure 8.  The schematic of the two high resistance cavities. 15 
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Figure 9 demonstrates the experimental SSIP data processed by the three algorithms, inverted with Res2DInv. It can be 
observed that the location and shape of two abnormal bodies are distinguished only in the ECI algorithm while recognized as 
one whole in the other algorithms. We believe the reason that ECI has higher detection precision is due to its higher denoising 
ability. 

 5 
Figure 9.  Inverted resistivity sections of the two high resistivity anomalies (A and B) at 80Hz with using (a) the FDIP method, (b) the 

TSIP algorithm, and (c) the ECI algorithm. 

To verify the reason of the improved detecting precision, the SD for each red point is calculated, as shown in Figure 10. 
This figure shows that among the 33 SD of SSIP data by processed the ECI method is the lowest at all points except for the 
28th. The average SD in ECI processing the SSIP data is 7% and 3.8% lower than the FDIP and TSIP respectively. Also, the 10 
maximum value of SDs with the ECI method is 5% and 1.4% lower than the others, and the minimum value is 8% and 10% 
lower, respectively. The These results quantitively indicate that the ECI algorithm improves the accuracy and robustness of 
the collected data.  

 
Figure 10.  Standard deviation (SD) of the ECI algorithm and the others to the red data dots at 80Hz. 15 

Meanwhile, amplitude-frequency f( ) and phase-frequency f( )  characteristics of complex resistivity are calculated by 

the three algorithm (one period) in survey point No 21, in Figure 11. As depicted in Figure 11, the complex resistivity processed 
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by the ECI shows a linear trend with the three main frequencies. Also, the SD of the amplitude-frequency f( )  characteristic 

is 9.9% and 4.9% lower than the others, and the SD of the phase-frequency f( )  is 356.1% and 3.3% lower. Therefore, we 

believe that the ECI algorithm has advantage on suppressing background noise, which benefits the subsequent steps in SSIP 
data processing and imaging. 

 5 
Figure 11.  Complex resistivity spectrum calculated by the three algorithm (one period) in survey point No 21. 

5 Conclusions 

We propose the ECI algorithm that effectively attenuates the background noise in SSIP data and improves the complex resistivity 
spectrum. This method uses the correlation function to neutralize the influence of the background noise in the SSIP data, and the 
spectrum complex resistivity can be calculated at multiple frequencies by the formula of the complex resistivity. Simulation results 10 
show that the ECI algorithm can effectively attenuate the background noise and improve the SNR. Subsequently, the practicability 
of the ECI algorithm is further verified by a field test. The results demonstrate that the SD of the SSIP data is improved, which 
benefits the accuracy and stability of the collected data. There is a good agreement between the complex resistivity and the 
geological target body with high resistance, which indicates that the ECI algorithm can help to improve the quality of interpretation 
and inversion in the survey area. The ECI algorithm can more effectively suppress the background noise including the Gaussian 15 
random and impulsive noises, but its effect on particular frequency disturbance is very limited due to the periodicity of the 
disturbance. Therefore, denoising algorithm based on pseudo random sequence correlation identification is still left open for more 
investigation. 
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